(OBJECTIVE PART)

1. Computer chips are made of:
(a) Silicon
(b) Germanium
(c) Carbon
2. Which is not a base unit in SI units?
(a) Kilogram (b) Joule
(c) A npere
3. 1 Giga is equal to:
(a) 10^{3}

(d) 10^{12}
(d) Joule
4. S.I unit of intensity of light:
(a) Ampere
(b) Mile
c) Cind ela
5. The ratio of 1 nanomet 1 to 1 att nieter is:
(a) 10^{9}
$\begin{array}{ll}\text { (b) } 10^{8} & \text { (c) } 10^{-9}\end{array}$
(d) 10^{-8}
W hich of he Blowing is least multiple?
a) $\mathrm{H} \cdot \mathrm{Cd}$
(b) Femto
(c) Nano
(d) Atto

7 SI unit of plane angle is:
a) Radian
(b) Degree
(c) Sterdian
(d) Revolution
8. The SI unit of solid angle is:
$\begin{array}{ll}\text { (a) Steradian } & \text { (b) Radian }\end{array}$
(c) Degree
(d) Revolution
9. How many nanometers in a meter?
(a) 10^{19}
(b) 10^{-19}
(c) 10^{9}
(d) 10^{-9}
10. Which one of the following is not allowed as standard prefix?
(a) Kilo
(b) Nano
(c) Mega
(d) Micro Micro
11. $\mathrm{Kg} \mathrm{m}-\mathbf{1} \mathbf{s - 2}$ is the unit of:
(a) Force
(b) Work
(c) Pressure
(d) Momentum
12. Physical quantity 'pressure" in term of base unit is:
(a) $\mathrm{Kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
(b) $\mathrm{Kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$
(c) $\mathrm{Kg}^{2} \mathrm{~m}^{-2} \mathrm{~s}$
(d) $\mathrm{Kg} \mathrm{m}^{1} \mathrm{~s}^{-2}$
13. How many seconds are there in one year?
(a) $3.156 \times 10^{6} \mathrm{~s}$
(b) $3.1536 \times 10^{7} \mathrm{~s}$
(c) $3.1536 \times 10^{10} \mathrm{~s}$
(d) $3.1536 \times 10^{-7} \mathrm{~s}$
14. 2° is equal:
(a) 0.035 rad
(b) 0.30 rad
(c) 0.35 rad
(d) 0.0035 rad
15. One radian is equal to:
(a) 77.3°
(b) 67.3°
(c) 57.3°
(d) 47.3°
16. Pascal is the unit of:
(a) Pressure
(b) Force
(c) Tension
(d) Weight
17. Which one of the following is not a unit of energy?
(a) Kilowatt
(b) Erg
(c) Joule
(d) Kilowatt hour
18. One radian is equal to:
(a) 57.3
(b) 67.3
(c) 87.3
(d) 60
19. Zero error of an instrument is a type of:
(a) Systematic error
20. Least count of meter rod is:
(a) 0.01 cm
(b) 0.001 cm
21. Significant figures in $8.70 \times 10^{4} \mathrm{~kg}$ a.
(a) 2
(b) 3

(b) Classified error

22. If we round off 6434546 up to tiree significht fightes, the best answer is:
$\begin{array}{lll}\text { a. (a) } 64.3 & \text { b) } 64.7 \\ \text { 23. A precise meas ir }\end{array}$

23. A precise meas mrinent is the one which has.
(a) Greater precision
(G) Less precision
(c) Mediunterecision
(d) More \% error

a) Ab olute uncertainties are added
(b) Fractional uncertainties are added
(c) $\%$ age uncertainties are added
(d) Error are added
24. The time taken by light from moon to earth is:
(a) 1 min 10 sec (b) 1 min 20 sec (c) 1 min 30 sec (d) 1 min 40 sec
25. A measurement taken by vernier callipers with least count as $0.01 \mathbf{c m}$ is recorded as 0.45 cm , it has fractional uncertainty:
0.01
(b) 0.02
(c) 0.03
(d) 0.45
26. Length of an object is recoded as 25.5 cm by using a meter rod having smallest division in millimetre. The fractional uncertainty is:
(a) 0.400
(b) 2.550
(c) 0.004
(d) 0.100
27. If $\mathbf{r}=\mathbf{2 . 2 5} \pm \mathbf{0 . 0 1} \mathbf{~ c m}$ then (\%) percentage uncertainty in r is:
(a) 0.225%
(b) 22.5%
(c) 0.2%
(d) 0.4%
28. The dimensions of force is:
(a) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(b) $\left[\mathrm{MLT}^{-1}\right]$
29. Dimensions of coefficient of viscosity are:
$\begin{array}{ll}\text { (a) }\left[\mathrm{MLT}^{-1}\right] & \text { (b) }\left[\mathrm{ML}^{1} \mathrm{~T}^{1}\right]\end{array}$
30. The dimension \boldsymbol{o}^{f} ngular momentum are:
(a) $\left[\mathrm{MLT}^{2}\right]$
b) $\left[1 / \mathrm{T}^{1}\right]$
(c) $\left[\ln ^{T}-\mathrm{T}^{-2}\right]$

31. The dimension of $\sqrt{\text { s }}$ is same s that of:
(a) Time
(b) Energy
(c) Velocity
(d) Force
32. Fhe dimension of the relation are equal $\sqrt{\frac{F \times l}{m}}$ to the dimension of:
(a) Force
(b) Momentum
(c) Acceleration
(d) Velocity
33. Light year is the unit of:
(a) Time
(b) Distance
(c) Energy
(d) Torque
34. The dimensions of torque are:
(a) $\left[\mathrm{MLT}^{2}\right]$
(b) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(c) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
(d) $\left[\mathrm{ML}^{2} \mathrm{~T}^{2}\right]$
35. Dimensions of ratio of angular momentum to linear momentum is:
(a) $\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$
(b) $\left[\mathrm{M}^{1} \mathrm{LT}^{1}\right]$
(c) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
(d) $\left[\mathrm{M}^{-1} \mathrm{~L}^{-1} \mathrm{~T}^{1}\right]$
36. The dimensions of Einstein equation are $\mathbf{E}=\mathbf{m c}^{\mathbf{2}}$:
(a) $\left[\mathrm{MLT}^{-2}\right]$
(b) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{2}\right]$
(c) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(d) $\left[\mathrm{ML}^{-2} \mathrm{~T}^{2}\right]$
37. Which of the following is correct:
(a) $f=V \lambda$
(b) $\mathrm{f}=\frac{V}{\lambda}$
(c) $f=\frac{1}{v \lambda}$
(d) $\mathrm{f}=\frac{\lambda}{V}$
38. The dimensions of pressure are:
(a) $\left[\mathrm{MLT}^{2}\right]$
(b) $\left[\mathrm{ML}^{2} \mathrm{~T}^{2}\right]$
(c) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{2}\right]$
(d) $\left[\mathrm{MLT}^{-3}\right]$
39. The resultant of two forces 30 N and 40 N acting parallel to each other is:
(A) 30 N
(B) 40 N
(C) 70 N
(D) 10 N 2015
40. The resultant of two vectors having magnitude 12 N and 8 N cannot be:
(A) 2 N
(B) 20 N
(C) 10 N
(D) 16 N
41. If $\overrightarrow{\mathbf{B}}=\mathbf{4 i}+\mathbf{5} \hat{\mathbf{k}}$, then its magnitude will be:
(A) 9
(B) $\sqrt{41}$
(C) 7
(D) 3
42. A force of 10 N makes an angle 30° with y-axis. Then magnitude of x-component is:
(A) 5 N
(B) 8.66 N
(C) 10 N
(D) Zero
43. The position vector $\hat{\mathbf{r}}$ in xz - plane is:
(A) $v \hat{i}+z \hat{k}$
(B) $x \hat{\imath}+y \hat{k}$
(C) $x \hat{i}+z \hat{k}$
(D) $x \hat{\imath}+y \hat{k}+z \hat{k}$
44. Unit vector of a given vector $\vec{A}=4 \hat{\imath}+3 \hat{\jmath}$ is:
(A) $\frac{4 \hat{i}+3 \hat{j}}{25}$
(B) 1

