Learning Objectives

At the end of this chapter the students will be able to:

- Understand what is Physics.
2. Understand that all physical quantities consist of a numerical magnitude and a unit.

Recall the following base quantities and their units; mass (kg), length (m), time (s),
current (A), temperature (K), luminous intensity (cd) and amount of substance (mol).

Describe and use base units, supplementary units, and derived units.
5. Understand and use the scientific notation.

6. Use the standard prefixes and their symbbls to indicate decimal sub-multiples or
muitipies to both base and derived units. :

7. Understand and use the conventions for indicating units.

. Understand the distinction between systematic errors and random_.errors.
9. Understand and use the significant figures.
10. Understand the distinction between precision and accuracy.

1. Assess the uncertainty in a derived quantity by simple addition of actual, fractional
or percentage uncertainties.

12. Quote answers with correct scientific notation, number of significant figures and
units in all numerical and practical work.

13 Use dimensionality to check the homogeneity of physical equations.
14. Derive formulae in simple cases using dimensions.

= Versince man has started to observe, think and reason he has been wondering about

the world around him. He tried to find ways to organize the disorder prevailing in the observed
facts about the natural phenomena and material things in an orderly manner. His attempts
resulted in the birth of a single discipline of science, called natural philosophy. There was a
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Interdisciplinary areas
of Physics

Astrophysics
Biophysics

Chemical physics
Engineering physics
Geophysics

Medical physics
Physical oceanography
Physics of music

huge increase in the volume of scientific knowledge up till the
beginning of nineteenth century and it was found necessary
to classify the study of nature into two branches, the
biological sciences which deal with living things and physical
sciences which concern with non-living things. Physics is an
important and basic part of physical sciences besides its
other disciplines such as chemistry, astronomy, geology etc.
Physics is an experimental science and the scientific method
emphasizes the need of accurate measurement of various
measurable features of different phenomena or of man made
objects. This chapter emphasizes the need of thorough
understanding and practice of measuring techniques and
recording skills.

1.1 INTRODUCTION TO PHYSICS

At the present time, there are three main frontiers of
fundamental science. First, the world of the extremely large,
the universe itself, Radio telescopes now gather information
from the far side of the universe and have recently detected,
as radio waves, the “firelight” of the big bang which probably
started off the expanding universe nearly 20 billion years
ago. Second, the world of the extremely small, that of the
particles such as, electrons, protons, neutrons, mesons and
others. The third frontier is the world of complex matter. It is
also the World of “middle-sized” things, from molecules at
one extreme to the Earth at the other. This is all
fundamental physics, which is the heart of science.

But what is physics? According to one definition, physics
deals with the study of matter and energy and the
relationship between them. The study of physics involves
investigating such things as the laws of motion, the structure
of space and time, the nature and type of forces that hoid
different materials together, the interaction between different
particles, the interaction of electromagnetic radiation with
matter and so on.

By the end of 19" century many physicists started believing
that every thing about physics has been discovered.
However, about the beginning of the twentieth century many
new experimental facts revealed that the laws formulated by
the previous investigators need maodifications. Further
researches gave birth to many new disciplines in physics
such as nuclear physics which deals with atomic nuclei,
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particle physics which is concerned with the ultimate particles
of which the matter is composed, relativistic mechanics which
deals with velocities approaching that of light and solid state
physics which is concerned with the structure and properties
of solids, but this list is by no means exhaustive.

Physics is most fundamental of all sciences and provides
other branches of science, basic principles and fundamental
laws. This overlapping of physics and other fields gave birth
to new branches such as physical chemistry, biophysics,
astrophysics, health physics etc. Physics also plays an
important role in the development of technology and
engineering.

Science and technology are a potent force for change in
the outlook of mankind. The information media and fast
means of communications have brought all parts of the
world in close contact with one another. Events in one part
of the world immediately reverberate round the globe.

We are living in the age of information technology. The
computer networks are products of chips developed from
the basic ideas of physics. The chips are made. of silicon.
Silicon can be obtained from sand. Itis upto us whether we
make a sandcastle or a computer out of it.

1.2 PHYSICAL QUANTITIES

The foundation of physics rests upon physical quantities in
terms of which the laws of physics are expressed.
Therefore, these quantities have to be measured accurately.
Among these are mass, length, time, velocity, force, density,
temperature, electric current, and numerous others.

Physical quantities are often divided into two categories:
base quantities and derived quantities. Derived quantities
are those whose definitions are based on other physical
quantities. Velocity, acceleration and force etc. are usually
viewed as derived quantities. Base quantities are not
defined in terms of other physical quantities. The base
quantities are the minimum number of those physical
guantities in terms of which other physical quantities can
be defined. Typical examples of base quantities are length,
mass and time.
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The measurement of a base quantity involves two steps: first,
the choice of a standard, and second, the establishment of a
procedure for comparing the quantity to be measured with
the standard so that a number and a unit are determined as
the measure of that quantity.

An ideal standard has two principal characteristics: it is
accessible and it is invariable. These two requirements are
often incompatible and a compromise has to be made
between them.

In 1960, an international committee agreed on a sst of
definitions and standard to describe the physical

quantities. The system that was established is called the
System International (SI).

Due to the simplicity and convenience with which the units
in this system are amenable to arithmetical manipulation, it
is in universal use by the world's scientific community and
by most nations. The system international (SI) is built up
from three kinds of units: base units, supplementary units
and derived units.

There are seven base units for various physical quantities
namely: length, mass, time, temperature, electric current,
luminous intensity and amount of a substance (with special
reference to the number of particles).

The names of base units for these physical quantities
together with symbols are listed in Table 1.1. Their
standard definitions are given in the Appendix 1.

Supplementary Units

The General Conference on Weights and Measures has not
yet classified certain units of the S| under either base units
or derived units. These S| units are called supplementary
units. For the time being this class contains only two units of
purely geometrical quantities, which are plane angle and the
solid angle (Table1.2).



Radian °

The radian is the plane angle between two radii of a circle
which cut off on the circumference an arc, equal in length
to the radius, as shown in Fig. 1.1 (a).

Steradian

The steradian is the solid angle (three-dimensional angle)
subtended at the centre of a sphere by an area of its surface
equal to the square of radius of the sphere. (Fig. 1.1 b).

Derived Units

S| units for measuring all other physical quantities are
derived from the base and supplementary units. Some of
the derived units are given in Table. 1.3.

Physical

Force
Work
Power
Electric s :
charge: ¥ kis Saasse ia‘.:,'c: AP, &

Numbers are expressed in standard form called scientific
notation, which employs powers of ten. The internationally
accepted practice is that there should be only one non-
zero digit left of decnmal Thus, the number 134.7 should
be written as 1.347 x 10” and 0.0023 should be expressed
as 2.3x 107

Conventions for Indicating Units

Use of S| units requires special care, more particularly in
writing prefixes. (

Following points should be kept in mind while using units.

(i) Full name of the unit does not begin with a capital
letter even if named after a scientist e.g.,newton.

Fig. 1.1(a)

Fig. 1.1(b)



Table 1.4

Some Prefixes for Powers of Ten
Factor Prefix Symbol
10 ' atto a
10" fernto f
10" pico p
10° nano “n
10° micro "
10° milli m
10* centi c
10" deci d
10" deca _ da
10° kilo k
1$ mega M

1 i G
10" ?::  §
10" " peta P
10" exa E

The symbol of unit named after a scientist has
initial capital letter such as N for newton.

The prefix should be written before the unit without
any space, such as 1 x 10 m is written as 1 mm.
Standard prefixes are given in table 1.4.

A combination of base units is written each with
one space apart. For example, newton metre is
written as N m.

Compound prefixes are not allowed. For example,
1upF may be written as 1pF.

A number such as 5.0 x 10* cm may be expressed
in scientific notation as 5.0 x 102 m.

When a multiple of a base unit is raised to a power,
the power applies to the whole multiple and not the
base unit alone. Thus, 1 km? = 1 (km)? = 1 x 10° m2.

Measurement in practical work should be recorded
immediately in the most convenient unit, e.g.,
micrometer screw gauge measurement in mm, and
the mass of calorimeter in grams (g). But before
calculation for the result, all measurements must be
converted to the appropriate S| base units.

1.4 ERRORS AND UNCERTAINTIES

All physical measurements are uncertain or imprecise to
some extent. It is very difficult to eliminate all possible errors
or uncertainties in a measurement. The error may occur due
to- negligence or inexperience of a person (2) the fauky
apparatus (! inappropriate method or technique. The
uncertainty may occur due to inadequacy or limitation of an
instrument, natural variations of the object being measured
or natural imperfections of a person’s senses. However, the
uncertainty is also usually described as an error in a
measurement. There are two major types of errors.

(i) Random error \Il} Systematic error

Random error is said to occur when repeated
measurements of the quantity, give different values under



the same conditions. It is due to some unknown causes.
Repeating the measurement several times and taking an
average can reduce the'effect of random errors.

Systematic error refers ‘to an effect that influences all
measurements of a particular quantity equally. It produces
a consistent difference in readings. It occurs to some
definite rule. It may occur due to zero error of instruments,
poor calibration of instruments or incorrect markings etc.
Systematic error can be reduced by comparing the
instruments with another which is known to be more
accurate. Thus for systematic error, a correction factor can
be applied..

1.5 SIGNIFICANT FIGURES

As stated earlier physics is based on measurements. But
unfortunately whenever a physical quantity is measured,
there is inevitably some uncertainty about its determined
value. This uncertainty may be due to a number of
reasons. One reason is the type of instrument, being used.
We know that every measuring instrument is calibrated to
a certain smallest division and this fact put a limit to the
degree of accuracy which may be achieved while
measuring with it. Suppose that we want to measure the
length of a straight line with the help of a metre rod
calibrated in millimetres. Let the end point of the line lies
between 10.3 and 10.4 cm marks. By convention, if the end
of the line does not touch or cross the midpoint of the
smallest division, the reading is confined to the previous
division. In case the end of the line seems to be touching
or have crossed the midpoint, the reading is extended to
the next division.

By applying the above rule the position of the edge of a line
recorded as 12.7 cm with the help of a metre rod calibrated
in milimetres may lie between 12.65 cm and 12.75 cm.
Thus in this example the maximum uncertainty is + 0.05 cm.
It is, in fact, equivalent to an uncertainty of 0.1 cm equal to
the least count of the instrument divided into two parts, half
above and half below the recorded reading.

The uncertainty or accuracy in the value of a measured
quantity can be indicated conveniently by using significant
figures. The recorded value of the length of the straight line

Interval (s)

Age of the universe 5x10"7
Age of the Earth tax1o”
One year 3.9x10’
Oan ey 8.6x10*
Time between ¥
normal heartbeats 8x10
Period of audible 3
sound waves 1x10°
Period of typical
radio Wiwetysp'ca 1x10°
of an atom in a A3
solid 1x10
Period of visible ’
light waves 2x10™°

Approximate Values of Some

Time Intervals



Interesting Information
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i.e. 12.7 cm coﬁtains three digits (1, 2, 7) out of which two
digits (1 and 2) are accurately known while the third digit
i.e. 7 is a doubtful one. As a rule:

In other words, a significant figure is the one which is
known to be reasonably reliable. If the above mentionad
measurement is taken by a better measuring instrument
which is exact upto a hundredth of a centimetre, it would
have been recorded as 12.70 em. In this case, the number
of significant figures is four. Thus, we can say that as we
improve the quality of our measuring instrument and
techniques, we extend the measured result to more and
more significant figures and correspondingly improve the
experimental accuracy of the result. While calculating a
result from the measurements, it is important to give due
attention to significant figures and we must know the
following rules in deciding how many significant figures
are to be retained in the final result.

(i) All digits 1,2,3,4,5,6,7,8,9 are significant. However,
Zeros may or may not be significant. In case of
zeros, the following rules may be adopted.

a) A zero between two significant figures is itself
significant.

b) Zeros to the left of significant figures are not
significant. For example, none of the zeros in
0.00467 or 02.59 is significant.

c) Zeros to the right of a significant figure may or
may not be significant. In decimal fraction,
zeros to the right of a significant figure are
significant. For example, all the zeros in 3.570
or 7.4000 are significant. However, in integers
such as 8,000 kg, the number of significant
zeros is determined by the accuracy of the
measuring instrument. If the measuring scale
has a least count of 1 kg then there are four
significant figures written in scientific notation



as 8.000 x 10° kg. If the least count of the scale
is 10 kg, then the number of significant figures
will be 3 written in scientific notation as
8.00 x 10° kg and so on.

d) When a measurement is recorded in scientific
notation or standard form, the figures other than
the powers of ten are significant figures.

For example, a measurement recorded as
8.70 x 10* kg has three significant figures.

(ii) In multiplying or dividing numbers, keep a number
of significant figures in the product or quotient not
more than that contained in the least accurate
factor i.e., the factor containing the least number of
significant figures. For example, the computation of
the following using a calculator, gives

5.348 x102 x3.64 x10* _ 3
4 =1.45768982 x 10

As the factor 3.64 x 10°, the least accurate in the above
calculation has three significant figures, the answer should _
be written to three significant figures only. The other
figures are insignificant and should be deleted. While
deleting the figures, the last significant figure to be retained
is rounded off for which the following rules are followed.

a) If the first digit dropped is less than 5, the last digit
retained should remain unchanged.

b) If the first digit dropped is more than 5, the digit to be
retained is increased by one.

c) If the digit to be dropped is 5, the previous digit which
is to be retained is increased by one if it is odd and
retained as such if it is even. For example, the
following numbers are rounded off to three significant
figures as follows. The digits are deleted one by one.

43.75 isrounded offas = 438
56.8546 is rounded off as 56.8
73.630 is rounded off as 73.6
64.350 is rounded off as 64 .4



For your Information

We use many devices to measure
physical quantities, such as length,
time, and temperature. They all have
some limil of precision.

Following this rule, the correct answer of the computation
given in section (i) is 1.46 x 10°.

(iii) In adding or subtracting numbers, the number of
decimal places retained in the answer should equal
the smallest number of decimal places in any of the
quantities being added or subtracted. In this case,
the number of significant figures is not important. It
is the position of decimal that matters. For example,
suppose we wish to add the following quantities
expressed in metres.

i) 721 2.7543
3.42 4.10
0.003 1.273
75.523 8.1273
Correct answer: 75.5 m 813 m

In case (i) the number 72.1 has the smallest number of
decimal places, thus the answer is rounded off to the same
position which is then 755 m.In case (ii),the number 4.10 has
the smallestnumber of decimal places and hence, the answer
is rounded off to the same decimal positions which is
then 813 m.

1.6 PRECISION AND ACCURACY

In measurements made in physics, the terms precision
and accuracy are frequently used. They should be
distinguished clearly. The ptecision of a measurement is
determined by the instrument or device being used and the
accuracy of a measurement depends on the fractional or
percentage uncertainty in that measurement.

For example, when the length of an object is recorded as
25.5 cm by using a metre rod having smallest division in
millimetre, it is the difference of two readings of the initial
and final positions. The uncertainty in the single reading as
discussed before is taken as + 0.05 cm which is now
doubled and is called absolute uncertainty equal to
*0.1cm. Absolute uncertainty, in fact, is equal to the least
count of the measuring instrument. :

Precision or absolute uncertainty (least count) = + 0.1 cm
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0.1cm

Fractional uncertainty = SE Ao =\0.004
e = _0.1cm U0
Percentage uncertainty & Bom X 100 = 0.4%

Another measurement taken by vernier callipers with least
count as 0.01 cm is recorded as 0.45 cm. It has

Precision or absolute uncertainty (least count) = + 0.01 cm

0.01cm

Fractional uncertainty = e 0.02
i = 0.1cm M :
Percentage uncertainty G 4Bom * 100 = 2.0%

Thus the reading 25.5 cm taken by metre rule is although
less precise but is more accurate having less percentage
uncertainty or error.

; : . ..f."b"' your information

Whereas the reading 0.45 cm taken by vernier callipers  “coour printing uses just four

is more precise but is less accurate. In fact, it is the colours- cyan, magenta. yellow and

relative measurement which is important. The smaller a  black o produce the entire range of
: : e colours. All the colours in this book

physical quantity, the more precise instrument should be e peen made from just these

used. Here the measurement 0.45 cm demands that a  four colours.

more precise instrument, such as micrometre screw

gauge, with least count 0.001cm, should have been

used. Hence, we can conclude that:

A precise measurement is the one which has less
absolute uncertainty and an accurate measurement
is the one which has less fractional or percentage
uncertainty or error.

1.7 ASSESSMENT OF TOTAL
UNCERTAINTY IN THE FINAL RESULT
To assess the total uncertainty or error, it is necessary to
evaluate the likely uncertainties in all the factors involved in

that calculation. The maximum possible uncertainty or
error in the final result can be found as follows. The proofs

of these rules are given in Appendix 2.
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These are not decoration pieces
of glass but are the earliest
known exquisite and sensitive
tharmometers, built by .the
Accademia del Cimento (1657-
1667), in Florence. They contained
alcohol, some times coloured rad
for easier reading.

1. For addition and subtraction

Absolute uncertainties are added: For example, the
distance x'determined by the difference between two
separale position measurements

x1=10.5+ 0.1 cm and x, = 26.8 + 0.1 cm is recorded as

X=X-X,=16.3+0.2cm

2. For muitiplication and division

Percentage uncertainties are added. For example the
maximum possible uncertainty in the value of resistance R
of a conductor determined from the measurements of
potential diflerence V and resulting current flow 7 by using
R = V/iis found as follows:

V=52£01V
I'=0.84 +0.05A :
: 01V - ¥
The %age uncertaintyfor Vis = S5y X 100 = about 2%
The %age uncertainty for / is = %gjg- x 100 = about 6%

Hence total uncertainty in the value of resistance R when V
is divided by 7is 8%. The result is thus quoted as

52V

. R ey R e i 9
R Stk 6.19 VA" = 6.19 ohms with a % age

uncertainty of 8%

that is R=6.2%+ 0.50hms

The result is rounded off to two significant digits because
both V and R have two significant figures and uncertainty,
being an estimate only, is recorded by one significant
figure.

3. For power factor

Multiply the percentage uncertainty by that power. For
example, in the calculation of the volume of a sphere using

12
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3

%age uncertainty in V = 3 x % age uncertainty in radius r. Interesting Information

As uncertainty is multiplied by power factor, it increases the
precision demand of measurement. If the radius of a small
sphere is measured as 2.25 cm by a vernier callipers with
least count 0.01 cm, then

Y=

D

the radius ris recorded as
r=225+0.01cm

Absolute uncertainty = Least count = £ 0.01 cm

D 108 = 045

%age uncertainty inr= T

Total percentage uncertainty in V=3x04 = 1.2%
Thus volume V= g ar®

=_‘3*. x 3.14 x ( 2.25 cm)*

® 3y s seeyei B B EERA.

= 47.689 cm’ with 1.2% uncertainty
Thus the result should be recorded as
V=477 +06cm’

4. For uncertainty in the average value of
many measurements.

.

(i) Find the average value of measured values. :

(i) Find deviation of each measured value from the
average value.

(iii) The mean deviation is the uncertainty in the
average value.

For example, the six readings of the micrometer
screw gauge to measure the diameter of a wire in
mm are

1.20,1.22,1.23,1.19,1.22,1.21.
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Moen to Earth
Sun to Earth
Pluto to Earth

Travel time of light

1 min 20s
8 min 20s
5h 20s

1.20+1.22+1.23+1.19+1.22 +1.21

Then Average = 5

=1.21 mm

The deviation of the readings, which are the difference
without regards to the sign, between each reading and
average value are 0.01, 0.01, 0.02, 0.02, 0.01, 0,

0.01+0.01+0.02 +0.02+0.01+ 0
6

Mean of deviations =

=0.01 mm

Thus, likely uncertainty in the mean diametre 1.21 mm is
0.01 mm recorded as 1.21 + 0.01 mm.

5.. For the uncertainty in a timing experiment
The uncertainty in the time period of a vibrating body is
found by dividing the least count of timing device by the
number of vibrations. For example, the time of 30
vibrations of a simple pendulum recorded by a stopwatch
accurate upto one tenth of a second is 54.6s, the period

_ 546s & £ ; Q 2
T 30 1.82 s with uncertainty 30 0.003 s

Thus, period T is quoted as 7= 1.82 + 0.q03 s

Hence, it is advisable to count large number of swings to
reduce timing uncertainty.

Example 1.1: The length, breadth and thickness of a
sheet are 3.233m, 2.105 m and 1.05 cm respectively.
Calculate the volume of the sheet correct upto the
appropriate significant digits.

Solution: Given length / = 3.233 m
Breadth b= 2.105m
Thickness h = 1.05cm = 1.05x 10° m
Volume V=ixbxh
= 3.233m x 2.105m x 1.05 x 10°m
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=7.14573825x 10° m®

As the factor 1.05 cm has minimum number of significant
figures equal to three, therefore, volume is recorded upto 3
significant figures, hence,V = 7.15x10"m*

Example 1.2: The mass of a metal box measured by a
lever balance is 2.2 kg. Two silver coins of masses 10.01 g
and 10.02 g measured by a beam balance are added to it.
What is now the total mass of the box correct upto the
appropriate precision.

Solution: Total mass when silver coins are added to box
=2.2kg +0.01001 kg + 0.01002 kg
= 2.22003 kg

Since least precise is 2.2 kg, having one decimal place,
hence total mass should be to one decimal place which is
the appropriate precision. Thus the total mass = 2.2 kg.

Example 1.3: The diameter and length of a metal
cylinder measured with the help of vernier callipers of least
count 0.01 cm are 1.22 cm and 5.35 cm. Calculate the
volume V of the cylinder and uncertainty in it.

Solution: Given data is
Diameter d = 1.22 cm with least count 0.01 cm
Length I = 5.35 cm with least count 0.01 cm

Absolute uncertainty in length = 0.01 cm

0.01¢m

%age uncertainty in length = e
535¢m

X100 = 0.2%

Absolute unceriwnty in diameter = 0.01 cm

0.01cm

%age uncertaintyin diameter= S x-100 = 0.8%
2
As volume is V= m:l

15

Atomic Clock

The cesium atomic frequency
standard at the Natonal Institute
of Standards and Technology m
Colorado (USA). It 18 the primary
standard for the unit of time,



~ total uncertainty in V=2 ( %age uncertaintyin diameter)
+ (%age uncertainty in length)
=2x08+02=1.8%

2
Then V = 3""‘“'222"’ x5.350M _ 62508079 cm® with
; 1.8% uncertainty

Thus V=(6210.1) cm5

Where 6.2 cm® is calculated volume and 0.1cm® is the
uncertainty in it. -

Each base quantity is considered a dimension denoted by
a specific symbol written within square brackets. It stands
for the qualitative nature of the physical quantity. For
example, different quantities such as length, breadth,
diameter, light year which are measured in metre denote
the same dimension and has the dimension of length [ L ].
Similarly the mass and time dimensions are denoted by
[M] and [ T, respectively. Other quantities that we
measure have dimension which are combinations of these
dimensions. For example, speed is measured in metres
per second. This will obviously have the dimensions of
length divided by time. Hence we can write.

Dimension of length

Dimensions of speed =
P Dimension of time

:,[,L_lz M= =1
LSt BT iy

Similarly the dimensions of acceleration are
[al=[L]1[T*)=[LT"]
and that of force are
[Fl=[m]lla]=[M][LT*=[MLT?

Using the method of dimensions called the dimensional
analysis, we can check the correctness of a given formula
or an equation and can also derive it. Dimensional analysis
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makes use of the fact that expression of the dimensions
can be manipulated as algebraic quantities.

{i) Checking the homogerieity of physical equation

In order to check the correctness of an equation, we are to
show that the dimensions of the quantities on both sides of
the equation are the same, irrespective of the form of the
formula. This is called the principle of homogeneity of
dimensions.

Example 1.4: Check the correctness of the relation
v =JFmT where v is the speed of transverse wave on a
stretched string of tension F, length | and mass m. -
Solution:

Dimensions of L.H.S. of the equation=[v] = [LT ]
Dimensions of R.H.S. of the equation = ([F ] x [[] x[m])"?

=(IMLT Ix[L1x[M D2 =272 = (LT

Since the dimensions of both sides of the equation are the
same, equation is dimensionally correct.

i), Deriving a possible formula_

b =3 ¥
The success of this method for deriving a relation for a
physical quantity depends on the correct guessing of
various factors on which the physical quantity depends.

Example 1.5: Derive a relation for the time period of a
simple pendulum (Fig. 1.2) using dimensional analysis. The
various possible factors on which the time period T may
depend are :

i) Length of the pendulum (/)

i) Mass of the bob (m)

iii) Angle 6 which the thread makes with the vertical
iv) Acceleration due to gravity (g)

17



Solution:
The relation for the time period T will be of the form

Tem*xI1®x0°x g°
or T=constant m®/® 9°g® . (1.1)
where we have to find the values of powers a, b, cand d.

Writing the dimensions of both sides we get

171 constan x WP LLF 1L (47 °F

Comparing the dimensions on both sides we have

[T)1=[TT*
(MPP=[MT
(L Pamjlpee
Equating powers on both the sides we get
gn &1
2d =1 or d 3
a=0 and b+d=0
or b=-d=% and 9=[LL71]c=[LOJc=1

Substituting the values of a, b, 8 and d in Eq. 1.1

T=constantx m°x 1% x 1x g%

The device which made the
pendulc i clock practical.
Or T = constant ’—;—

The numerical value of the constant cannot be determined
by dimensional analysis, however, it can be found by
experiments.

Example 1.6: Find the dimensions and hence, the SI
units of coefficient of viscosity 1 in the relation of Stokes’
law for the drag force F for a spherical object of radius r
moving with velocity v givenas F=6 mrv

Solution: 6ris a number having no dimensions. It is not
accounted in dimensional analysis. Then

18



or

[Fl=[nrv]

LA
1=

Substituting the dimensions of F, r, and vin R.H.S.

or

[MLT?)

=

[n]=[M'T7]

Thus, the Sl unit of coefficient of viscosity is kg m™ s

Physics is the study of entire Physical World.

The most basic quantities that can be used to describe the Physical World are
mass, length and time. All other quantities, called derived quantities, can be
described in terms of some combinations of the base quantities.

The internationally adopted system of units used by all the scientists and almost all
the countries of the World is International System (SI) of Units. It consists of seven
base units, two supplementary units and a number of derived units.

Errors due to incorrect design or calibrations of the measuring device are called
systematic errors. Random errors are due to unknown causes and fluctuations in
the quantity being measured.

The accuracy of a measurement is the extent to which systematic error make a
measured value differ from its true value.

The accuracy of a measurement can be indicated by the number of significant
figures, or by a stated uncertainty.

The significant figures or digits in a measured or calculated quantity are those
digits that are known to be reasonably reliable.

The result of multiplication or division has no more significant figures than any factor
in the input data. Round off your calculator result to correct number of digits.

In case of addition or subtraction the precision of the result can be only as great as
the least precise term added or subtracted.

Each basic measurable physical property represented by a specific symbol written
within square brackets is called a dimension. All other physical quantities can be
derived as combinations of the basic dimensions.

Equations must be dimensionally consistent. Two terms can be added only when
they have the same dimensions. :
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1.1

1.2
1.3

14

1.5

1.6

7

1.2

13

QUESTIONS

Name several repetitive phenomenon occurring in nature which could serve as
reasonable time standards.

Give the drawbacks to use the period of a pendulum as a time standard.

Why do we find it useful to have two units for the amount of substance, the
Kilogram and the mole?

Three students measured the length of a needle with a scale on which minimum
division is Tmm and recorded as (i) 0.2145 m (i) 0.21 m (iii) 0.214m.Which record
is correct and why?

An old saying is that “A chain is only as strong as its weakest link”. What
analogous statement can you make regarding experimental data used in a
computation?

The period of simple pendulum is measured by a stop watch. What type of errors
are possible in the time period?

Does a dimensional analysis give any information on constant of proportionality
that may appear in an algebraic expression? Expiain.

Write the dimensions of (i) Pressure (i) Density

The wavelength ;. of a wave depends on the speed v of the wave and its frequency
f. Knowing that

[21=[ L], W v B and [f]=[T"]

Decide which of the following is correct, f=vi or f=2Y

NUMERICAL':PROBLEMS

A light year is the distance light travels in one year. How many metres are there in
one light year: (speed of light = 3.0 x 10° ms ).

2

(Ans: 9.5 x 10"°m)
a) How many seconds are there in 1 year?
b) How many nanoseconds in 1 year?
¢) How many years in 1 second?
[Ans.(a) 3.1538 x 10's, (b) 3.1536 x 10"ns (c) 3.1 x 10° yr]

The length and width of a rectangular plate are measured to be 15.3 cm and 12.80 cm,
respeclively. Find the area of the plate,

(Ans: 196 cm?)
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1.6

1.7

1.8

1.9

Add the following masses given in kg upto appropriate precision. 2.189, 0.089,
11.8 and 5.32.

(Ans: 19.4 kg)

Find the value of ‘g’ and its uncertainty using T =2x lg from the following

measurements made duringan experiment
Length of simple pendulum 7 =100 cm.
Time for 20 vibrations = 40.2 s

Length was measured by a metre scale of accuracy upto 1 mm and time by stop
watch of accuracy upto 0.1 s.

(Ans: 9.76 + 0.06 ms™)
What are the dimensions and units of gravitational ‘constant G in the formula

Z: m, my
damdc

(Ans: [M'L® T2, Nm*kg™)

Show that the expression v;=v, +at is dimensionally correct, where v; is the velocity
att =0, ais acceleration and v is the velocity at time t.

The speed v of sound waves through a medium may be assumed to depend on
(a) the density p of the medium and (b) its modulus of elasticity £ which is the ratio
of stress to strain. Deduce by the method of dimensions, the formula for the speed

of sound.
(Ans: v = Constant ,-5 )
p

Show that the famous “Einstein equation” E = mc’ is dimensionally consistent.

1.10 Suppose, we are told that the acceleration of a particle moving in a circle of radius

r with uniform speed v is proportional to some power of r,say ", and some power
of v,say V", determine the powers of rand v?

(Ans:n=-1,m=2)



Learning Objectives

At the end of this chapter the students will be able to:

1.
2.
3.
4.

Understand and use rectangular coordinate system.
Understand the idea of unit vector, null vector and position vector.
Represent a vector as two perpendicular components (rectangular components).

Understand the rule of vector addition and extend it to add vectors using
rectangular components.

Understand multiplication of vectors and solve problems.
Define the moment of force or torque.
Appreciate the use of the torque due to a force.

Show an understanding that when there is no resultant force and no resultant
torque, a system is in equilibrium.

9. Appreciate the applications of the principle of moments.
10, Apply the knowledge gained to solve problems on statics.

o N& o

l hysical quantities that have both numerical and directional properties are called

vectors. This chapter is concemed with the vector algebra and its applications in problems
of equilibrium of forces and equilibrium of torques.

(i) Vectors
As we have studied in school physics, there are some physical quantities which require
both magnitude and direction for their complete description, such as velocity, acceleration
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and force. They are called vectors. In books, vectors are
usually denoted by bold face characters such as A, d, r and
v while in handwriting, we put an arrowhead over the letter
e.g. d. If we wish to refer only to the magnitude of a vector d
we use light face type such as d.

A vector is represented graphically by a dlrected line
segment with an arrowhead. The length of the line
segment, according. to a chosen scale, corresponds to
the magnitude of the vector.

(ii) Rectangular coordinate system

Two reference lines drawn at right angles to each other
as shown in Fig. 2.1 (a) are known as coordinate axes and
their point of intersection is known as origin. This system
of coordinate axes is called Cartesian or rectangular
coordinate system.

" One of the lines is named as x-axis, and the other the y--

axis. Usually the x-axis is taken as the horizontal axis, with
the positive direction to the right, and the y-axis as the
vertical axis with the positive direction upward.

The direction of a vector in a plane is denoted by the angle
which the representative line of the vector makes with
positive x-axis in the anti-clock wise direction, as shown in
Fig 2.1 (b). The point P shown in Fig 2.1 (b) has
coordinates (a,b). This notation means that if we start at
the origin, we can reach P by moving ‘@’ units along the
positive x-axis and then ‘b’ units along the positive y-axis.

The direction of a vector in space requires another axis
which is at right angle to both x and y axes, as shown in
Fig 2.2 (a). The third axis is called z-axis.

The direction of a vector in space is specified by the three
angles which the representative line of the vector makes
with x, y and z axes respectively as shown in Fig 2.2 (b).
The point P of a vector A is thus denoted by three
coordinates (a, b, c).

(ili) Addition of Vectors

Given two vectors A and B as shown in Fig 2.3 (a), their sum
is obtained by drawing their representative lines in such a
way that tail of vector B coincides with the head of the vector
A. Now if we join the tail of A to the head of B, as shown in
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. the Fig. 2.3(b), the line joining the tail of A to the head of B will

A/ represent the vector sum (A+B) in magnitude and direction.
/ The vector sum is also called resultant and is indicated by R.
B Thus R = A+B. This is known as head to tail rule of vector

o addition. This rule can be extended to find the sum of any

Fig. 2.3(a) number of vectors. Similarly the sum B + A is illustrated by

"ack lines in Fig 2.3 (c). The answer is same resultant R as
indicated by the red line. Therefore, we can say that

A+B=B+A (2.1)

B So the vector addition is said to be commutative. It means
o« /) that when vectors are added, the result is the same for any
A/ - order of addition.

/ “een® (iv) Resultant Vector

The resultant of a number of vectors of the same kind —force
Fig. 2.3(u) vectors for example, is that single'vector which would have
the same effect as all the original vectors taken together.

B (v) Vector Subtraction
a

, , The subtraction of a vector is equivalent to the addition of
A/ “‘b*
’ «‘,p A

the same vector with its direction reversed. Thus, to
subtract vector B from vector A, reverse the direction of B

5 and add it to A, as shown in Fig. 2.3 (d).
A-B=A+(-B) where (-B) is negative vector of B

Fig. 2.3{e)
vi) Multiplication of a Vector. by a Scalar

(
-B The product of a vector A and a number n > 0 is defined
B | fo be a new vector nA having the same direction as A
- / but a magnitude n times the magnitude of A as
‘8 /A illustrated in Fig. 2.4. If the vector is multiplied by a
negative number, then its direction is reversed.

Fig. 2.30d) In the event that n represents a scalar quantity, the product
nA will correspond fo a new physical quantity and the
dimensions of the resulting vector will be the product of the
dimensions of the two quantities which were multiplied
together. For example, when velocity is multiplied by scalar
mass m, the product is a new vector quantity called momentum
having the dimensions as those of mass and velocity.

(Vi) _Unit Vector |

A unit vector in a given direction is a vector with magnitude
one in that direction. It is used to represent the direction of
Fig 24 a vector.
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A unit vector in the direction of A is written as A , which we
read as ‘A hat', thus

A = AA
&l
A Do s citiRe 2.2)

The direction along x, y and z axes are generally

A

represented by unit vectors i, j and k respectively

(Fig. 2.5 a). The use of unit vectors is not restricted to
Cartesian coordinate system only. Unit vectors may be
defined for any direction. Two of the more frequently

used unit vectors are the vectorltwhich represents the

direction of the vector r(Fig. 2.5 b) and the vector n
which represents the direction of a normal drawn on a
specified surface as shown in Fig 2.5 (c).

(viii) Null Vector

Null vector is a vector of zero magnitude and arbifrary
direction. Forexample, the sum of a vector and its negative
vector is a null vector.

A+(-A)=10 (2.3)
(ix)  Equal Vectors
Two vectors A and B are said to be equal if they have the

same magnitude and direction, regardless of the position
of their initial points.

This means that parallel vectors of the same magnitude
are equal to each other.

'(rx') Rectangular Components of a Vector

A component of a vector is its effective value in a given
direction. A vector may be considered as the resultant of
its component vectors along the specified directions. It is
usually convenient to resolve a vector into components
along mutually perpendicular directions. Such components
are called rectangular components.
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Let there be a vector A represented by OP making angle 6
with the x-axis. Draw projection OM of vector OP on x-axis
and projection ON of vector OP on y-axis as shown in
Fig.2.6.Projection OM being along x-directionis represented

by A,; and projection ON = MP along y-direction is
represented by A, j By head and tail rule

A=A +Aj (2.4)

A i
Thus A,iand A, jare the components of vector A. Since

these are at right angle to each other, hence, they are called
rectangular components of A Considering the right angled

triangle OMP, the magnitude of A, i or x-component of A is

A= ACOSO o ik (2.5)

And that of A, ; or y-component of A is

Ay=Asin 0 P : (26)

Determination of a Vector from its
Rectangular Components

If the rectangular components of a vector, as shown in
Fig. 2.6, are given, we can find out the magnitude of the
vector by using Pythagorean theorem.

(xi)

In the right angled A OMP.
OP’ = OM? + MP’
or ATZAZep? @7
or A=(AZ+A’

Shan z MP _A
an 0 b ALY
d direction 6 is given by tano oM~ 4,

or 6 =-mn~‘~% .......... (2.8)
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(xii) Position Vector

The position vector r is a vector that describes the location
of a point with respect to the origin. It is represented by a
straight line drawn in such a way that its tail coincides with
the origin and the head with point P (a,b) as shown in
Fig.2.7(a). The projectionsof position vector r on the x and
y axes are the coordinates a and b and they are the
rectangular components of the vector r. Hence

Feal +b) and e ate o Llans (2.9)

In three dimensional space, the position vector of a point
P (ab,c) is shown in Fig. 2.7 (b) and is represented by

r=a§+b;+clht and r=,/ a’4b”+7 .......... (2.10)

Example 2.1: The positions of two aeroplanes at any
instant are represented by two points A (2, 3, 4) and
B(5, 6,7) from an origin O in km as shown.in Fig. 2.8.
(i) What are their position vectors?

(ii) Calculate the distance between the two aeroplanes.

Solution: (i) A position vector ris given by

| F=al +B] ok
Thus position vector of first aeroplane A is

» A

OA=2i +3 j +4k

And position vector of the second aeroplane B is
OB=5i+6j+7k

By head and tail rule

: OA + AB=0B
Therefore, the distance between two aeroplanes is given by

AB=0B-OA=(5i+6j+7k)-(2i+3]+4k)

= (3i+3]+3k)

Magnitude of vector AB is the distance between the
position of two aeroplanes which is then:

AB = |/(3km)? + (3km)? + (3km)” = 5.2km
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Let A and B be two vectors which are represented by two

- directed lines OM and ON respectively. The vector B is added

to A by the head to tail rule of vector addition (Fig 2.9). Thus
the resultant vector R = A + B s given, in direction and
magnitude, by the vector OP.