(D)
45. Rectangular components have angle between them is:
$\begin{array}{lll}\text { (A) } 30^{\circ} & \text { (B) } 45^{\circ} & \text { (C) } 69^{\circ}\end{array}$
46. Which of the following is the only scila qyantity?
(A) Energy
(P) Velocity
(C) Horce
(D) Iorque
47. Resultant of voperpericilar rocter of equal magnituhe (say \vec{A}) will be:
(A) \vec{A}
48. The magnityde of the r esultant of tor forces 6 N and 8 N acting at right angle is:
(A) 6 N
(3) 10 N
(C) 14 N
(D) 16 N
49. Ne revise pocess of vector addition is called:
(A) Surtaction of vectors
(B) Resolution of a vector
(d) Negative of a vector
(D) Multiplication of a vector
50. The resultant of $\mathbf{1 2 0} \mathbf{N}$ and $20 \mathbf{N}$ forces can not
(A) 141 N
(B) 100 N
(C) 101 N
(D) 130 N
51. The angle of $\mathbf{A}=\mathbf{A x} i-\mathrm{Ay} \mathrm{J}$ with \mathbf{x}-axis will be in between:
(A) 0° and 90°
(B) 90° and 180°
(C) 180° and 270°
(D) 270° and $360^{\circ} 30$
52. If two unit vectors perpendicular to each other are added, magnitude of resultant.
(a) 2
(B) $\sqrt{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) 4
53. Angle between two vectors $\mathbf{3} \hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}$ and $4 \hat{i}-\mathbf{3} \hat{\mathbf{j}}$ is:
(A) 30°
(B) 90°
(C) 60°
(D) 45°
54. The force of $\mathbf{1 5} \mathbf{N}$ makes an angle of 90° with x - axis, its y-component is:
(A) 15 N
(B) Zero N
(C) 30 N
(D) 45 N
55. If the two components of a vector are equal in magnitude, the vector making angle $\sqrt{\text { it }}=$ as is vill 0
(A) 30°
(B) 45°
(C) 60°
(D) 9
56. In which quadrant vector $2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}$ lies?
(A) 1 st
(B) 2 nd
(C) 4 th \qquad (D) Ca
57. The sum of two perpendicular forces $8 \mathrm{~N}, \mathrm{nd} 6 \mathrm{~N}$ is:

(A) 2 N (C) 1 NN 4 N (b) -21 N .
58. If a force of 16 is aching fiong ax the its component along y-axis is:
(A) Zero
(3) 5 V
(C) 10 N
(D) 15 N
59. If R, is rega ive an $H R$, is positive and resultant lies in quadrant:
(A) 1 st
(1.) 2 nd
(C) 3 rd
(D) 4 th
60. The vec or product $(\vec{A} \times \vec{A})$ is:
(B) F
(C) Zero
(D) Null vector
61. The area of the parallelogram formed by A and B as two adjacent sides is equal to:
(A) AB
(B) $\mathrm{AB} \cos \theta$
(C) $A B \sin \theta$
(D) $\mathrm{AB} \tan \theta$
62. The cross product $\hat{\mathbf{k}} \mathbf{x} \hat{\mathbf{j}}$ is equal to:
(A) $-\hat{i}$
(B) $-\hat{j}$
(C) $-\hat{k}$
(D) \hat{i}
63. If two non-zero vectors \vec{A} and \vec{B} are parallel to each other than:
(A) $\vec{A} \cdot \vec{B}=0$
(B) $\vec{A} \cdot \vec{B}=A B$
(C) $|\vec{A} \times \vec{B}|=A B$
(D) $(\vec{A} \times \vec{B})=\vec{A} \cdot \vec{B}$
64. If $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\mathbf{0}$, then angle between the vectors is:
(A) 90°
(B) 180°
C) 0°
(D) None of these
65. $\mathrm{AB} \sin \boldsymbol{\theta} \hat{\mathbf{n}} \mathrm{x} \mathbf{A B} \sin \boldsymbol{\theta} \hat{\mathbf{n}}$ is:
$A^{2} B^{2} \sin ^{2} \theta \quad$ (B) $A^{2} B^{2}$
(C) $A^{2} B^{2} \hat{n}$
(D) 0
66. Projection B along A is given as:
(A) $\widehat{A} \cdot \vec{A}$
(B) $\vec{B} \cdot \widehat{A}$
(C) $\frac{\vec{A} \cdot \vec{B}}{B}$
(D) $\frac{A \cos \theta}{B}$
67. $\hat{\mathbf{i}} .(\hat{\mathbf{k}} \times \hat{\mathbf{i}})=$ \qquad (C) \hat{i}
(D) \hat{k}
(A) 1
(B) 0
68. The magnitude of $\hat{\mathbf{i}} \mathbf{x} \hat{\mathbf{j}}$ is equal to:
$\begin{array}{ll}\text { (A) } 1 & \text { (B) }-1\end{array}$
(C) $-\hat{j}$
(D) $+\hat{\mathrm{k}}$
69. The dot product îi.i is equal to:
(A) 0
(B) 1
(C) -1
(D) \hat{j}
70. $\hat{i} \cdot \hat{\mathbf{i}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}$ is equal to:
(A) 0
(B) 1
(C) -1
(D) 2
71. The complete requirements for a body to be in equilibrium is:
(A) $\Sigma \mathrm{F}=0$
(B) $\Sigma \tau=0$
(C) $\Sigma \mathrm{P}=0$
(D) $\Sigma \mathrm{F}=0, \Sigma \tau=0$
72. The dot product of two vectors A and B zero, if angle between A and B is:
(A) Zero
(B) 30°
(C) 90°
(D) 180°
73. Speed of moon around the earth is:
$\begin{array}{ll}\text { (A) } 1200 \mathrm{~m} / \mathrm{s} & \text { (B) } 1100 \mathrm{~m} / \mathrm{s}\end{array}$
(C) $1000 \mathrm{~m} / \mathrm{s}$

IP) $900 \mathrm{~m} / \mathrm{s}$
75. When a ball is thrown straight up, the accelel ation at it higest q oin t is:
(A) Upward
(B) Downward
(C) Zero
1)) Holizon al
76. Unit of acceleration is.
(A) ms^{-1}
77. If a mass of a bouv is douber, thea acceration beeomes:
(A) double
(1) halt (E) no iourth
(D) Constant
(D) $\mathrm{m}^{2} \mathrm{~S}$
78. A bodycovers a di tincef 10 m in 1 sec with a constant velocity of $10 \mathrm{~ms}^{-1}$ Acceleration produced by the body is:
(A) n. $\sqrt{\text { N }}$ (R) $2 \mathrm{~ms}^{2}$
(C) 5 ms
(D) 10 ms
7. $1+1$ ne niss of a body is acceleration becomes: doubled, then acceleration becomes:
(A) CDe tourth (B) Half
(C) Double
(D) Constant
80. 10 N and 20 N are acting on a body of mass 2 kg , the minimum acceleration will be:
(A) $10 \mathrm{~ms}^{-2}$
(B) $20 \mathrm{~ms}^{-2}$
(C) $60 \mathrm{~ms}^{-2}$
(D) $5 \mathrm{~ms}^{-2}$
81. The velocity of a body changes with constant rate. Then acceleration is:
(A) Zero
(B) Constant
(C) Negative
(D) Positive
82. Slope of velocity time graph describes a physical quantity called:
(A) Displacement
(B) Average velocity
(C) Average acceleration
(D) Momentum
83. When the body moves with constant acceleration, the velocity time-graph is:
(A) Parabola
(B) Hyperbola
(C) Straight line
(D) Curve
84. The area under velocity time graph is equal to:
(A) Distance
(B) Power
(C) Force
(D) Work
85. The distance covered by a body with uniform acceleration " a " in time " t " starting from vest is:
(A) $\frac{1}{2} a t^{2}$
(B) vt
(C) $\frac{1}{2} \mathrm{vt}$
(D) $\frac{1}{2} a^{2} t$
86. If velocity-time graph is parallel to time axis, then acce er tion of moving iod vili be:
(A) Maximum (B) Positive
(C) Zero

(A) $9.8 \mathrm{~ms}^{-1}$ (R) $24.5 \mathrm{~ms}^{-1}$
88. Velocity of an obect drepoea irm : uidding a an instont ' t ' is given by:
velled b. fie fallagolect in first second is:
89. Distance travelled $\begin{array}{llll}\text { (A) } 4.9 \mathrm{~m} & \text { (B) } 19.6 \mathrm{~m} & \text { (D) } 10 \mathrm{~m}\end{array}$
91. N12 mas atobject is quantitative measure of its:
(A)) ICmes tum (B) Acceleration (C) Inertia

1. S.I unit of linear momentum is:
(A) $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$
(B) $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
(C) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
(D) $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
2. S.I unit of impulse is equivalent to that of:
(A) Force
(B) Momentum
(C) Acceleration
(D) Velocity
3. SI unit of impulse is:
(A) kgms^{-1}
(B) N.m
) Ns
(D) $\mathrm{N} \cdot \mathrm{m}^{2}$
4. A force of 10 N acts on a body of mass 1 kg for 5 sec to a distance of 10 m . The rate of change of momentum is:
(A) 50 N
(B) 25 N
(C) 20 N
(D) 10 N
5. The force due to water flow is:
(A) $\mathrm{F}=\mathrm{mv}$
(B) $\mathrm{F}=\frac{\mathrm{ma}}{\mathrm{t}}$
(C) $F=\frac{\mathrm{mv}}{\mathrm{t}}$
(D) $\mathrm{F}=\frac{\mathrm{mt}}{\mathrm{v}}$
6. For a typical rocket, how much mass of rocket is in the form of fuel?
(A) 60%
(B) 50%
(C) 80%
(D) 100%
7. The overcome gravity, fuel consumed by rocket is:
(A) 40000 Kgs
(B) 30000 Kgs
(C) 20000 Kgs
(D) 10000 Kgs
8. A typical rocket consumes about $10,000 \mathrm{kgs}^{-1}$ of fuel and ejects the burnt gases at speeds of over:
(A) $2000 \mathrm{~ms}^{1}$
(B) 3000 ms
(C) $4000 \mathrm{~ms}^{1}$
(D) 5000 ms
9. Acceleration of rocket is given by the relation:
(A) $\mathrm{a}=\frac{\mathrm{m}}{\mathrm{mv}}$
(B) $a=\frac{\mathrm{mv}}{\mathrm{M}}$
(C) $\mathrm{a}=\frac{\mathrm{m}}{\mathrm{Mv}}$
(D) $\mathrm{a}=\frac{\mathrm{Mv}}{\mathrm{m}}$
10. Motion of projectile is:
(A) One dimensional
(B) Two dimensional
a. (C) Three dimensional (D) Four dimensional
11. The horizontal range of a projectile is maximum, when it is projected at an angle of:
(A) 0°
(B) 30°
(C) 45°
(D) 60°
12. OR For maximum range the angle of projection must be:
(A) 30°
(B) 45°
(C) 60°
(D) 90°
13. The horizontal component of velocity of projectile:
(A) Increase
(B) Decreases
(C) Remains Same
(D) Decreases and then increases
14. The ballistic missiles
(A) Long range (B) Short range
(C) Mediun ra ${ }^{\prime} f$

15. If maximum heigh of the projecuine is edyl to he 1 ance hen angle of projection of projectile will be: (A) 30°
16. Maximum height pi piec il:
(A) $h=\frac{v_{1}{ }^{2} \operatorname{Sin}^{2} \theta}{2}$
(B) $\left.\mathbf{1}=v_{1}^{2}: i_{i}\right)^{2} \theta$
17. The trajectoly (11) a piojectile is
(A.) Nrite (B) Parabola
(C) $h=\frac{v_{1}{ }^{2}}{2 g}$
(D) $\mathrm{h}=\frac{\mathrm{v}_{1}{ }^{2}}{\mathrm{~g}}$
(C) Hyperbola
(D) Straight line
(C) -5°
(B) 76
11) The shape of trajectory of short range projectile is:
(A) Straight line
(B) circle
(C) Elliptical
(D) Parabolic
109. The path followed by a projectile in known as its:
(A) Range
(B) Trajectory
(C) Cycle
(D) Height
110. The maximum horizontal range of a projectile is given by:
(A) $\frac{v_{i}{ }^{2}}{g}$
(B) $\frac{v_{i}{ }^{2}}{2 g}$
(C) $\frac{2 \mathrm{v}_{\mathrm{i}}}{\mathrm{g}}$
(D) $\frac{2 \mathrm{vi}^{2}}{\mathrm{~g}}$
111. The acceleration of a projectile along x-axis is:
(A) Zero
(B) Increases
(C) Decreases
(D) Equal to "g"
112. Which shows correct relation between H and T of projectile?
(A) $\mathrm{H}=\frac{\mathrm{gT}^{2}}{8}$
(B) $\mathrm{H}=\frac{8 \mathrm{~T}^{2}}{\mathrm{~g}}$
(C) $\mathrm{H}=\frac{8 \mathrm{~g}}{\mathrm{~T}^{2}}$
(D) $\mathrm{H}=\frac{8}{8 \mathrm{~T}^{2}}$
113. A ball is thrown up at an angle of 60° with horizontal, with a speed of $14 \mathrm{~ms}^{-1}$ the velocity of the ball at thenions If point is:
(A) $14 \mathrm{~m} / \mathrm{s}$
(B) $0 \mathrm{~m} / \mathrm{s}$
(C) $7 \mathrm{~m} / \mathrm{s}$
114. Time of flight of a projectile is:
(A) $\frac{\mathrm{v}_{1} \sin \theta}{\mathrm{~g}}$
(B) $\frac{v_{1} \sin \theta}{2 g}$
115. The horizontal razge of projectilo is:

(A) $\frac{2 \mathrm{v}_{1} \sin \theta}{\mathrm{~g}}$

116. S.I unit of work is.
(A) Newton
(B) W: 11
(C) Pascal
(D) $15 \mathrm{~m} / \mathrm{s}$
$11710 \mathrm{~N}, \mathrm{one}$ wili le naximum when angle between F and d is:
(f) 19
(B) 90°
(C) 60°
(D) 0°

11 8. Wnen the finite force is parallel to the direction of motion of the body, the work done is:
(A) Minimum
(B) Maximum
(C) Infinity
(D) Varies
119. Kilo watt hour is the unit of:
(A) Power
(B) Energy
(C) Force
(D) Torque
120. 3 joules of work is done in 3 seconds, then power is:
(A) 6 watt
(B) 3 watt
(C) 18 watt
(D) 1 watt
121. Which one is a conservative force?
$\begin{array}{ll}\text { (A) Elastic spring force } & \text { (B) Frictional force }\end{array}$
a. (C) Air resistance
(D) Tension in the spring
122. The SI unit of product of pressure and volume is:
(A) Watt
(B) Joule
(C) Pascal
(D) N m
123. Scalar product of force and velocity is:
(A) Work
(B) Power
(C) Energy
(D) Acceleration
124. Power is the dot product of force and:
(A) Acceleration(B) Mass
(C) Velocity
(D) Displacement
125. Power an electric heater is (approximate power)
(A) 1 kW
(B) 2 kW
(C) 3 kW
(D) 4 kW
126. Consumption of energy by a 60 watt electric bulb in $\mathbf{2}$ seconds is:
(A) 120 J
(B) 603
(C) 301
(D) 0.53
127. One watt hour is equal to:
(A) 3.6 MJ
(B) 3.6 kJ
(C) 36 kJ
(D) 36 MJ
128. Kilo Watt-second is the unit of:
(A) Power
(B) Energy
(C) Momentum
(D) Time
129. The escape velocity can be determined relation:
(A) $V_{\text {esc }}=g R$
(B) $\mathrm{V}_{\mathrm{esc}}=2 \mathrm{gR}$
(C) $\mathrm{V}_{\mathrm{esc}}=\sqrt{\mathrm{gR}}$
(D) $\mathrm{V}_{\text {esc }}=\sqrt{2 \mathrm{gR}}$
130. The value of escape velocity for earth is:
(A) $11.6 \times 10^{3} \mathrm{~ms}^{-1}$
(B) $11 \times 10^{3} \mathrm{~ms}^{-1}$
(C) $11.5 \times 10^{3} \mathrm{~ms}^{-1}$
(D) $12 \times 10^{3} \mathrm{~ms}^{-1}$
131. Energy stored in spring is:
(A) Elastic P.E. (B) Gravitational P.E \quad (C) K.E.
132. The ratio of maximum orbital velocity and veocty is:
(A) $1: \sqrt{2}$
(8) $2: 1$
133. Mass is highly concentrated formof:
(A) Inertia
di) Enery
(C) Plasila
(D) Charge
134. In work-energ, p iaciple $\mathbf{v} k$ done br a body is equal to:
(A) Kinetic energy (B) Hot nival energy
(C) Internolonergy
(B) change in K.E
175. Nhi pope eocity is maximum for:
(B) Mercury
(C) Earth
(D) Jupiter
13. 6. Energy dissipated usually appears as:
(A) Heat energy (B) Nuclear energy \quad (C) P.E. (D) Chemical energy
137. Choice of zero potential energy level is:
(A) Surface of the Earth
(B) At infinity
(C) At infinity Just above the surface of the Earth
(D) Arbitrary
138. Conservation of Energy Original source of energy for biomass is:
(A) Earth
(B) Moon
(C) Sun
(D) Star
139. Which one is renewable source of energy?
(A) Coal
(B) Uranium
(C) Biomass
(D) Natural Gas
140. Which one is non-renewable source of energy?
(A) Wind
(B) Biomass
(C) Coal
(D) Sunlight
141. The unit of solar light is:
(A) Watt
(B) $\mathrm{kW} \mathrm{m}^{-2}$
(C) Watt m^{-2}
(D) J.m²
142. A layer of rock holding water that allows water to percolate through it with pressure is caret:
$1 \mathrm{kWh}=$:
(A) 3.6μ
(B) 3.6 mJ
(A) $\frac{\pi}{8}$
(B) $\frac{\pi}{6}$