In the Fig 2.9 A,, B, and R, are the x components of the
vectors A, B and R and their magnitudes are given by the
lines OQ. MS, and OR respectively, But

OR =0Q + QR
or OR=0Q+MS
or R,=A, +8B, (2.11)

which means that the sum of the magnitudes of
X-components of two vectors which are to be added, is
equal to the x-component of the resultant. Similarly the
sum of the magnitudes of y-components of two vectors is
equal to the magnitude of y-component of the resultant,
that is

R,=A,+8, | oo B Uy

Since R, and R, are the rectangular components of the
resultant vector R, hence

R=Ri+R,j
or R=(A, +BJi+(A,+8B)j

The magnitude of the resultant vector R is thus given as

R= A +B, ) +(A+B,)} SRS N R

and the direction of the resultant vector is determined from

28



Q= tan"BL: tan"(A_yﬂ
Ry (A + B, )

= st Ayt By)
and 6 =tan (——Ax"‘ o R s (2.14)

Similarly for any number of coplanar vectors A, B, C...., we
can write

R= [iA +B + G P B G P (2.15)

L(A+B,+C +....)
b=ty LT el St ol Rl 2.16
e Ak ) ] )

The vector addition by rectangular components consists of
the following steps.

Find x and y components of all given vectors.

| Find x-component R, of the resultant vector by
adding the x-components of all the vectors.

Find y-component R, of the resultant vector by
adding the y-components of all the vectors.

Find the magnitude of resultant vector R using

R= ,/R;‘ +R,F

Find the direction of resultant vector R by using

R
8 =tan” L
R

where 8 is the angle, which the resultant vector makes with
positive x-axis. The signs of R, and R, determine the
quadrant in which resultant vector lies. For that purpose
proceed as given below.

Irrespective of the sign of R, and R,, determine the value
, R

of tan E'— = ¢ from the calculator or by consulting

X

trigonometric tables. Knowing the value of ¢, angle € is
determined as follows.

Do You Know?

The Chinese acrobats in this
incredible balancing act are in
equilibrium.



RVa R+
4 A Ae. R+
¥ v
\«‘/\

R, R
R = R
1] ¥ o
Ist quadrant
Y 8¢
¢
o X
2nd quadrant
Y

0=180-¢
: ¢]
X ' X
(8]
3rd quadrant
_\99=180'+¢
iy
X 3 ) X
¢
;w'xouadram
o~
X 9 P X
08=380 -¢
o

a) If both R, and R, are positive, then the resultant lies
in the first quadrant and its directionis 0 =¢.

b) IfR. is —ive and R, is +ive, the resultant lies in the
second quadrant and its direction is 6 = 180" -0,

¢) Ifboth R, and R, are —ive, the resultant lies in the third
quadrant and its direction is 6 = 180+ ¢ .

d) If Ry is positive and R, is negative, the resuLtant lies in
the fourth quadrant and its direction is 6 = 360~ 6 .

Example 2.2: Two forces of magnitude 10 N and 20 N
act on a body in directions making angles 30° and 60°
respectively with x-axis. Find the resultant force,

Solution:

Step (i)  x-components

The x-component of the first force = F,, = F, cos 30°
=10N x 0.866 = 8.66 N

The x-component of second force = Fa = F5 cos 60°

=20Nx05=10N
y-components
The y-component of the first force = F,, = F, sin 30°
=10Nx05=5N

The y-component of second force = Fa = F; sin 60°
=20N x0.866 = 17.32 N
Step (ii)
The magnitude of x component F, of the resultant force F
Fi=F, +F,
Fc=866N+10N=1866N
Step (iii)
The magnitude of y component £y of the resultant force F
Fy=Fiy+Fy
Fy=5N+1732N=2232N
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Step (iv)
The magnitude F of the resultant force F

F=JFZ+ F = J(18.66Nf + (2232N)" =29 N

Step (v)
If the resultant force F makes an angle 6 with the x-axis
then :
oGy A BRI e .
0 =tan F tan o tan™ 1.196 = 50°.

Example 2.3: Find the angle between two forces of equal
magnitude when the magnitude of their resultant is also
equal to the magnitude of either of these forces.

Solution: Let @ be the angle between two forces F; and
F., where F, is along x-axis. Then x-component of their
resultant will be

R,=F;cos 0° + F,cos B
R,=F; +F;cos0
And y-component of their resultant is

R, = F; sin (° + F sin0 Point to Ponder
R, = F; sinB ; md;“wm%w:xm
The resultant R is givenby  R*=R{ +R/ of abumpy-riding bus?
As R=F, =F=F
Hence F 2= (F + F cos0)? + (F sing)*
Or 0=2F?cosO+F? (cos’6 + sin°0)
or 0=2F? cosO+ F?
Oor cosf=-05
or 8 = cos'(-0.5) = 120

There are two types of vector multiplications. The product
of these two types are known as scalar product and vector
product. As the name implies, scalar product of two vector
guantities is a scalar quantity, while vector product of two

vector quantities is a vector quantity.
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Scalar or Dot Product

The scalar product of two vectors A and B is written as
A . B and is defined as

A.-B=ABcos® . .1 (2.17)

where A and B are the magnitudes of vectors A and B and
8 is the angle between them.

For physical interpretation of dot productof two vectors A and
B, these are first brought to a common origin (Fig. 2.10 a),

then, A.B = (A) (projection of B on A)

L or
A.B = A (magnitude of component of B in the direction of A)

=A (BcosbH)= ABcos 6
Similarly B.A=B (Acos @)= BA cos 0

We come across this type of product when we consider the
work done by a force F whose point of application moves a
distance d in a direction making an angle 6 with the line of
action of F, as shown in Fig. 2.11.

Waork done = (effective component of force in the direction
of motion) x distance moved
=(Fcosb)d=Fdcoso

Using vector notation

F.d = Fd cos 0 = work done

Characteristics of Scalar Product

L Since A.B=ABcos6 and B.A =BA cos = AB cos ).
hence, AB =B.A. The order of multiplication is
irrelevant. In other words, scalar product is
commutative.

2. The scalar product of two mutually perpendicular
vectars is zero. A.B = AB cos90° = 0

In case of unit vectors l.f and ﬁ. since they arc
mutually perpendicular, therefore,
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ij=jk=k.i=0 S (248)
- X The scalar product of two parallel vectors is equal

to the product of their magnitudes. Thus for parallel
vectors (0=07)

A.B = ABcos 0'= AB
In case of unit vectors

L) A A A

b i=1. )7k k=1 SN what should You'do?

and for antiparallel vectors (6=180°)
A.B = ABcos180° = -AB

4. The self product of a vector A is equal to square of
its magnitude.

A.A = AA cos 0° = A?
5. Scalar product of two vectors A and B in terms of
their rectangular components
AB=(A i +A, j+A k). (B, i +B, | +B, k)
or AB=AB +AB,+AB, ... (2.20)

Equation 2.17 can be used to find the angle between two
vectors: Since,

A.B=ABcosb=AB,+AB, +A.B,
AB,+AB +AB,

Therefore, cosl)=

2 i S

Example 2.4: Aforce F=2i + 3] units, has its point of

application moved from point A(1,3) to the point B (5,7).
Find the work done.

Solution: Position vector of point A is ry = i+ 3iand that

of pointBisr; = Si+7i

e



Disp‘lacementcl=rg—rA=(5—1 ) ;+(7—3) ; =4i +4}

Work done = F.d = (21 +3]). (41 +4])

=8 + 12 = 20 units

Example 2.5: Find the projection of vector A=2 i -8 j +k
in the direction of the vector B= 3 - 4} - 12|:.

Solution: If 8is the angle between A and B, then A cos@
is the required projection.

By definition A.B=ABcos 0

Ar.:ose=1‘é—B =A B

Where é is the unit vector in the direction of B

Now B= (32 +(4)+(-12)2=13
Therefore, 6= L"g'_u")

The projection of A on B = (2 i -8} +k ). (_;3&_-4{2-&”

= 2 B)+(:8) (4)+1(-12) _ 26
13 13

=2

“Vector or Cross Product
The vector product of two vectors A and B, is a vector
which is defined as

AxB=ABsinon ... | (2.22)

where n is a unit vector perpendicular to the plane
containing A and B as shown in Fig. 2.12 (a). Its direction
can be determined by right hand rule. For that purpose,
place together the tails of vectors A and B to define the
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plane of vectors A and B. The direction of the product
vector is perpendicular to this plane. Rotate the first vector
A into B through the smaller of the two possible angles and
curl the fingers of the right hand in the direction of
rotation, keeping the thumb erect. The direction of the
product vector will be along the erect thumb, as shown
in the Fig 2.12 (b). Because of this direction rule, B x A
is a vector opposite in sign to A x B. Hence,

KB BiRk & = A s (2.23)

Characteristics of Cross Product

1 Since Ax B is nat the same as B x A, the
cross product is non commutative.

2. The cross product of two perpendicular vectors has
maximum magnitude AxB = ABsin90°n=AB n

In case of unit vectors, since they form a right
handed system and are mutually perpendicular
Fig. 2.5 (a)

ixj=k, jxk=1,kxi=]j

W

The cross product of two parallel vectors is null
vector, because for such vectors 0 = 0° or 180°
Hence

A x B = AB sin0°n = AB sin 180°n= 0

As a consequence AxA=0

Also ixi=jxj=kxk=0. .. (2.24)

4. Cross product of two vectors Aand B in terms of
their rectangular components is :

AXB = (A +A, j+A.k ) x (Byi +By | +B,k)

AxB= (AB.-AB,) f+(A,B,-A.Bz) ;"'(AxBy'AVBX)':
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The result obtained can be expressed for memory in
determinant form as below:

B ~. [

iz y Mgy =g

(&) "
-7 Ax B by Ay b
Fig. 2.12(c) B. B, B

5. The magpnitude of A x B is equal to the area of the
parallelogram formed with A and B as two adjacent
sides (Fig. 2.12 d).

Examples of Vector Product

i When a force F is applied on a rigid body at a
point whose position vector is r from any point
of the axis about which the body rotates, then
the turning effect of the force, called the torque

T is given by the vestor product of r and F.
T=rxF

ii The force on a particle of charge g and
velocity v in-a magnetic field of strength B is
given by vector product.

G

We have already studied in school physics that a turning

(T S ; o :
(T" K coni? effect is produced when a nut is tightened with a

G T TR L i f e 30 R T
o300 1 BT I¥ s n“!- A A
£ Rl i TS e T She sl O
: AT s PR Vo Ih

spanner (Fig. 2.13). The turning effect increases when you

push harder on the spanner. It also depends on the length

The nutis easy to tum with a spanner Of the spanner: the longerthe handle of the spanner, the
greater is the turning effect of an applied force. The
turning effect of a force is called its moment or torque and
Its magnitude is defined as the product of force F and
the perpendicular distance from its line of action to the
Itis easier stil if the spanner has a pivot which is the point O around which the body
long handle. ) (spanner) rotates. This distance OP is called moment
Fig. 2.13 arm /. Thus the magnitude of torque represented by t is

TEERL el (2.26)
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When the line of action of the applied force passes through
the pivot point, the value of momentarm / = 0, so in this case
lorque is zero.
We now consider the torque due to a force F acting on
a rigid body. Let the force F acts on rigid body at point
P whose position vector relative to pivot O is r. The
force. F can be resolved into two rectangular
components, £ sin 0 perpendicular to r and F cos#
along the direction of r (Fig. 2.14 a). The torque due to
F cos gabout pivot O is zero as its line of action passes
through point O. Therefore, the magnitude of torque due
to F is equal to the torque due to F sin® only about O.
It is given by

T =(Fsin®)r=rFsin0 ... (2.27)

Alternatively the momentarm / is equal to the magnitude of
the component of r perpendicular to the line of action of F
as illustrated in Fig. 2.14 (b). Thus

¢ = (rsin) F = rFsin0 v SRR
where ¢ is the angle between r and F

From Eq. 2.27 and Eq. 2.28 it can be seen that the torque
can be defined by the vector product of position vector r
and the force F, so

T=rxF

or CRER TSRS @)
Where (rF sin®) is the magnitude of the torque. The

direction of the torque represented by n is perpendicular
to the plane containing r and F given by right hand rule for
the vector product of two vectors.

The Sl unit for torque is newton metre (N m).

Just as force determines the linear acceleration produced
in a body, the torque acting on a body determines its angular

acceleration. Torque is the analogous of force for rotational’

motion. If the body is at rest or rotating with uniform
angular velocity, the angular acceleration will be zero. In this
case the torque acting on the body will be zero.

Fig. 2.14(a)

Fig. 2.14(b)



Example 2.6: The line of action of a force F passes
through a point P of a body whose position

vectorin metre isf-23+lA(.lfF= 2i -3 3 + 4l; (in newton),
determine the torque about the point ‘A'whose position

€% FPoint to Pondeér =

vector (in metre) is 2 | + j + k

Solution:

5 - The position vector of pointA=r, =2 i+ j +K

¥ *"'P’ - The position vector of point P=r2=3-23 +l; relative to O,
S . ~ The position vector of P relative to A is
Do you think the rider in the above AP=r=r—r,

AP =(i-2+k)-(2i+ | + k)=-i-3]
The torque about A =r x F 5

= (-1-3])x(21-3] +4k)

=-12i+4j +9k Nm

¢ - Vil ) by
LR R I R T T ate i =

i We have studied in school physics that if a body, under the
W action of a number of forces, is at rest or moving with
uniform velocity, it is said to be in equilibrium.

A body at rest or moving with uniform velocity has zero
acceleration. From Newton's Law of motion the vector sum
of all forces acting on it must be zero.

Stand ““"“"‘“"’“l and the side of  Thjs js known as the first condition of equilibrium. Using
Can hy:ut e the Sher ;; :;1‘ the mathematical symbol X F for the sum of all forces we

5
L
g
3
5
g

can write

5 e ST (2.30)
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In case of coplanar forces, this condition is expressed
usually in terms of x and y components of the forces. We
have studied that x-component of the resultant force F
equals the sum of x-directed or x-components of all the
forces acting on the body. Hence

R0 o (2.31)

Similarly for the y-directed forces, the resuitant of
y - directed forces should be zero. Hence

SE S0 T foean (2.32)

It may be noted that if the rightward forces are taken as
positive then leftward forces are taken as negative.
Similarly if upward forces are taken as positive then
downward forces are taken as negative.

Example 2.7: A load is suspended by two cords as
shown in Fig. 2.15. Determine the maximum load that can
be suspended at P, if maximum breaking tension of the
cord used is 50 N.

Solution: For using conditions of equilibrium, all the
forces acting at point P are shown by a force diagram as
illustrated in Fig. 2.16 where w is assumed to be the
maximum weight which can be suspended. The inclined
forces can now be easily resolved along x and y directions.

Applying ZF=0
T>cos 20 — T, cos 60= 0
Or 7:=1.88T;
As ~ Ty> T, .. Ty has the maximum tension
If T,=50 N, then T,=26.6 N

Now applying XF,=0
T, sin60° + T,sin 20°-w=0
Putting the values
50N x0.866 + 266 Nx034=w
or w=52N
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A concurrent force system in
equilibrium. The tension applied
can be adjusted as desired

Fig. 2.15




fSecond Condition of Equilibrium .

Fig. 217

Can You Do?

,‘.’:. 0 *,;

Let two equal and opposite forces act on a rigid
body as shown in Fig. 2.17. Although the first condition of
equilibrium is satisfied, yet it may rotate having clockwise
turning effect. As discussed earlier, for angular acceleration
to be zero, the net torque acting on the body should be
zero. Thus for a body in equilibrium, the vector sum of all
the torques acting on it about any arbitrary axis should be

zero. This is known as second  condition of equilibrium
Mathematically it is written as

=0 G 2 (2.33)

By convention, the counter clockwise torques are taken as
positive and clockwise torques as negative. An axis is
chosen for calculating the torques. The position of the axis
is quite arbitrary. Axis can be chosen anywhere which is
convenient in applying the torque equation. A most helpful
peint of rotation is the one through which lines of action of
several forces pass.

We are nowin a position to state the complete requirements
for a body to be in equilibrium, which are

() ZF=0 e TF.=0 and IF,=0
(2 - =t=o
When 1% condiion is satisfied, there is no linear

acceleration and body will be in translational equilibrium.
When 2““ oommbn is satisfied, there is no angular

‘acceleration and body will be in rotational equilibrium.

For a body to be in complete equilibrium, both conditions
should be satisfied, i.e., both linear acceleration and
angular acceleration should be zero.

; BRI = S e T
If & body is at rest, it is said to be in static equilibrium but if
the body is moving with uniform velocity, it is said to be
in dynamic equilibrium. Y
We will restrict the applications of above mentioned
conditions of equilibrium to situations in which all the forces

lie in @ common plane. Such forces are said to be
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coplanar. We will also assume that these forces lie in the
xy-plane.

If there are more than one object in equilibrium in a given
problem, one object is selected at a time to apply the
conditions of equilibrium.

Example 2.8: A uniform beam of 200N is supported
horizontally as shown. If the breaking tension of the rope is
400N, how far can the man of weight 400 N walk from
point A on the beam as shown in Fig. 2.187

Solution: Let breaking point be at a distance d from the pivot
A. The force diagram of the situation is given in Fig 2.19.
By applying 2nd condition of equilibrium about point A
Yr=0
400 Nx6m-400Nxd -200Nx3m=0
or 400 N x d = 2400 Nm — 600 Nm = 1800 Nm

d=45m

Example 2.9: A boy weighing 300 N is standing at the edge
of a uniform diving board 40m in length. The weight of the
board is 200 N. (Fig. 2.20 a). Find the forces exerted by
pedestals on the board.

Solution: We isolate the diving board which is in
equilibrium under the action of forces shown in the force
diagram (Fig. 2.20 b). Note that the weight 200 N of the
uniform diving board is shown to act at point C, the centre
of gravity which is taken as the mid-point of the board, R,
and R; are the reaction forces exerted by the pedestals on
the board. A littie consideration will show that R, is in the
wrong direction, because the board must be actually
pressed down in order to keep it in equilibrium. We shall
see that this assumption will be automatically corrected
by calculations.

Let us now apply conditions of equilibrium

ZF=0 (No x-directed forces)
LF=0 Ri+R;-300-200=0
Ri+R;=500 N ..()
It =0 (pivot at point D)
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Fig. 2.18

400 N

A,
/€---30m-->
: ------ e >
400 N
Fig. 2.19
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-R,xAD—BOONxDB-ZOONxDC=O
—R,x1m—300Nx3m—200Nx1m=0
R,=-1100N=-1.1 kN
Substituting the value of R, in Eq. (i). we have
=1100 + R, = 500
R2=1600 N =1.6 kN

The negative sign of R; shows that it is directed downward.
Thus the result has corrected the mistake of our initial
assumption.

- SUMMARY

The arrangement of mutually perpendicular axes is called rectangular or Cartesian
coordinate system.

A scalar is a quantity that has magnitude only, whereas a vector is a quantity that
has both direction and magnitude.

The sum vector of two or more vectors is called resultant vector.

Graphically the vectors are added by drawing them to a common scale and
placing them head to tail, the vector connecting the tail of the first to the head of

the last vector is the resultant vector.

Vector addition can be carried out by using rectangular components of vectors. |f

Ay and A, are the rectangular components of A and B, and B, are that of vector
B. then the sum R=A+ B is given by

Re=A+B, | R=a,+8,

where R=\/R,2+ R,? and direction 0=tan" Rr

The vector that describes the location of a parlicle with respect to the origin of
coordinate systent is known as position vector,

The scalar product of two vectors A and B is a scalar quantity, defined as:
A.B = ABcos 6



« The vector product of two vectors A and B is another vector C whose magnitude is
given by : C = ABsind

lts direction is perpendicular to the plane of the two vectors being multiplied, as given
by the right hand rule.

« A body is said to be in equilibrium under the action of several forces if the body has
zero translational acceleration and no angular acceleration.

. For a body to be in translational equilibrium the vector sum of-all the forces acting on
the body must be zero.

. The torque is defined as the product of the force and the moment arm.

. The mament arm is the perpendicular distance from the axis of rotation to the
direction of line of action of the force.

« For a body to be in rotational equilibrium, the sum of torgues on the body about any axis

must be equal to zero.
" QUESTIONS

2 1 Define the terms (i) unit vector(ii) Position vector and(iii) Components of a vector.

' 2 The vector sum of three vectors gives a zero resultant. What can be the orientation
of the vectors?

Vector A lies in the xy plane. For what orientation will both of its rectangular
components be negative ? For what orientation will its components have opposite signs?

7 4 If one of the rectangular components of a vector is not zero, can its magnitude be
zero ? Explain,

2.5 Can a vector have a component greater than the vector’s magnitude?

2 & Can the magnitude of a vector have a negative value?

o

.7 If A + B = 0,What can you say about the components of the two vectors?

2.6 Under what circumstances would a vector have components that are equal in
magnitude?

NN

.9 Is it possible to add a vector quantity to a scalar quantity? Explain.
2.10 Can you add zero to a null vector?
11 -Two vectors have unequal magnitudes. Can their sum be zero? Explain.

' 12 Show that the sum and difference of two perpendicular vectors of equal lengths are
also perpendicular and of the same length.
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N

13 How would the two vectors of the same mag'nitude have to be oriented, if they

were to be combined to give a resultant equal to a vector of the same magnitude?

214 The two vectors to be combined have magnitudes 60 N and 35 N. Pick the

N

N

R

-—
o

N
o

N

correct answer from those given below and tell why is it the only one of the three
that is correct.

1100 N 70N 20N

1% Suppose the sides of a closed polygon represent vector arranged head to tail.

What is the sum of these vectors? .

16 Identify the correct answer.

Two ships X and Y are travelling in different directions at equal speeds. The actual
direction of motion of X is due north but to an observer on Y, the apparent direction of
motion of X is north-east. The actual direction of motion of Y as observed from the
shore will be

(A)East (B)West (C)south-east (D) south-west

A harizontal force F is applied to a small object P of mass m al rest on a smooth
plane inclined at an angle 9 to the horizontal as shown in Fig. 2.21. The magnitude of
the resultant force acting up and along the surface of the plane, on the object is

a) FcosO -mgsin @

b) Fsing ~mg cos f e P
€) Focos0+mgcosg

d)  Fsin8+mgsing

Fig. 2.21
€) mgtang »

17 If all the components of the vectors, A; and A, were reversed, how would this alter

A xA;?
15 Name the three different conditions that could make AixA;=0.
¢ Identify true or faise statements and explain the reason.
a) A body in equilibrium implies that it is not moving nor rotating.

b) If coplanar forces acting on a body form a closed polygon, then the body is said
to be in equilibrium.

O A picture is suspended from a wall by two strings. Show by diagram the
configuration of the strings for which the tension in the strings will be minimum.

—>

Can a body rotate about its centre of gravity under the action of its weight?
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NUMERICAL PROBLEMS

Suppose, In a rectangular coordinate system, a vector A has its tail at the point
P (-2, -3) and its lip at Q (3,9).Determine the distance between these two points.

(Ans: 13 Units)

A certain corner of a room is selected as the origin of a rectangular coordinate
system. If an insect is sitting on an adjacent wall at a point having coordinates
(2,1), where the units are in metres, what is the distance of the insect from this
corner of the room?

(Ans: 2.2m)

What is the unit vector in the direction of the vector A=4 €+3 i?

A -

(Ans: (‘”;3” )

Two particles are located at r, =3 f+ 73 andr; =-2; + 3} respectively. Find both the

magnitude of the vector(r, r;)and its orientation with respect to the x-axis.
[Ans: 6.4,219°]

If a vector B is added to vector A, the result is 6i + j If B is subtracted from A,
the result is 4 i +7 ; What is the magnitude of vector A?

(Ans: 4.1)
Given that A =2 iA+3§ and B =3 ;-4 ; find the magnitude and angle of
(a)C=A+B,and(b) D=3A-2B.
(Ans: 5.1, 349°; 17 90°)

Find the angle between the two vectors, A =5 i+ iand B=2i+4 j
(Ans: 527)

Find the work done when the point of application of the force 3; +2i moves in a
straight line from the point (2,-1) to the point (6,4).

(Ans: 22 units)



.
.9

Show that the three vectors i'+3+k.2i. -3} + k and 4u:+}-5fc are mutually
perpendicular.

0. Given that A = f—2}+3|2 and B=3 |4 k find the projection of

A on B.
9

ANS; ——

(Ans: -2)

Vectors A.B and C are 4 units north, 3 units west and 8 units east, respectively.
Describe carefully (2)A x B (b)AXxC (c)BxC

[Ans:(a)12 units vertically up (b)32 units vertically down (c) Zero]

*. The torque or turning effect of force about a given point is given by r x F where r is the

vector from the given poaint to the point  of application of F. Consider a force

F= -3f+}+512 (newton) acting on the point 73+33+§ (m). What is the torque
inN m about the origin?

[Ans: 14i-38 j+16k Nm)|

3. The line of action of force, F = | -2 ; passes through a point whose position

vector is (-}H; )- Find (a) the moment of Fabout the origin, (b) the moment of F

about the point of which the position vector is |+k

[Ans: (a)2;+i+l:,(b)3|;]

The magnitude of dot and cross products of two vectors are 6vV3 and 6
respectively. Find the angle between the vectors
(Ans: 30)

A load of 10.0N is suspended from a clothes line. This distorts the line so that it
makes an angle of 15° with the horizontal at each end. Find the tension in the
clothes line.

[Ans: 19.3N]
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A tractor of weight 15,000 N crosses a single
span bridge of weight 8000N and of length
21.0 m. The bridge span is supported half a
metre from either end. The tractor’s front wheels
take 1/3 of the total weight of the tractor, and the
rear wheels are 3m behind the front wheels.
Calculate the force on the bridge supports when
the rear wheels are at the middte of the bridge
span.

(Ans: 12.25 kN, 10.75 kN)

A spherical ball of weight 50N is to be lifted over
the step as shown in the Fig. 2.23. Calculate the

minimum force needed just to lift it above the floor.

(Ans: 26N )

A uniform sphere of weight 10.0 N is held by a
string attached to a frictionless wall so that the
string makes an angle of 30° with the wall as
shown in Fig. 2.24. Find the tension in the string
and the force exerted on the sphere by the wall.

(Ans: 11.6 N, 5.77 N)
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Learning Objectives

At the end of this chapter the students will be able to:

i 7
2.
3
4,
5

i

1.
12
13.
14,
15.

e

Understand displacement from its definition and illustration.

Understand velocity, average velocity and instantaneous velocity,

Understand acceleration, average acceleration and instantaneous acceleration.
Understand the significance of area under velocity-time graph.

Recall and use equations, which represent uniformly accelerated motion in a
straight line including falling in a uniform gravitational field without air resistance.

Recall Newton's Laws of motion.

Describe Newton's second law of motion as rate of change of momentum.
Define impulse as a product of impulsive force and time.

Describe law of conservation of momentum.

. Use the law of conservation of momentum in simple applications including elastic

collisions between two bodies in one dimension.

Describe the force produced due to flow of water.

Understand the process of rocket propuilsion (simple treatment).

Understand projectile motion in a non-resistive medium.

Derive time of flight, maximum height and horizontal range of projectile motion.
Appreciate the motion of ballistic missiles as projectile motion.

; __(" e live in a universe of continual motion. In every piece of matter, the atoms are in a

state of never ending motion. We move around the Earth’s surface, while the Earth moves in
its orbit around the Sun. The Sun and the stars, too, are in motion. Everything in the vastness
of space is in a state of perpetual motion.
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Every physical process involves motion of some sort
Because of its impaortance in the physical world around us.
it is logical that we should give due attention to the study
of motion.

We already know that motion and rest are relative. Hiere, in
this chapter, we shali discuss other related tanics in some
more details.

Whenever a body moves from one position to another
the change in its position is called displaceament. The
displacement can be represented as a vecior that
describes how far and in what direction the body has been
displaced from its original position. The il of the
displacement vector is located at the position where the
displacement started, and its tip or arrowhead is located at
the final position where the displacemeni ended. For
example, if a body is moving along a curve as shown in
Fig. 3.1 with A as its initial position and B as iis final
position then the displacement d of the body s
represented by AB. Note that although the body is moving
along a curve, the displacement is different from the path
of motion.

If ry is the position vector of A and r; that of point B then by
head and tail rule it can be seen from the figure that

d=l'2-l'1

Its magnitude is the straight line distance between the
initial position and the final position of the body.

When a body moves along a straight line, the displacement
coincides with the path of motion as shown in Fig. 3.2 (a)
i  VEL ~ITV g f.;‘,z-.’;‘-‘,‘ R R e A
el L I “x el N L3 o SRR
We have studied in school physics that time rate of cha Q
of displacement is known as velocity. lts direction is along
the direction of displacement. So if d s the fiotal
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Fig.3.2(b)

displacement of the body in time ¢, then its average velocity
during the interval t is defined as

Voo =~;3 ..... it B

Average velocity does not tell us about the motion between
A and B. The nath may be straight or curved and the
motion may be steady or variable, For example if a squash
ball comes back to its starting point after bouncing off the
walil several times, its total displacement is zero and so
aiso is its average velocity.

N such cases the motion is described by the
instantaneous velocity.

in order to understand the concept of instantaneous
veiocity, consider a body moving along a path ABC in Xy
piane. At any time ¢, let the body be at point A Fig.3.2(b).its
position is given by position vector r. After a short lime
interval At following tiie instant ¢. the body reaches the
point B which is described by the position vector r,. The
dispiacement of ha body during this short time interval is
given by

Ad = M —ry

The notation A (delta ) 15 used to represent a very small
change.

The instartaneous velocily at a point A, can be found by
making A¢ smaller and smaller. In this case Ad will also
become smaller and point B will approach A. if we continue
this process, letting B approach A, thus, allowing At and Ad
l0 cecrease but never disappear completely, the ratio
Ad/At approaches a definite limiting value which is the
instantaneous  velocity. Although Af and Ad become
extremely small in this process, yet their ratio is not
hecessarily a small quantity. Moreover, while decreasing
the displacement vector, A d approaches a limiting direction
along the tangent at A. Therefore,

The instantaneous velocity is defined as the
limiting value of Ad/At as the time interval
At, following the time ¢, approaches zero.
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Using the mathematical language, the definition of
instantaneous velocity vi,s is expressed as

read as limiting value of Ad/Af as At approaches zero.

If the instantaneous velocity does not change, the body is
said to be moving with uniform velocity.

If the velocnty of an object changes it is said to ba moving
with an acceleration.

The time rate of change of velocity
of a body is called acceleration.

As velocity is a vector so any change in velocity may be
due to change in its magnitude or a change in its direction
or both.

Consider a body whose velocity v, at any instant t changes to
v, in further small time interval At. The two velocity vectors v,
and v, and the change in velocity, vo — v; = Av, are
represented in Fig. 3.3. The average acceleration a,, during
time interval At is given by

Vo =Vy = AV‘
o ey ami e (3.3)
As a,, is the difference of two vectors divided by a scalar
At, a,, must also be a vector. Its direction is the same as
that of Av. Acceleration of a body at a particular instant is
known as instantaneous acceleration and it is the value
obtained from the average acceleration as At is made
smaller and smaller till it approaches zero. Mathematically,
it is expressed as

Instantaneous acceleration =a=Lim Y ..o (34)
msAt -0 At
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If the velocity of a body is increasing, its acceleration is
positive but if the velocity is decreasing the acceleration is
negative. If the velocity of the body changes by equal amount
in equal intervals of time, the body is said to have uniform
acceleration. For a body moving with uniform acceleration, its
average accelerationis equal to instantaneous acceleration.

’,
-

Graphs may be used to illustrate the variation of velocity of
an object with time. Such graphs are called velocity-time
graphs. The velocity.time graphs of an object making three
Fig.3.4 different journeys along a straight road are shown in
figures 3.4 to 3.5. When the velecity of the car is constant,
its velocity-time graph is a horizontal straight line (Fig 3.4).
When the car moves with constant acceleration, the
velocity-time graph is a straight line which rises the same
height for equal intervals of time (Fig 3.5).

R

ol S The average acceleration of the
2 car during the interval t is given by
the slope of its velocity-time graph.

S When the car moves with increasing acceleration, the
velocity-lime graph is a curve (Fig 3.6). The point A on the
graph corresponds to time { The magnitude of the
instantaneous acceleration at this instant is numerically
equal to the slope of the tangent at the point A on the
velocity-time graph of the Object as shown in Fig 3.6.

Fig.3.5

The distance moved by an object can also be determined
by using its velocity-time graph. For example, Fig 3.4
shows that the object moves at constant velocity v for time ¢.
Tha distance covered by the object given by Eq. 3.1 s
v x t. This distance can also be found by calcuiating the
area under the velocity-time graph. This area is shown
shaded in Fig 34 and is equal to v x . We now give
another example shown in Fig 3.5. Here the velocity of the
object increases uniformly from 0 to v in time ¢ The

<

Fig.3.6 magnitude of its average velocity is given by
o O+v 1 G
gl

L
3S)



Distance covered = average velocity x time = Jé-v xt

Now we calculate the area under velocity-time graph which
is equal to the area of the triangle shaded in Fig 3.5. Its
value is equal to 1/2 base x height = 1/2 v x t.
Considering the above two examples it is a general
conclusion that

The area between the velocity-time graph
and the time axis is numerically equal to
the distance covered by the object.

Example 3.1: The velocity-time graph of a car moving
on a straight road is shown in Fig 3.7. Describe the motion
of the car and find the distance covered.

Solution: The graph tells us that the car starts from rest.
and its velocity increases uniformly to 20 ms” in 5
seconds. Its average acceleration is given by

_Av _20ms”

=— =" " —4ms?

At 5s

The graph further tells us that the velocity of the car
remains constant from 5" to 15" second and it then
decreases uniformly to zero from 15" to 19" seconds. The
acceleration of the car during last 4 seconds is

Av _-20ms™
at 4s

The negative sign indicates that the velocity of the car
ecreases during these 4 seconds.

The distance covered by the car is equal to the area
between the velocity-time graph and the time-axis. Thus

Distance travelled = Area of AABF + Area of rectangle BCEF
+ Area of ACDE

=-5ms™?

x20ms'x5s+20ms ' x 10s + -;-x20 ms'x4s

N | =

=50m+200m+40 m=290m
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How the displacement of a vertically
thrown ball varies with time?

How the velacity of a vertically
thrown ball varies with time?
Velocity is upwards positive.

=

Al the surface of the Earth, in
Situations where air friction is
negligible, objects fall with the
same acceleration regardless of
their weights.

UNIFORMLY ACCELERATED MOTION
In school physics we have studied some useful equations
for objects moving at constant acceleration.

Suppose an object is moving with uniform acceleration a
along a straight line. If its initial velocity is v, and final
velocity after a time interval t is v,. Let the distance
covered during this interval be § then we have

W R W s i s (3.5)
G s RS SR (3.6)
2
Sevits Ll iae i (3.7)
2
G AR T TRl (3.8)

These equations are useful only for linear motion with
uniform acceleration. When the object moves along a
straight line, the direction of motion does not change. In
this case all the vectors can be manipulated like scalars. In
such problems, the direction of initial velocity is taken as
positive. A negative sign is assigned to quantities where
direction is opposite to that of initial velocity.

In the absence of air resistance, all objects in free fall near
the surface of the Earth, move towards the Earth with a
uniform acceleration. This acceleration, known as
acceleration due to gravity, is denoted by the letter g and
its average value near the Earth surface is taken as
9.8 ms™in the downward direction.

Newton's laws are empirical laws, deduced from
experiments. They were clearly stated for the first time by
Sir Isaac Newton, who published them in 1687 in his
famous book called “Principia”. Newton's laws are adequate
for speeds that are low compared with the speed of light.
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For very fast moving objects, such as atomic particles in an
accelerator, relativistic mechanics developed by Albert
Einstein is applicable.

You have already studied these laws in your secondary =~

school Physics. However a summarized review is given
below.

Newton’s First Law of Motion

A body at rest will remain at rest, and a body moving with
uniform velocity will continue to do so, unless acted upon by
some unbalanced external force. This is also known as law
of inertia. The property of an object tending to maintain the
state of rest or state of uniform motion is referred to as the
object's inertia. The more inertia, the stronger is this
tendency in the presence of a force. Thus,

The mass of the ;thl-ub £

T ettt S Wl + Do S SR S G oo el

The frame of reference in which Newton's first law of motion
holds, is known as inertial frame of reference. A frame of
reference stationed on Earth is approximately an inertial
frame of reference.

Newton’'s Second Law of Motion

A force applied on a body produces acceleration in its own
direction. The acceleration produced varies directly with
the applied force and inversely with the mass of the body.
Mathematically, it is expressed as

PRmE (3.9)

Newton’s Third Law of Motion

Action and reaction are equal and opposite. For example,
whenever an interaction occurs between two objects, each
object exerts the same force on the other, but in the
opposite direction and for the same length of time. Each
force in action-reaction pair acts only on one of the two
bodies, the action and reaction forces never act on the
same body.
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Throwing 2 package onto shore from
a boat that was previously at rest
Causes the boat 10 move cut-ward
irom shore (Newton's third law),

We are aware of the fact that moving object possesses a
quality by virtue of which it exerts a force on anything that
iries to stop it. The faster the object is travelling, the harder is
10 stop it. Similarly, if two objects move with the same
velocity, then it is more difficult to stop the massive of the two.

This quality of the moving body was called the guantity of
motion of (he body, by Newton. This term is now called
linear momentum of the body and is defined by the relation.

- Linear momentum=p =mv. . (3.10)

In this expression v is the velocity of the mass m. Linear
momentum is, therefore, a vector quantity and has the
direction of velocity.

The SI unit of momentum is kilogram metre per second
(kgm s™). It can also be expressed as newton second (N s).