(503101 J
(D) $\frac{\pi}{12}$,
143. One radian is equal 50 :
(A) 75.3°
13) ≤ 7.30
(c) 3.7
(D) 73.5°
144. The S.I unit of angl la - dis, II ce mont
(A) Degree (is) Revolution Radian
(D) Rotation OR (A) Radian
145. In one revolt inion, the a ul ar misplacement covered is:
(A) $6 \% \sim \sqrt{\circ} \quad 300^{\circ}$
(C) 90°
(D) 180°
. 0 Itveloci y and mass of a moving object are doubled then K.E becomes:
(A) Lilo able
(B) 4 times
(C) 6 times
(D) 8 times
147. If 20 waves pass through medium in one second with speed of $20 \mathrm{~ms}^{-1}$ the wavelength is:
(A) 20 m
(B) 2 m
(C) 400
(D) 1 m
148. When a particle is moving along a circular path, its projection along the diameter executes:
(A) Linear motion
(B) Vibratory motion (C) Rotatory motion
(D) CHM
149. The angular velocity of the minute hand of a clock is:
(A) $2 \pi \mathrm{rads}$
(B) $\pi \mathrm{rads}^{-1}$
(C) $\frac{\pi}{60} \mathrm{rad} \mathrm{s}^{-1}$
(D) $\frac{\pi}{180} \mathrm{rad} \mathrm{s}^{-1}$
150. The angular displacement per second is called angular:
(A) acceleration
(B) speed
(C) rotation
(D) velocity
151. When a body is whirled in a horizontal circle by means of string, the centripetal force is supplied by:
(A) Mass of a body
(B) Velocity of a body
(C) Tension in the string
(D) Centripetal acceleration
152. Centripetal force performs:
(A) Maximum work
(B) Minimum work
(C) Negative work
(D) No work
153. Which one of the following is not directed along the axis of rotation?
(A) Angular acceleration
(B) Angular momentum
(C) Centripetal acceleration
(D) Angular displacement
154. If linear velocity and radius are both made to half a circle. Then it's of a body moving around centripetal force becomes:
(A) F_{c}
(B) $\frac{\mathrm{Fc}}{2}$
(C) $\frac{\mathrm{Fc}}{4}$
(D) $2 \mathrm{~F}_{\mathrm{c}}$
155. If a body revolves under centripetal force, its angular acceleration is:
(A) Non zero
(B) Variable
(C) Increasing
(D) Zero
156. The expression for centripetal force is given by:
(A) $\frac{m v^{2}}{r^{2}}$
(B) $\frac{m^{2} v^{2}}{r}$
(C) $\frac{m^{2} v^{2}}{r^{2}}$
(D) $m r \omega^{2}$
157. Escape velocity of object depends upon:
(A) Mass of object
(B) Size of object
(C) Shape of object
(D) Radius of planet
158. Moment of inertia of a solid sphere ic:
(A) mr^{2}
(B) $1 / 2 \mathrm{mr}^{2}$
159. Moment of inertia is measured ;
(C) $2 / 5 \mathrm{~m}_{2}^{2}$
(A) $\mathrm{kg} \mathrm{m}^{2}$
160. Moment of inert 1 a pi hoop is
(A) mr^{2}
(B; ${ }^{1} ; \mathrm{mt}^{2}$

- $>$

161. Mo art 1 n of inertia rod is:

$$
\begin{array}{ll}
\text { (B) } \mathrm{I}=\frac{2}{5} \mathrm{~mL}^{2} & \text { (C) } \mathrm{I}=\frac{1}{12} \mathrm{~m}^{2} \mathrm{~L}
\end{array}
$$

(D) None of these
162. Moment of inertia for a particle is given by:
(A) $\mathrm{m}^{2} \mathrm{r}^{2}$
(B) mr^{2}
(C) $\mathrm{m}^{2} \mathrm{r}$
(D) mr^{-2}
163. The S.I unit of angular momentum is given by:
(A) $\mathrm{kgm}^{2} \mathrm{~s}^{-1}$
(B) $\mathrm{kgm}^{2} \mathrm{~s}^{-2}$
(C) kgms^{-2}
(D) kgms^{-1}
164. Angular momentum of a rigid body is given by:J.S
(A) $\mathrm{I}^{2} \omega$
(B) $I \omega^{2}$
(C) $I^{2} \omega^{2}$
(D) I ω
165. For angular momentum of system to remain constant, external torque should be:
(A) Small
(B) Large
(C) Zero
(D) None
166. If a body is moving counter clockwise, then angular displacement is:
（A）Minimum
（B）Zero
（C）Negative
（D）Positive

167．The direction of angular momentum $\vec{L}=\overrightarrow{\mathbf{r}} \times \vec{p}$ is：
（A）Along the direction of \vec{p}
（B）Along the direction of $\overrightarrow{\mathrm{r}}$
（C）Parallel to the plane containing $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{p}}$
（D）Perpendicular to the plane containing $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{p}}$
168．The diver spins faster when moment of inertia becomes
（A）Smaller
（B）Greater
（C）Constant
169．Speed of a hoop at the bottom of inc ind plane is：

（i）．$\sqrt{2 \mathrm{gh}}$
$\sqrt{(0)} \sqrt{\frac{4}{3}} \varepsilon 1$

170．The rotational k．of a hoof of radial is
（A）$\frac{1}{2} \mathrm{mr}^{2} \omega^{2}$
（1）$\frac{1}{2} \mathrm{mr}^{2} \omega^{2}$
（C） $\mathrm{mr}^{2} \omega^{2}$
（D）$\frac{1}{2} \mathrm{r}^{2} \omega^{2}$

171．The tat ion mon f of inertia of a disc and hoop is：
（B） 4
（C）$\frac{1}{2}$
（D）$\frac{1}{4}$

1：2．OR The relation between the speed and hoop can be written：
（A）$v_{\text {disc }}=\sqrt{\frac{3}{4}} v_{\text {hoop }}$
（B） $\mathrm{v}_{\text {disc }}=\sqrt{\frac{4}{3}} \mathrm{v}_{\text {hoop }}$
（C）$v_{\text {disc }}=v_{\text {hoop }}$
（D） $\mathrm{v}_{\text {disc }}=\frac{1}{2} \mathrm{v}_{\text {hoop }}$

173．The ratio of velocity of disc to velocity of hoop is：
（A）$\frac{2}{\sqrt{3}}$
（B）$\frac{4}{\sqrt{3}}$
（C）$\frac{2}{3}$
（D）$\frac{4}{3}$

174．The rotational kinetic energy of a solid sphere is：
（A）$\frac{2}{5} \mathrm{mr}^{2} \omega^{2}$
（B）$\frac{2}{5} \mathrm{mv}^{2}$
（C）$\frac{1}{2} 1 \omega^{2}$
（D）$\frac{1}{2} 1 \omega^{2}$

175．The rotational K ．E of a hoop of mass＂m＂moving down frictionless inclined plane with velocity＂v＂will be：
（A）$\frac{1}{4} \mathrm{mv}^{2}$
（B）$\frac{1}{2} m v^{2}$
（C）$\frac{3}{4} m v^{2}$
（D）$m v^{2}$

176．The linear velocity of a disc when it reaches the bottom of an inclined plane of height＇h＇is：
（A）$\sqrt{\mathrm{gh}}$
（B）$\sqrt{\frac{2}{3} g h}$
（C）$\sqrt{\frac{2}{4} g h}$
（D）$\sqrt{\frac{1}{3} g h}$

177．Relation between the speed of disc and hoop at the bottom of an incline is：
（A） $\mathrm{v}_{\text {disc }}=\sqrt{\frac{3}{4}} \mathrm{v}_{\text {hoop }}$
（B） $\mathrm{v}_{\text {disc }}=\sqrt{\frac{4}{3}} \mathrm{v}_{\text {hoop }}$
（C） $\mathrm{v}_{\text {disc }}=\sqrt{\frac{2}{5}} \mathrm{v}_{\text {hoop }}$
（D） $\mathrm{v}_{\text {disc }}=2 \mathrm{v}_{\text {hoop }}$

178．The rotational $\mathrm{K} . \mathrm{E}$ of disc is equal to：
（A）$\frac{1}{4} m v^{2}$
（B）$\frac{1}{2} m v^{2}$
（C）$\frac{1}{4} 1 \omega^{2}$
（D） $1 w^{2}$

179．A $\mathbf{2 0}$ metre high tank is full of water．A hole appears at its middle．The speed of efflux will be：
（A） $10 \mathrm{~ms}^{-1}$
（B） $14 \mathrm{~ms}^{-1}$
（C） $11.5 \mathrm{~ms}^{-1}$
（D） $9.8 \mathrm{~ms}^{-1}$

180．The moment of inertia for a cylinder is：
（A） mr^{2}
（B）$\frac{1}{2} \mathrm{mr}^{2}$
（C）$\frac{2}{5} \mathrm{mr}^{2}$
（D）$\frac{1}{12} \mathrm{mr}^{2}$

181．Rotational kinetic energy of the hoop moving down on inclined plane is：
（A）$\frac{1}{2} m v^{2}$
（B） mv^{2}
（C）$\frac{1}{4} m v^{2}$

182．A hoop is rolled down on an inclined plane having height of 0 in．ts 1 lo at the bottom will be：
（A） $4.91 \mathrm{~m} / \mathrm{s}$
（B） $9.89 \mathrm{~m} / \mathrm{s}$
C） $28.51 \mathrm{~m} /$ ．
\qquad （D） $31.31 \mathrm{~m} / \mathrm{s}$
183．The moment oingrtia of solid disc or cylinder is：
（A） mr^{2}
C）$\frac{1}{4} \mathrm{mr}$
（D）$\frac{1}{2} \mathrm{~m}^{2} \mathrm{r}$

184．The value of＇g＇at he centre of the earth is：
（A）Infinite
（B） Zg
（C） 3 g
（D）Zero

195．Th form ut（10）speed of satellite orbiting around the Earth is：
（A）$)=\sqrt{\frac{1}{2}} \mathrm{gr}$
（B）$v=\sqrt{2 g R}$
（C）$v=\sqrt{\mathrm{gR}}$
（D）$v=\sqrt{\frac{g R}{M}}$

186．If the radius of earth is doubled then the value of critical velocity becomes．
（A）$\frac{1}{\sqrt{2}} \mathrm{~V}$ 。
（B）$\frac{1}{2} \mathrm{v}$ 。
$\sqrt{2} \mathrm{v}$ 。
（D）$\frac{1}{4} \mathrm{v}$ 。