Momentum and Newton’s Second Law of Motion

Consider a body of mass m moving with an initial velocity v;.
Suppose an external force F acts upon it for time ¢ after which
velocity becomes v. The accelerationa produced by this force
is given by

By Newton's second law, the acceleration is given as

F
A -
m

Equating the two expressions of acceleration, we have

A
m t
P i e d B S ke L)

where mv; is the initial momentum and mvwvs is the final
momentum of the body.
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'ne equation 3.11 shows that change in momentum is
equal to the product of force and the time for which force is
applied. This form of the second law is more general than

the form F = ma, because it can easily be extended to
account for changes as the body accelerates when its
mass also changes. For example, as a rocket accelerates,

it loses mass because its fuel is burnt and ejected to
provide greater thrust.

mv, -mv,
t

From Eq. 3.11. F

Thus, second law of motion can also be stated in terms of
momentum as follows

Time rate of change of momentum
of a body equals the applied force.

Which hurt you in the above

m situations () or (b) and think why?

Sometimes we wish to apply the concept of momentum to

cases where the applied force is not constant, it acts for very

short time. For example, when a bat hits a cricket ball, the

force certainly varies from instant to instant during the

collision. In such cases, it is more convenient to deal with the
product of force and time (F x f) instead of either quantity R e
alone. The quantity F X t is called the impulse of the force, imp.,,,.?, £ Pt
where F can be regarded as the average force that acts

during the time t. From Eq. 3.11

Impulse=F xt=mvi-mv; ... (3.12)

Example 3.2; A 1500 kg car has its velocity reduced from .
20 ms”' to 15 ms’ in 3.0 s. How large was the average

retarding force?; Your hair acts like & crumple
: zone on your skull. A force of 5N
Solution: Using the Fq 3.11 might be enough to fracture your
WM&?&NXMWB
FXt=mvi-myv; covering of skin and hair, a force

of S0Nwould be A

Fx3.0s=1500kg x 15ms™ - 1500 kg x 20 ms
or F =-2500kgms?=-2500N -2.5kN
The negative sign indicates that the force is retarding one.

57



Point to Ponder

What is the effect on the speed of
a fighter plane chasing another
when it opens fire? What
happens to the speed of pursued
plane when it retums the fire?

Law of Conservation of Momentum

Let us consider an isolated system. It is a system on which
no external agency exerts any force. For example, the
molecules of a gas enclosed in a glass vessel at constant
temperature constitute an isolated system. The molecules
can collide with one another because of their random
motion but, being enclosed by glass vessel, no external
agency can exert a force on them.

Consider an isolated system of two smooth hard interacting
balls of masses my and m,, moving along the same straight
line, in the same direction, with velocities vi and v,
respectively. Both the balls collide and after collision, ball of
mass m; moves with velocity v'; and m, moves with velocity
v in the same direction as shown in Fig 3.8.

To find the change in momentum of mass my, using Eq 3.11
we have,

F'xt=myvi —m,v,
Similarly for the ball of mass m,, we have
Fxt=mv, —m,v,
Adding these two expressions, we get
(F+F)t=(myvi - mvi) + (m;vs —my vy)

Since the action force F is equal and opposite to the
reaction force F', we have F'= - F, so the left hand side of
the equation is zero. Hence,

0=(myvi -m v )+ (m,v, -mavz)

In other words, change in momentum of 1st ball + change
in momentum of the 2™ ball = 0

Or (myv, tmavz)=(mavy +mavy) ... (3.13)

Which means that total initial momentum of the system
before collision is equal to the total final momentum of the
system after collision. Consequently, the total change in
momentum of the isolated two ball system is zero.

For such a group of objects, if one object within the group
experiences a force, there must exist an equal but
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opposite reaction force on some other object in the same
group. As a result, the change in momentum of the group
of objects as a whole is always zero. This can be
expressed in the form of law of conservation of momentum
which states that

The total linear momentum of an
isolatea system remains constant.

In applying the conservation law, we must notice that the
momentum of a body is a vector quantity.

Example 3.3: Two spherical balls of 2.0 kg and 3.0 kg
masses are moving towards each other with velocities of
6.0ms ' and4 ms' respectively. What must be the velocity of
the smaller ball after collision, if the velocity of the bigger
ball is 3.0 ms™?

Solution: As both the balls are moving towards one
another, so their velocities are of opposite sign. Let us
suppose that the direction of motion of 2 kg ball is positive and
that of the 3 kg is negative.

The momentum of the system before collision = m; vi+m, v;
=2kgx6ms'+3kgx(4ms')=12kgms'—12kgms’' =0
Momentum of the system after collision=m vy +m,v>
=2kgx vi +3 kgx (-3)ms’
From the law of conservation of momentum

Momentum of the system | _ | Momentum of the system
before collision after collision

0=2kgxVv;-9kgms'
2kgxvi=9kgms’

vi=45ms”
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Do you wear seat belts?

When a moving car siops quickly,
the passengers move forward
towards the windshield. Seat belis

the forces of motion and
prevent the passengers from
moving. Thus the chance of injury is
greatly reduced.

A motorcycle's safety helmet is
padded so as to extend the time of
any collision to prevent sarious injury.



Before collision

v, V.
—> - —
©

m, m,

After collision

Fig. 38

When two tennis balls collide then, after collision, they will
rebound with velocities less than the velocities before the
impact. During this process, a portion of K.E is lost, partly
due to friction as the molecules in the ball move past one
another when the balls distort and partly due to its change
into heat and sound energies.
A collision in which the K.E of the system is

~ Not conserved, is called the inelastic collision.
Under certain special conditions no kinetic energy is lost in
the collision.

.1 In the tdeal case when no K.E s lost, the

 collision is said to be perfectly elastic.

o
N

For example, when a hard ball is dropped onto a marble
floor, it rebounds to very nearly the initial height. It looses
negligible amount of energy in the collision with the floor.

It is to be noted that momentum and total energy are
conserved in all types of collisions. However, the K.E. is
conserved only in elastic collisions.

Elastic Collision in One Dimension

Consider two smooth, non-rotating balls of masses my and
Mz, moving initially with velocities Vs and v, respectively, in
the same direction. They collide and after collision, they
move along the same straight line without rotation. Let their
velocities after the collision be vi and v respectively, as
shown in Fig. 3.9.

We take the positive direction of the velocity and momentum
to the right. By applying the law of conservation of
momentum we have

MiVitma vy =my vi +m, v,

Mi(vy = Vi ) =my(vs - vy)

..........
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As the collision is elastic, so the K.E is also conserved.
From the conservation of K.E we have

%m, v+ %m2v22= %m, Vil+ %mg V2
or m(vii=Vvi¢) =my(Ve?-vs?)
or my(vi+ Vi) (vi-Viy) =ma(va+vy) (Vi-vy) ... (3.15)
Dividing equation 3.15 by 3.14
(vi+vy)=(Vao+vy) ... (3.16)
or (Vi-va)=(V2-vy=-(vi-vz)

We note that, before collision (v; — v ) is the velocity of
first ball relative to the second ball. Similarly (vi - v3) is the
velocity of the first ball relative to the second ball after
collision. It means that relative velocities before and after
the collision has the same magnitude but are reversed
after the collision. In other words, the magnitude of relative
velocity of approach is equal to the magnitude of relative
velocity of separation.

In equations 3.14 and 3.16, m,, m,, v, and v, are known
guantities. We solve these equations to find the values of
v’y and v, which are unknown. The results are

- 2
v ZUTEGIE govialineg as ohon ie (3.17)
my+ m, m+m,
R T R (3.18)
my+ m, i,

There are some cases of special interest, which are
discussed below:

(i) When my=m;
From equations 3.17 and 3.18 we find that
Vi=Va
and Vi =V as shown in Fig 3.10
(ii) When my=m,and v,=0

In this case the mass m, be at rest, then v , = 0 the
equations 3.17 and 3.18 give
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case (i)

v, v,
——’ ;.._"

Q9

m, m,

Before collision

m,
After collision
Fig. 3.10



case (ii)
v| v; = 0
m m,
Before collision
v,=0 V.= v,
e
m, m,
After collision
Fig. 3.11
case (iii)
v v, =0
Q
m,
m,

Before collision

v, = .y, v, =0
‘. —

m, °

m,
After collision
Fig. 3.12

case (iv)
v, =0
mz
m|

Before collision

v,~2v,

s

.

vi=v,
—»

m,
After collision
Fig. 3.13

m,-m
V1= ol 2
m""mz

3 2m1
Vo= —
”1 i 12

v, : v

When m; = m, then ball of mass m; after collision will come
to a stop and m, will take off with the velocity that m,
originally has, as shown in Fig 3.11. Thus when a billiard
ball m:, moving on a table collides with exactly similar ball
m, at rest, the ball m, stops while m; begins to move with
the same velocity, with which my was moving initially.

(iii) When a light body collides with a massive body at rest

In this case initial velocity v2= 0 and m, >> m,. Under these
conditions m; can be neglected as compared to m,. From
equations 3.17 and 3.18 we have Vi=-vyand vb=0

The result is shown in Fig 3.12. This means that my will
bounce back with the same velocity while m, will remain
stationary. This fact is made used of by the squash player.

(iv) When a massive body collides with
stationary body

In this case m, >> m, and vz = 0 so m; can be neglected in
equations 3.17 and 3.18. This gives vy = vy and vs~ 2 v,
Thus after the collision, there is practically no change in the
velocity of the massive body, but the lighter one bounces off
in the forward direction with approximately twice the velocity
of the incident body, as shown in Fig. 3.13.

Example 3.4: A 70 g ball collides with another ball of
mass 140 g. The initial velocity of the first ball is 9 ms to
the right while the second ball is at rest. If the collision were
perfectly elastic what would be the velocity of the two balls
after the collision?

light

Solution:
m,=70g v =9ms’ v, =
We know that v, = Mv,
m,+ m,
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70g-140g A iy -4
= 2 __— S xOms'=-3ms
70g+140g

2my
m1+m2

v vy
2X708 g mg' =6 ms

= 709+140g
Example 3.5: A 100 g golf ball is moving to the right with
a velocity of 20 ms”. It makes a head on collision with an

8kg steel ball, initially at rest. Compute velocities of the balls
after collision.

Solution: We know that

V; 2 m1-m2 V1 and Vé o 2'7,1
my + my my+ my
Hence
= O1Kg-8K9 L 55 e = 195 ms”
0.1kg +8kg

When water from a hodzontal pipe stnkes a wall norrnally a
force is exerted on the wall. Suppose the water strikes the
wall normally with velocity v and comes to rest on striking
the wall, the change in velocity is then 0 — v = — v. From
second law, the force equals the momentum change per
second of water. If mass m of the water strikes the wall in
time t then force F on the water is

F=- ?”JV = - mass per second x changein velocity .... (3.19)

From third law of motion, the reaction force exerted by the
water on the wall is equal but opposite

Hence, F=--’_"v)=’7"v

Do you know?

If another car crashes into back of

injury. It helps to accelerate your
head forward with the same rate as
the rest of your body.

Point to Ponder

in thrill machine rides at
amusement parks, there can be an

like this would not be safe. Think
why not?



mv

Thus force can be calculated from the product of mass of
water striking normally per second and change in velocity.
Suppose the water flows out from a pipe at 3 kgs' and its
velocity changes from 5 ms™ to zero on striking the ball, then,

Force =3 kgs™ x (5ms™ - 0) = 15kgms™@ = 15 N

Example 3.6: A hose pipe ejects water at a speed of
0.3 ms™ through a hole of area 50 cm? If the water strikes a
wall normally, calculate the force on the wall, assuming the

velocity of the water normal to the wall is zero after striking.
Solution: ’ '

0 0 18 R s
second striking the wall L

Mass per second striking the wall = volume x density
=0.0015m’ x 1000 kgm*= 1.5 kg
Velocity change of water onstriking the wall=0.3ms - 0 = 0.3ms’
Force = Momentum change per second
= 15kgs" x 0.3 ms™ = 0.45 kgms 2 = 0.45 N

-~ e i-.' -
3 e N =

There are many examples where momentum changes are

produced by explosive forces within an isolated system.
For example, when gz shell explodes in mid-air, its
fragments fly off in different directions. The total
momentum of all its fragments equals the initial momentum
of the shell. Suppose a falling bomb explodes into two
pieces as shown in Fig. 3.14. The momenta of the bomb
fragments combine by vector addition equal to the original
momentumn of the falling bomb.

Consider another example of bullet of mass m fired from a
rifle of mass M with a velocity v. Initially, the total
momentum of the bullet and rifle is zero. From the principle
of conservation of linear momentum, when the bullet is
fired, the total momentum of bullet and rifle still remains
zero, since no external force has acted on them. Thus if v/
's the velocity of the rifle then
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mv (bullet) + Mv’ (rifle) =0

MV = -mv or = ;A—':!- .......... « (3.20)

The momentum of the rifle is thus equal and opposite to
that of the bullet. Since mass of rifle is much greater than
the bullet, it follows that the rifle moves back or recoils with
only a fraction of the velocity of the bullet.

3.11 ROCKET PROPULSION

Rockets move by expelling burning gas.through engines at
their rear. The ignited fuel turns to a high pressure gas
which is expelled with extremely high velocity from the
rocket engines (Fig. 3.15). The rocket gains momentum
equal to the momentum of the gas expelled from the engine
but in opposite direction. The rocket engines continue to
expel gases after the rocket has begun moving and hence
rocket continues to gain more and more momeritum. So
instead of travelling at steady speed the rocket gets faster
and faster so lona the-engines are operating.

A rocket carries its own fuel in the form of a igquid or solid
hydrogen and oxygen. It can, therefore work at great heights
where very little or no air is present. In order to provide enough
upward thrust to overcome gravity, a typical rocket
consumes about 10000 kgs™' of fuel and ejects the burnt
gases at speeds of over 4000ms™. In fact, more than
80% of the launch mass of a rocket consists of fuel only.
One way to overcome the problem of mass of fuel is to
make the rocket from several rockets linked together.

When one rocket has done its job, it is discarded leaving
others to carry the space craft further up at ever greater speed.

If mis the mass of the gases ejected per second with velocity
v relative to the rocket, the change in momentum per second
of the ejecting gases is mv. This equals the thrust produced
by the engine on the body of the rocket. So, the acceleration
‘a’ of the rocket is

N
B T L (3.21)

Fuel and oxygen mix in the
combustion chamber. Hot gases
exhaust the chamber at a very high
velocity: The gain in momentum of
the gases equals the gain in
momentum of the rocket. The gas
and racket push against each other
and move in opposite directions.
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where M is the mass of the rocket. When the fuel in the
rocket is burned and ejected, the mass M of rocket
decreases and hence the acceleration increases.
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Uptill now we have been studying the motion of a particle
along a straight line i.e. motion in one dimension. Now we
consider the motion of a ball, when it is thrown herizontally
from certain height. It is observed that the ball travels forward
as well as falls downwards, until it strikes something.
Suppose that the ball leaves the hand of the thrower at point
A (Fig 3.16 a) and that its velocity at that instant is completely
horizontal. Let this velocity be v,. According to Newton's first
law of motion, there will be no acceleration in horizontal
direction, unless a horizontally directed force acts on the ball.
Ignoring the air friction, only force acting on the ball during
flight is the force of gravity. There is no horizontal force acting
on it. Se its horizontal velocity will remain unchanged and will
be v, until the ball hits something. The horizontal motion of
ball is simple. The ball moves with constant horizontal
velocity component. Hence horizontal distance x is given by

x=v xt Syt (3.22)

The vertical motion of the ball is also not complicated. It
will accelerate downward under the force of gravity and
hence a = g. This vertical motion is the same as for a
freely falling body. Since initial vertical velocity is zero,
hence, vertical distance ¥, using Eq. 3.7, is given by

1. .2
=gt
y2g

It is not necessary that an object should be thrown with
some initial velocity in the horizontal direction. A football
kicked off by a player: a ball thrown by a cricketer and a
missile fired from a launching pad, all projected at some
angles with the horizontal, are called projectiles.

Projectile motion is two dimensional motion
under constant acceleration due to gravity.
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In such cases, the motion of a projectile can be studied
easily by resolving it into horizontal and vertical
components which are independent of each other.
Suppose that a projectile is fired in a direction angle 6 with
the horizontal by velocity v; as shown in Fig. 3.16 (b). Let
components of velocity v, along the horizontal and vertical
directions be v; cos 8 and v; sin 8 respectively. The horizontal
acceleration is a, = 0 because we have neglected air
resistance and no other force is acting along this direction
whereas vertical acceleration a, = g. Hence, the horizontal
component v, remains constant and at any time t, we have

V= Ve =VC0SO  ......... (3.23)

Now we consider the vertical motion. The initial vertical
component of the velocity is visin® in the upward direction.
Using Eq. 3.5 the vertical component v;, of the velocity at any
instant ¢ is given by

Vy=vVvisin—gt  .......... (3.24)

The magnitude of velocity at any instant is

e e ey (3.25)

The angle ¢ which this resultant velocity makes with the
horizontal can be found from

R (3.26)
Vi

In projectile motion one may wish to determine the height
to which the projectile rises, the time of flight and horizontal
range. These are described below.

Height of the Projectile

In order to determine the maximum height the projectile
attains, we use the equation of motion

2aS=w*—-w?

As body moves upward, so a = - g, the initial vertical
velocity viy = v; sinfl and v, = 0 because the body comes to
rest after reaching the highest point. Since
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A photograph of two balls released
simultaneously from a mechanism
that allows one ball to drop freely
while the other is projected
horizontally. At any time the two
balls are at the same level, i.e., their
vertical displacements are equal



Point to Pon.a;r‘“

Water is projecied fromtwo rubber
pipes at the same speed-from one
at an angle of 30° and from the
other al 60°. Why are the ranges
equal?

-

S= height = h

So -2gh=0-v,sin’0
2 .. 2

or IR il AN R (3.27)
2g

Time of Flight

The time taken by the body to cover the distance from the
place of its projection to the place where it hits the ground
at the same level is called the time of flight.

This can be obtained by taking S = h = 0, because the
body goes up and comes back to same level, thus
covering no vertical distance. If the body is projecting with
velocity v making angle 6 with a horizontal, then its vertical
component will be v sino. Hence the equation is

S=viit+%agt?

0 = v sin0 t = ¥ gt?
.......... (3.28)

where t is the time of flight of the projectile when it is
projected from the ground as shown in Fig. 3.16 (b).

Range of the Projectile

Maximum distance which a projectile covers in the
horizontal direction is called the range of the projectile.

To determine the range R of the projectile, we multiply the
horizontal component of the velocity of projection with total
time taken by the body after leaving the point of projection.
Thus

R=v, xt using Eq. 3.28

R = YiC0s8x2v; sinp
g

R= % 2sin0 cosh
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But, 2 sinbcos = sin2 0, thus the range of the projectile
depends upon the velocity of projection and the angle of
projection.

Therefore, R= Sin 2050 (3.29)

For thé range R to be maximum, the factor sin26 should
have maximum value which is 1 when 26= 90° or 6= 45:.

Application to Ballistic Missiles

A ballistic flight is that in which a projectile is given an initial
push and is then allowed to move freely due to inertia and
under the action of gravity. An un-powered and un-guided
missile is called a ballistic missile and the path followed by
it is called ballistic trajectory.

As discussed before, a ballistic missile moves in a way that is
the result of the superposition of two independent motions: a
straight line inertial flight in the direction of the launch and a
vertical gravity fall. By law of inertia, an object should sail
straight off in the direction thrown, at constant speed equal to

its initial speed particularly in empty space. But the downward

force of gravity will alter straight path into a curved trajectory.
For short ranges and flat Earth approximation, the trajectory
is parabolic but the dragless ballistic trajectory for spherical
Earth should actually be elliptical. At high speed and for iong
trajeclories the air friction is not negligible and some times the
force of air friction is more than gravity. It affects both
horizontal as well as vertical motions. Therefore, it is
completely unrealisticto neglect the aerodynamic forces.

The shooting of a missile on a selected distant spot is a
major element of warfare. It undergoes complicated
motions due to air friction and wind etc. Consequently the
angle of projection can not be found by the geometry of the
situation at the moment of launching. The actual flights of
missiles are worked out to high degrees of precision and
the result were contained in tabular form. The modified
equation of trajectory is too complicated to be discussed
here. The ballistic missiles are useful only for short ranges.
For long ranges and greater precision, powered and
remote control guided missiles are used.
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45"
30

Height

Range

For an angle less than 45°, the
height reached by the projectile and
the range both wiltbe less. When the
angle of projectile is larger than 45°,
the height attained will be more but
the range is again less.
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Ideal Path

/=N

In the presence of air friction the

trajectory of a high speed projectile
fall short of a parabolic path

Example ‘?'.7:o A ball is thrown with a speed of 30 ms"'
in a direction 30” above the horizon. Determine the height
to which it rises, the time of flight and the horizontal range,

Solution: Initially

Vix = V; COSH = 30 ms 'x cos30° = 25.98 ms
Viy = v sinf = 30 ms 'xsin30° = 15 ms™

As the time of flight
t=2vi sinQ
g
So ti= m =348
9.8ms’
2
2 ;sin® g
h= ‘L
Height 2q
& j = (30 ms™')* x (0.5)°
2x9.8ms*
h=115m
Range R= Vg‘— sin26
1,2
So ksl DA
9.8ms

Example 3.8: In example 3.7 calculate the maximum
range and the height reached by the ball if the angles of
projection are (i) 45° (i) 60°.

Solution:

(i) Using the equation for height and range we have

2 oo
height h= Y. Sn'0

2g
g5 b= (30ms ' x0.707)°
2x9.8ms"”
h=23m
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2

Range =Y _sin20
g
V-2

or R =?’ sin90°

x1=918m

142
o R= (30 ms )

9.8ms"”
(i) Using the equation for height and range we have

2.
height h= Vi g

29
So s (30ms  x .8(:6~)_
2%x9.8ms’
or h=344m
i
Range =""-sin206
g
v 2
or =—-sin120°
g
1\2
0 R= (30ms ) x0.866 = 80m

9.8ms™

SUMMARY

« Displacement is the change in the position of a body from its initial positicn 1o its
final position.

« . Average velocily is the average rate at which displacement vem changes with
time. . ¥ '

s Instantaneous velocity is the velocity at a particular instant of time. When the
time interval, over which the average velocily is measured, approaches zero, ine
average velocity becomes equal to the instantaneous velocity at that instant.

i Ad
Vi SR 037

Average acceleration is the ratio of the change in velocity Av ¢:at ocours within
time interval Af to that time interval.
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Instantaneous acceleration is the acceleration at a particular instant of time. It is the
value obtained from the average acceleration as time interval Af is made smaller

and smaller, approaching zero.

Av
m

=L b
- LR

The slope of velocity-time graph at any instant represents the instantaneous
acceleration at that time.

The area between velocity-time graph and the time axis is numerically equal to the
distance covered by the object.

Freely falling is a body moving under the influence of gravity alone.
Acceleration due to gravity near the Earth surface is 9.8 ms=? if air friction is ignored.
. Equations of uniformly accelerated motion are

(4 +v,)
2

t

vi=v,+at S

S=yit+ 51 at® vi =v? +2aS

Newton's laws of motion

1* Law: The velocity of an object will be constant if net force on it is zero.

2" Law: An object gains momentum in the direction of applied force, and the rate of
change of momentum is proportionalto the magnitude of the force.

3" Law: When two objects interact, they exert equal and opposite force on each
other for the same length of time, and so receive equal and opposite impulses.

The momentum of an object is the product of its mass and velocity.

The impulse provided by a force is the product of force and time for which it acts. It
equals change in momentum of the object.

For any isolated system, the total momentum remains constant. The momentum of
all bodies in a system add upto the same total momentum at all time.

Elastic collisions conserve both momentum and kinetic energy. In inelastic collision,
some of the energy is transferred by heating and dissipative forces such as friction,
air resistance and viscosity, so increasing the internal energy of nearby objects.

Projectile motion is the motion of particle that is thrown with an initial velocity and then
moves under the action of gravity.



What is the difference between uniform and variable velocity? From the
explanation of variable velocity, define acceleration. Give Sl units of velocity and
acceleration. \

An object is thrown vertically upward. Discuss the sign of acceleration due to
gravity, relative to velocity, while the object is in air.

Can the velocity of an object reverse the direction when acceleration is constant?
If so, give an example.

Specify the correct statements:

a. An object can have a constant velocity even its speed is changing.

b. An object can have a constant speed even its velocity is changing.

c. An object can have a zero velocity even its acceleration is not zero.

d. An object subjected to a constant acceleration can reverse its velocity.

A man standing on the top of a tower throws a ball straight up with initial
velocity v; and at the same time throws a second ball straight downward with the
same speed. Which ball will have larger speed when it strikes the ground? Ignore
air friction.

Explain the circumstances in which the velocity v and acceleration a of a car are
Parallel Anti-parallel - Perpendicular to one another
v is zero but a is not zero a is zero but v is not zero

Motion with constant velocity is a special case of motion with constant acceleration.
Is this statement true? Discuss.

Find the change in momentum for an object subjected to a given force for a given
time and state law of motion in terms of momentum.

Define impulse and show that how it is related to linear momentum?

State the law of conservation of linear mo'méntum. pointing out the importance of
isolated system. Explain, why under certain conditions, the law is useful even
though the system is not completely isolated?

Explain the difference between elastic and inelastic collisions. Explain how would
a bouncing ball behave in each case? Give plausible reasons for the fact that K.E
is not conserved in most cases?

Explain what is meant by projectile motion. Derive expressions for
a. the time of flight b. the range of projectile.

Show that the range of projectile is maximum when projectile is thrown at an
angle of 45° with the horizontal.

At what point or points in its path does a projeclile have its minimum speed, its
maximum speed?
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3.14  Each of the following questions is followed by four answers, one of which is

3.1

3.2

3.3

correct answer. |dentify that answer.
i.  What is meant by a ballistic trajectory?
The paths followed by an un-powered and unguided projectile.
The path followed by the powered and unguided projectile,
The path followed by un-powered but guided projectile.
. The.path followed by powered and guided projectile.
i What happens when a system of two bodies undergoes an elastic collision?
a.  The momentum of the system changes.
b, The momentum of the system does not change.
c. The bodies come to rest after collision.
d.  The energy conservation law is violated.

NUMERICAL PROBLEMS

A helicopter is ascending vertically at the rate of 19.6 ms'. When itis
at a height of 156.8 m above the ground, a stone is dropped. How long does the
stone take to reach the ground?

aoow

(Ans:8.0s)

Using the following data, draw a velocity-time graph for a short journey on a
straight road of a motorbike. P

Velocity (ms™) [ 0 10 20 20 ~20 20 0
Time (s) 0 30 60 20 120 160 180

Use the graph to cach;late
(a) the initial acceleration
(b) the final acceleration and
(c) the total distance travelled by the motorcyclist.
[Ans:(a) 0.33 ms? (b)-0.67ms? (c)2.7km]

A proton moving with speed of 1.0 x 10" ms™' passes through a0.020 cm thick
sheet of paper and emerges with a speed of 2.0 x 10° ms™. Assuming uniform
deceleration, find retardation and time taken to pass through the paper.

' (Ans- 2.4 x 10" ms? ,3.3x10" 5)
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3.5

3.6

3.7

3.8

3.9

3.10

Two masses m, and m; are initially at rest with a spring compressed between
them. What is the ratio of the magnitude of their velocities after the spring has

been released? :
(Ans: Y1-T2)
Vo my
An amoeba of mass 1.0 X 10" kg propels itself through water by blowing a jet of
water through a tiny orifice. The amoeba ejects water with a speed of
1.0x10*ms™ and at a rate of 1.0 x10"kgs™'. Assume that the water is being
continuously replenished so that the mass of the amoeba remains the same.
a. If there were no force on amoeba other than the reaction force caused by
the emerging jet, what would be the acceleration of the amoeba?

b. If amoeba moves with constant velocity through water, what is force of
surrounding water (exclusively of jet) on the amoeba?

[Ans: (a) 1.0 x 10°ms® (b) 1.0 x 1077 N]
A boy places a fire cracker of negligible mass in an empty can of 40 g mass. He
plugs the end with a wooden block of mass 200 g. After igniting the firecracker, he

throws the can straight up. It explodes at the top of its path. If the block shoots out
with a speed of 3.0 ms™', how fast will the can be going?

(Ans: 15 ms™")

An electron(m =9.1 x 10" kg) travelling at 2.0 x 10" ms"' undergoes a head on|
collision with a hydrogen atom (m =1 .67 x 10" kg) which is initially at rest.
Assuming the collision to be perfectly elastic and a motion to be along a straight
line, find the velocity of hydrogen atom .

(Ans: 2.2 x 10°ms™)
A truck weighing 2500 kg and moving with a velocity of 21 ms” collides with

stationary car weighing 1000 kg. The truck and the car move together after the
impact. Calculate their common velocity.

(Ans: 15 ms™)

Two blocks of masses 2.0 kg and 0.50 kg are attached at the two ends of a
compressed spring. The elastic potential energy stored in the springis 10 J. Find the
velocities of the blocks if the spring delivers its energy to the blocks when released.

(Ans: 1.4 ms’, -56 ms™)

A foot ball is thrown upward with an angle of 30° with respect to the horizontal.
To throw a 40 m pass what must be the initial speed of the ball?

(Ans: 21ms™')

-
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A ball is thrown horizontally from a height of 10 m with velocity of 21 ms™': How
far off it hit the ground and with what velocity?

(Ans:30m,25 ms™)
A bomber dropped a bomb at a height of 490 m when its velocity along the
horizontal was 300 kmh".
(@) How long was it in air?

(b) At what distance from the point vertically below the bomber at the instant the
bomb was dropped, did it strike the ground? (Ans:10s,833 m)

Find the angle of projection of a projectile for which its maximum height and
horizontal range are equal. (Ans: 76°)

Prove that for angles of projection, which exceed or fall short of 45° by equal
amounts, the ranges are equal.

A SLBM (submarine launched ballistic missile) is fired from a distance of 3000km.
If the Earthis considered flat and theangle of launchis 45° with horizontal, find the
velocity with which the missile is fired and the time taken by SLBM to hit the
target.

(Ans: 5.42 kms™13 min )’
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Chapter 4
WORK AND ENERGY

Learning Objectives
At the end of this chapter the students will be able to:

Understand the concept of work in terms of the product of a force and
displacement in the direction of the force.

Understand and derive the formula Work =‘,Wd = mgh for work done in a
gravitational field near Earth's surface. ! »

Understandthat work can be calculated from area under the force-displacement graph.
Relate power to work done.

Define power as the product of force and velocity.

Quote examples of power from everyday life.

Explain the two types of mechanical energy.

Understand the work-energy principle.

Derive an expression for absolute potential energy.

Define escape velocity.

Understand that in a resistive medium loss of potential energy of a body is equal
to gain in kinetic energy of the body plus work done by the body against friction.

Give examples of conservation of energies from everyday life.
Describe some non-conventional sources of energy.

W ork is often thought in terms of physical or mental effort. In Physics, however, the term

work involves two things (i) force (i) displacement. We shall begin with a simple situation in
which work is done by a constant force.

4.1 WORK DONE BY A CONSTANT FORCE

Letl us consider an object which is being pulled by a constant force F at an angle 0 to the
direction of maotion. The force displaces the object from position A to B through a
displacement d (Fig. 4.1)
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We define work W done by the force F as the scalar
product of F and d.

W=Fd=Fdcos® = ... (4.1) .
= (Fcos0)d

The quantity (F cos) is the component of the force in the
direction of the displacement d.

Thus, the work done on a body by a constant force is
defined as the product of the magnitudes of the
displacement and the component of the force in the
direction of the displacement.

Can you tell how much work is being done?

(i) On the pail when a person holding the pail by the
force F is moving forward (Fig. 4.2 a).

(ii) On the wall (Fig. 4.2 b)?

When a constant force acts through a distance d, the event
can be plotted on a simple graph (Fig. 4.3). The distance is
normally plotted along x-axis and the force along y-axis. In
this case as the force does not vary, the graph will be a
horizontal straight line. If the constant force F (newton) and
the displacement d (metre) are in the same direction then the
work done is Fd (joule). Clearly shaded area in Fig. 43 is
also Fd. Hence the area under a force- displacement curve
can be taken to represent the work done by the force. In case
the force F is not in the direction of displacement, the graph is
plotted between F cos 0 and d.

From the definition of work, we find that:
(i) Work is a scalar quantity.

(i) If & < 90", work is done and it is said to be positive
work.

L) 116 =90°, no work is done.

(V) If9>90°, the work done is said to be negative.
(V) Sl unit of work is N m known as joule (J).

In many cases the force does not remain constant during
the process of doing work. For example, as a rocket moves
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away from the Earth, work is done against the force of
gravity, which varies as the inverse square of the distance
from the Earth's centre. Similarly, the force exerted by a
spring increases with the amount of stretch. How can we
calculate the work done in such a situation?

Fig. 4.4 shows the path of a particle in the x-y plane as it
moves from point a to point b. The path has been divided into
n short intervals of displacements Ady, Ad,, ....... ,Ad, and
P, Pabvin s , Fn are the forces acting during these intervals.

During each small interval, the force is supposed to be
approximately constant. So the work done for the first
interval can then be written as

AW, =Fy Ady= F, cosi; Ad,
and in the second interval
AW, =F;.Ad;= F; .COS(’)QA d-

and so on. The total work done in moving the object can
be calculated by adding all these terms.

Wto{a‘ = AW1 + AW2+ ........ - AW’H
= F080; Ad/+ F; cos0, Ada+. ... + F, cos@, d,

Wiotal = £1F, 00, Ad, ... 4.2)
I=

We can examine this graphically by ploting F cos@
verses @ as shown in Fig. 4.5. The displacement d has
been subdivided into n equal intervals. The value of
F cos@ at the beginning of each interval is indicated in

the figure.
-

Now the ith shaded rectangle has an area F; cosg, Ad,
which is the work done during the ith interval. Thus, the
work done given by Eq. 4.2 equals the sum of the areas of
all the rectangles. If we subdivide the distance into a large
number of intervals so that each Ad becomes very small,
the work done given by Eq. 4.2 becomes more accurate. If
we let each Ad to approach zero then we obtain an exact
result for the work done, such as

Fig. 4.4

Feosf) —>

A particle acted upon by a
vanable force, moves along
the path shown from point a
to pointb.




<

Fcos —>

/

o}

F(N) —>

0

Displacement d. >

1

$ 3

x(m)——>

i

b

Wi = Limit E£Fcos®Ad, ... 4.3)

A >0 =1
In this limit Ad approaches zero, the total area of the rectangles
(Fig. 4 5) approaches the area between the F cos curve and
@'-axis from a to b as shown shaded in Fig. 4.6.

Thus, the work done by a variable force in moving a particle
between two points is equal to the area under the Fcos 0
verses d curve between the two points a and b as shown in
Fig. 4.6.

Example 4.1: A force Facting on an object varies with
distance x as shown in Fig. 4.7. Calculate the work done
by the force as the object moves fromx=0to x =6 m.

Solution: The work done by the force is equal to the
total area under the curve from x = 0 to x = 6 m. This area
is equal to the area of the rectangular section from x = 0 to
x =4 m, plus the area of triangular section from x = 4 m to
x =6 m. Hence

Work done represented by the area of rectangle = 4m x 5 N
=20Nm=20J

Work done represented by the area of triangle = % X2mx5N

=5Nm=5J
Therefore, the total work done =20 J +5J =25 J

4.3 WORK DONE BY GRAVITATIONAL
FIELD

The space around the Earth in which its gravitational force
acts on a body is called the gravitational field. When an
objectis moved in the gravitational field, the work is done by
the gravitational force. If displacement is in the direction of
gravitational force, the work is positive. If the displacement
's against the gravitational force, the work is negative.

Let us consider an object of mass m being displaced with
constant velocity from point A to B along various paths in
the presence of a gravitational force (Fig. 4.8). In this case
the gravitational force is equal to the weight mg of the
object.
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The work done by the gravitational force along the path
ADB can be split into two parts. The work done along AD is
zero, because the weight mg is perpendicular to this path,
the work done along DB is (-mgh) because the direction of
mg is opposite to that of the displacement i.e. 6 = 180°.
Hence, the work done in displacing a body from A to B
through path 1 is

Wips = 0 + (- mgh) = - mgh

If we consider the path ACB, the work done along AC is
also (-mgh). Since the work done along CB is zero,
therefore,

Wacsg =-mgh + 0 =-mgh

Let us now consider path 3, i.e. 2 curved one. Imagine the
curved path, to be broken down into a series of horizontal
and vertical steps as shown in Fig. 4.9. There is no work
done along the horizontal steps, because mg is
perpendicular to the displacement for these steps. Work is
done by the force of gravity only along the vertical
displacements.

Was = - mg(Ay: +Ays +Ays + ... +Ay,)
as (Ayy + Ay Ay, + .. +Ay,)=h
Henge, Wie = - mgh

The net amount of work done along AB path is still (-mgh).
We conclude from the above discussion that

Work done in the Earth's gravitational
field is independent of the path followed.

Can you prove that the work done along a closed path
such as ACBA or ADBA (Fig. 4.8), in a gravitational field is

Zero 7

The field in which the work done be independent
of the path followed or work done in a closed
path be zero, is called a conservative field.
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For Your Information

Conservative Forces
Gravitational force
Elastic spring forca
Electric force

al !,orm ;

Frction

Aur resistance

Tension in a string

Normal force

Propulsion force of a rocket
Propulsion force of a motor

The frictional force is a non-conservative force, because if
an object is moved over a rough surface between two
points along different paths, the work done against the
frictional force certainly depends on the path followed.

g e 1 T s e ey s e

-
e o ol o

In the definition of work, it is not clear, whether the same
amount of work is done in one second or in one hour. The
rate, at which work is done, is often of interest in practical
applications.

Power is the measure of the rate at which work is being
done.

If work AW is done in a time interval A i, then the average
power P,, during the interval At is defined as

AW
Py ® T 4.4
gty (4.4)

If work is expressed as a function of time, the
instantaneous power P at any instant is defined as

. AW
RSLRI et 4.5
=Ar->o At %A

Where AW is the work done in short interval of time At
following the instant t.

Power and Velocity

Itis, sometimes, convenient to express power in terms of a
constant force F acting on an object moving at constant
velocity v. For example, when the propeller of a motor boat
causes the water to exert a constant force F on the boat, it
moves with a constant velocity v. The power delivered by
the motor at any instant is, then, given by

P=Limit AM—,
a0 At
we know AW=F. Ad
50 P=Limi F-Ad
at—>0 At

R?