187．If the radius of earth is increased to four times of the present，critical velocity v ，becomes．
（A）$\frac{\mathrm{v}}{\sqrt{2}}$
（B）$\sqrt{2} \mathrm{~V}$ 。
C 2 v 。
（D）$\frac{1}{2} \mathrm{v}$ 。

188．The weight of the body at the centre of Earth is：
（A）Maximum
（B）Minimum
（C）Zero
（D）Infinite
189. The expression for the orbital velocity of satellite is given by:
(A) $\mathrm{v}=\sqrt{\mathrm{GMr}}$
(B) $v=\frac{G M}{r}$
(C) $v=\sqrt{\frac{G M}{r}}$
(D) $v=\sqrt{\frac{r}{G M}}$
190. An orbital speed of a satellite can be determined by the equation:
(A) $\sqrt{2 g R}$
(B) $\sqrt{\frac{2 G M}{R}}$
(C) $\sqrt{\mathrm{gR}}$
(D) $\sqrt{\frac{G M}{D}}$
191. The expression for the time period of low flyig atellite put int ρ the ρ bi is:
(A) $\mathrm{T}=\frac{2 \pi \mathrm{R}}{\mathrm{g}}$
(B) $\mathrm{T}=\frac{2 \pi \mathrm{R}}{\mathrm{G}}$
192. The period of revtuition of geostationaby datellit is:
(A) 1 hour B$) 48 \mathrm{~min}$
(D) 1 month OR (A)
193. As the speed of obict nov ne th rougi a f uidincreases then the drag force experienced by it:
(A) Increases
(B) Decreases
(C) Remairconsiai
(D) Becomes: zero
51. Ea garce is Siven by:
$\begin{array}{ll}\text { VA) Cos cow law } & \text { (B) Bernoulli's equation } \\ \text { (1) Continuity equation } & \text { (D) Newton's law }\end{array}$
195. If the radius of droplet becomes half, then its terminal velocity will become:
Double
(B) Half
(C) One fourth
(D) Remains same
196. The word FLUID means:
(A) To rise
(B)To fall
(C) To flow
(D) To oppose
197. A fog droplet falls vertically through air with an acceleration:
(A) Equal to "g"
(B) Less than "g" (C) Zero
(D) Greater than "g"
198. Terminal velocity v_{t} is related with the radius r of a spherical object as:
(A) $\mathrm{v}_{\mathrm{t}} \propto \mathrm{r}^{2}$
(B) $v_{t} \propto r$
(C) $v_{t} \propto \frac{1}{r}$
(D) $\mathrm{v}_{\mathrm{t}} \propto \frac{1}{\mathrm{r} 2}$
199. When droplet of water has terminal velocity the acceleration is:
(A) Maximum
(B) Minimum
(C) Zero
(D) Constant
200. The S.I units of flow rate are:
(A) $\mathrm{m}^{2} \mathrm{~s}^{-1}$
(B) $\mathrm{m}^{3} \mathrm{~s}^{-2}$
(C) $\mathrm{m}^{3} \mathrm{~s}^{-1}$
(D) $\mathrm{m}^{2} \mathrm{~s}^{-2}$
201. A hose pipe ejects water at a speed of $0.3 \mathrm{~ms}^{-1}$ through a hole of area $10 \mathrm{~cm}^{2}$, flow rate will be:
(A) $3 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
(B) $3 \times 10^{-3} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
(C) $30 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
(D) $0.03 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
202. The pressure will be low where the speed of fluid is:
(A) High
(B) Low
(C) Zero
(D) Constant
203. Bunsen burner works on the principle of
(A) Venturi effect
(B) Terricilli's effect
(C) Bernoulli's effect
(D) None of these
204. The dimensions of potential energy volume are same as that of per unit
(A) Work
(B) Pressure
(C) Speed
(D) Density
205. The dimensions of pgh has same as that of
(A) Work
(B) Energy
(C) Pressure
(D) Mass
206. The term in Bernoulli's equation has the same unit as:
(A) Work
(B) Volume
(C) Pressure
(D) Force
207. The unit of $\frac{1}{2} p V^{2}$ in Bernoull's equation is same as that of:
(A) Energy
(B) Pressure
(C) ${ }^{W}$ ork
208. The term $\frac{1}{2} p v^{2}$ in Bernoulli's equation epresentsp

(A) K.E of fluid
(C) k.E per unit volume \square (D) R.E of Ml id
209. Blood has densin equiv to that of:
(A) Mercury
(i3) Scdun
(C) Honey
(D) Water
210. The derait yof bood is near y equal to:
(A) A

Khe ter inequal to:
(A.) 120 Pascals (B) 100 Pascals
(C)
133.3 Pascals (D) 80 Pascals
212. The relation $v_{2}=\sqrt{2 g\left(h_{1}-h_{2}\right)}$ is called:
(A) Torricelli's theorem
(B) Ventusi relation
(C) Stoke's law
(D) Equation of continuity
213. Speed of efflux is measured by the relation:
(A) $v=\sqrt{g h}$
(B) $v=\sqrt{\frac{\mathrm{gh}}{2}}$
(C) $v=\sqrt{2 g h}$
(D) $\sqrt{\frac{4}{3}} \mathrm{gh}$
214. Torricelli's theorem can be written as:
(A) $V=\sqrt{2 g\left(h_{1}-h_{2}\right)}$
(B) $\mathrm{V}=2 \mathrm{~g}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)$
(C) $V=2 g \sqrt{\left(h_{1}-h_{2}\right)}$
(D) $\mathrm{V}=\sqrt{2 \mathrm{~g}}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)$
215. The relation between time period and frequency is:
(A) $f=2 \pi \mathrm{~T}$
(B) $f=\frac{1}{2 \pi T}$
(C) $f=\frac{1}{2 \pi}$
216. The waveform of SHM is:
(A) Sine wave
(B) Cosine wave (C) Tangent rave

217. Phase difference tectreen two points of a varve ron is
(A) Zero
B) $\frac{7}{2}$
(C) $\cdot x$
(D) $\frac{3 \pi}{2}$
218. When one-four h th cycle of , ribs anting body is completed then the phase change in it is:
(A) $\frac{\pi}{4}$ radian
B) $\frac{\pi}{2}$ char
(C) $\frac{3 \pi}{2}$ radian
(D) π radian
215. The at io of a ottar frequency and linear frequency is:
(B) π
(C) $\frac{1}{2 \pi}$
(D) $\frac{\pi}{2}$
220. When three-fourth of the cycle of a vibrating body is completed then the phase of vibration is:
(A) $\frac{\pi}{4}$ radian
(B) $\frac{\pi}{2}$ radian
(C) $\frac{3 \pi}{2}$ radian
(D) π radian
221. Which of the following quantity can be expressed in $\mathrm{kg} \mathrm{s}^{-2}$?
(A) Spring constant
(B) Density
(C) Momentum
(D) Force
222. The expression for frequency of a mass ' m ' attached to a spring of spring constant ' k ' is:
(A) $2 \pi \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$
(B) $2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$
$\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$
(D) $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$
223. The time period of an oscillating mass spring system is $\mathbf{1 0}$ second. If mass attached to spring is
(A) Same
(B) Twice
(C) Thrice
(D) Four times
224. The velocity of spring-mass vibrating system at mean position is:
(A) Zero
(B) $\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$
(C) $x_{\circ} \sqrt{\frac{k}{m}}$
(D) $\mathrm{w} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$
225. The frequency of simple pendulum is given by:
(A) $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~g}}{l}}$
(B) $2 \pi \sqrt{\frac{\mathrm{~g}}{l}}$
(C) $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~g}}{l}}$
(D) $2 \pi \sqrt{\frac{l}{g}}$
226. If amplitude of a simple pendulum is increased by 4 times, the time period will be:
(A) Four times
(B) Half
(C) Same
(D) Two times
227. A simple pendulum is completing 20 vibrations in 5 seconds, its frequency is:
(A) 4 Hz
(B) 20 Hz
(C) 200 Hz
(D) 40 Hz
228. In order to double period of a simple pendulum the length of the pendulum should be increased by:
(A) Four times
(B) Three times
(C) Two times
(D) Eight times
229. When the bob of simple pendulum is at extreme position then its K.E is:
(A) Maximum
(B) Minimum
(C) Zero
(D) Small
230. If length of the simple pendulum is double then its period increases:
(A) 1.41 times
(B) 2 times
(C) 2.4 times
(D) 3 times
231. The frequency of waves produced in microwave oven is:
(A) 1435 HZ
(B) 2450 MHz
(C) 1860 MHz
(D) 20.0 OHz
232. The wave produced in microwave oven have ar wavelength of.
(A) 12 cm
(B) 12 m
233. At resonance, the transfer of energy s:
(A) Zero
(3) Minimum
(C) 0

234. The force responsible for vibrant motion of simple pendulum is
(A) $\mathrm{mg} \cos \theta$
(3) $\mathrm{ms} \sin \theta$
(C) $m g \sec \theta$
(D) $\mathrm{mg} \tan \theta$
235. Longitudinal we ven do not x ib it.
(A) Reflector (B) Refract) (c) Polarization (D) Diffraction
2. T. Na. verse va. es are distinguished from longitudinal waves by the:
(A)) infrierence (B) Diffraction (C) Reflection
(D) Polarization
237. Tuning fork is a source of:
(A) Energy
(B) Heat
(C) Light
(D) Sound
238. Distance between two adjacent crests and trough is:
(A) λ
(B) $\frac{\lambda}{2}$
(C) $\frac{\lambda}{4}$
(D) 2λ
239. The distance between a node and the next antinode is:
(A) 4λ
(B) 2λ
C) $\frac{\lambda}{4}$
(D) $\frac{\lambda}{2}$
240. Wave transport:
(A) Energy
(B) Wavelength (C) Power
(D) Mass
241. The wavelength of transverse wave travelling with a speed ' v ' having frequency ' f ' in equal to:
(A) f/v
(B) vf
(C) v / f
(D) $\mathrm{f} / \mathrm{v}^{2}$
242. Longitudinal waves of frequencies less than 20 Hz are known as:
(A) Infra sound
(B) Ultra sound
(C) Super sound
(D) Audible sound
243. The distance between two consecutive crest is called:
(A) Displacement
(B) Amplitude
(C) Wave frome (D)
244. The distance between two consective tr pugh is called.