Since Limit Ad _y

A0 At

Hence, o o TN S VS o X R R (4.6)

The Sl unit of power is  watt, defined as

one joule of work done in one second. L ,
Sometimes, for example, in the electrical measurements, the Approximate Powers
unit of work is expressed as walt second. However, a Device . Power (W)
commercial unit of electrical energy is  kilowatt-hour. Jumbo Jet Alrcraft. | 1.3x10
One kilowatt hour is the work done in one hour by an CB'E, al :9:.':';':4 ;;11’2,0
agency whose power is one kilowatt. Colour Tv 120

Fiash cells) 1.

Therefore, 1 kWh = 1000 W x 3600 s. N .
or 1kWh=36x10°J=36MJ

Example 4.2: A 70 kg man runs up a long flight of
stairsin 4.0s. The vertical height of the stairs is 4.5 m.
Calculate his power output in watts.

Solution: Work done = mgh

mgh

Power =
t

_ 70kgx9.8 ms*X4.5m

ke 4s

P=77x%x10°kgm’s®=7.7 X10° W

45 ENERGY

Energy of a body is its capacity to do work. There are two a—. ﬁ‘g"ﬁ,’,"&m

basic forms of energy. 1x10"” J of energy from petrol in its
life time.
Kinetic energy (i) Potential energy
The kinetic energy is possessed by a body due to- its
motion and is given by the formula

KE. = %mvz .......... @.7)

83



where m is the mass of the body moving with velocity v.

The potential energy is possessed by a body because of
its position in a force field €.g. gravitational field or because
of its constrained state. The potential energy due to
gravitational field near the surface of the Earth at a height
h is given by the formula

Pl gl S (4.8)

N SR D E::;:J) This is called gravitational potential energy. The
o : - gravitational PE. is always determined relative to some
:u‘?n""": mm :o:;? arbitrary position which is assigned the value of zero PE.

e a In the present case, this reference level is the surface of

For Your Information

K.E. of a car at §
“Ukmb e the Earth as position of zero P.E. in some cases a point at
Running Person at . infinity from the Earth can also be chosen as zero reference
10 km h" 3x10° level.
Fission of one atom
of uranlum  1.8x10°" The energy stored in a compressed spring is the potential
K.E. of amolecuie of air 6x10 " energy possessed by the spring due to its compressed or

stretched state. This form of energy is called the elastic
potential energy.

Work-Eférgy Principle

Whenever work is done on a body, it increases its energy.
For example a body of mass m is moving with velocity v, A
force F acting through a distance d increases the velocity
to v;, then from equation of motion

2ad=v/ - y?
or = %{vf AR (4.9)

From second law of motion

R e (4.10)
mu? .,y:",;, mon.:%ym Multiplying equations 4.9 and 4.10, we have

of petrol.

Py

Fd=

|

K4 2
M~ v)

2

my, _%mv," .......... (4.11)

LS

or Fd
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where the left hand side of the above equation gives the
work done on the body and right hand side gives the
increase or change in kinetic energy of the body. Thus

Work done on the body equals the
change in its kinetic energy.

This is known as work-energy principle. If a body is raised
up from the Earth's surface, the work done changes the
gravitational potential energy. Similarly, if a spring is
compressed, the work done on it equals the increase in its
elastic potential energy.

Absolute Potential Energy

The absolute gravitational potential energy of an object at
a certain position is the work done by the gravitational
force in displacing the object from that position to infinity
where the force of gravity becomes zero. The relation for
the calculation of the work done by the gravitational force
or polential energy = mgh, is true only near the surface of
the Earth where the gravitational force is nearly constant.
But if the body is displaced through a large distance in
space from, let, point 1 to N (Fig. 4.10) in the gravitational
field, then the gravitational force will not remain constant,
since it varies inversely to the square of the distance.

In order to overcome this difficulty, we divide the distance
between points 1 and N into small steps each of length Ar
so that the value of the force remains constant for each
small step. Hence, the total work done can be calculated
by adding the work done during all these steps. If r; and r;
are the distances of points 1 and 2 respectively, from the
centre O of-the Earth (Fig. 4.10.), the work done during
the first step i.e., displacing a body from point 1 to point 2
can be calculated as below.

The distance between the centre of this step and the
centre of the Earth will be

2

if ra=ri=Ar then p=ry +Ar
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Hence, r= "—*’;LAI:G +-“2—’ .......... (4.12)

The gravitational force F at the centre of this step is
Mm

P e ik 281 RS rothane sl (4.13)
r
where m=massofanobject , M= mass ofthe Earth
and G = Gravitational constant.

Squaring Eq. 4.12

' e 2
e 1 % A

2
rr=r 2 % +[%£—j

As (Ar)? << r{, so this term can be neglected as compared
to r, 12

Hence r’=r? +r,Ar

Substituting the value of Ar

r’=rf +r(-r)=rnr,

Hence, Eq. 4.13 becomes

Es MR TS e sonony (4.14)

ryr;

As this force is assumed to be constant during the interval
Ar, so the work done is

Wi->; = F.Ar = FAr cos 180° = - GMm 27

rr

Thenegative sign indicates that the work has to be done on
the body from point 1 to 2 because displacement is opposite
to gravitational force. Putting the value of Ar, we get

Lo= T
Wis, =-GMm 21
I,
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or W,5, =- GMm [1-—1)

n r
Similarly the wor! done during the second step in which
the body is displaced from point 2 to 3 is

Worsy = - GMm [L_1]

(s I3 )

and the work done in the last step is

Wi 1oy =- GMm (L- 1}

v I

Hence, the total work done in displacing a body from point1
to N is calculated by adding up the work done during all
these steps.

W(le = W1 >+ Wzég"‘ .......... + WN. >N

=-GM —1—--1— + j——-!— -+ rerrenee 4.-—1---1-]
e g ) XAe 1y .t TN
On simpificaton, e ge

More coal has been used since

G
1. 551 1945 than was used in the whole of
Wi = - GMm (—-———J history before that.
ry I
If the point N is situated at an infinite distance from the
Earth, so
o B ouco At saglee 530 by
Iy ®
Hence, Wiow = M

1

Therefore, the general expression for the gravitational
potential energy of a body situated at distance r from the
centre of Earth is

£ -GMm
r

U

This is also known as the absolute value of gravitational
potential energy of a body at a distance r from the centre
of the Earth.
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Note that when rJincreases, U becomes less negative e U
Increases. It means when we raise a body above the suface
of the Earthits PE. increases. The choice of zero point is
arbitraryland orgly the difference of P.E. Frof one point to
another is significant, wether we consider the surface of
the Earth or the point at infinity as zero P.E. reference the
change in PE. as we move & body above the surface of the

Earth, will always be positive.

Now the absolute potential energy on the surface of the
Earth is found by putting r = R (Radius of the Earth)

Absolute potential energy = U, = - % ....... (4.15)

The negative sign shows that the Earth's gravitational field
- for mass m is atiractive. The above expression gives the
Heavenly body Escape spead work or the energy required to take the body out of the
o :

Sa 2,

EREEREN  Earth's gravitational field where its potential energy with

43 ;

z;s"’"’y 22 respect to Farth is zero.

Venus 104

Earth 12

Uranus 224 Itis our daily life experience that an object projected upward
Neptune 254 comes back to the ground after rising to a certain height.
P =0 This is due to the force of gravity acting downward. With
o i increased initial velocity, the object rises to the greater

height before coming back. If we go on increasing the initial
velocity of the object, a stage comes when it will not retum
to the ground. It will escape out of the influence of gravity.
The initial velocity of an object with which it goes out of the
Earth's gravitational field, is known as escape velocity.

The escape velocity corresponds to the initial kinetic
energy gained by the body, which carries it to an infinite
distance from the surface of Earth.

Initial K.E. = %mv._,ic

We know that the work done in lifing a body from Earth's
surface to an infinite distance is equal to the increase in

its potential energy
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c E skt — 0 ——
Incerase inP.E. =0-(-G ) =

where M and R are the mass and radius of the Earth
respectively. The body will escape out of the gravitational
field if the initial K.E.of the body is equal to the increase
in P.E. of the body in lifting it up to infinity. Then

1 MY s = G
2

or Voo = of——

As g= —

Hence, Vese = 4 20R (4.17)

11 kms.'

..........

The value of v,.. comes out to be approximately

Consider a body of mass m at rest, at a height h above the
surface of the Earth as shown in Fig. 4.11. At position
A, the body has P.E. = mgh and K.E. = 0. We release the
body and as it falls, we can examine how kinetic and
potential energies associated with it interchange.

Let us calculate P.E..and” KE. at position B when the
body has fallen through a distance x, ignoring air friction.

P.E. =mg (h - x)

and KE.= i mve
2
Velocity vg, at B, can be calculated from the relatior,
v =vi+2gS
ViV ., vi=0 ; S=x

vs =0+ 2gx = 2gx

89

O e, T R ol
d . B

P.E = mgh -
RECE
KE=0

A
x Y
h
P.E = mg (h-x) g "
K.E = mgx
b 4
(h-x)
PE=0
RE = R =ttt
c

Fig. 4 M
‘



Fig. 4.12

KE. = %m (2gx) = mgx

Total energy at B = PE. + K.E.
=mg(h-x)+mgx=mgh . .. (4.18)
At position C, just before the body strikes the Earth, P.E. = 0

and KE. = 2lmvcz, where vc can be found out by the

following expression.
ve'=vi+2gh=2gh as v=0

ie. KE. = gmvc’= %m x 2gh = mgh

Thus at point C, kinetic energy is equal to the original value
of the potential energy of the body. Actually when a body
falls, its velocity increases i.e., the bedy is being accelerated
under the action of gravity. The increase in velocity results
in the increase in its kinetic energy. On the other hand, as
the body falls, its height decreases and hence, its potential
energy also decreases. Thus we sse (Fig. 4.12) that,

Loss in PE. = Gainin K.E.
mg (hy - h,) = %m Bl Fiiaen (4.19)

Where vy and v, are velocities of the body at heights h,
and h; respectively. This result is true only when frictional
force is not considered.

If we assume that a frictional force f is present during the
downward motion, then a part of PE. is used in doing work
against friction equal to fh. The remaining P.E. = mgh —f h
is converted into K.E.

Hence, mgh~fh= % mv’
or mgh = %mvz o R (4.20)
Thus,

Loss in PE. = Gain in K.E. + Work done against friction.
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4.7 CONSERVATION OF ENERGY

The kinetic and potential energies are both different forms
of the same basic quantity, i.e. mechanical energy. Total
mechanical energy of a body is the sum of the kinetic
energy and potential energy. In our previous discussion of
a falling body, potential energy may change into kinetic
energy and .vice versa, but the total energy remains
constant. Mathematically,

Total Energy = P.E. + K.E. = Constant

This is a special case of the law of conservation of energy
which states that:

Energy cannot be destroyed. It can be
transformed from one kind into another, but
the total amount of energy remains constant.

This is one of the basic laws of physics. We daily observe
many energy transformations from one form to another.
Some forms, such as electrical and chemical energy, are
more easily transferred than others, such as heat. Ultimately
all energy transfers result in heating of the environment and
energy is wasted. For example, the P.E. of the falling object
changes to K.E., but on striking the ground, the K.E. changes
into heat and sound. If it seems in an energy transfer that
some energy has disappeared, the lost energy is often
converted into heat. This appears to be the fate of all
available energies and is one reason why new sources of
useful energy have to be developed.

Example 4.3: A brick of mass 2.0 kg is dropped from a
rest position 5.0 m above the ground. What is its velocity at a
height of 3.0m above the ground?

Solution: Using Eq. 4.19

mg (hy—h) = %m i -vd)

As v;=0 and- V2=V
Hence v=J2g(h, - h;)
or v =/2x98ms2x20m =63ms”
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For Your Information '

m of Original source

Salar Sun

Bio mass Sun

Fossil fuels Sun

Wind Sun

Waves Sun

Hydro electric Sun

Tides Moon

Geothermal Earth
Renewable Nonrenewable
Hydroelectic Coal
Wind Natural gas
Tides Oil
Geothermal * Uranium
Biomass Oit shale
Sunlight Tar sands
Ethancl/Methanol**

* Individual fields may run off
**Renewable when made from

bio mass




These are the energy sources which are not very common
these days. However, it is expected that these sources
will contribute substantially to the energy demand of the

SRR future. Some of these are introduced briefly here.
Valve closed oz .
High Tide:
Water level equaliced,

Energy from Tides

One very novel example of obtaining energy from
gravitational field is the energy obtained from tides.
Gravitational force of the moon gives rise to tides in the
sea. The tides raise the water in the sea roughly twice a
e NN - day. If the water at the high tide is trapped in a basin by
SN oG i constructing a dam, then it is possible to use this as a
T ~ source of energy. The dam is filled at high tide and water is
released in a controlled way at low tide to drive the
turbines. At the next high tide the dam is filled again and
the in rushing water also drives turbines and generates
electricity as shown systematically in the Fig. 4.13.

g R

Valve closed
Water level equalized. Energy from Waves

The tidal movement and the winds blowing across the
surface of the ocean produce strong water waves. Their
energy can be utilized to generate electricity. A method of
: . harnessingwave energy is to use large floats which move up
apan and down with the waves. One such device invented by

High tide:
wg?arhﬁoamw to flow back -Professor Salter is known Salter's duck (Fig. 4.14). It consists
Mothe basin, driving turbines. <. two parts (i) Duck float. (i) Balance float.

Fig. 4.13

Tidal power plant. Turbines are
located inside the dam,

De You Know?

ThepuilofﬂweMoondmnolmly

e N et The wave energy makes duck float move relative to' the

continents pulling land up and balance float. The relative motion of the duck float is then
down by as much as 25em. used to run electricity generators.

Fig. 4.14
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Solar Energy
The Earth receives huge amount of energy directly from
the Sun each day. Solar energy at normal incidence
outside the Earth's atmosphere is about 1.4 KWm* which
is referred as solar constant. While passing through the
atmosphere, the total energy is reduced due to reflection,
- scattering and absorption by dust particles, water vapours
and other gases. On a clear day at noon, the intensity of
solar energy reaching the Earth's surface is about 1kWm™,
This energy can be used directly to heat water with the help
of large solar reflectors and thermal absorbers. It can also
be converted to electricity. In one method the flat plate.
collectors are used for heating water. A typical collector is
shown in Fig. 4.15 (a). It has a blackened surface which
absorbs energy directly from solar radiation. Cold water
passes over the surface and is heated upto about 70°C.

Much higher temperature can be achieved by
concentrating solar radiation on lo a small surface area by
using huge reflectors (mirrors) or lenses to produced
steam for running a turbine.

The other method is the direct conversion of sunlight into
electricity through the use of semi conductor devices called
solar cells also known as photo voltaic cells. Solar cells are
thin wafers made from silicon. Electrons in the silicon gain
energy from sunlight to create a voltage. The voltage
produced by a single voltaic cell is very low. In order to get
sufficient high voltage for practical use, a large number of
such cells are connected in series forming a solar cell panel.

For cloudy days or nights, electric energy can be stored
during the Sun light in Nickel cadmium batteries by
connecting them to solar panels. These batteries can then
provide power to electrical appliances at nights or on
cloudy days.

Solar cells, although, are expensive but last a long time and
have low running cost. Solar cells are used (o power
< atellites having large solar panels which are kept facing the
Sun (Fig. 4.15 b). Other examples of the use of solar cells
are remote ground based weather stations and rain forest
communication systems. Solar calculators and walches are
also in use now-a-days.

hot water

storage
I tank

V cold
water

Fig. 4.15(a)

Fig. 4.15(b)



For your information

The rapid growth of human
population has put a strain on our
natural resources. A sustainable
society minimizes waste and
maximizes the benefit from each
resource, Minimizing the use of
energy is an other method of
canservation.We can save energy by,

(i) turning off lights and elecirical
appliances when not in use.
(i) using fluorescent bulbs instead
of incandescent bulbs
(1) using sunlight in offices,
commercial centers and
houses during daylight hours
(iv) Taking short hot shawers.

Fig. 4.16

Do you know ?

Pollution can be reduced if

(i) People use mass transportation

(i) Use geothermal, solar,
hydroelectrical and wind energy
as alternative forms of energy.

Energy From Biomass
Biomass is a potential source of renewable energy. This
includes all the organic materials such as crop residue,
natural vegetation, trees, animal dung and sewage. Biomass
energy or bio conversion refers to the use of this material as
fuel or its conversion into fuels.

There are many methods used for the conversion of
biomass into fuels. But the most common are

1. Direct combustion 2. Fermentation

Direct combustion method is usually applied to get energy
from waste products commonly known as solid waste. It
will be discussed in the next section.

Biofuel such as ethanol (alcohol) is a replacement of
gasoline. It is obtained by fermentation of biomass using
enzymes and by decomposition through bacterial action in
the absence of air (oxygen).

The rotting of biomass in a closed tank called a digester
produces Biogas which can be piped out to use for cooking
and heating (Fig. 4.16).

The waste material of the process is a good organic
fertilizer. Thus, production of biogas provides us energy
source and also solves the problem of organic waste
disposal.

Energy from Waste Products’

Waste products like wood waste, crop residue. and
Particularly municipal solid waste can be used to get
energy by direct combustion. It is probably the most
commonly used conversion process in which waste
material is burnt in a confined container. Heat produced in
this way is directly utilized in the boiler to produce steam
that can run turbine generator.

Geothermal Energy
This is the heat energy extracted from inside the Earth in

the form of hot water or steam. Heat within the Earth is
generated by the following processes.
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1. Radioactive Decay

The energy, heating the rocks, is constantly being reieased
by the decay of radioactive elements.

2. Residual Heat of the Earth

At some places hot igneous rocks, usually within 10 km of
the Earth’'s surface, are in a molten and partly molten state.
They conduct heat energy from the Earth’s interior which is
still very hot. The temperature of these rocks is about
200°C or more.

3. Compression of Material

The compression of material deep inside the Earth also
causes generation of heat energy.

In some place water beneath the ground is in contact with
hot rocks and is raised to high temperature and pressure. It
comes to the surface as hot springs, geysers, or steam
vents. The steam can be directed to turn turbines of
electric generalors.

At places water is not present and hot rocks are not very
deep, the water is pumped down through them to get
steam (Fig. 4.17). The steam then can be used to drive
turbines or for direct heating.

An interesting phenomenon of geothermal energy is a
geyser. It is a hot spring that discharges steam and hot water,
intermittently releasing an explosive column into the air (Fig.
4.18). Most geysers erupt at irregular intervals. They usually
occur in volcanic regions. Extraction of geothermal heat
energy often occurs closer to geyser sights. This extraction
seriously disturbs geyser system by reducing heat flow and
aquifer pressure. Aquifer is a layer of rock holding water that
allows water to percolate through it with pressure.

SUMMARY_

Fig. 417

Fig. 4.18

s  The work done on a body by a constant force is defined as the product of the
magnitude of the displacement and the component of the force in the direction of

the displacement.
W=Fd =Fdcesl
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Work done by a variable force is computed by dividing the path into very small
displacement intervals and then taking the sum of works done for all such intervals,

W= ZH:E cosl; Ad,
=1

Graphically, the work done by a variable force in moving a particle between two
points is equal to the area under the F cos® verses d curve between these two
points.

When an object is moved in the gravitational field of the Earth, the work is done by
the gravitational force. The work cone in the Earth's gravitational field is independent
of the path followed, and the work done along a closed path is zero. Such a force
field is called a conservative field.

Power is defined as the rate of doing work and is expressed as

P:M

- or P=Fy
At

Energy of a body is its capacity to do work. The kinetic énergy is the energy possessed
by a body due to its motion.

The potential energy is possessed by a body because of its position in a force field.
The absolute P.E of a body on the surface of Earth is

-GMm
Un = .~
% R

The initial velocity of a body with which it should be Projected upward so that it does not
come back, is called escape velocity.

Vage = u(f:i = J20R
Some of the non conventional energy sources are
| Energy from the tides 2. Energy from waves
1. Solar energy 4. Energy from biomass

5 Energy from waste products 6. Geothermal energy
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4.1

QUESTIONS

A person holds a bag of groceries while standing still, talking to a friend. A car is

| stationary with its engine running. From the stand point of work, how are these two

4.2

4.3

45

46

47

4.8

4.1

42

situations similar?

Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady
velocity) through a vertical height of 10 m.

A force F acts through a distance L. The force is then increased to 3 F, and then acts
through a further distance of 2 L. Draw the work diagram to scale.

In which case is more work done? When a 50 kg bag of books is lifted through 50 cm,
or when a 50 kg crate is pushed through 2m across the floor with a force of 50 N?

An object has 1 J of potential energy. Explain what does it mean?

A ball of mass m is held at a height h, above a table. The table top is at a height h,
above the floor. One student says that the ball has potential energy mgh, but
another says that it is mg (h; + h,). Who is correct?

When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where
does this heat energy come from?

What sort of energy is in the following:
Compressed spring
Water in a high dam
¢ A moving car

A girl drops a cup from a certain height, which breaks into pieces. What energy
changes are involved?

A boy uses a catapult to throw a stone which accidentally smashes a green house
window. List the possible energy changes.

NUMERICAL PROBLEMS

A man pushes a lawn mower with a 40 N force directed at an ahgle of 20°
downward from the horizontal. Find the work done by the man as he cuts a strip of
grass 20 m long.

(Ans: 7.5 x 10° J)

A rain drop (m = 3.35 x10° kg) falls vertically at a constant speed under the influence
of the forces of gravity and friction. In falling through 100 m, how much work is done by
o gravity and () friction.

[Ans: (2) 0.0328 J (1) - 0.0328 ]
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4.3

4.4

4.5

456

47

4.8

4.9

4.10.

Ten bricks, each 8.0 cm thick and mass 1.5 kg, lie flat on a table_ How much work is :
required to stack them one on the top of another?

(Ans: 40 J)

A car of mass 800 kg travelling at 54 kmh'is brought to rest in 60 metres. Find the
average retarding force on the car. What has happened to original kinetic energy?

(Ans: 1500 N)

A 1000 kg automobile at the top of an incline 10 metre high and 100 m long is

released and rolls down the hill. What is its speed at the bottom of the incline if the

average retarding force due to friction is 480 N? :
(Ans: 10 ms ")

100 m’iof water_ls pumped frpm a reser_voir into a t%nk, 10 m higher than the
reservoir, in 20 minutes. If density of water is 1000 kg m’, find
(a) the increase in P.E.
(b) the power delivered by the pump.
[Ans: (a) 9.8 x 10° J (b) 8.2 kW]

A force (thrust) of 400 N is required to overcome road friction and air resistance in
propelling an automobile at 80 kmh™'. What power (kW) must the engine develop?

(Ans: 8.9 kW)

How large a force is required to accelerate an electron (m=9.1 x 10 kg) from
rest o a speed of 2.0x10'ms™" through a distance of 5.0 cm?

(Ans: 3.6 x10°"° N)

A diver weighing 750 N dives from a board 10 m above the surface of a pool of water.
Use the conservation of mechanical energy to find his speed at a point 5.0 m above
the water surface, neglecting air friction.

(Ans: 99 ms™)

A child starts from rest at the top of ‘a slide of height 4.0 m.(a) What is his speed at
the bottom if the slide is frictionless? (b) if he reaches the botiom, with a speed of
6 ms’, what percentage of his total energy at the top of the slide is lost as a result
of friction? °

[Ans: (a) 8.8 ms™' (b) 54%)
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ChapterJe

CIRCULAR MOTION

Learning Objectives

At the end of this chapter the students will be able to:

i

Lescribe angular motion.

Define angular displacement, angular velocity and angular acceleration.

Define radian and convert an angle from radian measure to degree and vice versa.
Use the equationS=rland v = ro.

Describe qualitatively motion in a curved path due to a perpendicular force and
understand the centripetal acceleration in case of uniform motion in a circle.

Derive the equation a, = re® = v/rand F. = me? r= mv¥r
Understand and describe moment of inertia of a body.
Understand the concept of angular momentum.

Describe examples of conservation of angular momentum.

Understand and express rotational kinetic energy of a disc and a hoop on an
inclined plane.

Describe the motion of artificial satellites.

Understand that the objects in satellites appear to be weightless.
Understand that how and why artificial gravity is produced.

Calculate the radius of geo-stationary orbits and orbital velocity of satellites.
Describe Newton's and Einstein's views of gravitation. X

W e have studied velocity, acceleration and the laws of motion, mostly as they are

iqvolyed in rectjlinear motion. However, many objects move in circular paths and their
direction is continually changing. Since velocity is a vector quantity, this change of direction
means that their velocities are not constant. Astone whirled around by a string, a car turning

around a corner and satellites in orbits around the Earth are all examples of this kind of
motion.
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8 In this chapter we will study, circular motion, rotational
@ motion, moment of inertia, angular momentum and the
related topics.

|7
b
T ‘-',d

ComidertlnmoﬁmofashglepacﬂdePofmasamina
circular path of radius r. Suppose this motion is taking place
by attaching the particle P at the end of a massless rigid rod
P 654 of length r whose other end is pivoted at the centre O of the
circular path, as shown in Fig. 5.1 (a). As the particle is
moving on the circular path, the rod OP rotates in the plane
of the circle. The axis of rotation passes through the pivot O
and is normal to the plane of rotation. Consider a system of
axes as shown in Fig. 5.1 (b). The z-axis is taken along the
»y axis ofrotationwhthepivothsorigin of coordinates .
Axes x and y are taken in the plane of rotation. While OF is
/ rotating, suppose at any instant ¢, its position is OP,, making
X angle 6 with x-axis. At later time ¢ + At, let its position be
OP; making angle 6 + A0 with x-axis (Fig. 5.1c).

——=PN

The angular displacement A0 is assigned a positive sign
when the sense of rotation of OP is counter clock wise.

Fig. 5.1(c)
The direction associated with A@ is along the axis of
J@é rotation and is given by right hand rule which states that
& ‘
o 2 < Grasp the axis of rotation in right hand with
= fingers curling in the direction of rotation:
the thumb points in the direction of angular
displacement, as shown in Fig 5.1 (d).
Three units are generally used to express angular
Fog-bad displacement, namely degrees, revolution and radian. We
ig. 5.
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are already familiar with the first two. As regards radian
which is S! unit, consider an arc of length S of a circle of
radius r (Fig 5.2) which subtends an angle 0 at the centre
of the circle. Its value in radians (rad) is given as

0 = a“?l‘i_n_gtﬂ rad
radius

0=5 rad

r
or . 8=r@  (whereBisinradian) ... (5.1)
If OP is rotating, the point P covers a distance s = 2 nr in
one revolution of P. In radian it would be
S 2w

E=——=2n
ror
So 1 revolution = 2 rt rad = 360°
0
Or 1rad= 390 -57.2°
2n

‘.;.j‘{;_'; sy R T £ - Ve
Very often we are interested in knowing how fast or how
slow a body is rotating. It is determined by its angular
velocity which is defined as the rate at which the angular
displacement is changing with time. Referring to Fig. 5.1(c),
if AD is the angular displacement during the time
interval At, the average angular velocity w,, during this
interval is given by

AO
iy e SRR s 5.2
At Q2

The instantaneous angular velocity ® is the limit of the
ratio AB/At as At, following instant f, approaches to zero.

Thus TS R (5.3)
At=> 0 At

In the limit when At approaches zero, the angular
displacement would be infinitesimally small. So it would be a_
vector quantity and the angular velocity as defined by
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Eq.5.3 would also be a vector. Its direction is along the axis
of rotation and is given by right hand rule as described earlier.

Angular velocity is measured in radians per second which is
its Sl unit. Sometimes it is also given in terms of revolution
per minute.

5.3 ANGULAR ACCiLERATION

When we switch on an electric fan, we notice that its
angular velocity goes on increasing. We say that it has an
angular acceleration, We define angular acceleration as
the rate of change of angular velocity. If », and wy are the
values of instantaneous velocity of a rotating body at
instants ¢ and ¢, the average angular acceleration during
the interval & — 1 is given by

G 26r 0 & Aopiven ) (5.4)
o

The instantaneous angular acceleration is the limit of the

ratio %as At approaches zero. Therefore, instantaneous

angular acceleration is given by

a = Lim -A-Q b ol el ok (5.9)

Al>0

The angular acceleration is also a vector quantity whose
magnitude is given by Eq. 5.5 and whose direction is along
the axis of rotation. Angular acceleration is expressed in
units of rads?

Till now we have been considering the motion of a particle
P on a circular path. The point P was fixed at the end of a
rotating massless rigid rod. Now we consider the rotation
of a rigid body as shown in Fig. 5.3. Imagine a point P on
the rigid body. Line OP is the perpendicular dropped from
P on the axis of rotation. |t is usually referred as reference
line. As the body rotates, line OP also rotates with it with
the same angular velocity and angular acceleration. Thus
the rotation of a rigid body can be described by the rotation
of the reference line OP and all the terms that we defined
with the help of rotating line OP are also valid for the
rotational motion of a rigid body. In future while dealing
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with rotation of rigid body, we will replace it by its reference
line OP.

Consider a rigid body rotating about z-axis with an angular
velocity o as shown in Fig. 5.4 (a).

Imagine a point P in the rigid body at a perpendicular
distance r from the axis of rotation. OP represents the
reference line of the rigid body. As the body rotates, the
point P moves along a circle of radius r with a linear
velocity v whereas the line OP rotates with angular velocity
® as shown in Fig. 5.4 (b). We are interested in finding vut
the relation between @ and v. As the axis of rolaticn is
fixed, so the direction of ® always remains the saine and
© can be manipulated as a scalar. As regards the linear
velocity of the point P, we consider its magnitude only
which can also be treated as a scalar.

Suppose during the course of its motion, the point P moves
through a distance PP, = \g in a time interval At during
which reference line OP has an angular displacement A0
radian during this interval. As and A0 are related by Eq. 5.1.

AS=rae
Dividing both sides by At

........... (5.6)

In the limit when At —> 0 the ratio AS/At represents v, the
magnitude of the velocity with which point P_is moving on
the circumference of the circle. Similarly AB/At represents
the angular velocity o of the reference line OP. So
equation 5.6 becomes

VETo IR (5.7)

In Fig 5.4 (b), it can be seen that the point P is moving
along the arc P;P;. In the limit when At — 0, the length of
arc P,P, becomes very small and its direction represents
the direction of tangent to the circle at point P4. Thus the
velocity with which point P is moving on the circumference
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- Point to Ponder

Youmy'uumdauhnbpof
roller coaster ride in the
amusement parks but you never
fall down even when you are
upside down. Why?

of the circle has a magnitude v and its direction is always along
the tangent to the circle at that point. That is why the linear
velocity of the paint P is also known as tangential velocity.

Similarly Eq 5.7 shows that if the reference line OP is
rotating with an angular acceleration a, the point P will also
have a linear or tangential acceleration a;. Using Eq 5.7 it
can be shown that the two accelerations are related by

Bl s ' Bosriniss (5.8)

Egs 5.7 and 5.8 show that on a rotating body, points that
are at different distances from the axis do not have the
same speed or acceleration, but all paints on a rigid body
rotating about a fixed axis do have the same angular
displacement, angular speed and angular acceleration at
any instant. Thus by the use of angular variables we can
describe the motion of the entire body in a simple way.

Equations Of Angular Motion

The equations (5.2, 5.3, 5.4 and 5.5) of angular motion are
exactly analogous to those in linear motion except that 0,
@ and « have replaced s, v and a, respectively. As the
other equations of linear motion were obtained by
algebraic manipulation of these equations, it follows that
analogous equations will also apply to angular motion.
Given below are angular equations together with their
linear counterparts.

Linear Angular
Vi= v, +at DeRDIREE = e (5.9)
205=y7=v* " 2ahentlied (5.10)
s=v,t4%ar’ 9=m,t+%at2 .......... (5.11)

The angular equations 5.9 to 5.11 hold true only in the
case when the axis of rotation is fixed, so that all the
angular vectors have the same direction. Hence they can
be manipulated as scalars.

Example 5.1:'An electric fan rotating at 3 rev s is
switched off. It comes to rest in 18.0 s. Assuming
deceleration to be uniform, find its value. How many

revolutions did it turn before coming to rest?
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Solution: In this problem we have

w=30revs' @=0 t=180s and w«=?7 , 0=7

From Eq. 5.4 we have -2
- h“ v

=1 - ~a
o D0 (0-3;.(8))(;':vs =-0.167 rev s 1/ \

t

s/

and from Eq 5.11, we have \ \\

1
0=w|t+—2' atz

=30revs'x18.0s +%(-o.1s7 revs?) x(18.0 sy’ = 27 rev ""‘7’/

Direction of motion changes
continuously in circular motion.

The motion of a partlcle Whlch is constranned to move in a
circular path is quite interesting. It has direct bearing on the
motion of such things as artificial and natural satellites,
nuclear particles in accelerators, bodies whirling at the
ends of the strings and flywheels spinning on the shafts.

We all know that a ball whirled in a horizontal circle at the
end of a string would not continue in a circular path if the
string is snapped. Careful observation shows at once that
if the string snaps, when the ball is at the point A, in
Fig. 5.5 (b), the ball will follow the straight line path AB.

The fact is that unless a string or some other mechanism
pulls the ball towards the centre of the circle with a force,
as shown in Fig. 5.5 (a), ball will not continue along the
circular path.

The force needed to bend the normally
straight path of the particle into a circular gt
path is called the centripetal force. /

If the particle moves from A to B with uniform speed v as A
shown in Fig. 5.6 (a), the velocity of the particle changes its
direction but not its magnitude The change in velocity is
shown in Fig. 5.6 (b). Hence, the acceleration of the particle is Fig. 5.50)
> e Av
A t
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Banked tracks are needed for
turns that are taken so quickly that
friction alone cannot provide
energy for centripetal force.

where At s the time taken by the particle 1o travel from A to
8. Suppose the velocities at A and B are vy and v,
respectively. Since the speed of the particle is v, so the time

taken to travel a distance s, as shown in Fig. 5.6 (a) is

at=S
v

Av )
PN Jeead $2 R 512
) a-=-v : ( )

Let us now draw a triangle PQR such that PQ is parallel
and equal to v; and PR is parallel and equal to v, as
shown in Fig. 5.6 (b). We know that the radius of a circle is
perpendicular to its tangent, so OA is perpendicular to v;
and OB is perpendicular to v, (Fig. 5.6 a). Therefore, angle
AOB equals the angle QPR between viand v.. Further, as
Vi =V, = v and OA = OB, both triangles are isosceles.
From geometry, we know “two isosceles triangles are
similar, if the angles between their equal arms are equal”.
Hence, the triangle OAB of Fig. 5.6 (a) is similar to the
triangle POR of Fig. 5.6 (b) Hence, we can write
Av _AB

v r

If the point B is close to the point A on the circle, as will be the
case when At > (, the arc AB is of nearly the same length as
the line AB. To that approximation, we can write AB = s, and
after substituting and rearranging terms, we have,

Av:Sl
) r

Putting this value for Av in the Eg. 5.12, we get

v2
e A, e, (5.13)
where a is the instantaneous Aacceleration. As this
accelerationis caused by the centripetal force, it is called the
centripetal acceleration denoted by a.. This acceleration is
directed along the radius towards the centre of the circle. In
Fig. 5.6 (a) and (b), since PQ is perpendicularto OA and PR
is perpendicular to OB, so QR is perpendicularto AB. It may
be noted that QR is parallel to the perpendicular bisector of
AB. As the acceleration of the object moving in the circle is
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parallel to Av when AB —> 0, so centripetal acceleration is
directed along radius towards the centre of the circle. It can,
therefore, be concluded that:

The instantaneous acceleration of an object
travelling with uniform speed _in a circle is
directed towards the centre of the circle and
is called centripetal acceleration.

The centripetal force has the same direction as the
centripetal acceleration and its value is given by

2
Fo=Mg =" e (5.14)

In angular measure, this equation becomes
B B R ok s sisicnsus st (5.15)

Example 5.2: A 1000 kg car is turning round a corner at
10 ms ™' as it travels along an arc of a circle. If the radius of
the circular path is 10 m, how large a force must be
exerted by the pavement on the fyres to hold the car in the
circular path?

Solution: The force required is the centripetal force.
So

2 2.2
F= T 1°°°"91’::‘°’“ S _10x10%kgms? =1.0x10*N
This force must be supplied by the frictional force of the
pavement on the wneels.

Example 5.3: A ball tied to the end of a string, is swung
in a vertical circle of radius r under the action of gravity as
shown in Fig. 5.7. What will be the tension in the string
when the ball is at the point A of the path and its speed is v
at this point?

Solution: For the ball to travel in a circle, the force
acting on the ball must provide the required centripetal
force. In this case, at point A, two forces act on the ball, the
pull of the string and the weight w of the ball. These forces
act along the radius at A, and so their vector sum must
fumnish the required centripetal force. We, therefore, have
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Curved flight at high speesd
requires 3 large centripetal force
that makes the stunt dangerous
aven if the air planes are not so
close.
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Fig. 58

The force F causes a torque about
the axis O and gives the mass m
an angular acceleration about the
pivot point.

Do You Know?

2
T+w=-'-7L as w=mg

r
2 2
mv 4
Ta——-—— =Mm|——

2
If "7=g. then T will be zero and the centripetal force is
Just equal to the weight.

N o PN A T T T Rt 25
Consider a mass m attached to the end of a massless rod
as shown in Fig. 5.8 Let us assume that the bearing at the
pivot point O is frictionless. Let the system be in a horizontal
plane. A force F is acting on the mass perpendicularto the rod
and hence, this will accelerate the mass according to

F=ma

In doing so the force will cause the mass to rotate about O.
Since tangential acceleration & is related to angular
acceleration o by the equation.

a =ra

S0, F=mrg

.As turning effect is produced by torque T, it would,
therefore, be better to write the equation for rotation in
terms of torque. This can be done by multiplying both sides
of the above equation by r. Thus

rF = T =torque = mri

which is rotational analogue of the Newton's second law of
motion, F = ma.

Here F is replaced by 1, a by « and m by mr”. The quantity
mr’is known as the moment of inertia and is represented by
1. The moment of inertia plays the same role in angular
motion as the mass in linear motion. It may be noted that

moment of inertia depends not only on mass m but also on >
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Most rigid bodies have different mass concentration at
different distances from the axis of rotation, which means
the mass distribution is not uniform. As shown in Fig. 5.9(a),

the rigid body is made up of n small pieces of masses
For Your Information

Moments of Inertla of varlous
bodies about AA -

(b)
Fig. 5.9
Each small piece of mass within a large, rigid body undergoes
the same angular acceleration about the pivot point.

my, My,....My, at distances ry, r3,....r, from the axis of rotation O. / A
Let the body be rotating with the angular acceleration «
so the magnitude of the torque acting on m; is (c)

Ty =myntay A

Similarly, the torque on m; is
T, = mar’a
2 212 K2
and so on.

Since the body is rigid, so all the masses are rotating with  (d)
the same angular acceleration a,

Total torque T e is then given by

& 2 2 2
Total = (Myry" + " +,....¥My Iy ) &

=(Tmri)a
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{a) (b

The sphere in (a) is rotating in the
sense given by the gold arrow. Its
angular velocity and angular
momentum are taken o be
upward along the rotational axis,
as shown by the right-hand rule
in(b).

or TRl evat sl (5.16)

where [ is the moment of inertia of the body and is
expressed as

n
PERET (5.17)

i=1

5.7 ANGULAR MOMENTUM

We have already seen that linear momentum plays an
important role in translational motion of bodies. Similarly,
another quantity known as angular momentum has
important role in the sludy of rotational motion.

A particle is said to posses an angular
momentum about a reference axis if it
So moves that its angular position
changes relative to that reference axis,

The angular momentum L of a particle of mass m moving
with velocity v and momentum P (Fig. 5.10) relative to the
origin O is defined as

C=Pxpae paosiy s (5.18)

where r is the position vector of the particle at that instant
relative to the origin O. Angular momentum is a vector
Quantity. Its magnitude is

L=rpsint=mrvsing

where 6 is the angle between r and P. The direction of L is
perpendicular to the plane formed by rand p and its sense
is given by the right hand rule of vector product. S| unit of
angular momentum is kg m?s ' or J s.

If the particle is moving in a circle of radius r with uniform
angular velocity , then angle between r and tangential
velocity is 90°. Hence

L = mrv sin 90° = mry

But V=rm
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Hence L=mri

Now consider a symmetric rigid body rotating about a fixed
axis through the centre of mass as shown in Fig 5.11.
Each particle of the rigid body rotates about the same axis
in a circle with an angular velocity . The magnitude of the
angular momentum of the particle of mass m; is mv,r;
about the origin O. The direction of L, is the same as that
of ©. Since v, = r, ®, the angular momentum of the ith
particle is m; r’®. Summing this over all particles gives the
total angular momentum of the rigid body.

n
L= (Zm r?) w=lo

i1

Where I is the moment of inertia of the rigid body about the
axis of rotation.

Physicists usually make a distinction between spin angular
momentum (L) and orbital angular momentum (L.
The spin angular momentum is the angular momentum of
a spinning body, while orbital angular momentum is
associated with the motion of a body along a circular path.

The difference is illustrated in Fig. 5.12. In the usual
circumstances concerning corbital angular momentum, the
orbital radius is large as compared to the size of the body,
hence, the body may be considered to be a point object.

Example 5.4: The mass of Earth is 6.00 x 10* kg. The
distance r from Earth to the Sun is 1.50 x 10" m. As seen | a
from the direction of the North Star, the Earth revolves
counter-clockwise around the Sun. Determine the orbital
angular momentum of the Earth about the Sun, assuming
that it traverses a circular orbit about the Sun once a year -
(3.16 x107s).

Solution: To find the Earth's orbital angular momentum =T "

we must first know its orbital speed from the given data. . \
When the Earth moves around a circle of radius r, it travels 0 ;
a distance of 2nr in one year, its orbital speed v, is thus ’

2ar ®)
0777
Fig. 5.12

Orbital angular momentum of the Earth = L, = mv,r

(|



_2r’m

r

_ 2r(1.50X10" m)? X (6.00X10%kg)
3.16 X10s

=267 Xx10¥kg m? 5™
The sign is positive because the revolution is counter
clockwise.

w Y ol | o i gy <
ENTUM Sl

tion of angular momen

tum states that
if no external torque acts on a system, the total angular
momentum of the system remains constant.

Fig. 5.13 Ltoh!=|-1 +Lz+ a5 Constant

Aman diing from a diving board. The law of conservation of angular momentum is one of

the fundamental principles of Physics. It has been verified
from the cosmological to the submicroscopic level. The
effect of the law of conservation of angular momentum is
readily apparent if a single isolated spinning body alters its
moment of inertia. This is illustrated by the diver in
Fig.513. The diver pushes off the board with a small angular
velocity about a horizontal axis through his centre of
gravity. Upon lifting off from the board, the diver's legs
and arms are fully extended which means that the diver
has a large moment of inertia 7, about this axis. The
moment of inertia is considerably reduced to a new value
1z, when the legs and arms are drawn into the closed tuck
pasition. As the angular momentum is conserved, so

Loy = Lo,

Hence, the diver must spin faster when moment of inertia
becomes smaller to conserve angular momentum. This
enables the diver to take extra somersaults,

Point to Ponder -
’

52

The angular momentum is a veclor quantity with direction
Why does the coasting rotating along the axis of rotation. In the above example, we
mmw i e discussed the conservation of magnitude of angular

momentum. The direction of angular momentum along the
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axis of rotation also remain fixed. This is illustrated by the
fact given below

The axis of rotation of an object will not change
its orientation unless an external torque causes
itto do so.

This fact is of great importance for the Earth as it moves
around theSun. No other sizeable torque is experienced by
the Earth, because the major force acting on it is the pull of
the Sun. The Earth’s axis of rotation, therefore, remains fixed
in one direction with reference to the universe around us.

5.9 ROTATIONAL KINETIC ENERGY

If a body is spinning about an axis with constant angular
velocity o, each point of the body is moving in a circular
path and, therefore, has some K.E. To determine the total
K.E. of a spinning body, we imagine it to be composed
of tiny pieces of mass my, my, ..... If a piece of mass m; is
at a distance r, from the axis of rotation, as shown in
Fig. 5.14, it is moving in a circle with speed

Vi=ro
Thus the K.E of this piece is

KE=+ mvi=_"'m, (rw)?
2 2

1 2. 2
=~ mrfw
2

The rotational K.E of the whole body is the sum of the
kinetic energies of all the parts. So we have

KEm = % (Mo’ + mare’*......... )

1
= 5 (m,r,’ +m2fz?+ ........ J©

We at once recognize that the quantity within the brackets
is the moment of inertia | of the body. Hence, rotational
kinetic energy is given by
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(b)

Rotational collision  the clutch




KEjm= % Foytaiom Sl A (5.19)

If rolling or spinning bodies are present in a system, their
rotational kinetic energy must be included as part of the
total kinetic energy. Rotational kinetic energy is put to

power stokes of the pistons, so that the energy is
distributed over the full revolution of the crankshaft and
hence, the rotation remains smooth.

> - 1

As the sphere rolis to the bottom of
the incline, its gravitational

knetc_eneray of rotaion and | TOM €quation 5.19, the rotational kinetic energy of a disc is

KEu= -;- I &

From page 109, for a disc

1
1= mA
2 m
so KEn= 2 %3 i o
; oo
therefore, =% mrP o?
since P o= 2
K.Epo = 41 g el (5.20)
and for a hoop, since 1 =mr’ (page 109)
then K.Eq= % I w? =% mr’e? page 109
L 2
KEw=2m? (5.21)

When both starts moving down an inclined plane of height
h, their motion consists of both rotational and translational
motions (Fig. 5.15). If no energy is lost against friction, the
total kinetic energy of the disc or hoop on reaching the
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bottomn of the incline must be equal to its potential energy

at the top.
PE. =K Eqsn + KEn R b
mgh=1m+d 1a? ... (5.22)
2 2
For disc mgh = % mv? + % mv’

or V= "ig'-’- .......... (5.23)

and forhoop  mgh = ; my + % mv

or VEJGN W~ s (5.24)

Example 5.5: A disc without slipping rolls down a hill of
height 10.0 m. If the disc starts from rest at the top of the
hill, what is its speed at the bottom? ;

Solution: Using Eq. 5.23

V= ﬂ_g.'.'
J 3

-2
4x9.80ms ™" x10.0m _ 44 4 me! ey N

L}

3 3 "“,-:.. = ‘_ e
11 kms'or
5.10 ARTIFICIAL SATELLITES v

Satellites are objects that orbit around the Earth. They are put
into orbit by rockets and are held in orbits by the gravitational
pull of the Earth. The low flying Earth satellites have
acceleration 9.8 ms? towards the centre of the Earth. If they
do not, they would fly off in a straight line tangent to the

Earth. When the satellite is moving in a circle, it has an
2
acceleration Yr— In a circular orbit around the Earth, the

centripetal acceleration is.supplied by gravity and we have, m'?".m".?' :ﬁmoo&m
v") Satellites Orbits
g = —R—' .......... (5'25)



Fig.5.16

The moment you switch on your
mobile phone, your location can be
tracked immediately by global
positioning system.

Where v is the orbital velocity and R is the radius of the
Earth (6400 km). From Eq. 5.25 we get,

v=JoR

= V9.8ms2x 6.4x10° m
=79kms™’

This is the minimum velocity necessary to put a satellite
into the orbit and is called critical velocity. The period T is
given by

2R 6400 km
T="2" 23,145 290 x
v 79kms

= 5060s = 84 min approx.

If, however, a sateliite in a circular orbit is at an appreciable
distance h above the Earth's surface, we must take into
account the experimental fact that the gravitational
acceleration decreases inversely as the Square of the
distance from the centre of the Earth (Fig. 5.16).

The higher the satellite. the slower will the required speed
and longer it will take to complete one revolution around
the Earth.

Close orbiting satellites orbit the Earth at a height of about
400 km. Twenty four such satellites form the Global
Positioning System. An airline pilot, sailor or any other person
¢an now use a pocket size instrument or mobile phone to find
his position on the Earth's surface to within 10m accuracy.

We often hear that objects appear to be weightless in a
spaceship circling round the Earth. In order to examine the
effect in some detail, let ys first define, what do we mean
by the weight? The real weight of an object is the
gravitational pull of the Earth on the object. Similarly the
weight of an object on the surface of the Moon is taken to
be the gravitational pull of the Moon on the object.

Generally the weight of an object is measured by a spring
balance. The force exerted by the object on the scale is
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equal to the pull due to gravity on the object, i.e., the
weight of the object. This is not always true, as will be
explained a little later, so we call the reading of the scale
as apparent weight.

To illustrate this point, let us consider the apparent weight
of an object of mass m, suspended by a string and spring
balance, in a lift as shown in Fig. 5.17 (a). When the lift is
at rest, Newton's second law tells us that the acceleration
of the object is zero, the resultant force on it is also zero. If
w is the gravitational force acting on it and T is the tension
in the string then we have,

T-w=ma
As a=0
hence, T g (5.26)

This situation will remain so long as a = 0. The scale thus
shows the real weight of the object. The weight of the
object seems to a person in the lift to vary, depending on
its motion.

When the lift is moving upwards with an acceleration a,
then '

T—-w=ma
or T=w+ma P S (5.27)

the object will then weigh more than its real weight by an
amount ma.

Now suppose, the lift and hence, the object is moving
downwards with an acceleration a (Fig. 5.17 b), then we
have

w-T=ma
which shows that
T=w—ma  .c.ccevns (5.28)

The tension in the string, which is the scale reading, is
less than w by an amount ma. To a person in the
accelerating lift, the object appears to weigh less than w.
its apparent weight is then (w — ma).
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and end of a ride, not during the
rest of the ride when thatvelocity is
constant.

Let us now consider that the lift is falling freely under
gravity. Then a = g, and hence,

T=w-mg
As the weight w of the body is equal to mg so
T=mg-mg=0

The apparent weight of the object will be shown by the
scale to be zero,

It is understood from these considerations that apparent
weight of the object is not equal toits true weight inan
accelerating system. It is equal and opposite to the force
required to stop it from falling in that frame of reference.

5.12 WEIGHTLESSNESS IN SATELLITES
AND GRAVITY FREE SYSTEM

When a satellite is falling freely in space, everything within
this freely falling system will appear to be weightless. It does
not matter where the object is, whether it is falling under the
force of attraction of the Earth, the Sun, or some distant star.

An Earth's satellite is freely falling object. The statement
may be surprising at first, but it is easily seen to be correct.
Consider the behaviour of a projectile shot parallel to the
horizontal surface of the Earth in the absence of air friction.
If the projectile is thrown at successively larger speeds,
then during its free fall to the Earth, the curvature of the
path decreases with increasing horizontal speeds. If the
object is thrown fast enough parallel to the Earth, the
curvature of its path will match the curvature of the Earth
as shown in Fig. 5.18. In this case the space ship will
simply circle round the Earth.,

-The space ship is accelerating towards the centre of the

Earth at all times since it circles round the Earth. Its radial
acceleration is simply g, the free fall acceleration. In fact,
the space ship is falling towards the centre of the Earth at
all the times but due to spherical shape of the Earth, it
never strikes the surface of the Earth. Since the space
ship is in free fall, all the objects within it appear to be
weightless: Thus no force is required to hold an object
faling in the frame of reference of the space craft or
satellite. Such a system is called gravity free system.
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5.13 ORBITAL VELOCITY

The Earth and some other planets revoive round the Sun
in nearly circular paths. The artificial satellites launched by
men also adopt nearly circular course around the Earth.
This type of motion is called orbital motion.

Fig. 519 shows a satellite going round the Earth in a
circular path. The mass of the satellite is ms and v is its
orbital speed. The mass of the Earth is M and r represents
the radius of the orbit. A centripetal force m.v7r is required
to hold the satellite in orbit. This force is provided by the
gravitational force of attraction between the Earth and the
satellite. Equating the gravitational force to the required
centripetal force, gives

GmM my?
r? r
or o o SPEE LN (5.29)

r

This shows that the mass of the satellite is unimportant in
describing the satellite’s orbit. Thus any satellite orbiting at
distance r from Earth's centre must have the orbital speed
given by Eq. 5.29. Any speed less than this will bring the
satellite tumbling back to the Earth.

Example 5.6: An Earth satellite is in circular orbit at a
distance of 384,000 km from the Earth's surface. What is its

period of one revolution in days? Take mass of the Earth:

M = 6.0 x 10**kg and its radius R = 6400 km.

Solution:
As r=R+h=(6400+384000)=390400km
-1 2L 2 24
P o [6.67x10°"" Nm?kg? x6 x10*kg
ey 390400km
=1.01 kms™

Also

2nr B 1 1day
T=_ _2x3.14 400 kmX.

v £ s s 1.01kms™' 60x60x24s

= 27.5days
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In 1984, at a height of 100km
above Hawali island with a speed
of 20000kmh”’ Bruce McCandless
stepped into space from a space
shuttle and became the first
human satellite of the Earth.



5.14 ARTIFICIAL GRAVITY

In a gravity free space satellite there will be no force that
will force any body to any side of the spacecratft. If this
satellite is to stay in orbit over an extended period of time,
this weightlessness may affect the performance of the
astronauts present in that Spacecraft. To over come this
difficulty, an artificial gravity is created in the spacecraft.
This could enable the crew of the space ships to function
in an almost normal manner. For this situation to prevail,
the space ship is set into rotation around its own axis. The
astronaut then is pressed towards the outer rim and exerts
a force on the 'floor' of the spaceship in much the same
way as on the Earth.

Consider a spacecraft of the shape as shown in Fig. 5.20.
The outer radius of the spaceship is R and it rotates
around its own central axis with angular speed . then its
angular acceleration a, is

a, = Ro?

Butm - 2—: where T is the period of revolution of spaceship
2
= =R(2n)2 _R4n

Hence' 72 TN E

As frequency f = 1/T, therefore a. = R 4 22 £2

or f<= or f=—__|]Z¢
P— 4n°R 2ny R

The frequency f is increased to such an extent that a,
equals to g. Therefore,

ac = g
and ‘ o %{ N (5.30)

When the space ship rotates with this frequency, the
artificial gravity like Earth is provided to the inhabitants of

the space ship.

515 GEOSTATIONARY ORBITS
An interesting and useful example of satellite motion is the
geo-synchronous or geo-stationary satellite. This type of
satellite is the one whose orbital motion is synchronized with
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the rotation of the Earth. In this way the synchronous
satellite remains always over the same point on the equator
as the Earth spins on its axis. Such a satellite is very useful
for worldwide communication, weather observations,
navigation, and other military uses.

What should the orbital radius of such a satellite be so that
it could stay over the same point on the Earth surface? The
speed necessary for the circular orbit, given by Eq. 5.29, is

GM
r

V =

but this speed must be equal to the average speed of the
satellite in one day, i.e.,

s _2nr
V 5 - c—

t T
where T is the period of revolution of the satellite, that is
equal to one day. This means that the satellite must move-
in one complete orbit in a time of exactly one day. As the
Earth rotates in one day and the satellite will revolve
around the Earth in one day, the satellite at A will always
stay over the same point A on the Earth, as shown in
Fig. 5.21. Equating the above two equations, we get

2nr 'GM
t r

Squaring both sides

4n?r? _GM
12 —

2

or e
4n

From this we get the orbital radius

1

GMT )3
r_-[‘mz 7 .......... (5.31)

>

Substituting the values for the Earth into Eq. 5.31 we get
r=4.23 x10* km
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A geostationary satellite orbils the
Earth once per day over the
equator so it appears to be
stationary. It is used now for
interational communications
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The whole Earth can be coverad
by just three geo-stationary
satellites.

Communications satellite
INTELSAT VI

Do You Know?

1GHz = 10" Hz

which is the orbital radius measured from the centre of the
Earth, for a geostationary satellite. A satellite at this height
will always stay directly above a particular. point on the
surface of the Earth. This height above the equator comes
to be 36000 km. '

.16 COMMUNICATION SATELLITES

A satellite communication system can be set up by placing
several geostationary satellites in orbit over different points
on the surface of the Earth. One such sateliite covers 120° -
of longitude, so that whole of the populated Earth'’s surface
can be covered by three correctly positioned satellites as
shown in Fig. 5.22. Since these geostationary satellites
seem to hover over one place on the Earth, continuous
communication with any place on the surface of the Earth
can be made. Microwaves are used because they travel in a
narrow beam, in a straight line and pass easily through the
atmosphere of the Earth. The energy needed to amplify and
retransmit the signals is provided by large solar cell panels
fitted on the satellites. There are over 200 Earth stations
which transmit signals to satellites and receive signals via
satellites from other countries. You can also pick up the
signal from the satellite using a dish antenna on your house.
The largest satellite system is managed by 126 countries,
International  Telecommunication Satellite Organization
(INTELSAT). An INTELSAT Vi satellite is shown in the
Fig.5.23. It operates at microwave frequencies of 4,6,11 and
14 GHz and has a capacity of 30, 000 two way telephone

- -circuits plus three TV channels.

Example,f 5.7: Radio and TV signals bounce from a
synchronous satellite. This satellite circles the Earth once in
24 hours. So if the satellite circles eastward above the
equator, it stays over the same spot on the Earth because
the Earth is rotating at the same rate. (a) What is the orbital
radius for a synchronous satellite? (b) What is its speed?

Solution:

1
MT?|?
From Eq. 531, r= [G;“z J

where G=667x10"Nm’kg? M= 6.0 x 10%kg
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and T=24 x 60 x 60s.
Therefore, on substitution; we get

1/3

.31 g -2 24
ot { AT etatigh sha st te)
X 4(3.14)

The gravity can bend light. The
gravily of a star could be used to
focus light from stars.

= 423x10'm
b) Substituting the value of r in equation v —2-;‘-,5 "
we get, '
_25(4.23x107m) o4 o ;
© 864005
5.17 NEWTON’S AND EINSTEIN’S VIEWS
OF GRAVITATION

According to Newton, the gravitation is the intrinsic
property of matter that every particle of matter attracts
every other particle with a force that is directly proportional
to the product of their masses and is inversely proportional
to the square of the distance between them.

According to Einstein's theory, space time is curved,
especially locally near massive bodies. To visualize this,
we might think of space as a thin rubber sheet; if a heavy
weight is hung from it, it curves as shown in Fig 5.24. The
weight corresponds to a huge mass that causes space
itself to curve. Thus, in Einstein's theory we do not speak
of the force of gravity acting on bodies; instead we say that
bodies and light rays move along geodesics (equivalent to
straight lines in plane geometry) in curved space time.
Thus, a body at rest or moving slowly near the great mass
of Fig. 5.24 would follow a geodesic toward that body.

Einstein's theory gives us a physical picture of how gravity
works; Newton discovered the inverse square law of gravity;
but explicitly said that he offered no explanation of why
gravity should follow an inverse square law. Einstein’s theory
also says that gravity follows an inverse square law (exceptin
strong gravitational fields), but it tells us why this should be
so. That is why Einstein’s theory is better than Newton's,
even though it includes Newton's theory within itself and
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Rubber sheet analogy for curved
space-time.

Bending of staright by the Sun.
Light from the star A is deflected as
it passes close to the Sun on its
way to Earth, We see the starin the
apparent direction B, shifted by the
angle¢. Einstein predicted that
$ = 1.745 seconds of angle which
was found to be the same during
the solar eclipse of 1919



gives the same answers as Newton'’s theory everywhere
except where the gravitational field is very strong.

Einstein inferred that if gravitational acceleration and
inertial acceleration are precisely equivalent, gravity must
bend light, by a precise amount that could be calculated.
This was not entirely a startling suggestion: Newton's
theory, based on the idea of light as a stream of tiny
particles, also suggested that a light beam would be
deflected by gravity. But in Einstein's theory, the
deflection of light is predicted to be exactly twice as
great'as it is according to Newton's theory. When the
bending of starlight caused by the gravity of the Sun
was measured during a solar eclipse in 1919, and found to
match Einstein's prediction rather than Newton's, then
Einstein's theory was hailed as a scientific triumph.

Angular displacement is the angle subtended at the centre of a circle by a particle
moving along the circumference in a given time. §

Sl unit of angular measurement is radian.
Angular acceleration is the rate of change of angular velocity.
Relationship between angular and tangential or linear quantities.

s=rd Vr=rm | ar=ra
The force needed to move a body around a circular Path is called centripetal force
2
and is calculated by the expression F. = mra? - M

5
Moment of inertia is the rotational analogue of mass in linear motion. It depends on
the mass and the distribution of mass from the axis of rotation.

Angular momentum is the analegue of linear momentum and is defined as the
product of moment of inertia and angular velocity.

Total angular momentum of all the bodies in a system remains constant in the
absence of an external torque.

Artificial satellites are the objects that orbit around the Earth due to gravity.
Orbital velocity is the tangential velocity to put a satellite in orbit around the‘é,érth.

Artificial gravity is the gravity like effect produced in an orbiting spaceship to
overcome weightlessness by spinning the spaceship about its own axis.

Geo-stationary satellite is the one whose orbital motion is synchronized with the
rotation of the Earth.

Albert Einstein viewed gravitation as a space-time Curvature around an object,
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Explain the difference between tangential velocity and the angular velocity. If one of
these is given for a wheel of known radius, how will you find the other?

Explain what is meant by centripetal force and why it must be furnished to an object if
the object is to follow a circular path?

What is meant by moment of inertia? Explain its significance.

What is meant by angular momentum? Explain the law of conservation of angular
momentum.

Show that orbital angular momentum L, = mvr.

Describe what should be the minimum velocity, for a satellite, to orbit close to the
Earth around it.

State the direction of the following vectors in simple situations; angular momentum
and angular velocity.

Explain why an object, orbiting the Earth, is said to be freely falling. Use your
explanation to point out why objects appear weightless under certain circumstances.

When mud flies off the tyre of a moving bicycle, in what direction does it fly?
Explain.

A disc and a hoop start moving down from the top of an inclined plane at the same
time. Which one will be moving faster on reaching the bottom?

Why does a diver change his body positions before and after diving in the pool?

2 A student holds two dumb-bells with stretched arms while sitting on a turn table. He
is given a push until he is rotating at certain angular velocity. The student then pulls the
dumb-bells towards his chest (Fig. 5.25).‘¥Vhat will be the effect on rate of rotation?

<Jr5 b

Explain how many minimum number of geo-stationary satellites are required for global
coverage of T.V transmission.
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A tiny laser beam is directed from the Earth to the Moon. If the beam is to have a

diameter of 2.50 m at the Moon, how small must divergence angle be for the

beam? The distance of Moon from the Earth is 3.8 x 10°m. #
(Ans: 6.6 x 10 rad)

A gramophone record turntable accelerates from rest to an angular velocity of

45.0 rev min' in 1.60s. What s its average angular accelération? (Ans: 2,68 rart s%)
A body of moment of inertia 7 = 0.80 kg m* about a fixed axis, rotates with a
constant angular velocity of 100 rad s, Calculate its angujar momentum L and the
torque in thi tion.

que to susta is motion (Ans: 80 Js, 0)

et

Consider the rotating cylinder shown in Fig. 5.26.
Suppose that m = 5.0 kg, F =060 N and r=0.20 m.
Calculate () the torque acting on the cylinder, (b) the

angular acceleration of the cylinder.
(Moment of inertia of cylinder = 2 mr*)

(Ans: 0.12 Nm, 1.2 rad s?)
Calculate the angular momentum of a star of mass 2.0 x 10¥ kg and radius
7.0 x 10° km. If it makes one complete rotation about its axis once in 20 days, what

£ s sie -
S N e (Ans: 1.4 x 10% J s, 2.5 x 10% J)

A 1000 kg car travelling with a speed of 144 km h™' round a curve of radius 100 m.
Fi S tripetal force.
ind the necessary centripe rce (Ans: 1.60% 10° N)

What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km
radius so that there will be no tendency for the pilot to fall down at the highest point?
(Ans: 99 ms™)

The Moon orbits the Earth so that the same side always faces the Earth.
Determine the ratio of its spin angular momentum (about its own axis) and its
orbital angular momentum. (In this case, treat the Moon as a particle orbiting the
Earth). Distance t%etween the Earth and the Moon is 3.85 x 10° m. Radius of the
Moon is 1.74 x 10° m. ;
(Ans: 8.2 x 10°)

The Earth rotates on its axis once a day. Suppose, by some process the Farth contracts
SO that its radius is only half as large as at present. How fast will it be rotating then?

- 2
(For sphere 1= 2/5 MR?). (Ans: The Earth would complete its rotation in 6 hours)

What should be the orbiting speed to launch a sateliite in a circuI%r orbit 900 km
above the surface of the Earth? (Take mass of the Earth as 6.0 x 10" and its radius

as 6400 km). (Ans: 74 km s™)
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Chapter 6
FLUID DYNAMICS

Learning Objectives
At the end of this chapter the students will be able to:

Understand that viscous forces in a fluid cause a retarding force on an object moving
through it.

Use Stokes' law to derive an expression for terminal velocity of a spherical body
falling through a viscous fluid under laminar conditions.

Understand the terms steady (laminar, streamline) flow, incompressible flow, non
viscous flow as applied to the motion of an ideal fluid.

Appreciate that at a sufficiently high velocity, the flow of viscous fluid undergoes a
transition from laminar to turbulence conditions.

Appreciate the equation of continuity Av = Constant for the flow of an ideal and
incompressible fluid.

Appreciate that the equation of continuity is a form of the principle of conservation of
mass.

Understand that the pressure difference can arise from different rates of flow of a
fluid (Bernoulli effect).

Derive Bernoulli's equation in form P + % pv? + pgh = constant.

Explain how Bernoulli effect is applied in the filter pump, atomizers, in the
flow of air over an aerofoil, Venturimeter and in blood physics.

Give qualitative explanations for the swing of a spinning ball.

T he study of fluids in motion is relatively complicated, but analysis can be simplified by

making a few assumptions. The analysis is further simplified by the use of two important
conservation principles; the conservation of mass and the conservation of energy. The law of
conservation of mass gives us the equation of continuity while the law of conservation of
energy is the basis of Bernoulli's equation. The equation of continuity and the Bernoulli's
equation along with their applicationsin aeroplane and blood circulation are discussed in this
chapter.
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~ For Your Information

Viscosities of Liquids and Gases
at30°C

Viscosity
Mat‘m' 1 od ‘u'mi)
Alr 0.019
Acetone 0.285
Methanol 0.510
Benzene 0.564
Water 0.801
Ethanol 1.000
Plasma 1.6
Glyeerin 6.29

6.1 VISCOUSDRAG AND STOKES' LAW

The frictional effect between different layers of g flowing
fluid is described in terms of viscosity of the fluid. Viscosity
measures, how much force is required to slide one layer of
the liquid over another layer. Substances that do not flow
easily, such as thick tar and honey etc; have large
coefficients of viscosity, usually denoted by greek letter n.
Substances which flow easily, like water, have ,small
coefficients of viscosity. Since liquids and gases have non
Zero viscosity, a force is required if an object is to be
moved through them. Even the small viscosity of the air
causes a large retarding force on a car as it travels at high
speed. If you stick out your hand out of the window of a
fast moving car, you can easily recognize that considerable
force has to be exerted on your hand to move it through the
air. These are typical examples of the following fact,

An object moving through a fluid experiences a
retarding force called a drag force. The drag force
increases as the speed of the object increases.

Even in the simplest cases the exact value of the drag
force is difficult to calculate. However, the case of a sphere
moving through a fluid is of great importance.

The drag force Fon a sphere of radius r moving slowly with
speed v through a fluid of viscosity 1 is given by Stokes’ law
as under.

FxGenpy: =~ - (6.1)

At high speeds the force is no longer simply proportional to
speed.

6.2 TERMINAL VELOCITY

Consider a water droplet such as that of fog falling
vertically, the air drag on the water droplet increases with
speed. The droplet accelerates rapidly under the over
powering force of gravity which pulls the droplet downward.
However, the upward drag force on it increases as the
speed of the droplet increases. The net force on the
droplet is
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Net force = Weight — Drag force (6.2)

As the speed of the droplet continues to increase, the drag
force eventually approaches the weight in the magnitude.
Finally, when the magnitude of the drag force becomes
equal to the weight, the net force acting on the droplet is
zero. Then the droplet will fall with constant speed called
terminal velocity.

To find the terminal velocity v; in this case, we use Stokes
Law for the drag force. Equating it to the weight of the
drop, we have

mg = 6 arv;

=.M9
i WEg (6.3)

The mass of the droplet is pV,
where volume V= ; (nra)

Substituting this value in the above equation, we get

2 2
v = g;n" .......... (6.4)

Example 6.1: A tiny water droplet of radius 0.010 cm
descends through air from a high building. Calculate its
terminal velocity. Given that n for air =19 x 10°kgm™s™
and density of water P = 1000 kgm™.

Solution:
r=10x10*m, P=1000kgm®, "n=19 x10°kgm™s”

Putting the above values in Eq. 6.4

_ 2x9.8ms " x (1x10" m) x1000 kgm
9x19x10 kgm™'s”

Vi

We get  Terminal velocity = 1.1 ms™

Can You Do That?




(a) Streamiinas (laminar flow)

2]

(b) Turbulent flow

Fig. 6.1

For Your Information

Frine

ormula One racing cars have a
streamlined design.

Dolphins have streamlined bodies
to assist their movement in water.
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Moving fluids are of great importance. To learn about the
behaviour of the fluid in motion, we consider their flow
through the pipes. When a fluid is in motion, its flow can be
either streamline or turbulent,

The flow is said to be streamline or laminar, if
every particle that passes a particular point,
moves along exactly the same path, as followed
by particles which passed that points earlier.

In this case each particle of the fluid moves along a smooth
path called a streamline as shown in Fig. 6.1 (@). The
different streamlines can not cross each other. This
condition is called steady flow condition. The direction of the
streamlines is the same as the direction of the velocity of the
fluid at that point. Above a certain velocity of the fluid flow,
the motion of the fluid becomes unsteady and irregular,

Under this condition the velocity of the fluid changes
abruptly as shown in Fig.6.1 (b). In this case the exact path
of the particles of the fluid can not be predicted.

The irregular or unsteady flow of
the fluid is called turbulent flow.

We can understand many features of the fluid in motion by
considering the behaviour of a fluid which satisfies the
following conditions.

1. The fluid is non-viscous i.e, there is no internal
frictional force between adjacent layers of fluid.

2. The fluid is incompressible, i.e., its density is constant,

The fluid motion is steady.

6.4 EQUATION OF CONTINUN
Consider a fluid flowing through a Pipe of non-uniform size.
The particles in the fluid move along the streamlines in a
steady state flow as shown in Fig. 6.2
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In a small time At, the fluid at the lower end of the tube
maoves a distance Ax;, with a velocity v,. If A, is the area of
cross section of this end, then the mass of the fluid
contained in the shaded region is:

Amy = p1A1AX1 = p1A1V1 XAt

Where P, is the density of the fluid. Similarly the fluid that
moves with velocity v, through the upper end of the pipe
(area of cross section A;) in the same time At has a mass

Amsz =P Asva x Al

If the fluid is incompressible and the flow is steady, the
mass of the fluid is conserved. That is, the mass that flows
into the bottom of the pipe through A, in a time At must be
equal to mass of the liquid that flows out through A; in the
same time. Therefore, .

Amy=Am;
or p1A1V1 = p;v‘\sz

This equation is called the equation of continuity. Since
density is constant for the steady flow of mcompressnble
fluid, the equation of continuity becomes

A1V1 = Ang .......... (65)

The product of cross sectional area of the pipe
and the fluid speed at any point along the pipe
is a constant. This constant equals the volume
flow per second of the fluid or simply flow rate.

Example: 6.2: A water hose with aninternaldiameter of
20 mm at the outlet discharges 30 kg of water in 60 s.
Calculate the water W at the outlet. Assume the density
of water is 1000 kgm™and its flow is steady.

Solution:
Mass flow per second = %%';—9 =0.5kgs'

Cross sectional area A =nr?

131

Fig. 6.2

v

As the water falls, its speed
increases and so its cross sectional
area decreases as mandated by the
continuity equation.



The mass of water discharging per second through area A is

pAy = _Mmass

or y=1m;ém
p

0.5kgs™"
1000 kgm ™ x 3.14 x (10 x103m)?

=16ms™

£33 2 : il e Tase ci s By e
< b= L2 A 1 I’C

- NV LI g . ERA 4
As the fluid moves throug

h a pipe of varying cross section
and height, the pressure will change along the pipe.
Bernoulli's equation is the fundamental equation in fluid
dynamics that relates pressure to fluid speed and height.

In deriving Bernoulli's equation, we assume that the fluid is
incompressible, non viscous and flows in a steady state
manner. Let us consider the flow of the fluid through the
pipe in time ¢, as shown in Fig. 6.3.

Fig 6.3

The force on the upperend of the fiuid is P,A, where P, the
pressure and A; is the area of cross section at the upper
end. The work done on the fluid, by the fluid behind it, in
moving it through a distance Ax;, will be

W1 = F1dX1 = P1A1 AXy
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Similarly the work done on the fluid at the lower end is Interesting Information

Wo=-Fs Ax;=-PA2Ax; : u‘u.

—

Where P; is the praesure, A; is the area of cross section of  ar
lower end and Ax; is the distance moved by the fluid in the
same time interval {. The work W; is taken to be —ive as

this work is done against the fluid force.

The net work done= W= W, + W,"

or w= PiA1 AXi— PaAsAX; ... (5.6)
If v; and v, are the velocities at the upper and lower ends
respectively, then A stream of air passing over a tube
dipped in a liquid will cause the liquid
= == to rise in the tube shown. Th

W= Fhyvi PM? vat eﬂ::toia':wdhpwﬁm“ botties an:

From equation of continuity (equation 6.5) paint sprayers.
A= A2V2 ) >
of fluid
Hence, A Xt=AN;Xt=V Xr%uép te;onsideration)
W a{(Py= gy eV S rasy [0 ) | —

If m Is the mass and p is the density then V = %’—

So equation 6.7 becomes

W= (P~ P,) % .......... (6.8)

Part of this work is utilized by the fluid in changing its K.E.
and a part is used in changing its gravitational P.E.

Change in KE. = A(KK.E.) = -;-mv.j’ = -;-mvf v (6.9)
Change in PE. = A(PE.) =mgh;-mgh;  ...... (6.10)
Where h; and h; are the heights of the upper and lower
ends respectively. A chimney works best when it is tall

: x : and exposed to air currents, which
Applying, the law of conservation of energy to this,volume  reduces the pressure at the top and
of the fluid, we get force the upward flow of smoke.
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(P1-Pz) pm= %mvzz- %mvf +mghg-mgh1 '''''' (6.11)
rearranging the equation (6.1 1)

Pv*% prﬂ:gh: =Pz+%pvzz +pgh;

This is Bernoulli's equation and is often expressed as:

P+§1pv2+pgh=0m'lsbnt .......... (6.12)

- Torricelli’'s Theorem

A simple application of Bernoulli's equation is shown in
Fig6.4. Fig. 6.4. Suppose a large tank of fluid has two small
orifices A and B on it, as shown in the figure. Let us find
the speed with which the water flows from the orifice A.

Since the orifices are so small, the efflux speeds V2 and vy
will be much larger than the Speed v; of the top surface of
water. We can therefore, take Vi as approximately zero,
Hence, Bemoulli's equation can be written as:

Pi+ pgh,= P, + %Pvzz + pgh:

But P1= P, = almospheric pressure

Therefore, the above equation becomes

Vs = .jzg(f:1 . Y S YR (6.13)
This is Torricelli's theorem which states that;

s Thospud-ofeﬂluxhequdbha
g Bl sl ined by the fluid in falling through the
tap flows faster here, This causes distance (h, - h,) under the action of gravity.

drop in pressure near it and air
therefore, flows in from the side
tubo.modrandmlogemcrm

expelled through the lower part of Notice that the speed of the efflux of liquid is the same as
the pump. the speed of a ball that falls through a height (hy - hy). The
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top level of the tank has moved down a little and the P.E.
has been transferred into K.E. of the efflux of fluid. If the
orifice had been pointed upward as at B shown in Fig.6.4,
this K.E. would cllow the liquid to rise to the level of
water tank. In practice, viscous-energy losses would alter
the result to some extent.