245. The value of consian γ for themono-atevi ga is $\begin{array}{llll}\text { (A) } 1.67 & \text { B) } 140 & \text { C) } 1.29 & 2.45\end{array}$
246. According to $N_{\text {ew }}+n$, und ra els ip unver conditions of:
(A) Adiabatic
(E) Iscti erina (C) isobaric
(D) Isochonc
247. Acondinet, Ne vten's domula, sound in air at STP is:
(F) $332 \mathrm{~m} \mathrm{~s}^{1}$ B) $340 \mathrm{~ms}^{-1}$
(C) $350 \mathrm{~ms}^{-1}$
24. Speed of sound in vacuum is:
(1) $280 \mathrm{~ms}^{-1}$
(B) $332 \mathrm{~ms}^{-1}$
(C) $333 \mathrm{~ms}^{-1}$
(D) $280 \mathrm{~ms}^{-1}$
(D) $0 \mathrm{~ms}^{-1}$
249. Laplace's expression for speed of sound in air is:
(A) $\mathrm{v}=\frac{\mathrm{q}}{\mathrm{p}}$
(B) $v=\frac{p}{q}$
(C) $v=\sqrt{\frac{y P}{P}}$
250. The speed/velocity of sound is greatest in:
(A) Air
(B) Steel
(C) Ammonia
(D) Water
251. The speed of sound is greater in solids due to Water their high:
(A) Density
(B) Pressure
(C) Temperature
(D) Elasticity
252. The speed of sound in air does not depend upon:
(A) Temperature
(B) Pressure
(C) Density
(D) Medium
253. Sound travel faster in:
(A) CO_{2}
(B) H_{2}
(C) O_{2}
(D) He
254. The error in speed of sound calculated by Newton at STP is about:
(A) 0%
(B) 14%
(C) 15%
(D) 16%
255. In which medium the speed of sound is greater?
(A) oxygen
(B) air
(C) water
(D) copper
256. The louder the sound, the greater will be its:
(A) Speed
(B) Frequency
(C) Amplitude
(D) Wavelength
257. Frequency range of hearing of cats is:
(A) $20-20000 \mathrm{~Hz}$
(B) $10-10000 \mathrm{~Hz}(\mathrm{C}) 60-20000 \mathrm{~Hz}$
(D) $60-70000 \mathrm{~Hz}$
258. The velocity of sound is maximum at $20^{\circ} \mathrm{C}$ in:
(A) Lead
(B) Copper
(C) Glass
(D) Iron
259. When sound waves enter in different medium, the quantity that remains unchanged is:
(A) Intensity
(B) Speed
(C) Frequency
(D) Wavelength
260. Velocity of sound is independent of:
(A) Temperature
(B) Density
(C) Pressure
(D) Medium
261. The process by Newton for the followed determination of speed of sound in air: is.
(A) Adiabatic
(B) Isothermal
(C) Isobaric
(D) Isochoio
262. Speed of sound in lead at $220^{\circ} \mathrm{C}$ is:
(A) $1320 \mathrm{~m} / \mathrm{s}$
(B) $1330 \mathrm{~m} / \mathrm{s}$

\square
(b) $1.50 \mathrm{~m} / \mathrm{s}$
263. The speed of sound approximately ed ua
(A) $332 \mathrm{~m} / \mathrm{s}$
(3). $50 \mathrm{~m} / \mathrm{c}$
(C) $20 \mathrm{~m} / \mathrm{s}$
264. The speed of sewed at a given tomperatureby de ubling pressure speed of sound is:
(A) 0.5 v
(${ }^{1}$
(C) 2 v
(D) 3 v
265. The path difference or con truceive interference should be:
(A) $\frac{\lambda}{2}$
(R) $\frac{\lambda}{2}$
(C) $m \lambda$
(D) $\frac{3 \lambda}{2}$
20. Constivetive interference of two coherent beams is obtained if path difference is:
(A) $\frac{n}{2}$
(B) $\frac{\mathrm{n} \lambda}{4}$
(C) $\frac{\mathrm{n}(3 \lambda)}{4}$
(D) $n \lambda$
267. When two identical waves superimposed, which can change?
$\begin{array}{lll}\text { (A) Wavelength (B) Frequency } & \text { (C) Velocity } & \text { (D) Amplitude }\end{array}$
268. Beats can be heard when difference of frequency is not more than:
(A) 8 Hz
(B) 10 Hz
(C) 4 Hz
(D) 6 Hz
269. The basic principle of beats is:
$\begin{array}{lll}\text { (A) Interference (B) Diffraction } & \text { (C) Reflection } & \text { (D) Refraction }\end{array}$
270. When two notes of frequencies f_{1} and f_{2} are sounded together, beats are formed. If $f_{1}>f_{2}$ what will be the beat frequency?
(A) $f_{1}+f_{2}$
(B) $\frac{1}{2}\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)$
(C) $f_{1}-f_{2}$
(D) $\frac{1}{2}\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)$
271. The distance between consecutive node and node:
(A) λ
(B) $\frac{\lambda}{2}$
(C) 2λ
272. The distance between two consecutive nodes $i \% \%$
273. In stationary waves, the velocity of particle at the ade is.
(A) Maximum (B) Infingt
as the ponts which a/ways renatiu at rest are:
274. In stationary wales the ponts which atwas revain at rest are:
(A) nodes
(B) an inodes (C) rest
(D) trough
275. The distance be we t ye consecutive antinode is:
(C) λ
(D) 2λ
2. 6. If stretch string vibrate in three loops. Then relation between its length and wavelength of stationary wave is:
(A) $l=\frac{3 \lambda}{2}$
(B) $l=3 \lambda$
(C) $l=\frac{2 \lambda}{3}$
(D) $\lambda=3 l$
277. The wavelength of fundamental node of vibration of an open end pipe is:
(A) 41
(B) 21
(C) 1
(D) $\frac{1}{4} 1$
278. If the organ pipe is closed at one end, the frequency of fundamental harmonic is:
(A) $f_{1}=\frac{v}{2 l}$
(B) $f_{1}=\frac{v}{41}$
(C) $f_{1}=\frac{41}{v}$
(D) $f_{1}=\frac{21}{v}$
279. The distance between $1^{\text {st }}$ node and $4^{\text {th }}$ antinode is:
(A) $\frac{7}{4} \lambda$
(B) $\frac{5}{4} \lambda$
(C) $\frac{13}{4} \lambda$
(D) $\frac{11}{4} \lambda$
280. When one end of organ pipe is closed, then the frequency of stationary waves of any harmonic, it is given by:
(A) $f_{n}=\frac{\mathrm{nv}}{2 l}$
(B) $f_{n}=\frac{\mathrm{n} l}{4 \mathrm{v}}$
(C) $f_{n}=\frac{4 \mathrm{v}}{\mathrm{n} l}$
(D) $f_{n}=\frac{\mathrm{nv}}{4 l}$
281. If organ pipe is open at both ends, frequency of fundamental harmonic is given by:
(A) v / $2 l$
(B) $\mathrm{v} / 4 l$
(C) $4 l / \mathrm{v}$
(D) $2 l / \mathrm{v} 108$.
282. When both ends of organ pipe are open then frequency of stationary waves of nth harmonic is given by:
(A) $\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{nv}}{4 l}$
(B) $\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{v}}{2 \mathrm{n} l}$
(C) $\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{nv}}{2 l}$
(D) $\mathrm{f}_{\mathrm{n}}=\frac{2 \mathrm{v}}{\mathrm{n} l}$
283. When an observer is moving away from stationary source, sending waves with speed the waves received by him at the rate of:
(A) $\frac{v-u \circ}{\lambda}$
(B) $\frac{v-u_{0}}{\lambda}$
(C) $\frac{\lambda}{v-u_{0}}$
(D) $\frac{\lambda}{v+u_{0}}$
284. Angle between ray of light and wave front is:
(A) 0°
(B) 60°
(C) 90°
(D) 120°
285. In case of point source the shape of wave front is
(A) Plane
(B) Spherical
(C) Circular
(D) Elliptical
286. The locus of all points in the same wave of vibration is called:
(A) Wave Front (B) Interference
(C) Diffraction
(D) Polarization
287. The fringe spacing increases if we use:
(A) Red light
(B) Blue light
(C) Yellow light
(D) Green light
288. An oil film on water surface shows colour due to:
(A) Diffraction (B) Interference (C) Polarization (D)Di)persiat
289. The blue colour of sky is due to:
(A) Diffraction (B) Reflection
290. Sodium in a flamegiver:-
(A) Green light (B) Blaticht (C) White light (R) Noruw light
291. Light entering 00 d ai o glass loes no change in its:
$\begin{array}{lll}\text { (A) Frequensy (} B B) \text { Wavele nth (C) Velocity } & \text { (D) Direction }\end{array}$
202. In oun, (e loble lit experiment, the fringe spacing is equal to:

(B) $\Delta Y=\frac{\lambda}{d}$
(C) $\Delta Y=\frac{\lambda}{L d}$
(D) $\Delta Y=\operatorname{Ld} \lambda$
293. Fringe spacing is equal to:
(A) $\frac{\lambda d}{L}$
(B) $\frac{\lambda L}{d}$
(C) $\frac{L}{\lambda d}$
(D) $m \lambda$
(C) Remain same
(D) Becomes zero
294. If red light is used as compare to blue light then fringe spacing:
(A) Increases
(B) Decreases
(C) Remain same
(D) Becomes zero
295. Thin film shows colours due to:
$\begin{array}{lll}\text { (A) Interference (B) Diffraction } & \text { (C) Refraction } & \text { (C) Polarization }\end{array}$
296. Newton's rings are formed as a result of:
$\begin{array}{lll}\text { (A) Interference (B) Dispersion } & \text { (C) Diffraction } & \text { (D) Polarization }\end{array}$
297. When Newton ring are seen through the transmitted light, then central spot is:
(A) Dark
(B) Blue
(C) Bright
(D) Red
298. A glass grating has 5000 lines/cm, then grating element will be:
(A) $2 \times 10^{-6} \mathrm{~m}$
(B) $2 \times 10^{-4} \mathrm{~m}$
(C) $2 \times 10^{-3} \mathrm{~m}$
(D) $2 \times 10^{-7} \mathrm{~m}$
299. The wavelength of X-rays is of the order of:
(A) $10^{-8} \mathrm{~m}$
(B) $10^{-5} \mathrm{~m}$
(C) $\left.{ }^{10}\right)^{-10} \mathrm{~m}$
300. Bragg's equation is given as:
(A) $2 d \sin \theta=\mathrm{n} \frac{\lambda}{2}$ (B) $2 d \sin \theta=\mathrm{n} \lambda$
$d \sin \theta=$

301. Bragg's equat on given as:
(A) $\mathrm{d}=\frac{2 \sin \theta}{\mathrm{n} \lambda}$
($\mathrm{B}=2 \mathrm{n}=2 \mathrm{~m}$
$9 \quad \int\left(\mathrm{C}, \mathrm{d}=\frac{2}{2} \sin \theta\right.$

302. The proces of confining the bean or light to vibrate in one plane is called:
(A) Interfyrine
(B) Diffraction
So Polrization
(D) Total internal reflection
313. V L ich phenomenon of light proves waves are transverse in nature?
(A) Refraction
(B) Reflection
(C) Diffraction \qquad Polariz
304. To distinguish between transverse and longitudinal wave \qquad is used.
(A) Refraction (B) Interference (C) Polarization (D) Diffraction
305. Which one of the following cannot be polarized?
(A) Ultra violet rays
(B) Radio waves
(C) T.V waves
306. Intensity of light depend on:
$\begin{array}{lll}\text { (A) Wavelength (B) Amplitude } & \text { (C) Velocity } & \text { (D) Frequency }\end{array}$
307. Which of the followings cannot produce colours with white light?
(A) Diffraction (B) Interference (C) Polarization (D) Dispersion
308. Rayleigh formula for resolving power:
(A) $R=\frac{1.22 \lambda}{D}$
(B) $\mathrm{R}=\frac{1.22 \mathrm{D}}{\lambda}$
(C) $\mathrm{R}=\frac{\mathrm{D}}{1.22 \lambda}$
(D) $\mathrm{R}=\frac{\lambda}{1.22 \mathrm{D}}$
309. The units of magnifying power of microscope or telescope are:
(A) Metre
(B) m^{-1}
(C) Dioptre
(D) No unit
310. The magnifying power of simple microscope is:
(A) $1+\frac{\mathrm{d}}{\mathrm{p}}$
(B) $1-\frac{\mathrm{d}}{\mathrm{f}}$
(C) $1-\frac{\mathrm{d}}{\mathrm{p}}$
(D) $1+\frac{\mathrm{d}}{f}$
311. Magnification of convex lens is:
(A) $1+\frac{d}{f}$
(B) $1-\frac{d}{f}$
(C) $1+\frac{\mathrm{d}}{f}$
(D) $1-\frac{f}{\mathrm{~d}}$
312. If a convex lens of focal length ' f ' is cut into two identical halves along the Lens diameter, the focal length of each half is:
(A) $\frac{3}{2} f$
(B) $2 f$
(C) $\frac{f}{2}$
(D) f
313. Magnifying power of telescope is:
(A) $\frac{\mathrm{fe}}{\mathrm{fo}}$
(B) $\frac{\mathrm{f}}{\mathrm{fe}}$
(C) $\mathrm{f}_{\mathrm{e}} \mathrm{f}_{\mathrm{o}}$
(D) $\frac{1}{\text { fe fo }}$
314. In Michelson's experiment the angle subtended by a side of the eight sided mirror is:
(A) $\frac{\pi}{8} \mathrm{rad}$
(B) $\frac{\pi}{4} \mathrm{rad}$
(C) $\frac{\pi}{2} \mathrm{rad}$
(D) $\frac{\pi}{6} \mathrm{rad}$
315. The detector in photo-phone is made up of:
$\begin{array}{lll}\text { (A) Cadmium } & \text { (B) Germanium } & \text { (C) Seleniun }\end{array}$
316. The first person who attempted to n eare the need of light wis:
(A) Michelson (B) Huygen
(C) G. li1/eo?
(D) Newto.
317. If the speed of inght in vacumis c, han is elo ity an aned unt refractive index 1.3 is:
(A) 1.3 c
(B) $1^{1} 3$
(D) c
318. A layer over the central ore of the Ioch is called:
(A) Jacket
(B) Plastic
(C) Cladding
(D) Rubber