Relation between Speed and Pressure of the

Fluid

A result of the Bernoulli's equation is that the pressure will A@ @C
be low where the speed of the fluid is high. Suppose that @B

water flows through a pipe system as shown in Fig. 6.5. « '

Clearly, the water will flow faster at B than it does at A or C.
Assuming the flow speed at A to be 0.20 ms™ and at B to be
2.0 ms', we compare the pressure at B with that at A.

“ia. 8.5
Fig. 6

Applying Bernoulli's equation and noting that the average
P.E. is the same at both places, We have,

Pat %pvj =Py + %pvs .......... (6.14)
Substituting  v4=0.20 ms”’ Ve = 20 me’
And P = 1000 kgm™
We get Py - Pg= 1980 Nm™*

This shows that the pressure in the narrow pipe where
streamlines are closer together is much smaller than in the
wider pipe. Thus,

Where the speed is high, the pressure will be low.

The lift on an aeroplane is due to this effect. The flow of air 4 g
around an aeroplane wing is illustrated in Fig. 6.6. The wing is e
designed to deflect the air so that streamlines are closer
together above the wing than below it. We have seen in
Fig 6 6 that where the streamlines are forced closer together,
the speed is faster. Thus, air is travelling faster on the upper
side of the wing than on the lower. The pressure will be lower Fig.f
at the top of the wing, and the wing will be forced upward. :

Similarly, when a tennis ball is hit by a racket in such a way
that it spins as well as moves forward, the velocity of the
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Air

Atmospheric
pressure

Low

The carburetor of a car engine uses
a Venturi duct to feed the correct mix
of air and petrol to the cylinders. Air
is drawn through the duct and

aplpetothecyllndors.AtinyirMat
the side of duct is fed with petrol.
The air through the duct moves very
fast, creating low pressure in the
duct, which draws petrol vapour into

air on one side of the ball increases (Fig. 6.7) due to spin
and air speed in the same direction as at B and hence, the
pressure decreases. This gives an extra curvature to the
ball known as swing which deceives an opponent player.

Venturi Relation

If one of the pipes has a much smaller diameter than the
other, as shown in Fig. 6.8, we write Bernoulii's equation in
a more convenient form. It is assumed that the pipes are
horizontal so that pgh terms become equal and can,
therefore, be dropped. Then

1

Py-Py= %pv‘i -dovi= %p(vf- Bl comic s 4B 15)

2

As the cross-sectional area A, is small as compared to the
area A, then from equation of continuity v; = (A/A,) v,, will
be small as compared to v.. Thus for flow from a large pipe
to a small pipe we can neglect v, on the right hand side of
equation 6.15. Hence,

P,-Py= %,,'.,3 S (6.16)

This is known as Venturi relation, which is used in Venturi-
meter, a device used to measure speed of liquid flow.

Example 6.3: water flows down hill through a closed
vertical funnel. The flow speed at the top is 12.0 cms™'. The
flow speed at the bottom is twice the speed at the top. If
the funnel is 40.0 cm long and the pressure at the top is
1.013 x10° Nm™, what is the pressure at the bottom?

pressure Solution: Using Beroulli's equation

P+ ogh,+% pvi = P+ pgh, + 51 pvi

Or P:=P1+pgh+%p(V?’-v§)

- where h = hy - 1= the length of the funnel
Pz =(1.013 x 10°Nm?) + (1000 kgm™ x 9.8 ms? x 0.4m)
+ [% (1000kgm®) x {(0.12ms'Y"- (0.24 ms™'Y’}]

=1.05 x10° N m?
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Blood Flow

Blood is an incompressible fluid having a densily nearly
equal to that of water. A high concentration (~50%) of red
blood cells increases its viscosity from three to five times
that of water. Blood vessels are not rigid. They stretch like
a rubber hose. Under normal circumstances the volume
of the blood is sufficient to keep the vessels inflated at all
times. even in the relaxed state between heart beats. This
means there is tension in the walls of the blood vessels
and consequently the pressure of blood inside is greater
than the external atmospheric pressure. Fig. 6.9 shows
the variation in blood pressure as the heart beats. The
pressure varies from a high (systolic pressure) of 120 torr
(1 torr = 133.3 Nm™) to a low diastolic pressure) of about
75-80 torr between beats in normal, healthy person..The
numbers tend to increase with age, corresponding to the
decrease in the flexibility of the vessel walls.

The unit torr or mm of Hg is opted instead of S| unit of
pressure because of its extensive use in medical equipments.

An instrument called a sphygmomanometer measures
blood pressure dynamically (Fig. 6.10).

~
ara Air bub
0 Release valve 120f
280 T .
. c I \
wod 2 = \
"o e 2 80 //
120 g 3 - 3
100 8
"1 9 & ok
%* 2 -
mmiig [Tarr) One beat | |
1
Time (s)
Fig. 6.9

Fig. 6.10

An inflatable bag is wound around the arm of a patient and
external pressure on the arm is increased by inflating the bag.
The effect is to squeeze the arm and compress the blood
vessels inside. When the external pressure applied becomes
larger than the systolic pressure, the vessels collapse, cutting
off the flow of the blood. Opening the release valve on the bag
graduallydecreasesthe external pres’
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A stethoscope detects the instant at which the external
pressure becomes equal to the Systolic pressure. At this
point the first surges of blood flow through the narrow
stricture produces a high flow speed. As a result the flow is
initially turbulent,

As the pressure drops, the external pressure eventually
equals the diastolic pressure. From this point, the vessel
no longer collapse during any portion of the flow cycle. The
flow switches from turbulent to laminar, and the gurgle in
the stethoscope disappears. This is the signal to record
diastolic pressure.

SUMMARY

An object moving through a fluid experiences a retarding force known as drag force.
Itincreases as the speed of object increases.

A sphere of radius r moving with speed v through a fluid of viscosity 1 experiences a
viscous drag force F given by Stokes' law F = ¢ nnrv.

The maximum and constant velocity of an object falling vertically downward is called
terminal velocity.

An ideal fluid is incompressible and has no viscosity. Both air and water at low
speeds approximate to ideal fluid behaviour.

In laminar flow, layers of fluid slide smoothly past each other.
In turbulent flow there is great disorder and a constantly changing flow pattern.

Conservation of mass in an incompressible fiuid is expressed by the equation of
continuity A,v, = Ay, = constant '

Applying the principles of conservation of mechanical energy to the steady flow of an
ideal fluid leads to Bemoulli's equation.

P+ ; pv:+ pgh = constant

The effect of the decrease in pressure with the increase in speed of the fluid in a
horizontal pipe is known as Venturi effect.
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QUESTIONS

Explain what do you understand by the term viscosity?

What is meant by drag force? What are the factors upon which drag force acting
upon a small sphere of radius r, moving down through a liquid, depend?

1 Why fog droplets appear to be suspended in air?

Explain the difference between laminar flow and turbulent flow.
State Bernoulli's relation for a liquid in motion and describe some of its applications.

A person is standing near a fast moving train. Is there any danger that he will fall
towards it?

Identify the correct answer. What do you infer from Bernoulli's theorem?
(1" Where the speed of the fluid is high the pressure will be low.
(1) Where the speed of the fluid is high the pressure is also high.
(i) This theorem is valid only for turbulent flow of the liquid.

Two row boats moving parallel in the same direction are pulled towards each other.
Explain.

' Explain, how the swing is produced in a fast moving cricket ball.

Explain the working of a carburetor of a motorcar using by Bernoulli's principle.

For which position will the maximum blood pressure in the body have the smallest
value. (2) Standing up right (b) Sitting (¢) Lying horizontally (d) Standing on one'’s
head?

©.12In an orbiting space station, would the blood pressure in major arteries in the leg

s 1
t

o WA
0.4

ever be greater than the blood pressure in major arteries in the neck?

NUMERICAL PROBLEMS

Certain globular protein particle has a density of 1246 kg m™. It falls through pure
water (N1=8.0 x 10* Nm&) with a terminal speed of 3.0 cm h'. Find the radius of
the particle.

(Ans: 1.6 x10%m)

Water flows through a hose, whose intérnal diameter is 1cm at a speed of 1ms .
What should be the diameter of the nozzle if the water is to emerge at 21ms™'?

(Ans: 0.2 cm)
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The pipe near the lower end of a large water storage tank develops a small leak and
a stream of water shoots from it. The top of water in the tank is 15m above the point
of leak.
@) With what speed does the water rush from the hole?
D) If the hole has an area of 0.060 cm?, how much water flows out in one second?
(Ans: (a) 177 ms™, (b) 102 cm?)

Water is flowing smoothly through a closed pipe system. At one point the speed of
water is 3.0ms’) while at another point 3.0 m higher, the speed is 4.0 ms'. If the
pressure is 80 kPa at the lower point, what is pressure at the upper point?

(Ans: 47 kPa)
An airplane wing is designed so that when the speed of the air across the top of the
9

wing is 450 ms”, the speed of air below the wing is 410 ms™'. What is the pressure
difference between the top and bottom of the wings? (Density of air = 1.29kgm™)

(Ans: 22 kPa)

The radius of the aorta is about 1.0 cm and the blood flowing through it has a speed
of about 30 ecms™'. Calculate the average speed of the blood in the capillaries using
the fact that although each capillary has a diameter of about 8 x 10 cm, there are
literally millions of them so that their total cross section is about 2000em?.

(Ans: 5x 10°ms")

- How large must a heating duct be if air moving 3.0 ms™ along it can replenish the air in

aroom of 300 m’ volume every 15 min? Assume the air's density remains constant.
(Ans: Radius = 19 cm)

An airplane des gn calls for a “lift” due to the net force of the moving air on the wing of
about 1000 Nm* of wing area. Assume that air flows past the wing of an aircraft with
streamline flow. If the speed of flow past the lower wing surface is 160ms™', what is
the required speed over the upper surface to give a “lift” of 1000Nm 27 The density of
airis 1.29 kgm™ and assume maximum thickness of wing to be one metre.

(Ans: 165 ms™')

What gauge pressure is required in the city mains for a stream from a fire hose
connected to the mains to reach a vertical height of 15,0 m?

n

(Ans: 1.47 x 10° Pa)
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"Chapter YW

~ OSCILLATIONS

Learning Objectives

At the end of this chapter the students will be able to:

w

Investigate the motion of an oscillator using experimental, analytical and graphical
methods.

Understand and describe that when an object moves in a circle the motion of its
projection on the diameter of the circle is simple harmonic.

Show that the motion of mass attached to a spring is simple harmonic.

Understand that the motion of simple pendulum is simple harmonic and to
calculate its time period.

Understand and use the terms amplitude, time period, frequency, angular
frequency and phase difference.

Know and use of solutions in the form of x = x, cos wt or y =y, sin wt.
Describe the interchange between kinetic and potential energies during SHM.
Describe practical examples of free and forced oscillations.

Describe practical examples of damped oscillations with particular reference to
the effects of the degree of damping-and the importance of critical damping in
cases such as car suspension system.

M any a times, we come across a type of motion in which a body moves to and fro about

a mean position. It is called oscillatory or vibratory motion. The oScillatory motion is called
periodic when it repeats itself afterequal intervals of time.

Some typical vibrating bodies are shown in Fig. 7.1. It is our common observation that
a) a mass, suspended from a spring, when pulled down and then released, starts

oscillating (Fig. 7.1 a),

) the bob of a simple pendulum when displaced from its rest position and released,

vibrates (Fig. 7.1 b).
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(Vibrating objeots)
Fig. 7.1

Let us consider a mass m attached to one end of a

c) a steel ruler clamped at one end to a bench oscillates
when the free end is displaced sideways (Fig. 7.1 ¢).

d) a steel ball rolling in a curved dish, oscillates about its
rest position (Fig. 7.1 d).

Thus to get oscillations, a body is pulled away from its rest
or equilibrium position and then released. The body oscillates
due to a restoring force. Under the action of this restoring
force, the body accelerates and it overshoots the rest
position due to inertia. The restoring force then pulls it
back. The restoring force is always directed towards
the rest position and so the acceleration is also directed
towards the rest or mean position.

It is observed that the vibrating bodies produce waves.
For example, a violin string produces sound waves in air.
There are many phenomena in nature whose explanation
requires the understanding of the concepts of vibrations
and waves. Although many large structures, such as
skyscrapers and bridges, appear to be rigid, they actually
vibrate. The architects and the engineers who design and
build them, take this fact into account.

.

*

n elastic
spring which can move freely on a frictionless horizontal
surface as shown in Fig. 7.2 (a). When the mass is
displaced towards right thraugh a distance x (Fig. 7.2 b),
the force F at that instant is given by Hooke's law F = kx
where k is a constant known as spring constant. Due to
elasticity, spring opposes the applied force which produces
the displacement. This opposing force is called restoring
force F, which is equal and opposite to the applied force
within_elastic limit of the spring. Hence

AR A R (7.1)

The negative sign indicates that F: is directed opposite to
X. i.e., towards the equilibrium position. Thus we see that
in a system obeying Hooke's law, the restoring force F, is
directly proportional to the displacement x of the system
from its equilibrium position and is always directed towards
it. When the mass is released, it begins to oscillate about
the equilibrium position (Fig. 7.2 ¢). The oscillatory motion
taking place under the action of such a restoring force is
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known as simple harmonic motion (SHM). The acceleration
a produced in the mass m due to restoring force can be
calculated using second law of motion

F=ma
Then, -kx = ma
or a= --k—x MErvi (7.2)
m
or aoc -x

The acceleration at any instant of a body
executing SHM is proportional to 2N
and is always directed towards its mean position.

We will now discuss various terms which are very often
used in describing SHM.

(i) _ Instantaneous Displacement and Amplitude

of Vibration

It can be seen in Fig. 7.2 that when a body is vibrating, its
displacement from the mean position changes with time. . .
The value of its distance from the mean position at any A™% %
time is known as its instantaneous displacement. It is zero 5] H

at the instant when the body is at the mean position and is
maximum at the extreme positions. The maximum value of
displacement is known as amplitude.

The arrangement shown in Fig. 7.3 can be used to record
the variations in displacement with time for a mass-spring
system. The strip of paper is moving at a constant speed
from right to left, thus providing a time scale on the strip.
A pen attached with the vibrating mass records its
displacement against time as shown in Fig. 7.3. It can
be seen that the curve showing the variation of
displacement with time is a sine curve. It is usually
known as wave-foom of SHM. The points B and D
correspond to the extreme positions of the vibrating mass
and points A,C and E show its mean position. Thus the line
ACE represents the level of mean position of the mass on
the strip. The amplitude of vibration is thus a measure of
the line Bb or Dd in Fig. 7.3,

Movement of Paper
<‘
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(ii) Vibration

A vibration means one complete round trip of the body in
motion. In Fig. 7.3, it is the motion of mass from its mean
position to the upper extreme position, from upper extreme
position to lower extreme position and back to its mean
position. In Fig. 7.3, the curve ABCDE correspond to the
different positions of the pen during one complete
vibration. Alternatively the vibration can also be defined as
motion of the body from its one extreme position back to
the same extreme position. This will correspond to the
portion of curve from points B to F or from paints D to H.

(iii) Time Period
Itis the time T required to complete one vibration.
(iv) Frequency

Frequency f is the number of vibrations executed by a body
in one second and is expressed as vibrations per second
or cycles per second or hertz (Hz).

The definitions of T and f show that the two quantities are
related by the equation

i R S (7.3)

s | RS
.

(v)  Angular Frequency

If T is the time period of a bedy executing SHM, its angular
frequency will be

o) Zx B - TVCHR, R (7.4)
T

Angular frequency o is basically a characteristic of circular
motion. Here it has been introduced in SHM because it
provides an easy method by which the value of
instantaneous displacement and instantaneous velocity of
a body executing SHM can be computed.

Let a mass m, attached with the end of a véArti'caII‘y
suspended spring, vibrate simple harmonically with period
T, frequency f and amplitude x,. The motion of the mass is
displayed by the pointer P; on the line BC with A as mean
position and B, C as extreme positions (Fig. 7.4a).

Assuming A as the position of the pointer at
t = 0, it will move so that it is at B,A,C and back to A at
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instants 7/4, T/2, 37/4 and T respectively. This will
complete one cycle of vibration with amplitude of vibration

being x, = AB = AC.

The concept of circular motion is introduced by considering a
point P moving on a circle of radius x, , with a uniform angular
frequency © = 2r/T, where T is the time period of the
vibration of the pointer. It may be noted that the radius of the
circle is equal to the amplitude of the pointer's motion.
Consider the motion of the point N, the projection of P on the
diameter DE drawn parallel to the line of vibration of the
pointerin Fig. 7.4 (b). Note that the level of points D and E

S T

L

L

is the same as the points B and C. As P describes
uniform circular motion with a constant angular speed o, N
oscillates to and fro on the diameter DE with time period T.
Assuming O, to be the position of P at t = 0 , the position of
the point N at the instants 0, 774, 7/2, 3T/4 and T will Se at
the points O,D,0,E and O respectively. A comparison of the
motion of N with that of the pointer P, shows that it is a
replica of the pointer's motion. Thus the expressions of
displacement, velocity and acceleration for the motion of N
also hold good for the pointer P,, executing SHM.

(i) Displacement

Referring to Fig. 7.4 (b), if we count the time ¢ = 0 from the
instant when P is passing through O;, the angle which the
radius OP sweeps out in time tis ZO/0P = §=awt. The
displacement x of N at the instant t will be

x = ON = OP sin £0,0P
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Fig. 7.5a)

or X=X, sind
or X=H0ol = Asicnn (7.5)

This will be also the displacement of the pointer P, at the
instant ¢,

The value of x as a functions of 0 is shown in Fig. 7.4 (c).
This is the wave-form of SHM. In Fig. 7.3, the same wave-
form was traced experimentally but here, we have traced it
theoretically by linking- SHM with circular motion through
the concept of angular frequency. The angle 6 gives the
states of the system in its vibrational cycle. For example, at
the start of the cycle 0 = 0. Half way through the cycle, is
180° ( = radians). When 0 = 270° (or 3n/2 radians), the
cycle is three-fourth completed. We call 8 as the phase of
the vibration. Thus when quarter of the cycle is completed,
phase of vibration is 90° (orn /2 radian). Thus phase is also
related with the circular motion aspect of SHM.

(ii) Instantaneous Velocity

The velocity of point P, at the instant ¢, will be directed along
the tangent to the circle at P and its magnitude will be
Ve . e (7.6)

As the motion of N on the diameter DE is due to motion of P
on the circle, the velocity of N is actually the component of
the velocity v» in a direction parallel to the diameter DE. As
shown in Fig. 7.5 (a), this component is

Ve 8in (90°- 0) = vs cos 0= x, » cos0.
Thus the magnitude of the velocity of N  or its speed v is

VEX, 0 cosl =x,mcoswt ... (7.7)

The direction of the velocity of N depends upon the value
of the phase angle 6. When ¢ is between 0° to 90° the
direction is from O to D, for © between 90° to 270° its
direction is from D to E. When 0 is between 270° to 360°, the
direction of motion is from E to D.

2

From Fig. 7.5, cos 6 = cos ZNPO = NP/OP = "°x-" g
°
Substituting the value of cas @ in Eq. 7.7
v= 28 el ol T E  E NS (7.8)
.
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As the motion of N on the diameter DE is just the replica of
the motion of the pointer executing SHM (Fig. 7.4), so
velocity of the point P or the velocity of any body
executing SHM is given by equations 7.7 and 7.8 in terms
of the angular frequency ». Eq. 7.8 shows that at the

mean position, where x = 0, the velocity is maximum and -

at the extreme positions where x = x,, the velocity is zero.

(iii) Acceleration in Terms of o

When the point P is moving on the circle, it has an
acceleration a, = X,’, always directed towards the centre O
of the circle. .

At instant t,its direction will be along PO. The acceleration of
the point Nwill be component of the accelerationa, along the
diameter DE on which N moves due to motion of P. As
shownin Fig. 7.5 (b), the value of this componentis

a,8iN0 = X,° sin 0.
Thus the accelerationaof Nis a= :g,mz sin0

and it is directed from N to O, i.e., directed towards the
mean position O (Fig. 7.5 b). In this figure sin 6 = ON/OP =
x/x,. Therefore,
= - R e
a=X0 % — = @X
xO

Comparison of Fig. 7.5 (b) and 74 (b) shows that the
direction of acceleration a and displacement x are

opposite. Considering the direction of x as reference, the
acceleration a will be represented by 52

= - (02 WL ety (79)

Eq. 7.9 shows that the acceleration is proportional to the
displacement and is directed towards the mean position
which is the characteristic of SHM. Thus the point N is
executing SHM with the same amplitude, period and
instantaneous displacement as the pointer P;. This
confirms our assertion that the motion of N is just a replica
of the pointer’s motion.

Equations 7.5 and 7.7 indicate that displacement and
velocity of the point executing SHM are determined by the
angle 0§ = wt. Note that this angle is obtained when SHM is
related with circular motion. Itis the angle which the rotating
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radius OP makes with the reference direction 00, at any
instant ¢ (Fig. 7.4 b).

The angle 6=wt  which specifies the
displacement as well as the direction of motion
of the point executing SHM is known as phase.

The phase determines the state of motion of the vibrating
point. If a body starts its motion from mean position, its
phase at this point would be 0. Similarly at the extreme

positions, its phase would be rt/2-

In Fig. 7.4 (b), we have assumed that to start with at ¢ = 0,
the position of the rotating radius OP is along OO, so that
the point N is at its mean position and the displacement at
t=0, is zero. Thus it represents a special case. In general at
=0, the rotating radius OP can make any angle ¢ with the
reference OO, as shown in Fig. 7.6 (a). In time ¢, the radius
will rotate by ot . So now the radius OP would make an

angle (ot+9) with 00, at the instant t and the
displacement ON = x at instant ¢ would be given by

ON = x = OP sin (ot +0)
=xsin(ot+e) (7.10)
Now the phase angleis of +0 je,

O0=woft+0

whent=0,0=¢. So @ is the initial phase. If we take initial

phase asr/2 or 90°, the displacement as given by Eq 7.10
is
X = X, sin (ot + 90°%)
SR TRB L. o (7.11)
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Thus Eq. 7.11 also gives the displacement of SHM, but in this
case the point N is starting its motion from the extreme
position instead of the mean position as shown in Fig. 7.6 (b).

Practically, for a simple harmonic system, consider
vibrating mass attached to a spring as shown in Fig. 7.2 (a, b
and c) whose acceleration at any instant is given by Eq. 7.2
whichis

m e
As k and m are constant, we see that the acceleration is
proportional to displacement x, andits direction is towards
the mean position. Thus the mass m executes SHM
between A and A" with x, as amplitude. Comparing
the above equation with Eq. 7.9, the vibrational angular
frequency is

® = Jz .......... (7.12)
m
The time period of the mass is
2 m
T= .m_"= 27:‘/7_ .......... (7.13)

The instantaneous displacement x of the mass as given by
Eq.75is :
X =X, 8in wt

x=xosingt
m

The instantaneous velocity v of the mass m as given by

Eq. 78is
= " 2_ g2 = ,,k 2 _ g2
V=0 4x,° - x (X, =x*)

(7.14)

(7.15)

Eq 7.15 shows that the velocity of the mass gets maximum
equal to v,, when x = 0. Thus

k

Vo = Xo
m

sl s e




then 4 N | (7.17)

The formula derived for displacement and velocity are also
valid for vertically suspended mass-spring system provided
air friction is not considered.

Example 7.1: A block weighing 4.0 kg extends a spring
by 0.16 m from its unstretched position. The block is
removed and a 0.50 kg body is hung from the same spring.
If the spring is now stretched and then released, what is its
period of vibration?

Solution:

Applied stretching force  F = kx or k= ;
F=mg=4kg x9.8 ms*=39.2kgms?=392N
o = 4kgx9.8ms? _ e
._; x=0.16m, k -———~0.16m 245kg s
Now time period T=2n %

or T=2n M—=0.285
T 245kgs *

A simple pendulum consists of a small heavy mass m
suspended by a light string of length / fixed at its upper

" I 5 end, as shown in Fig. 7.7. When such a pendulum is
(b'_,. mgcosg displaced from its mean position through a small angle 6 to
r:g ' C the position B and released, it starts oscillating to and fro

over the same path. The weight mg of the mass can be
resolved into two components: mg sin 6 along the tangent
.. ,.,"7 at B and mg cos 0 along CB to balance the tension of the
string. The restoring force at B will be

F=-mgsin®
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When 6 is small, sin6 =80

So F=ma=-mg0 RIS, (7.18)
Or a=-gb
But 9= Arc AB

/
When 6Gis small  Arc AB = OB = x, hence 0 = 3;—

Thus, a=- %’i .......... (7.19)

At a particular place ‘g’ is constant and for a given pendulum
1" is also a constant.
Therefore, % =k (a constant)

and the motion of the simple pendulum is simple harmonic.
Comparing Eq. 7.19 with Eq. 7.9

W= J;
[

As time periéd T= o
mn

Hence T=2n Jg .......... (7.20)

This shows that the time period depends orily on
the length of the pendulum and the acceleration
due to gravity. It is independent of mass.

Example 7.2: What should be he length of a simple
pendulum whose period is 1.0 second at a place where
g = 9.8 ms*?? Whatis the frequency of such a pendulum?

Solution:

Time period, T= 21:JZ
9 2
T=10s : g=98ms?

-~
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Squaring both sides

T2=4p2 L
g
o L
4n?
9.8ms? x1s?
l=—" """ =025m
” 4x3.14x3.14 2
Frequency f=i=i=1Hz
°q i

A AR A b

Let us consider the case of a vibrating mass-spring
system. When the mass m is pulled slowly, the spring is
stretched by an amount X, against the elastic restoring
force F. It is assumed that stretching is done slowly so that

acceleration is zero. According to Hooke’s law

F = kx,
When displacement = 0 force = 0
When displacement = X force = kx,
Average force F= O—‘jx-"— = %kxo

Work done in displacing the mass m through x, is
W=Fd= %kxox Xo = %k X2

This work appears as elastic potential energy of the spring.
Hence

PE. « % Eis s (7.21)

The Eq. 7.21 gives the maximum P.E. at the extreme
position. Thus

1
PE. max = 5 k x2

At any instant t, if the displacement is x, then PE. at that
instant is given by

152



BE 2 - oo (7.22)

Hence the K.E. at that instant is

i
KE. of the mass = - m? = 1 mx‘,{-'ij E- x2]
2 2 m xo 4
2
KE.= + kxe? E"—z] .......... (7.23)
2 x;

Thus, kinetic energy is maximum when x = 0, i.e. when the
mass is at equilibrium or mean position (Fig. 7.8)

KE. max = % kx? (7.24):
. 4 energy
For any displacement x, the energy is partly P.E. and partly total energy
K.E. Hence,
K.E /
Ejo'a[ = P.E. + K.E. 5%
PE./\ |
= \ v'
L e o P
3 kx*+ 2kxg [1 on] X o %
Fig. 7.8
Total energy = %kxoz .......... (7.25)

Thus the total energy of the vibrating mass and spring is
constant. When the K.E. of the mass is maximum, the P.E.
of the spring is zero. Conversely, when the PE. of the
spring is maximum, the K.E. of the mass is zero. The
interchange occurs continuously from one form to the other
as the spring is compressed and released alternately.
The variation of PE. and KE. with displacement is
essential for maintaining oscillations. This periodic
exchange of energy is a basic property of all oscillatory
systems. In the case of simple pendulum gravitational P.E.
of the mass, when displaced, is converted into K.E. at the



Comparison of SHMs
Amax

> 24

equilibrium position. The K.E. is converted into PE. as the
mass rises to the top of the swing. Because of the frictional
forces, energy is dissipated and consequently, the systems
do not oscillate indefinitely.

Example 7.3: A spring, whose spring constant is
80.0Nm™ vertically supports a mass of 1.0 kg in the rest
position. Find the distance by which the mass must be

pulled down, so that on being released, it may pass the

mean position with a velocity of 1.0 ms™.

Solution:
k=80.0 Nm™ , m=1.0 kg
Since  w?= X or w= |k
m m
80Nm™  [80kgms2x m™ 4
B & =8.94
\/ Tkg J Tkg S
Let the amplitude of vibration be x,
Then V=X, 0 or Xo = %
as v=10ms" and ® =894
; : ; 1ms™'
Distance through which m is pulled = X =m =011 m
.48

v

=z

Abodyis said to be executing free vibrations when it oscillates
without the interference of an external force. The frequency
of these free vibrations is known as its natural frequency.
Forexample, a simple pendulum when slightly displaced
from its mean position vibrates freely with its natural frequency

that depends only upon the length of the pendulum.

Onthe other hand, if afreely oscillating system is subjected
to an external periodic force, then forced vibrations will
take place. Such as when the mass of a vibrating

pendulum is struck repeatedly, then forced vibrations are
produced.
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A physical system under going forced vibrations
is known as driven harmonic oscillator.

The vibrations of a vehicle body caused by the running of
cngine is an example of forced vibrations. Another example
of forced vibration is loud music produced by sounding
wooden boards of string instruments.
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Associated with the motion of a driven harmonic oscillator,
there is a very striking phenomenon, known as resonance.
It arises if the external driving force is periodic with a
period comparable to the natural period of the oscillator.

In a resonance situation, the driving force may be feeble,
the amplitude of the motion may become extra ordinarily
large. In the case of oscillating simple pendulum, if we
blow to push the pendulum whenever it comes in front of
our mouth, it is found that the amplitude steadily increases.

To demonstrate this resonance effect, an apparatus is
shown in Fig. 7.9. A horizontal rod AB is supported by two
strings Sy and S,. Three pairs of pendulums aa, bb'and cc’
are suspended to this rod. The length of each pair is the
same but is different for different pairs. If one of these
pendulums, say c, is displaced in a direction perpendicular
to the plane of the paper, then its resultant oscillatory
motion causes in rod AB a very slight disturbing metion,
whose period is the same as that of ¢. Due to this slight
motion of the rod, each of the remaining pendulums (aa;
bb',and cc’) under go a slight periodic motion. This causes
the pendulum ¢/, whose length and, hence, period is
exactly the same as that of c, to oscillate back and forth
with steadily increasing amplitude. However, the
amplitudes of the other pendulums remain small through
out the subsequent motions of ¢ and c, because their
natural periods are not the same as that of the disturbing
force due to rod AB.

The energy of the oscillation comes from the driving source.

At resonance the transfer of energy is maximum.

Thus resonance occurs when the frequency of the applied
periodic forced is equal to one of the natural frequencies of
vibration ol the forced or driven harmonic oscillator.
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Do You Know?

All structures are likely to resonate
at one or more frequencies. This
can cause problem, Itis especially
important to test all the
components in helicopters and



“interesting Information -

The collapse of Tacoma Narrow
bridge (USA) is suspected to be due
to viofent resonance oscillations,

i@
|

ANAANNT,

0

:
d

@ yYndamped
Flg 7.1

Graph between amplitude and time

Advantaﬁes And Disadvantages of Resonance

We come across many examples of resonance in every
day life. A swing is a good example of mechanical
resonance. It is like 2 pendulum with a single natural frequency
depending on its length. If a series of regular pushes are
given to the swing, its motion can be built up enormously. If
pushes are given irregularly, the swing will hardly vibrate.
The column of soldiers, while marching on a bridge of long span
are advised to break their steps. Their rhythmic march might
set up oscillations of dangerously large amplitude in the
bridge structure.. ,

Tuning a radio is the best example of electrical resonance.
When we turn the knob of a radio, to tune & station, we are
changing the natural frequency of the electric circuit of the
receiver, to make it equal o the transmission frequency of
the radio station. When the two frequencies match, energy
absorption is maximum and this is the only station we hear.

Another good éxample of resonance is the heating and
cooking of food very efficiently and evenly by microwave
oven (Fig.7.10). The waves produced in this type of oven
have a wavelength| of 12 cm at a frequency of 2450 MHz.
At this frequency, the waves are absorbed due to
resonance by water and fat molecules in the food, heating
them up and so cooking the food.

e R R NN ERWIND :
This is a common observation that the amplitude of an
oscillating simple pendulum decreases gradually with time
till it becomes zero. Such oscillations, in which the
amplitude decreases steadily with time, are called damped
oscillations. :

-

We know from our everyday experience that the motion of
any macroscopic ‘sysiem is accompanied by frictional
effects. While describing the motion of a simple pendulum,
this effect was completely ignored. As the bob of the
pendulum moves to and fro, then in addition to the weight
of the bob and the tension in the string, bob experiences
viscous drag due to its motion through the air, Thus simple
harmonic motion is an idealization (Fig. 7.11 a). In practice,

the amplitude of this motion gradually becomes smaller
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and smaller because of friction and air resistance because
the energy of the oscillator is used up in doing work against
the resistive forces. Fig.7.11(b)shows how the amplitude

of a damped simple harmonic wave changes with time as
compared with an ideal un-damped harmonic wave.Thus
we see that

Damping is the process whereby energy
is dissipated from the oscillating system.

An application of damped oscillations is the shock
absorber of a car which provides a damping force to
prevent excessive oscillations (Fig. 7.12).

7.10 SHARPNESS OF RESONANCE

We have seen that at resonance, the amplitude of the oscillator
becomes very large. If the amplitude decreases rapidly at a
frequency slightly different from the resonant frequency, the
resonance will be sharp. The amplitude as well as its sharpness,
both depend upon the damping. Smaller the damping, greater
will be the amplitude and more sharp will be the resonance.

A heavily damped system has a fairly
flat resonance curve as is shown in an

amplitude frequency graph in Fig. 7.13.

The effect of damping can be observed by attaching a
pendulum having light mass such as a pith ball as its bob
and another of the same length carrying a heavy mass
such as a lead bob of equal size, to a rod as shown in
Fig. 7.9. They are set into vibrations by a third pendulum
of equal length, attached to the same rod. Itis observed

that amplitude of the lead bob is much greater than that

of the pith-ball. The damping effect for the pith-ball due

to air resistance is much greater than for the lead baob.
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*  Oscillatory motion is to and fro motion about 2 mean position.
“  Periodic motion is the one that repeats itself after equal intervals of time.

* Restoring force opposes the change in shape or length of a body and is equal and
opposite to applied force.

¢ A vibratory motion in which acceleration is directly proportional to displacement from
mean position and is always directed towards the mean position is known as simple
harmonic motion.

¢ The projection of a particle moving in a circle executes SHM. Its time period Tis if .

* Phase of vibration is the quantity which indicates the state of motion of a vibrating
particle generally referred by the phase angle.

* The vibratory motion of a mass attached to an elastic spring is SHM and its time
period is T=2x J-%_ :

* The vibratory motion of the bob of simple pendulum is :éis'o SHM and its time period

is given by
T=2r JZ
g

* Inan oscillating system PE. and KE interchange and total energy is conserved.

* A body is said to be executing free oscillation if it vibrates with its gwn natural
frequency without the interference.ofapg;gtem' Bogires =

* When a freely oscillating system is subjecl’ed o an ‘égnal‘ periodic force, then
forced vibrations take place.

* Resonance is the specific response of a system to a periodic force acting with the
natural vibrating period of the system.

* Damping is the process whereby energy is dissipated from the oscillating system.

QUESTIONS

7.1 Name two characteristics of simple harmonic motion.

7.2 Does frequency depends on amplitude for harmonic oscillators?
75 Can we realize an ideal simple pendulum?
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7.4 What is the total distance travelled by an object moving with SHM in a time equal to
its period, if its amplitude is A?

7.5 What happens to the period of a simple pendulum if its length is doubled? What
happens if the suspended mass is doubled?

7.6 Does the acceleration of a simple harmonic oscillator remain constant during its
motion? Is the acceleration ever zero? Explain.

‘What is meant by phase angle? Does it define angle between maximum
displacement and the driving force?

7.8 Under what conditions does the addition of two simple harmomc motions produce a
resultant, which is also simple harmonic?

7.9 Show that in SHM the acceleration is zero when the velocity is greatest and the
velocity is zero when the acceleration is greatest?

10In relation to SHM, explain the equations;
(i) y=Asin(ot+o)
(i) a=-w’x
11 Explain the relation between total energy, potential energy and kinetic energy for a
body oscillating with SHM.
712 Describe some common phenomena in which resonance plays an important role.

~I
~

~4

~d

7 171f a mass spring system is hung vertically and set into oscillations, why does the
motion eventually stop?

NUMERICAL PROBLEMS

A 100.0 g body hung on a spring elongates the spring by 4.0 cm. When a certain
object is hung on the spring and set vibrating, its period is 0.568 s. What is the
mass of the object pulling the spring?

(Ans:0.20 kg)

7.7 A load of 15.0g elongates a spring by 2.00 cm. If body of mass 294 g is attached to
the spring and is set into vibration with an amplitude of 10.0 cm, what will be its
period (1) spring constant (1) maximum speed of its vibration.

[Ans: (1) 1.26s, (ii) 7.35 Nm™", (iii) 49.0 cm s

7.3 An 8.0 kg body executes SHM with amplitude 30 cm. The restoring force is 60 N
when the displacement is 30 cm. Find

(i) Period

(ii) Acceleration, speed, kinetic energy and potential energy when the
displacement is 12 cm.

[Ans: (i) 1.3 s, (i) 3.0ms? 1.4 ms”, 7.6 J, 1.44J]
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74 A block of mass 4.0kgis dropped from a height of 0.80 m on to a spring of spring

78

7.6

7.8

constant k = 1960 Nm™', Find the maximum distance through which the spring will
be compressed.

(Ans: 0.18 m)

A simple pendulum is 50.0 cm long. What will be its frequency of vibration at a place
where g = 9.8 ms??

(Ans: 0.70 Hz)

A block of mass 1.6 kg is attached to a spring with spring constant 1000 Nm™' as
shown in Fig. 7.14. The spring is compressed through a distance of 2.0 cm and the
block is released from rest. Calculate the velocity of the block as it passes through
the equilibrium position, x = 0, if the surface is frictionless.

(Ans: 0.50 ms™)
g

Fig. 7.14 Reo

A car of mass 1300 kg is constructed using a frame Supported by four springs.
Each spring has a Spring constant 20,000 Nm'. If two people riding in the car have
a combined mass of 160 kg, find the frequency of vibration of the car, when it is
driven over a pot hole in the road. Assume the weight is evenly distributed.

(Ans: 1.18 Hz)

Find the amplitude, frequency and period of an object vibrating at the end of a
spring, if the equation for its position, as a function of time, is

x=0.25 cos [;Jt
What is the displacement of the object after 2.0 s?

(Ans: 0.25 m, % Hz, 165, x=0.18 m)
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Learning Objectives

At the end of this chapter the students will be able to :

16
17

18,

Recall the generation and propagation of waves.

Describe the nature of the motions in transverse and longitudinal waves.
Understand and use the terms wavelength, frequency and speed of wave.
Understand and use the equation v="Ffa

Understand and describe Newton's formula of speed of sound.

Derive Laplace correction in Newton's formula of speed of sound for air.
Derive the formula - v=v,+ 061t

Recognize and describe the factors on which speed of sound in air depends.
Explain and use the principle of superposition.

Understand the terms interference and beats.

Describe the phenomena of interference and beats giving examples of sound
waves.

Understand and describe reflection of waves.

Describe experiments, which demonstrate stationary waves for stretched strings
and vibrating air columns.

Explain the formation of a stationary wave using graphical method.
Understand the terms node and anti-node.

Understand and describe modes of vibration of string.

Understand and descrie Doppler's effect and its causes.

Recognize the applications of Doppler's effect in radar, sonar, astronomy, satellite
and radar speed traps.
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Do You Know?

Ultrasonic waves are particularly
useful for undersea communication
and detection systems. High

radio waves, used in

W aves ftransport energy without transporting matter.

The energy transportation is carried by a disturbance, which
spreads out from a source. We are well familiar with different
types of waves such as water waves in the ocean, or gently
formed ripples on a still pond due to rain drop. When a
musician plucks a guitar-string, sound waves are generated
which on reaching our ear, produce the sensation of music.
Wave disturbances may also come in a concentrated bundle
like the shock waves from an aeroplane flying at supersonic
speed. Whatever may be the nature of waves, the
mechanism/ by-which it transports energy is the same. A
succession of oscillatory motions are always involved. The
wave is generated by an oscillation in the vibrating body and
propagation of wave through space is by means of
oscillations. The waves which propagate by the oscillation of
material particles are known as mechanicai waves.

There is another class of waves which, instead of material
particles, propagate out in space due to oscillations of
electric and magnetic fields. Such waves are known as
electromagnetic waves. We will undertake the study of
electromagnetic waves at a later stage. Here we will
consider the mechanical waves only. The waves generated
in ropes, strings, coil of springs, water and air are all
mechanical waves.'

So far we have been considering motion of individual
particles but in casc of mechanical waves, we study the
collective motion of particles. An example will help us
here. If you look at a black and whitc picture in a
newspaper with a magnifying glass, you will discover that
the picture is made up of many closely spaced dots. If you
do not use the magnifier, you do not see the dats. What you
sce is the collective effect of dots in the form of a picture.
Thus what we sce as mechanical wave is actually the efTect
of oscillations of a very large number of particles of the
medium through which the wave is passing.

Drop a pebble into water. Ripples will be produced and
spread out across the water. The ripples are the examples
of progressive waves because they carry energy across
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the water surface. A wave, which transfers energy by
moving away from the source of disturbance, is called a
progressive or travelling wave. There are two kinds of
progressive waves - transverse waves and longitudinal
waves.

Transverse and Longitudinal Waves

Consider two persons holding opposite ends of a rope or a
hosepipe. Suddenlyone person gives one up and down jerk to
the rope. This disturbs the rope and creates a hump in it which
travels along the rope towardsthe otherperson (Fig.8.1a &b).
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Fig. 8.1

When this hump reaches the other person, it causes his
- hand to move up (Fig. 8.1 ¢). Thus the energy and -
momentum imparted to the end of the rope by the first
person has reached the other end of the rope by travelling
through the rope i.e., a wave has been set up on the rope
in the form of a moving hump. We call this type of wave a
pulse. The forward motion of the pulse from one end of the
rope to the other is an example of progressive wave. The
hand jerking the end of the rope is the source of the
wave. The ropé is thé medium in which the wave moves.
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Transverse waves

Longitudinal waves

Fig. 2.3(a)

Z3Z>

A large and loose spring coil (slinky spring) can be used to
demonstrate the effect of the motion of the source in
generating waves in a medium. It is better that the
spring is laid on a smooth table with its one end fixed
so that the spring does not sag under gravity.

It'the free end of the spring is vibrated from side to side, a pulse
of wave having a displacement pattem shown in Fig. 8.2 (a)
will be generated which will move along the spring.

If the end of the spring is moved back and forth, along the
direction of the spring itself as shown in Fig. 8.2 (b), a wave
with back and forth displacement will travel along the spring
Waves like those in Fig. 8.2 (a) in which displacementof the
spring is perpendicular to the direction of the waves are
called transverse waves. Waves like those in Fig. 8.2 (b) in
which displacements are in the direction of propagation of
waves are called longitudinal waves. In this example the coil
of spring is the medium, so in general we can say that

Transverse waves are those in which particles of
the medium are displaced in a direction
perpendicular to the direction of propagation of
waves and longitudinal waves are those in which
the particles of the medium have displacements
along the direction of propagation of waves.

Both types of waves can be set up in solids. In fluids,
however, transverse waves die out very quickly and
usually cannot be produced at all. That is why, sound
waves in air are longitudinal in nature.

ISE T S
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Upto now we have considered wave in the form of a pulse
which is set up by a single disturbance in a medium like the
snapping of one end of a rope or a coil spring. Continuous,
regular and rhythmic disturbances in a medium result from
periodic vibrations of a source which cause periodic waves
in that medium. A good example of a periodic vibrator is an
oscillating mass-spring system (Fig 8.3 a). We have already
studied in the previous chapter that the mass of such a
system executes SHM,

- SR AR~ iu -hl.‘_'
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Transverse Periodic Waves

Imagine an experiment where one endof a rope is fastened
to a mass spring vibrator. As the mass vibrates up and
down, we observe a transverse periodic wave travelling
along the length of rope (Fig. 8.3 b). The wave consists of
crests and troughs. The crest is a pattern in which the rope
is displaced above its equilibrium position, and in troughs,
it has a displacement below its equilibrium position.

As the source executes harmonic motion up and down with
amplitude A and frequency f, ideally every point along the
length of the rope executes SHM in turn, with the same
amplitude and frequency. The wave travels towards right
as crests and troughs in turn, replace one another, but the
points on the rope simply oscillates up and down. The
amplitude of the wave is the maximum value of the
displacement in a crest or trough and it is equal to the
amplitude of the vibrator. The distance between any two
consecutive crests or troughs is the same all along the
length of the rope. This distance is called the wavelength
of the periodic wave and is usually denoted by the Greek
letter lambda A (Fig. 8.3 b).

In principle, the speed of the wave can be measured by

timing the motion of a wave crest over a measured
distance. But it is not always convenient to observe the
motion of the crest. As discussed below, however, the
speed of a periodic wave can be found indirectly from its
frequency and wavelength. :

As a wave progresses, each point in the medium oscillates
periodically with the frequency and period of the source.
Fig. 8.4 illustrates a periodic wave moving to the right, as it
might look in photographic snapshots taken every /4
period. Follow the progress of the crest that started out
from the extreme left at { = 0. The time that this crest takes
to move a distance of one wavelength is equal to the time
required for a point in the medium to go through one
complete oscillation. That is the crest moves one
wavelength % in one period of oscillation T The speed v of
the crest is therefore,

distance rggvgd

9
corresponding timeinterval T
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All parts of the wave paderm move with the same speed, so
the speed of any one crest is just the speed of the wave
We can merefor‘e,ﬂay-&\at the speed v of the waves is

o
v S (8.1)

but % = f, where fis the frequency of the wave. It is the

same as the frequency of the vibrator, generating the
waves. Thus Eq. 8.1 becomes ?

A e (8.2)

| Phase Relationship between two Points on a Wave

The profile of periodic waves generated by a source
executing SHM is represented by a sine curve. Figure 8.5
shows the snapshot of a periodic wave passing through a
medium. In this figure, set of points are shown which are
moving in unison as the periodic wave passes. The points
C and C’, as they move up and down, are always in the
same state of vibration i.e., they always have identical
displacements and velocities. Alternatively, we can say that
as the wave passes, the points C ad C’! move in phase.
We may also say that C’ leads C by one time period or 2r
radian. Any point at a distance x, C lags behind by phase
angle 0= 2.%5

So is the case with points D and D’ . Indeed there are
infinitely many such points along the medium which are
vibrating in phase. Points separated from one another
through distances of A, 21, 34, ...... are all in phase with
each other. These points can be anywhere along the wave
and need not correspond with only the highest and lowest
points. For example, points such as P, P’, P” .. .
are all in phase. Each is separated from the next by a
distance A.

Some of the points are exactly out of step. For example,
when point C reaches its maximum upward displacement,
at the same time D reaches its maximum downward
displacement. At the instant that C begins to go down, D
begins to move up. Points such as these are called one
half period out of phase. Any two points separated from

one another by % 3%, 5%, ......... are out of phase.
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Longitudinal Periodic Waves

In the previous section we have considered the generation
of transverse periodic waves. Now we will see how the
longitudinal periodic waves can be generated.

Consider a coil of spring as shown in Fig. 8.6. It is
suspended by threads so that it can vibrate horizontally.
Suppose an oscillating force F is applied to its end as
indicated. The force will alternately stretch and compress
the spring, thereby sending a series of stretched regions
(called rarefaction) and compressions down the spring. We
will see the oscillating force causes a longitudinal wave to
move down the spring. This type of wave generated in Fig. 8.
springs is also called a compressional wave. Clearly in a

compressional wave, the particles in the path of wave move

back and forth along the line of propagation of the wave.

Notice in Fig. 8.6, the supporting threads would be exactly
vertical if the spring were undisturbed. The disturbance
passing down the spring causes displacements of the
elements of the spring from their equilibrium positions. In
Fig. 8.6, the displacements of the thread from the vertical PS03 40 250t
are a direct measure of the displacements of the spring =~ 'Nﬂlh-} :

elements. It is, therefore, an easy way to graph the Speedof sound in different media
displacements of the spring elements from their equilibrium

n
i
:

Displacement
D
-
4

Medi Speed

positions and this is done in the lower part of the figure. ms'
3 SPEEDOFSOUNDINAIR oo™ .,
e b e — o it i i ol Copper 3600
Sound waves are the most important examples - of e e
longitudinal or compressional waves. The speed of sound Glass 5500

waves depends on the compressibility and inertia of the 20°C

medium through which they are travelling. If the medium has Methanol 1120 .
the elastic modulus E and density p then, speed v is given by Water 483

i E 8.3) Carbon dioxide g?g

- TR vy 3 %xygan 3G

Helium 972

As seen from the table 8.1, the speed of sound is much Hydogen 1286

higher in solids than in gases. This makes sense because
the molecules in a solid are closer than in a gas and
hence, respond more quickly to a disturbance.

In general, sound travels more slowly in gases than in
solids because gases are more compressible and hence

-
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have a smaller elastic modulus. For the calculation of
elastic modulus for air, Newlon assumed that when 2

sound wave travels through air, the temperature of the air
during compression remains constant and pressure
changes from P to (P+AP) and therefore, the volume
changes from V' to (V - AV). According to Boyle's law

PV=(P+APYV-AV) ... (8.4)
or PV =PV-PAV + VAP - APAV

The product AP AV is very small and can be neglected. So,
the above equation becomes

c i R gl |t
PAV = VAP Y AV
3 AP ). " X
The expression [AV ] is the elastic modulus E at constant
. For-Youe information " temperature. So, substituting P for E in equation 8.3, we
Values of constant get Newton’s formula for the speed of sound in air. Hence
Types of gas Y P

Monoatomic 1.67 VST - ardgntiessmess (8.5)

Diatomic 1.40 .
Polyatomic 1.29 On substituting the values of atmospheric pressure and

density of air at S.T.P. in equation 8.5, we find that the
speed of sound waves in air comes out to be 280 ms”’,
whereas its experimental value is 332 ms™.

To account for this difference, Laplace pointed out that the
compressions and rarefactions occur so rapidly that heat of
compressions remains confined to the region where it is
generated and does not have time to flow to the
neighbouring cooler regions which have undergone an
expansion. Hence the temperature of the medium does not
remain constant. In such case Boyle's law takes the form

PV'=Constant ... (8.6)

o Molar specific heat of gas at constant pressure
~ Molar specific heat of gas at constant volume

where
If the pressure of a given mass of a gas is changed from P

to (P + AP) and volume changes from V to (V- AV), then
using Eq. 8.6
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PV = (P+AP) (V- AV)'

~ ¥
PV = (P+ APV’ U%}

Applying Binomial theorem

i
AV AV
.—— | = 1-y—+negligible terms
[ v ] v eglig
A
Hence P=(P+AP)[1'Y VX]
AV AV
or P=P-yP—+AP-y AP—
% L AT
AV |. o P
where [y AP V—J is negligible. Hence, we have ¥ ForYourgnfarmation s
~ F¥yRanges of Hearing - 3
AV Organisms e
0= -YP—+AP ()
v Dolphin 150 - 150,000
s Bat 1000 — 120,000
or —— =y P=E Cat - 8070000
A\y Dog 15 - 50,000
vV Human 20 - 20,000

AP
Thus elastic modulus {—J equals YP.

Y

Hence, substituting the value of elastic modulus in Eq. 8.3,
we get Laplace expression for the speed of sound in a gas

v= J%F .......... (8';)

For air ¥=14 soat S.T.P.

V= «]1.4 x280ms '= 333ms

This value is very close to the experimental value.
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Effect of Variation of Pressure, Density and

Temperature on the Speed of Sound in a Gas

!, Effect of Pressure: Since density is proportional
to the pressure, the speed of sound is not affected by a
variation in the pressure of the gas.

<. Effect of Density: At the Same temperature and
pressure for the gases having the same value of Y, the
Speed is inversely proportional to the square root of
their densities Eq.8.7. Thus the speed of sound in
hydrogen is four times its speed in oxygen as density
of oxygen is 16 times that of hydrogen.

3. Effect of Temperature: When a gas is heated at
constant pressure, its volume is increased and hence
its density is decreased. As

e /LP
P

So, the speed is increased with rise in temperature,

Let

Vo = Speed of sound at 0 °C + P, = Density of gas at 0 °C
vt = Speed of sound at ¢ °C » Py =Density of gas at ¢ °C

then Vy = ’1’3 and v, = ,L—P
1

48 \
Hence, s f’;—: (8.8)
) [

We have studied the volume expansion of gases in
previous classes. |f Vo is the volume of a gas at
temperature 0 °C ang Viis volume at ¢ °C, then

Vi=V,(1+ By
Where B is the coefficient of volume expansion of the gas.

For all gases, its valye is about % Hence

73"

:: t
Ves Vo [1 ¥ 273}
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Since Volume = .
density
m m : t
Hen b S5 e
5 P t P o [ 273}
o t : 273- :
Putting the value of p, in equation 8.8 we have, PR N
. £ 1 f X
AR T, D a TV AW (8.9) & N\

273 ‘ ( ( (&4\\'
| //

W

\ / ‘

or "—'=1’273* gy K i bt (8.10) \\\\,// y
Vo 273 5 \_ N/

where T and T, are the absolute ‘temperatures

corresponding to t °C and 0 °C respectively. Thus, the SR e o s
speed of sound varies directly as the square root of
absolute temperature \ S SHodk wWave
Expanding the R.H.S. of equation (8.9), using Binomial v s
theorem and neglecting higher powers, we have / / ' \ S
P { g %
e 1+_t__. or v, = vV, * Vol \ \\ (\ 7/
Vo 546 546 e W g
As vo =332 ms’ \\\:,‘j
putting this value in the 2™ factor ¥
Faster than the speed of sound
332 -
Then VB +——it ;
546 What happens when a jet plane
like Concorde flies faster than the
or Y g & o gl Bl e
sound energy sweeps over the
ground as a supersonic
passes overhead. It is known as
sonic boom.

Example 8.1: Find the temperature at which the velocity
of sound in air is two times its velocity at 10 °C.

Solution: 10°C=10°C+273=283K
Suppose at T K, the velocity is two times its value at 283 K.
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Since Zea_ = Smv
7
fi - Tt = f—=2
Therefore e 1/ 263K
or - T=1132 K or 859 °C

So far, we have considered single waves. What happens
when two waves encounter each other in the same
medium? Suppose two waves approach each other on a
cail of spring, one travelling towards the right and the other
travelling towards left. Fig. 8.7 shows what you would see
happening on the spring. The waves pass through each
other without being modified. After the encounter, each
wave shape looks just as it did before and is travelling
along just as it was before.

This phenomenon of passing through each other
unchanged can be observed with all types of waves. You
can easily see that it is true for surface ripples.

But what is going on during the time when the two waves
overlap? Fig. 8.7 (c) shows that the displacements they
procduce just add up. At each instant, the spring's
displacemenf at any point in the overlap region is just the
sum of the displacements that would be caused by each of
the two waves separately.

Thus, if a particle of a medium is simultaneously acted
upon by n waves such that its displacement due to each of
the individual n waves RS M 3B, i sy Yo, then the
resultant displacement of the particle, under the
simultaneous action of these n waves is the algebraic’sum

of all the displacements Le.,

This is called principle of superposition.
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, -
Again, if two waves which cross each other have
.opposite phase, their resultant displacement will be

Y=Yyi-)e

Particularly if y» = y2 then result displacement Y= 0.
Principle of superposition leads to many interesting
phenomen2a with waves.

- Two waves having same frequency and
travelling in the same direction (Interference).

i) Two waves of slightly different frequencies and
travelling in the same direction (Beats)

Two waves of equal frequency travelling in
opposite direction (Stationary waves).

Superposition of two waves having the same frequency
and traveling in the same direction results in a
phenomenon called interference.

Audio generator

: “An experimental set up to observe interference effect in - r_ _______________
_sound waves is shown in Fig. 8.8 (a).

Fig. 8.8 1(b)

Interference of sound waves
Points P,, P., P, are points of constructive interference.
Points P, and P, are points of destruclive interference.

Two loud speakers Si and S, act as two sources of
harmonic sound waves of a fixed frequency produced by
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Fig. 8.8(c)

Constructive Interferance
WM‘W on
the CRO screen

- Fig. 8.8(d)

An audio generator. Since the two speakcrs are driven from
the same generator, they vibrate in phase. Such sources of
waves are called coherent sources. A microphone attached
0 a sensitive cathode ray oscilloscope (CRO) acts as a
detector of sound waves. The CRO is a device to display
the input signal into waveform on its screcn. The
microphone is placed at various points, turn by turn, in
front of the loud speakers as shown in the Fig. 8.8 (b).

At points P;, Ps and P; a large signal is seen on the CRO
[Fig. 8.8(c)], whereas at points P, and P, no signal is
displayed on CRO Screen [Fig. 8.8 (d)).This effect is

meets a rarefaction. So, the displacement of two waves
are added up at these points and a large resultant
displacement s produced which is seen on the CRO
screen Fig. 8.8 (c).

. Now from Fig. 8.8 (b), we find that the path difference AS

between the waves at the point P, is
AS=8,P,-S,P, or AS =4l) - ath=1

Similarly at points P; and Ps, path difference is zero and -
respectively.

Whenever pith difference is .an integral multiple of
wavelength, i i
called constructive interference.

Therefore, the condition for constructive interference can
be written as

o e (8.12)
where n=0,+1 +2, - S,

At points P, and P4, compression meets with a rarefaction,
so that they cancel each others effect. The resultant
displacement becomes zero, as shown in [Fig. 8.8(d)].

Now let us calculate the path differene between the
waves at points P, and Ps. For point Py
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AS=S,P,-SP, or AS=4A-3 %;ﬁ %x

* o

' 1
Similarly at P4 the path difference is — s A.

So, at points where the displacements of two waves cancel
each other's effect, the path difference is an odd integral
multiple of half the wavelength. This effect is called
destructive interference.

Therefore, the condition for destructive interference can be
writlen as

AS = (2n +1) % = e (3.13)‘

where n=0, 1, £2, #3,.2008 §

iy

Tuning forks give out pure notes (single frequency). If two
. tuning forks A and B of the same frequency say 32Hz are
sounded separately, they will give out pure notes. If they are
sounded simultaneously, it will be difficult to differentiate the
notes of one tuning fork from that of the other. The sound
waves of the two will be superposed on each other and will
be heard by the human ear as a single pure note. If the
tuning fork B is loaded with some wax or plasticene, its
frequency will be lowered slightly, say it becomes 30Hz.

If now the two tuning forks are sounded together, a note of
alternately increasing and decreasing intensity will be heard.
This note is called beat note or a beat which is due to
interference between the sound waves from tuning forks A
and B. Fig. 8.9 (a) shows the waveform of the note emitted
from a tuning fork A. Similarly Fig. 8.9 (b) shows the
waveform of the note emitted by tuning fork B. When both
the tuning forks A and B are sounded together, the resultant
waveform is shown in Fig. 8.9 (c).

Fig. 8.9 (c) shows how does the beat note occur. At some instant
X the displacement of the two waves is in the same direction.
The resultant displacement is large and a loud sound is heard.
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After 1/4s the displacement of the wave due to one tuning fork
iS opposite to the displacement of the wave due to the other
tuning fork resulting in a minimum displacement at Y, hence,
faint sound or no soundis heard.

Another 1/4 s later the displacements are again in the
same direction and a loud sound is heard again at Z.

This means a loud sound is heard two times in each
second. As the difference of the frequency of the two
tuning forks is also 2 Hz so, we find that

Number of beats per second is equal to the difference
between the frequencies of the tuning forks.

When the difference between the frequencies of the two
sounds is more than about 10 Hz, then it becomes difficult
to recognize the beats.

One can use beats to tune a string instrument, such as piano
or violin, by beating a note againsta note of known frequency.
The string can then be adjusted to the desired frequency by
tightening or looseningit until no beats are heard.

Example 8.2: A tuning fork A produces 4 beats per
second with another tuning fork B. It is found that by
loading B with some wax, the beat frequency increases to
6 beats per second. If the frequency of A is 320 Hgz,
determine the frequency of B when loaded.

Solution: Since the beat frequency is 4, the frequency
of B is either 320 + 4 = 324 Hz or 320 - 4 = 316 Hz. By
loading B, its frequency will decrease. Thus if 324 Hz is the
original frequency, the beat frequency will reduce. On the
other hang, if it is 316 Hz, the beat frequency will increase
which is the case. So, the original frequency of the tuning
fork B is 316 Hz and when loaded, itis 316 - 2 = 314 Hz.

s ,-‘.,.:,';‘ ST RS R e i T 2y yo s
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In an extensive medium, a wave travels in all directions
from its source with a velocity depending upon the
properties of the medium. However, when the wave comes
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across the boundary of two media, a part of it is reflected
back. The reflected wave has the same wavelength and
frequency but its phase may change depending upon the
nature of the boundary.

Now we will discuss two most common cases of reflection
at the boundary. These cases will be explained with the
help of waves travelling in slinky spring. (A slinky spring is
a loose spring which has small initial length but a relatively
large extended length).

One end of the slinky spring is tied to a rigid support on a
smooth horizontal table. When a sharp jerk is given up to the
free end of the slinky spring towards the side A, a
displacement or a crest will travel from free end to the
boundary (Fig.8.10 a). It will exert a force on bound end
towards the side A. Since this end is rigidly bound and acts
as a denser medium, it will exert a reaction force on the
spring in opposite direction. This force will produce
displacement downwards B and a trough will travel
backwards along the spring (Fig.8.10 b).

From the above discussion it can be concluded that
whenever a transverse wave, travelling in a rarer medium,
encounters a denser medium, it bounces back such that the
direction of its displacement is reversed. An incident crest
on reflection becomes a trough.

This experimentis repeated with a little variation by attaching
one end of 2 light string to a slinky spring and the other end to
the rigid support as shown in Fig. 8.11. if now the spring is
given a sharp jerk towards A, a cres! travels along the spring
as shown in Fig. 8.11. When this crest reaches the spring-
string boundary, it exert a force on the string towards the side
A. Since the string has a smail mass as compared to spring,
it does not oppose the motion of the spring. The end of the
spring, therefore, continues its displacement towards A. The
spring behaves as if it has been plucked up. In other words a
crest is again created at the boundary of the spring-string
system, which travels backwards along the spring. From this
it can be concluded that when a transverse wave travelling in
a denser medium, is reflected from the boundaty of a rarer
medium, the direction of its displacement remains the same.
An incident crest is reflected as a crest. We are already
familiar with the fact that the direction of displacement is
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reversed when there is change of 180° in the phase of
vibration. So, the above conclusion can be written as follows.

i) If a transverse wave travelling in a rarer medium
is incident on a denser medium, it is reflected
such that it undergoes a phase change of 180°.

i) If a transverse wave travelling in a denser
medium is incident on a rarer medium, it is
reflected without any change in phase.

Now let us consider the Superposition of two waves
moving along a string in opposite directions. Fig. 8.12
(a,b) shows the profile of two such waves at instants
t=0,T/4, 3/4T and T, where T is the time period of the
wave. We are interested in finding out the displacements
of the points 12,3456 and 7 at these instants as the
waves superpose. From the Fig. 8.12 (a,b), it is obvious

t=3T/4 =T

:«
.'+

=0 1=T/4 =T/2 t=3T7/4 t=T
o e~ Tt L VR T i g S GOSE SRR T R always
1 3 5 7 1 3 (] 7 1 3 5 7 1 3 ] 7 1 3 S 7 at rest
t=0 T t=T/4 T 1=3T/4 =T T
(d) AJ,-- .................... 5 -J.---._-  always

1 877 oscillating

ig. 812
™ that the points 12,3, etc are distant 4 /4 apart, . being

the wavelength of the waves. We can determine the
resultant displacement of these points by applying the
principle of superposition. Fig 8.12 (¢) shows the
resultant displacement of the points 1,3,5 and 7 at the
instants t = 0, 7/4, T/2, 3T/4 and T. It can be seen that
the resultant displacement of these points is always
zero. These points of the medium are known as nodes.
Fig. 8.12 (c) shows that the distance between two
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consecutive nodes is A /2. Fig. 8.12 (d) shows the
resultant displacement of the points 2,4 and 6 at the
instants t = 0, T/4, T/2, 3T/4 and T. The figure shows
that these points are moving with an amplitude which is
the sum of the amplitudes of the component waves.
These points are known as antinodes. They are situated
midway Between the nodes and are also A/2 apart. The
distance between a node and the next antinode is a4,
Such a pattern of nodes and anti-nodes is known as a
stationary or standing wave.

Energy in a wave moves because of the motion of the
particles of the medium. The nodes always remain at rest,
so energy cannot flow past these points. Hence energy
remains ‘“standing” in the medium between nodes,
although it alternates between potential and kinetic forms.
When the antinodes are all at their extreme displacements,
the energy stored is wholly potential and when they are
simultaneously passing through their equilibrium positions,
the energy is wholly kinetic.

An easy way to generate a stationary wave is to superpose
a wave travelling down a string with its reflection travelling
in opposite direction as explained in the next section.

Consider a string of length / which is kept stretched by
clamping its ends so that the tension in the string is F. If
the string is plucked at its middle point, two transverse
waves will originate from this point. One of them will move
towards the left end of the string and the other towards the
right end. When these waves reach the two clamped ends,
they are reflected back thus giving rise to stationary waves.
As the two ends of the string are clamped, no motion will
take place there. So nodes will be formed at the two ends
and one mode of vibration of the string will be as shown in
Fig. 8.13 with the two ends as nodes with one antinode in
between. Visually the string seems to vibrate in one loop.
As the distance between two consecutive nodes is one half
of the wavelength of the waves set up in the string, so in

this mode of vibration, the length / of the string is

1=L21.' PPl NS (8.14)




where 2., is the wavelength of the waves set up in this
mode, '

The speed v of the waves in the string depends upon the
lension F of the string and m, the mass per unit length of

the string. It is given by v=Jz ........... (8.15)
m

Knowing the speed v and wavelength 5.4, the frequency f,
of the waves is given by
v

TS0 PR e - (8.16)
'S 21
F

;
Substituting the value of y, £, =§ T S (8.17)

Thus in the first mode of vibration shown in Fig. 8.13,
waves of frequency f, only will be set up in the given string

If the same string is plucked from one quarter of its length,

f1=

vibrates in two loops. This particular configuration of nodes
and antinodes has developed because the string was
plucked from the position of an antinode. As the distance
between two consecutive nodes is half the waveléngth, so
the Fig. 8.14 shows that the length / of string is equal to
the wavelength of the waves set up in this mode. If ., is the
measure of wavelength of these waves, then,

AT Sl Stien. o (8.18)

A comparison of this equation with Eq. 8.14 shows the
wavelength in this case is half of that in the first case.

Eq. 8.16 shows that the Speed of waves depends upon the

If £, is frequency of vibration of string in its second mode,
then by Eq. 8.2

V=lhxhy=f, ) or f2=ll (8.19)

Comparing it with Eq. 8.16, we get
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fg = 2f1

Thus when the string vibrates in two loops, its frequency
becomes double than when it vibrates in one loop.

Similarly by plucking the string properly, it can be made to
vibrate in 3 loops, with nodes and antinodes as shown in
Fig. 8.15.

In this case the frequency of waves will be f; = 3 f; and the
wavelength will be equal to 2//3. Thus we can say that if the
string is made to vibrate in n loops, the frequency of
stationary waves set up on the string will be

i P W TR e 3 (8.20)
and the wavelength
ha= 2y 8.21)
n

It is clear that as the string vibrates in more and more
loops, its frequency goes on increasing and the
wavelength gets correspondingly shorter. However the
product of the frequency and wavelength is always equal
to v, the speed of waves.

The above discussion, clearly establishes that the
stationary waves have a discrete set of frequencies f;, 2f;,
3f, ....., nf; which is known as harmonic series. The
fundamental frequency f; corresponds to the first harmonic,
the frequency f> = 2 f; corresponds to the second harmonic
and so on. The stationary waves can be set up on the
string only with the frequencies of harmonic series
determined by the tension, length and mass per unit length
of the string. Waves not in harmonic series are quickly
damped out.

The frequency of a string on a musical instrument can be
changed either by varying the tension or by changing the
length. For example, the tension in guitar and violin strings is
varied by tightening the pegs on the neck of the instrument.
Once the instrument is tuned, the musicians vary the
frequency by moving their fingers along the neck, thereby
changing the length of the vibrating portion of the string.
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Do You Know?

Astanding-wave pattern is formed
when the length of the string is an
integral multiple of half wave-
length; otherwise no standing
wave is formed.

PR,
» iy
fF

"A-

In an organ pipe, the primary
driving mechanism is wavering,
sheet like jet of air from flute-slit,
which interacts with the upper lip
and the air column in the pipe to
maintain a steady oscillation,

Example 8.3; A steel wire hangs vertically from a fixed
point, supporting a weight of 80 N at its lower end. The
diameter of the wire is 0.50 mm and its length from the
fixed point to the weight is 1.5 m. Calculate the
fundamental frequency emitted by the wire when it is
plucked?

(Density of sieel wire = 7.8 x 10° kgm™)
Solution:
Volume of wire = Length x Area of cross section
Mass = Volume x Density
therefore
Mass of wire = Length x Area of cross section x Density
So, mass per unit length m is given by

m =Density x Area of cross section
Diameter of the wire = D = 0.50 mm = 05x10°m

Radius of the wire = r = g =0.25x 10°m

Area of cross sectien of wire = zr°=3.14 x (0.25x 10° m)*?
F=w
\therefore
m =78 x 10 kgm™x 3.14 x (0 25 x 10 m)?
m =153 x 10°kgm’
Weight = 80 N = 80 kgms™~
Using the equation (8.17), we get

I |F
= s
: 2/ |\Mm
1 80 kgms >
fi = % il 90 —~ =768
2x1.5m V4535403 kgm'!
or f, =76 Hz. )

= ~ PR SIS, EU BBty B3 el 5 0
Stationary waves can be set in other media also, such as air
column. A common example of vibrating air column is in the

PO R R
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organ pipe. The relationship between the incident wave and
the reflected wave depends on whether the reflecting end of
the pipe is open or closed. If the reflecting end is open, the
air molecules have complete freedom of motion and this
behaves as an antinode. If the reflecting end is closed, then
it behaves as a node because the movement of the
molecules is restricted. The modes of vibration of an air
column in a pipe open at both ends are shown in Fig. 8.16.

In figure, the longitudinal waves set up in the pipe have been
represented by transverse curved lines indicating the varying
amplitude of vibration of the air particles at points along the
axis of the pipe. However, it must be kept in mind that air
vibrations are longitudinal along the length of the pipe. The
wavelength'2,'of nth harmonic and its frequency 'f,' of any
harmonic is given by

(8.22)

=.gl.. » = l—"
)"n n fu k—

where V' is the speed of sound in air and /' is the length of
the pipe. The equation 8.22 can also be written as

L=xnt, (8.23)

If a pipe is closed at one end and open at the other, the closed
end is a node. The modes of vibration in this case are shown
in Fig. 8.17.

srsasesann

In case of fundamental note, the distance between a node
and antinode is one fourth of the wavelength,

A

Hence, = —41 or hi=41
Since v="Fi
Hence pimatow

k’ 4/

It can be proved that in a pipe closed at one end, only odd
harmonics are generated, which are given by the equation
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where =3B, guws.

This shows that the Pipe, which is open at both ends, is
richer in harmonics.

Example 8.4: A pipe has a length of 1 m. Determine the
frequencies of the fundamental and the first two harmonics
(@) if the pipe is open at both ends and (b) if the pipe is
closed at one end.

(Speed of sound in air = 349 ms’)

Solution:
-1
a) f;:ﬂr: L@nls_:' 1703'1:170 Hz
2! 2X1m
f2=2f.=2x17OHz=340Hz
and f3=3f1=3x170Hz=510Hz
-1
b) S L SN Hz

4/ 4 X1m
In this case only odd harmonics are present, so
5=3f=3x85Hz =255 Hz
and =5f=5x85Hz =425 Hz

8.11 DOPPLER EFFECT

An important phenomenon observed in waves is the
Doppler effect. This effect shows that if there is socme
relative motion between the source of waves and the
observer, an apparent change in frequency of the waves is
observed.

This effect was observed by Johann Doppler while he was
observing the frequency of light emitted from distant stars.
In some cases, the frequency of light emitted from a star
was found to be slightly different from that emitted from &
similar source on the Earth. He found that the change in
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frequency of light depends on the motion of star relative to
the Earth. /

This effect can be observed with sound waves also. When
an observer is standing on a railway platform, the pitch of
the whistle of an approaching locomotive is heard to be
higher. But when the same locomotive moves away, the
pitch of the whistle becomes lower.

The change in the frequency due to Doppler effect can be
calculated easily if the relative motion between the source
and the observer is along a straight line joining them.
Suppose v is the velocity of the sound in the medium and
the source emits a sound of frequency f and wavelength i .
If both the source and the observer are stationary, then the

" 3 4
waves received by the observer in one second are f = T If

an observer A moves towards the source with a velocity u,
(Fig. 8.18), the relative velocity of the waves and the
observer is increased to (v +u,). Then the number of
waves received in one second or modified frequency fa is

Av+ u,
A

fA=

Putting the value of % = —v-, the above equation becomes

f
PN (7 7 etk i (0B e
fa=fl—=| PN ARSI ¢ &)
A Ak R W b e

For an observer B receding from the source (Fig. 8.19),
the relative velocity of the waves and the observer is
diminished to (v - u.). Thus the observer receives waves at
a reduced rate. Hence, the number of waves received in

fv -u
one second in this case is L 5 "j

If the modified frequency, which the observer hears, is f;
then

185




&
a

20

lf

i

moving with

. c
from stationary observer
increased

C hears an
D hears a

Observer C
seee)) @
L]
ObsU

:

l

‘v~q | 'v-u;, ‘
or fa= —v/,J-) -f[ s ] .......... (8.26)

Now, if the source is moving towards the observer with
velocity us (Fig. 8.20), then in one second, the waves are
compressed by an amount known as Doppler shift

represented by aj.

The compression of waves is due to the fact that same
number of waves are contained in a shorter space
depending upon the velocity of the source.

The wavelength for observer C is then
Ao= A <AL

o 30

For the observer D, there will an increase in the

. wavelength given by;
-

AD= A +AL

)'D= Z+i - V‘us
. f

The modified frequency for observer C is then

| fy = L{ £ Jf .......... (8.27)
- & z-c V-u

and for the observer D will be
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B i =R R R (8.28)
Ap \V*ug

This means that the observed frequency increases when
the source is moving towards the observer and decreases
when source is moving away from the observer.

Example 8.5: A train is approaching a station at
g0kmh 'sounding a whistle of frequency 1000 Hz. What will
be the apparent frequency of the whistle as heard by a
listener sitting on the platform? What will be the apparent
frequency heard by the same listener if the train moves
away from the station with the same speed?

£ -1
spoe o scun=240ms"

acoustie

Solution: couping
: gl T, R
N el
Frequency of source = f, = 1000 Hz I © cociiomesd
:r;;mmd’ L signal
Speed of sound = 340 ms™
plood vessel
Speed of train = u, = 90 kmh™' = 25 ms”' ive R R Bihenc 1
When train is a ching towards the list th i s i Ulmomd i ‘”"m‘-i"‘ e
S o
en train is approaching towards the stener, then using - st 4
the relation directad towards the artery and
receiver detects the back
) v ‘ 'y depends on the velocity
f'= [V u]f of flow of the blood
Ty

-1
fr= e x 1000 Hz =1079.4 Hz
340ms ' —25ms”"

When train is moving away from the listener, then using

the relation
()
v+u
sl
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Applications of Doppler Effect

Doppler effect is also applicable to electromagnetic waves.
Cne of its important applications is the radar system, which
uses radio waves to determine the elevation and speed of
an aeroplane. Radar is a device, which transmits and
receives radio waves. If an aeroplane approaches towards
the radar, then the wavelength of the wave reflected from
aeroplane would be shorter and if it moves away, then the
wavelength would be larger as shown in Fig. 8.21.
Similarly speed of satellites moving around the Earth can
aiso be determined by the same principle.

Sonar is an acronym derived from "Sound navigation and
ranging". The general name for sonic or ultrasonic underwater
echo-ranging and echo-sounding system. Sonar is the name
of a technigue for detecting the presence of objects
underwater by acoustical echo.