319 Mulind t (Dindex fiber is useful for:
(A) Non stace
(B) Short distance
(c) Vis y long distance
(D) Infinite distance
320. In multimode step index fibre, the diameter of core is:
(A) $50 \mu \mathrm{~m}$
(B) $5 \mu \mathrm{~m}$
(C) $100 \mu \mathrm{~m}$
(D) $150 \mu \mathrm{~m}$
321. The diameter of the core of the single mode step index fibre is:
(A) $10 \mu \mathrm{~m}$
(B) $50 \mu \mathrm{~m}$
(C) $50 \mu \mathrm{~m}$ to $1000 \mu \mathrm{~m}$
(D) $5 \mu \mathrm{~m}$
322. In multimode step index fiber, the value of refractive index of core is:
(A) 1.33
(B) 1.52
(C) 1.67
(D) 1.48
323. Refractive index of water is:
(A) 1.5
(B) 1.33
(C) 1.0
(D) 1.2
(C) 1 ns per km
(D) 1 ns per 100 km
324. For a gas obeying Boyle's law, if the pressure is doubled, the volume becomes:
(A) Double
(B) Threefold
(C) One half
(D) Remains the same
325. The relation for absolute temperature of a gas is given by:
(A) $\mathrm{T}=\frac{2}{3 \mathrm{~K}}\left\langle\frac{1}{2} \mathrm{mv}^{2}\right\rangle$
(B) $\mathrm{T}=\frac{2 \mathrm{~K}}{3}\left\langle\frac{1}{2} \mathrm{mv}^{2}\right\rangle$
(C) $\mathrm{T}=\frac{3}{2 \mathrm{~K}}\left\langle\frac{1}{2} \mathrm{mv}^{2}\right\rangle$
(D) $\mathrm{T}=\frac{3 \mathrm{~K}}{2}\left\langle\frac{1}{2} \mathrm{mv}^{2}\right\rangle$
326. A device based upon the thermodynmics propecty or matter is called:
(A) Calorimeter (B) Heat engine (C) Thermo neter (D) ol in ieter
327. Heat is form of
(A) Power B) Momentum
(C) Inefy
(D) Torque
328. The ideal gas $1: w$ is
(A) $\mathrm{PV}=\mathrm{NVK} \quad(\mathrm{B} \quad \mathrm{P}=\mathrm{NkT}$
(C) $P V=n R T$
(D) $P=n R T$
329. Thaty Bol znan's constant is:
(B) $1.38 \times 10^{23} \mathrm{~J} / \mathrm{K}$
(C) $\quad 33>1)^{-23} \mathrm{~J} / \mathrm{mol} . \mathrm{K}$
(D) $1.38 \times 10^{23} \mathrm{~J} / \mathrm{mol} . \mathrm{K}$
330. Pressure of a gas is given as:
(A) $\frac{1}{3} \rho\left\langle v^{2}\right\rangle$
(B) $\frac{2}{3} \rho\left\langle v^{2}\right\rangle$
(C) $\frac{1}{3} \mathrm{Ne}\left\langle\mathrm{v}^{2}\right\rangle$
(D) None
331. S.I unit of pressure of gas is:
(A) Nm^{-2}
(B) N.m
(C) $\mathrm{N}^{2} / \mathrm{m}$
(D) $\mathrm{N}^{2} \cdot \mathrm{~m}$
332. At constant temperature, if pressure of a given mass of gas is halved, then its volume becomes:
(A) Halve
(B) Doubled
(C) Four Time
(D) Constant
333. At constant temperature and pressure, if volume of given mass of a gas is doubled then density is:
(A) Doubled
(B) $\frac{1}{4}$ of original
$\frac{1}{2}$ of original
(D) Unchanged
334. Boltzman constant, universal Avogadro number is related as:
(A) $K=\frac{R}{N_{A}}$
(B) $\mathrm{K}=\frac{\mathrm{N}_{\mathrm{A}}}{\mathrm{K}}$
(C) $\mathrm{R}=\frac{1}{2} \frac{\mathrm{~K}}{\mathrm{~N}_{\mathrm{A}}}$
(D) $\mathrm{R}=\mathrm{NK} \frac{\mathrm{N}_{\mathrm{A}}}{\mathrm{K}}$
335. Boltzman constant ' k ' has same unit as:
(A) Temperature
(B) Energy
(C) Entropy
(D) Pressure
336. If the temperature of a gas is constant then $\left\langle\frac{1}{2} m v^{2}\right\rangle$ of the molecules of gas will be:
(A) Constant
(B) Zero
(C) Increase
(D) Decrease
337. The mean kinetic energy of gas is at:
(A) $0^{\circ} \mathrm{C}$
(B) $-273^{\circ} \mathrm{C}$
(C) 0 K
(D) $100^{\circ} \mathrm{C}$
338. Solid ice, liquid water and water vapours consist in thermal equilibrium at a temperature:
(A) 273 K
(B) 273.16 K
(C) $273^{\circ} \mathrm{C}$
(D) $100^{\circ} \mathrm{C}$
339. Root mean square velocity is related to the absolute temperature of an ideal gas as:
(A) $V_{\text {max }} \propto T$
(B) $V_{\text {max }} \propto T^{2}$
(C) $\mathrm{V}_{\text {max }} \propto \sqrt{\mathrm{T}}$
(D) $V_{\max } \propto \frac{1}{\sqrt{T}}$
340. Pressure of an ideal gas can be written in terms of its density:
(A) $P=\rho\left\langle v^{2}\right\rangle$
(B) $P=\frac{1}{3} \rho\left\langle v^{2}\right\rangle$
(C) $P=\frac{2}{3} \rho\left\langle v^{2}\right\rangle$
(D) $\mathrm{P}=\frac{1}{3} \rho\left\langle\mathrm{v}^{2}\right\rangle$
341. A chimney works best when it is:
(A) Tall
(B) Wide
342. Pressure of a gas is equal to:
(A) $\frac{2}{3} \rho\left\langle v^{2}\right\rangle$
(B) $\frac{3}{2} \rho\left\langle v^{2}\right\rangle$
(C) Short
343. The K.E of molect Tes of an inerigas t abso ute zere will be:
(A) Zero
(B) In mite
ut zere will be
(C) V ry high

(A) Temperature (B) Pressur (C) Pat' \quad (D) Final and initial state
344. For an ides. gas the in ernel ne gy is directly proportional to:
(A) Temperature
(B) Pressure
(C) Volume
(D) Mass
755. piscal \& the unt of:
IA) Pressue
(B) Force
(C) Tension
(D) Weight
3.6. According to first law of thermodynamics the quantity which is conserved:
(A) Energy
(B) Force
(C) Momentum
(D) Power
347. The first law of thermodynamics for an isothermal process is:
(A) $\mathrm{Q}=0$
(B) $\mathrm{W}=0$
(C) $\mathrm{Q}=\mathrm{W}$
(D) $\Delta U=0$
348. First law of thermodynamics for an adiabatic process will be written as:
(A) $\mathrm{W}=\Delta \mathrm{U}$
(B) $\mathrm{W}=\mathrm{Q}$
(C) $\mathrm{W}=\mathrm{Q}-\Delta \mathrm{U}$ (D) $\mathrm{W}=-\Delta \mathrm{U}$
349. The process which is carried out at constant temperature is known as:
(A) Adiabatic process
(B) Isochoric process
(C) Isothermal process
(D) Isobaric process
350. Which remains constant in an adiabatic process?
(A) Volume
(B) Pressure
(C) Entropy
(D) Temperature
351. Entropy remains constant
(A) Isothermal process
(B) Adiabatic process
(C) Isochoric Process
(D) Isobaric process
352. The change in internal energy is defined as:
(A) Q - W
(B) Q - T
353. The work done in isochoric process i :
(A) Constant
(C) Zero
354. In thermodynamics proses the ec ua i n $W=-\Delta U$ represents.
(A) Isothermal expra sion

- prese
(D) Variable
(C) Adiabat cex: 1. ion
(D) Adiabatic compression
.7.5. Tv1 differ ce between C_{P} and C_{V} is equal to:
(A) Plain's constant
(2) Molar gas constant
(B) General gas constant

356. SI unit of molar specific heat is:
(A) $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
(B) $\mathrm{J} \mathrm{mol} \mathrm{K}^{-1}$
(C) J mol K
(D) $\mathrm{J} \mathrm{mol}^{-1}$
357. If one mole of an ideal gas is heated at constant volume then:
(A) $Q_{p}=C_{v} \Delta T$
(B) $\mathrm{W}=\mathrm{C}_{\mathrm{V}} \Delta \mathrm{T}$
(C) $\mathrm{Q}_{\mathrm{V}}=\mathrm{C}_{\mathrm{P}} \Delta \mathrm{T}$
(D) $\Delta U=C_{V} \Delta T$
358. The value of universal gas constant ' R ' is:
(A) $1.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{k}^{-1}$
(B) $1 / 38 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{k}^{-1}$
(C) $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{k}^{-1}$
(D) $6.02 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{k}^{-1}$
359. If one mole of an ideal gas is heated at constant pressure then:
(A) $\mathrm{Q}_{\mathrm{P}}=\mathrm{C}_{\mathrm{V}} \Delta \mathrm{T}$
(B) $\Delta U=C_{P} \Delta T$
(C) $\mathrm{Q}_{\mathrm{V}}=\mathrm{C}_{\mathrm{P}} \Delta \mathrm{T}$
(D) $\Delta U=C_{V} \Delta T$
360. The efficiency of heat engine whose sink is at $17^{\circ} \mathrm{C}$ and source at $200^{\circ} \mathrm{C}$ is:
(A) 38%
(B) 65%
(C) 80%
(D) 90%
361. An ideal heat engine can only be 100% efficient its cold temperature reservoir is at:
(A) 0 K
(B) $0^{\circ} \mathrm{C}$
(C) 100 K
(D) $100^{\circ} \mathrm{C}$
362. Carnot cycle consists of:
(A) Two steps
(B) Three steps Four steps
(D) Five steps
363. The measure of hotness or coldness of a substance is:
(A) Temperature
(B) Heat
(C) Internal energy
(D) Energy
364. If heat engine absorbs 400 J and rejects 200 heat energy, its efficiency will be:
(A) 25%
(B) 50%
(C) 70%
(D) 100%
365. Carnot engine consists of:
(A) Two steps
(B) Three steps
(C) Four steps
(D) Five steps
366. In carnot engine, each process is:
(A) Reversible
(B) Perfectly reversible
(C) Irreversible
(D) Perfectly irreversible
367. Sadi carnot described an ideal engine in:
$\begin{array}{ll}\text { (A) } 1640 & \text { (B) } 1740\end{array}$
368. Value of triple point of water is give as:
(A) Zero K
(B) 100 K
369. Unit of thermodyranics scale of tenperdure is:
(A) Centigrade (B) Fahrenhei

2 Ke (10)
(C) 1940
\square
370. The unit of ent opy is:
(A) J K
(B) I
(C) $\frac{\mathrm{J}}{\mathrm{K}}$
(D) $\frac{\mathrm{K}}{\mathrm{J}}$

371 CRange ir citer py ΔS of a system is given by:
$\sqrt{T} D \therefore=A O$
(B) $\Delta Q=\frac{\Delta S}{T}$
(C) $\Delta Q=\frac{T}{\Delta S}$
(D) $\Delta \mathrm{S}=\Delta \mathrm{Q} \times \mathrm{T}$
(3) 2. Entropy is measure of:
(A) Internal energy of system
(B) Order of system
(C) Disorder of system
(D) Potential energy of system
373. When temperature of source and sink of a heat engine becomes equal then the entropy change will be:
(A) Zero
(B) Minimum
(C) Maximum
(D) Negative
374. Change in entropy of reversible process is:
(A) Positive
(B) Negative
(C) Zero
(D) Adiabatic