In Sonar, "Doppler detection” relies upon the relative speed
of the target and the detector to provide an indication of the
target speed. It employs the Doppler effect, in which an
apparent change in frequency occurs when the source and
the observer are in relative motion to one another, Its known
military applications include the detection and location of
submarines, control of antisubrnarine weapons, mine hunting
and depth measurement of sea. :

light from the star with light from a laboratory source, the
Doppler shift of the star's light can be measured. Then the
speedof the star can be calculated.

Stars moving towards the Earth show a blue shift. This is
because the wavelength of light emitted by the star are
shorter than if the star had been at rest. So, the spectrum is
shifted towards shorter wavelength, i.e., to the blue end of
the spectrum (Fig. 8.22),
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Stars moving away from the Earth show a red shift. The Do You Know?
emitted waves have a longer wavelength than if the star had S8

been at rest. So the spectrum is shifted towards longer
wavelength, i.e., towards the red end of the spectrum.
Astronomers have also discovered that all the distant
galaxies are moving away from us and by measuring their
red shifts, they have estimated their speeds.

Another important application of the Doppler shift using
electromagnetic waves is the radar speed trap.
Microwaves are emitted from a transmitter in short bursts.
Each burst is reflected off by any car in the path of
microwaves in between sending out bursts. The transmitter
is opened to detect reflected microwaves. If the reflection
is caused by a moving obstacle, the reflected microwaves
are Doppler shifted. By measuring the Doppler shift, the
speed at which the car moves is calculated by computer

programme. g;%"l;mcmn and find food by

'SUMMAR

Waves carry energy and this energy is carried out by a disturbance, which spreads
out from the source.

« |f the particles of the medium vibrate perpendicular to the direction of propagation of
the wave, then such wave is called transverse wave, e.g. light waves.

« If the particle of the medium vibrate parallel to the direction of propagation of the
wave, then such wave is called longitudinal wave, e.g. sound waves.

« If a particle of the medium is simultaneously acted upon by two waves, then the
resultant displacement of the particle is the algebraic sum of their individual
displacements. This is called principle of superposition.

W.hen two waves meet each other in a medium then at some points they
reinforce the effect of each other and at some other points they cancel each other's
effect. This phenomenon is called interference.

The periodic variations of sound between maximum and minimum loudness are
called beats.

Stationary waves are produced in a medium, when two identical waves travelling in
opposite directions interfere in that medium

The apparent change in the pitch of sound caused by the relative motion of either the
source of sound or the listener is called Doppler effect.
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84

8.5
8.6
8.7
8.8

8.9

[ QUESTIONS

which trace represents the loudest note?
which trace represents the highest frequency?

A AN EASEISS

Fig. 8.23 A B

Is it possible for two identical waves travelling in the same direction along a string
logive rise to a stationary wave?

A wave is produced along a stretched string but some of its particles pPermanently
show zero displacement. What type of wave is it 7

Explain the terms crest, trough, node and antinode.
Why does sound travel faster in solids than in gases?
How are beats useful in tuning musical instruments?
When two notes of frequencies f; and f, are sounded together, beats are formed. If
fi > £, , what will be the frequency of beats?
o 1
D  h+h if) E(ﬁ"'ﬁ)
. 1
i) fi - f, iv) E (f1 = fz)

As a result of a distant explosion, an observer senses a ground tremor and then
hears the explosion. Explain the time difference.

£.10 Explain why sound travels faster in warm air than in cold air.

8.17 How should a soynd source move with respect to an observer so that the frequency

of its sound does not change?
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8.3

8.4

(a)
(b)

NUMERICAL PROBLEMS

The wavelength of the signals from a radio transmitter is 1500 m and the frequency is
200 kHz. What is the wavelength for a transmitter operating at 1000 kHz and with what
speed the radio waves travel?

(Ans: 300 m, 3 x 10° ms™)

Two speakers are arranged as shown in Fig. 8.24. The distance between them is 3m
and they emit a constant tone of 344 Hz. A microphone P is moved along a line
parallel to and 4.00 m from the line connecting the two speakers. Itis found that tone
of maximum loudness is heard and displayed on the CRO when microphone is on
the centre of the line and directly opposite each speakers. Calculate the speed of
sound. 2

LI

Fig. 8.24

(Ans: 344ms )

A stationary wave is established in a string which is 120 cm long and fixed at both
ends. The string vibrates in four segments, at a frequency of 120 Hz. Determine its
wavelength and the fundamental frequency?

(Ans: 0.6 m, 30 Hz)

The frequency of the note emitted by a stretched string is 300 Hz. What will be the
frequency of this note when;

the length of the wave is reduced by one-third without changing the tension.
the tension is increased by one-third without changing the length of the wire.
(Ans: 450 Hz, 346 Hz)

An organ pipe has a length of 50 cm. Find the frequency of its fundamental note
and the next harmonic when it is

open at both ends.
closed at one end.
(Speed of sound = 350 ms™)
[Ans: (a) 350 Hz, 700 Hz, (b) 175 Hz, 525 Hz]
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a)
b)

A church organ consists of pipes, each open at one end, of different lengths. The
minimum length is 30 mm and the longest is 4 m. Caiculate the frequency range of
the fundamental notes.
(Speed of sound = 340 ms™)
(Ans: 21 Hz to 2833 Hz)

Two tuning forks exhibit beats at a beat frequency of 3 Hz. The frequency of one
fork is 256 Hz. Its frequency is then lowered slightly by adding a bit of wax to one
of its prong. The two forks then exhibit a beat frequency of 1 Hz. Determine the
frequency of the second tuning fork.

(Ans: 253 Hz)

Two cars P and Q are travelling along a motorway in the same direction. The leading
car P travels at a steady speed of 12 ms™'; the other car Q, travelling at a steady speed
of 20 ms™, sound its hom to emit a steady note which P's driver estimates, has a
frequency of 830 Hz. What frequency does Q's own driver hear?

(Speed of sound = 340 ms™)

(Speed of sound = 340 ms™)
(Ans: 17.9ms™, 448 m)

' The absorption spectrum of faint galaxy is measured and the wavelength of one of

the lines identified as the Calcium a line is found to be 478 nm. The same line has
a wavelength of 397 nm when measured in a laboratory.

Is the galaxy moving towards or away from the Earth?
Calculate the speed of the galaxy relative to Earth.

. (Speed of light = 3.0 x 10° ms™)

[Ans: (a) away from the Earth, (b) 6.1 x 107 ms’']
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Chapter 9
PHYSICAL OPTICS

Learning Objectives
At the end of this chapter the students will be able to:

Understand the concept of wavefront.

State Huygen's principle.

Use Huygen's principle to explain linear superposition of light.
Understand interference of light.

Describe Young's double slit experiment and the evidence it provided to support
the wave theory of light.

Recognize and express colour patterns in thin films.
Describe the formation of Newton's rings. :
_ Understand the working of Michelson’s interferometer and its uses.
9. Explain the meaning of the term diffraction.
1. Describe diffraction at a single slit.
Derive the eguation for angular position of first minimum.
Derive the equation d sinf) = ma.
Carry out calculations using the diffraction grating formula.
Describe the phenomenon of diffraction of X-rays by crystals.
Appreciate the use of diffraction of X-rays by crystals.

. Understand polarization as a phenomenon associated with transverse waves.
Recognize and express that polarization is produced by a Polaroid.
Understand the effect of rotation of Polaroid on polarization.
Understand how plane polarized light is produced and detected.

L ight is a type of energy which produces sensation of vision. But how does this energy
propagate? In 1678, Huygen's, an eminent Dutch scientist, proposed that
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Wavefronts

(a) Light rays

Wavefronts (b)

Fig. 9.1

| wave fronts (a) and plane
s i
apart. Theancwsrepnummyo.

S /

Smsnugmmsdlawasp
wavefronts
wavefron

: approximate a plane

light energy from a luminous Source travels in space as
waves. The experimental evidence in support of wave
theory in Huygen's time was not convincing. However,
Young's interference experiment performed for the first time
in 1801 proved wave nature of light and thus established the
Huygen's wave theory. In this chapter you will study the
properties of light, associated with its wave nature.

irections with speed c.After time t, they will reach the
surface of an imaginary sphere with centre as S and radius
as ct.Every point on the surface of this sphere will be set
into vibration by the waves reaching there. As the distance
of all these points from the source is the same, their state
of vibration will be identical. In other words, all the points

on the surface of the sphere will have the same
phase.

Such a surface on which all the points have the
_ Same phase of vibration is known as wavefront.

Thus in case of a point source, the wavefront is spherical
in shape. A line normal to the wavefront, showing the
direction of propagation of light is called a ray of light.

With time, the wave moves farther giving rise to new wave-
fronts. All these wavefronts will be concentric spheres of
increasing radii as shown in Fig. 9.1 (a). Thus the wave
propagates in space by the motion of the wavefronts. The

distance from the source, the wavefronts are parts of spheres

of very large radii. A limited region taken on such a wavefront

can be regarded as a plane wavefront (Fig.8.1b). For example,
light from the Sun reaches the Earth with plane wavefronts,

In the study of interference and diffraction, plane waves and
plane wavefronts are considered. A usual way to obtain a
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plane wave is to place a point source of light at the focus of
aconvex lens. The rays coming out of the lens will constitute
plane waves.

L 4
e s
(2

Knowing the shape and location of a wavefront at any
instant ¢, Huygen's principle enables us to determine the
shape and location of the new wavefront at a later time
t+ At. Thisprinciple consists of two parts:

(1) Every point of a wavefront may be considered as a
source of secondary wavelets which spread out in
forward direction with a speed equal to the speed of
propagation of the wave.

(ii) The new position of the wavefront after a certain
interval of time can be found by constructing a
surface that touches all the secondary wavelets.

The principle is illustrated in Fig. 9.2 (a). AB represents the
wavefront at any instant t. To determine the wavefront at
time t+ At, draw secondary wavelets with centre at various
points on the wavefront AB and radius as cAt where c is

speed of the propagation of thewave as shown inFig.9.2 (a).

The new wavefront at time t+At is AB' whichis a
tangent envelope to all the secondary wavelets.

Figure 9.2 (b)shows a similar construction for a plane wave-
front.

- ERFERLNGE

An oil film floating on water surface exhibits beautiful
colour patterns. This happens due to interference of light
waves, the phenomenon, which is being discussed in this
section. 2

Conditions for Deteétable Interference

It was studied in Chapter 8 that when two waves travel in
the same medium, they would interfere constructively or
destructively, The amplitude of the resultant wave will be
greater then either of the individual waves, if they interfere
constructively. In the case of destructive interference, the
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Huygens' construction for
Jetermining the position of the
wavefronts AB and CD after a time
interval At. AB' and C'D’ are the
new positions of the wavefornts.



For Your Information

Monochromatic Light

Sodium ehloride in a flame gives
out pure yellow light. This lightisnot

amixture of red and green.

sebuwy souaispal

Ray geometry of Young's double
slit experiment.

amplitude of the resultant wave will be less than either
of the individual waves,

Interference of light waves is not easy to observe because
of the random emission of light from a source. The
following conditions must be met, in order to observe the
phenomenon.

1. The interfering beams must be monochromatic,
that is, of a single wavelength.

The interfering beams of light must be coherent.

Consider two or more Sources of light waves of the same
wavelength. If the sources send out crests or troughs at
the same instant, the individual waves maintain a constant
phase difference with one another.The monochromatic
sources of light which emit waves, having a constant
phase difference, are called coherent sources

A common method of producing two coherent light beams

- is to use g monochromatic source to iluminate a screen

containing two small holes, usually in the shape of slits.
The light emerging from the two slits is coherent because a
single source produces the original beam and two slits

Huygen's wavefront which send out secondary wavelets
are also coherent sources of light.

9.4 YOUNG’S DOUBLE SLIT EXPERIMENT

Fig. 9.3 (a) shows the experimental arrangement, similar to
that devised by Young in 1801, for studying interference
effects of light. A screen having two narrow slits is
lluminated by a beam of monochromatic light. The portion
of the wavefront incident on the slits behaves as a source
of secondary wavelets (Huygen's principle). The secondary
wavelets leaving the slits are coherent. Superposition of
these wavelets result in a series of bright and dark bands
(fringes) which are observed on a second screen placed at
some distance parallel to the first screen.

Let us now consider the formation of bright and dark
bands. As pointed out earlier the two slits behave as
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coherent sources of secondary wavelets. The wavelets
arrive at the screen in such a way that at some pounts
crests fall on crests and troughs on troughs resulting in
constructive interference and bright fringes are formed.
There are some points on the screen where crests meet
troughs giving rise to destructive interference and dark
fringes are thus formed.

lullg

Young's double slit experiment for interference of light.

In order to derive equations for maxima and minima, an
arbitrary point P is taken on the screen on one side of
the central point O as shown in Fig. 9.3 (c). AP and BP
are the paths of the rays reaching P. The line AD is
drawn such that AP = DP. The separation between the
centres of the two slits is AB = d. The distance of the

screen from the slits is CO = L. The angle between

CP and CO is 6. It can be proved that the angle
BAD = 0 by assuming that AD is nearly normal to BP.
The path difference between the wavelets, leaving the
slits and arriving at P, is BD. It is the number of
wavelengths, contained within BD, that determines
whether bright or dark fringe will appear at P. If the point
P is to have bright fringe, the path difference BD must be
an integral multiple of wavelength.
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Fig.9.3 (c)

Geometrical construction of
Young's double slit experiment



g sing tane
2 0.035 0.035
4 0.070 0.070
6 0.104 0.105
8 0.139 0.140

10 0.174 0.176

Thus, BD = ma, where m=0,1,2

Since BD =d sind
thé.‘refpr‘e dsin® =mA ... . . (8.1)

It is observed that each bright fringe on one side of O has
symmetrically located bright fringe on the other side of O. The
central bright fringe is obtained when m = 0. If a dark fringe

appears at point P, the path difference BD must contain
half-integral number of wavelengths.

Thus BD = Lmﬂ A
2)
therefdre, dsin® = [m+%] MA T T (9.2)

The first dark fringe, in this case. will obviously appear for
m = 0 and second dark for m = 1. The interference pattern
formed in the Young's experimentis shown in Fig. 9.3 (d).

Fig. 8.3 (d)

An interfarence pattern by moncchromatic light inYoung's double siits experiment.

Equations 9.1 and 9.2 can be applied for determining the
linear distance on the screen between adjacent bright or
dark fringes. If the angle 0 is small, then

sin 0 = tan®
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Now from Fig. 9.3 (c), tan® = y/L, where y is the distance
of the point P from O. If a bright fringe is observed at P,

then, from Eq. 9.1, we get,

=ik
Gl i s (9.3)
If P is to have dark fringe it can be proved that
1)L '
- e R e 4
y (m 2} : (9.4)

in order to determine the distance between two adjacent
bright fringes on the screen, mth and (m + 1) th fringes are

considered.
For the mth bright fringe, Ym=m %L
; : AL Tidbits
and for the (m + 1)th bright fringe Yms1 =(m +1) ¥
If the distance between the adjacent bright fringes isA y, ; m‘
then
rl XL An interference pattern formed
AY= Y1 = Ym =(M+1) == —m withwhite ight
= A
Therefore, Ay = o e i (9.5)

Similarly, the distance between two adjacent dark fringes
canbe proved to be xL/d. It is, therefore, found that the
bright and dark fringes are of equal width and are equally
spaced.

Eq. 9.5 reveals that fringe spacing increases “if  red
light (long wavelength) is used as compared to blue light
(short wavelength). The fringe spacing varies directly with
distance L between the slits and screen and inversely with
the separation d of the slits. ST

If the separation d between the two slits, the order m of a
bright or dark fringe and fringe spacing Ay are known, the
wavelength 7 of the light used for interference effect can be
determined by applying Eq. 9.5.
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Example 9.1: The distance between the slits in Young's
double siit experiment is 0.25 cm. Interference fringes are
formed on a screen placed at a distance of 100 cm from the
slits. The distance of the third dark fringe from the central bright
fringe is 0.059 cm. Find the wavelength of the incident light.

Solution: Given that
d=0.25cm=2 5x10°m

¥=0.059¢cm=59x10*m
L=100cm=1m
For the 3" dark fringe m = 2

: o Bl
Using y= (m+2J d

Interesting Information
o~ - 3 .

5= 59x10%m x25x 10° m
(2 +1/2)x1m
Therefore, 2 =5.90x 10" m =590 nm
Example 9.2: yeliow sodium light of wavelength 589 nm,

emitted by a single source passes through two narrow
slits 1.00 mm apart. The interference pattern is observed

white light. bright fringes?
Solution: Given that

=589 nm=589x 10 m
d=1.00 mm = 1.00 x 10°m
L=225cm =225m
?

A

d

<
I

Using Ay =

Ay = 989 x10° mx225m
1.0x10° m

5 Ay=133x10"m or 1.33 mm.
. Thus; the adjacent frings will be 1.33 mm apart,
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A thin film is a transparent medlum whose thickness is
comparable with the wavelength of light. Brilliant and
beautiful colours in soap bubbles and oil film on the
surface of water are due to interference of light reflected
from the two surfaces of the film as explained below:

Consider a thin film of a refracting medium. A beam AB of
monochromatic light of wavelength i is incident on its upper
surface. It is partly reflected along BC and partly refracted
into the medium along BD. At D it is again partly reflected
Inside the medium along DE and then at E refracted along EF as
shown in Fig. 9.4. The beams BC and EF, being the parts of the same
primary beam have a phase coherende. As the film is thin, so the’
separation between the beams BC and EF will be very small,
and they will superpose and the result of their interference
will be detected by the eye. It can be seen in Fig. 9.4, that
the original beam splits into two parts BC and EF due to the
thin film enter the eye after covering different lengths,
of paths. Their path difference depends upon (i) thickness:
and nature of the film and (ii) angle of incidence. If the two
reflected waves reinforce each other, then the film as seen
with the help of a parallel beam of monochromatic fight
will look bright. However, if the thickness of the film and
angle of incidence are such that the two reflected waves
cancel each other, the film will look dark.

If white light is incident on a film of irregular thickness at all
possible angles, we should consider the interference
pattern due to each spectral colour separately. It is quite
possible that at a certain place on the film, its thickness
and the angle of incidence of light are such that the
condition of destructive interference of one colour is being
satisfied. Hence, that portion of the film will exhibit the
remaining constituent colours of the white light as shown in
Fig. 9.5.

9.6 ‘ _
When a plano-convex lens of Iong focal length is placed in
contact with a plane glass plate (Fig. 9.6 a), a thin air film is

enclosed between the upper surface of the glass plate and
the lower surface of the lens. The thickness of the air film is

B fet AP THAY ST S

- Mtimn.! J'::'sm A z»-w 1‘6"/
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Fig.94

Geometrical construction of
interferance of light due to a thin oll
filrm.

The vivid iridescence of peacock

feathers due lo interference of the
light reflected from its compiex
layered surface.

Fig.9.5

Interference pattern produced by a
thin soap film iluminated by white
hght.
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Fig. 9.6 {a)

Experimental arrangement for
observing Newton's rings.

Fig. 9.6 (b)

A pattern of Newton's rings due to
inierference of monochromatic light.
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i
Source G, G ]

-

Fig.9.7

Schematic diagram of a Michelson's
Interferometer.

almost zero at the point of contact O and it gradually increases
as one proceeds towards the periphery of the lens. Thus, the
points where the thickness of air film is constant, will lie on a
circle with O as centre.

By means of a sheet of glass G, a parallel beam of
monochromatic light is reflected towards the plano-convex
lensL. Any ray of monochromatic light that strikes the
upper surface of the air film neerly along normal is partly
reflected and partly refracted. The ray refracted in the
air film is also reflected partly at the lower surface of the
film. The two reflected rays, i.e. produced at the upper
and lower surfaces of the film, are coherent and interfere
constructively or destructively. When the light reflected
upwards is observed through a microscope M which is
focussed on the glass plate, series of dark and bright rings
are seen with centre at O (Fig. 9.6 b). These concentric
rings are known as Newton's rnngs.

At the point of contact of the lens and the glass plate, the
thickness of the film is effectively zero but due to reflection
at the lower surface of air film from denser medium, an
additional path difference of /2 is introduced. Consequently,
the centre of Newton rngs is dark due to destructive
interference.

Michelson'’s interferometer is an instrument that can be used
to measure distance with extremely high precision. Albert
A. Michelson devised this instrument in 1881 using the
idea of interference of light rays. The essential features of a
Michelson’s interferometer are shown schematically in Fig.9.7.

Monochromatic light from an extended source falls on a
half silvered glass plate G, that partially reflects it and
partially transmits it. The reflected portion labelled as I in
the figure travels a distance L, to mirror M., which reflects
the beam back towards G;. The half silvered plate G,
partially transmits this portion that finally arrives at the
observer's eye. The transmitted portion of the original
beam labelled as 11, travels a distance L; to mirror M, which
reflects the beam back toward Gi. The beam 11 partially
reflected by G, also arrives the observer's eye finally. The
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plate G;, cut from the same piece of glass as Gy, is
introduced in the path of beam Il as a compensator plate.
G,, therefore, equalizes the path length of the beams I and
I1in glass. The two beams having their different paths are
coherent. They produce interference effects when they

arrive at observer’s eyes. The observer then sees a series
of parallel interference fringes. ‘

In a practical interferometer, the mirror M; can be moved
along the direction perpendicular to its surface by means of
a precision screw. As the length L, is changed, the pattern
of interference fringes is observed to shift. If My is
displaced through a distance equal to 1./2, a path difference
of double of this displacement is produced, i.e., equal to .
Thus a fringe is seen shifted forward across. the line of
reference of cross wire in the eye piece of the telescope used
to view the fringes.

A fringe is shifted, each time the mirror is displaced
through %/2. Hence, by counting the number m of the fringes
which are shifted by the displacement L of the mirror, we can
write the equation, '

.......... (9.6)

Very precise length measurements can be made with an
interferometer. The motion of mirror M; by only »/4 produces
a clear difference between brightness and darkness. For

A =400 nm, this means a high precision of 100 nm or 10" mm.

Michelson measured the length of standard metre in terms
of the wavelength of red cadmium light and showed that
the standard metre was equivalent to 1,553,163.5
wavelengths of this light.

P+ B =g R Y, S
9. w RAC 4 R e
Ak W Bl o2 L = .. 5} Pl RO W 3 't

In the interference pattern obtained with Young's double slit

experiment (Fig. 9.3 b),the central region of the fringe system
is bright. If light travels in a straight line, the central region
should appear dark i.e., the shadow of the screen between
the two slits. Another simple experiment can be performed
for exhibiting the same effect.

203

~For Your Information .

A photograph of Micheison
Interferometer.

For Your Information

Intarference fringes in the Michelson
interferometer.



Consider that a small and smooth steel ball of about 3 mm
in diameter is illuminated by a point source of light. The
shadow of the object is received on a screen as shown in
Fig. 9.8 . The shadow of the spherical object is not
completely dark but has a bright spot at its centre.
According to Huygen's principle, each point on the rim
of the sphere behaves as a source of secondary
wavelets which illuminate the central region of the
shadow.

Fig.9.8 These two experiments clearly show that when light travels
Bending of light caused by its past an obstacle, it does not Proceed exactly along a
pAssage pesta spherical object. straight path, but bends around the obstacle.

and spreading of light waves into the g *ometrical
shadow of an obstacle is called diffraction.

Point to ponder The phenomenon is found o be prominent when the
wavelength of light is large as compared with the size of
the obstacle or aperture of the slit. The diffraction of light
pallen of fight being seen oceurs, in effect, due to the interference between rays
think why it is so. coming from different parts of the same wavefront.

»

Fig. 9.9 ‘shows the experimental arrangement for studyin
diffraction of light due to a narrow slit. The slit AB of width d is
illuminated by a parallel beam of monochromatic light of

s/ wavelengthi.. The screen S is placed parallel to the slit for
observing the effects of the diffraction of light. A small portion
of the incident wavefront passes through the narrow slit.
Each point of this section of the wavefront sends out
secondary wavelets to the screen. These wavelets then
interfere to produce the diffraction pattern. |t becomes
simple to deal with rays instead of wavefronts as shown in
the figure. In this figure, only nine rays have been drawn
. whereas actually there are a large number of them. Let us

Fig.9.9 : ~ consider rays 1 and 5 which are in phase on the
wgm%‘%d“;&;m‘;‘g ‘wavefront ABWhen these reach the wavefront AC, ray
sources of secondary wavelets S would have a path difference ab say equal to /2. Thus,
when these two rays reach point.P on the screen, they will

interfere destructively, Similarly, all other pairs 2 and 6, 3

204




and 7,4 and 8 differ in path by 4/2 and will do the same.

For the pairs of rays, the path difference ab= d/2 sin 0. 1st min
2nd max

1stmin
2nd max

i ini i 2nd min 2nd min
The equation for the first minimum is, then i e §. ! Al
d . )
— sinp= =
2 2
or o 807 1o Y VAl S SRR (9.7)
Fig.9.10 (a)

In general, the conditions for different orders of minima on

either side of centre are given by gggrma:gco'?g h{»m:’wrd i

dsing=mi where m :h;t (1, 2 ,3,) .......... (98)1 ;m:&:mm“;::;;nmﬁon

The region between any two consecutive minima both
above and below O will be bright. A narrow slit, therefore,
produces a series of bright and dark regions with the first
bright region at the centre of the pattern. Such a diffraction
pattern is shawn in Fig. 9.10(a) and (b).

o T Sy 4
AN T SRR SRl -
g Ly AR

A diffraction grating is a glass plate having a large number
of close parallel equidistant slits mechanically ruled on it.  Fig.8.10(b)

The transparent spacing between the scraiches on the  Difitaction pattern produced by white
glass plate act as slits. A typical diffraction grating has o froughasingle sit

about 400 to 5000 lines per centimetre.

In order to understand how a grating diffracts light, consider
a parallel beam of monochromatic light illuminating the
grating at normal incidence (Fig. 9.11). A few of the equally
spaced narrow slits are shown in the figure. The distance
between two adjacent slits is d, called grating element. Its
value is obtained by dividing the length L of the grating by the
total number N of the lines ruled on it. The sections of wave-
front that pass through the slits behave as sources of
secondary wavelets according to Huygen's principle.

diffraction through the grating make an angle 8 with AB, 1
the normal to grating. They are then brought to focus on
the screen at P by a convex lens. If the path difference
between rays 1 and 2 is one wavelength i, they will "o %%

reinforce each other at P. As the incident beam consists of Diffraction of light due to grating
parallel rays, the rays fromany two consecutive slits will differ

in path by 2. when they arrive at P.They will, therefore, interfere

d
v

In Fig. 9.11, consider the parallel rays which after a j- A
B)/ ab=dsinf
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. ; consiructively. Hence, the condition for constructive
Interesting Information interference is that ab, the path difference between two
consecutiverays, should be equal to 1 i.e.,

et S e, (9.9)
From Fig. 9.11
ab=dsind . . w........ (9.10)

d being the grating element. Substituting the value of ab in

The finerulings, each 0.5y mwide, EQ. 9.9

on a compact disc function as a

diffraction grating. When a small dsinf= A (9.11)
source of white light illuminates a

disc, the diffracted light forms ] y f o .
colored lanes” that are compesite  According to Eq. 9.10, when 0 = 0 i.e., along the direction

% the diimotion petiemSHOM 6|  of normal 1o the grating, the path difference between the

tulings.

rays coming out from the slits of the grating will be zero. So
we will get a bright image in this direction. This is known as

zero order image formed by the grating. If we increase 0

on either side of this direction, a value of 0 will be arrived

at which dsin@will be equal to 2 and according to Eq. 9.11,

we will again get a bright image. This is known as first

order image of the grating. In this way if we continue

increasing 0, we will get the second, third, etc. images on

either side of the zero order image with dark regions in between.
The second, third order bright images would occur according
as dsin 8 becoming equal to2 . 3 A, etc. Thus Eq. 9.11

can be written in more general form as

“ I BIN ORI E oo g S cpce (9.12)

Light waves projected through this =P gl
diffraction grating produce an wheren =0 &1 5 213 et

intsrferen . What col aniie i : : :
Sre- Dofibon T oy However, if the incident light contains different

interference? " wavelengths, the Image of each wavelength for a certain
value of n is diffracted in a different direction. Thus,
separate images are obtained corresponding to each
wavelength or colour. Eq. 9.12 shows that the value of 0
depends upon n, so the images of different colours ars

much separated in higheg orders.
> S 9.1 DIFFRACTION -RAYS BY

it ik b 7o s SETVSCRRNY ok 2 oot

l l'-.‘g = v CRYSTALES o RS A el

Diffraction of white light by X-rays is a type of electromagnetic radiation of much shorter
a fine difiraction grating wavelength, typically of the order of 107" m.

Can You Tell?

e o TP Roite iz o
__For your Information

BT

¢



In order to observe the effects of diffraction, the grating
spacing must be of the order of the wavelength of the
radiation used. The regular array of atoms in a crystal
forms a natural diffraction grating with spacing that is
typically ~ 107" m. The scattering of X-rays from the atoms
in a crystalline lattice gives rise to diffraction effects very
similar to those observed with visible light incident on
ordinary grating.

The study of atomic structure of crystals by X-rays was
initiated in 1914 by W.H. Bragg and W.L Bragg with
remarkable achievements. They found that a
monochromatic beam of X-rays was reflected from a
crystal plane as if it acted like mirror. To understand this
effect, a series of atomic planes of constant interplanar
spacing d parallel to a crystal face are shown by lines PP’
P.P; P,P'5 and soon, in Fig. 9.12.

Suppose an X-rays beam is incident at an angle 6 on one of
the planes. The beam can be reflected from both the upper
and the lower planes of atoms. The beam reflected from
lower plane travels some extra distance as compared to the
beam reflected from the upper plane. The effective path
difference between the two reflected beams is 2d sind.
Therefore, for reinforcement, the path difference should be an
integral multiple of the wavelength. Thus

s LT L S s e P (9.13)

The value of n is referred to as the order of reflection. The
equation 9.13 is known as the Bragg equation. It can be
used to determine interplanar spacing between similar
parallel planes of a crystal if X-rays of known wavelength
are allowed to diffract from the crystal.

X-ray diffraction has been very useful in determining the
structure of biologically important molecules such as
haemdglobin, which is an important constituent of blood,
‘and double helix structure of DNA.

Example 9.3: Light of wavelength 450 nm is incident
on a diffraction grating on which 5000 lines/cm have been
ruled.

(i) How many orders of spectra can be observed on
either side of the direct beam?
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Fig. 9.12

Diffraction of X-rays from the
lattice planes of crystal.

The spectrum of white light due to
diffraction grating of 100 slits.

The spectrum of white light due to
diffraction grating of 2000 slits



(ii) Determine the angle corresponding to each order.
Solution: (i) Given that

v ._.'-.lmansting llustration

A =450 nm = 450 x 10%m
1

d= ; —Cm = m
‘ 5000 500000
pe ‘*" For maximum number of order of spectra sin 0 =1

Since asing=nj

tﬁeref‘ore subsituting the values in the above equation,
we get, ;

: L n x450 x 10°m or n 1

A multi-aperture diffraction pattern PR ey = X T T T
This is a picture of a white-light 500000 500000 x 450 x 10
point source shot through a piece

of tightly woven cloth, or n=44

Hence, the maximum order of spectrum is 4.

) For the first order of spectrum, n = 1.
dsin0=n3 , gives
Diffraction pattern of a single 1 ? =
human hair under laser beam ~—MXxXsint=1 X450 x 10°® m
IIIi:mmation. 500000

sin = (500000)(450 x 10°?)

_ For Your Information sinB=0.225 or 0=13°

For second order spectrum,n = 2, using Eq. dsin0 =nj.

N

j3) ¢ SO 9
| enm | sin0=2 X (450 x 10 m)
:\~500000 )
sin0 =0 45
or 0= 26.7°

The third order spectrum (n=3)will be observedat g = 42 5°
Sin 6=3 x 500000 m ' x 450 x10°m
=0675 e at 9= 42.5°
Looking thiough two polerizers. when  @Nd the fourth order spectrum (n =4) will occur at § = 64 .2°
they are ‘crossed, very little light

passes through, sin 0=4 x 500000 m.1 X 450 x 10-9 m
SiNB=09 gives 0 =g4.2°
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In transverse mechanical waves, such as produced in a
stretched string, the vibrations of the particles of the medium
are perpendicular to the direction of propagation of the
waves. The vibration can be oriented along vertical,

horizontal or any other direction (Fig. 9.13). In each of these
cases, the transverse mechanical wave is said fo be

polarized. The plane of polarization is the plane containing
the direction of vibration of the particles of the medium and
the direction of propagation of the wave.

A light wave produced by oscillating charge consists of a
periodic variation of electric field vector accompanied by
themagnetic field vector at right angle to each other. Ordinary
light has components of vibration in all possible planes. Such a
light is unpolarized. On the other hand, if the vibrations are
confined only in one plane, the light is said to be polarized.

Production and Detection‘of Plane Polarized Light

The light emitted by an ordinary incandescent bulb (and alsa
by the Sun) is unpolarized, because its (electrical) vibrations
are randomly oriented in space (Fig. 9.14). It is possible to
obtain plane polarized beam of light from un-polarized light
by temoving all waves from the beam except those having
vibrations along one particular direction. This can be
achieved by various processes such as selective
absorption, reflection from different surfaces, refraction
through crystals and scattering by small particles.

The selective absorption method is the most common:
method to obtain plane polarized light by using certain types
of materials called dichroic substances. These materials
transmit only those waves, whose vibrations are parallel to a
particular direction and will absorb those waves whose
vibrations are in other directions. One such commercial
polarizing material is a polaroid. -

If un-polarized light is made incident on a sheet of polaroid,
the transmitted light will be plane polarized. If a second
sheet of polaroid is*placed in such a way that the axes of
the polaroids, shown by straight lines drawn on them, are
parallel (Fig. 9.15a), the light is transmitted through the
second polaroid also. If the second polaroid is slowly rotated
about the beam of light, as axis of rotation, the light
emerging out of the second polaroid gets dimmer and
dimmer and disappears when the axes become mutually

209

Q11

ig

Trénsverse waves on a string polarized
(a) in a vertical plane and
(b) in a horizontal plane

Fig.9.14 4

An unpolarized light, due 1o
ncandescent bulb, has vibrations in all
directions.

Plane Polarized
light

No light



perpendicular (Fig. 9.15 b). The light reappears on further
rotation and becomes brightest when the axes are again
parallel to each other.

This experiment proves that light waves are transverse
waves. If the light waves were longitudinal, they would
never disappear even if the two polaroids were mutually
perpendicular.

Reflection of light from water, glass, snow and rough road

Lightreflected from smooth surface S
of water is ally polarized  surfaces, for larger angles of incidences, produces glare.
paralielto the surface. Since the reflected light is partially polarized, glare can

considerably be reduced by using polaroid sunglasses.

Sunlight also becomes partially polorized because of
scattering by air molecules of the Earth's almosphere. This
effect can be observed by looking directly up through a pair of
sunglasses made of polarizing glass. At certain orientations
of the lenses, less light passes through than at others.

Optical Rotation
Urinclicbinid When a plane polarized light is passed through certain

light R, crystals, they rotate the plane of polarization. Quartz
gz\. D 7| and sodium chiorate crystals are typical examples, which
are termed as optically active crystals.

Sugar solution

polarizer " Analzer A few millimeter thickness of such crystals will rotate the
s;aigggnug?lrm't'@eh?m& :: plane of polarization by many degrees. Certain organic
oy b iy substances, such as sugar and tartaric acid, show optical
angle .The analyzer thus stops the  rotation when they are in solution. This property of optically
Woht when rotated from the verical 4.\ o substances can be used to determine their

(crossed)positions. 5 4 -
concentration in the solutions.

(SUMMARY

“ A surface passing through all the points undergoing a similar disturbance (i.e.,
having the same phase) at a given instant is called a wavefront.

“ When the disturbance is Ppropagated out in all directions from a point source, the
wavefronts in this case are spherical.

i pitw-étu mfnm;hm\

" Radial lines leaving the point source in all directions represent rays.

*  The distance between two consecutive wavefronts is called wavelength.

* Huygen's principle states that all points on a primary wavefront can be considered
as the source of secondary wavelets.
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When two or more waves overlap each other, there is a resultant ‘wave. This
phenomenon is called interference.

Constructive interference occurs when two waves, travelling in the same medium
overlap and the amplitude of the resultant wave is greater than either of
the individual waves.

In case of deslructive interference, the amplitude of the resulting wave is less than
either of the individual waves.

In Young's double slit experiment,
(1) for bright fringe, d siné=ma

) for dark fringe, dsing =(m+ % )i
1) the distance between two adjacent bright or dark fringes is

A g bzl
<

Newton's rings are circular fringes formed due to interference in a thin air film
enclosed between a convex lens and a flat glass plate.

Michelson'’s interferometer is used for very precise length measurements.
The distance L of the moving mirror when m fringes move in view is  mi./2.

Bending of light around obstacles is due to diffraction of light.
For a diffraction grating | -
dsinB=ni where n stands for nth order of maxima.
For diffraction of X-rays by crystals
2dsing =nA  where nis the order of reflection.

Polarization of light proves that light consists of transverse electromagnetic waves.

QUESTIONS

Under what conditions two or more sources of light behave as coherent sources?

How is the distance between interference fringes affected by the separation between
the slits of Young's experiment? Can fringes disappear?

Gan visible light produce interference fringes? Explain.

In the Young's experiment, one of the slits is covered with blue filter and other with
red filter. What would be the pattern of light intensity on the screen?
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Explain whether the Young's experiment is an experiment for studying interference
or diffraction effects of light.

An oil film spreading over a wet footpath shows colours. Explain how does it
happen?

Could you obtain Newton's rings with transmitted light? If yes, would the pattern be
different from that obtained with reflected light?

In the white light spectrum obtained with a diffraction grating, the third order image
of a wavelength coincides with the fourth order image of a second wavelength.
Calculate the ratio of the two wavelengths.

How would you manage to get more orders of spectra using a diffraction grating?

' Why the polaroid sunglasses are better than ordinary sunglasses?

How would you distinguish between un-polarized and plane-polarized lights?

Fill in the blanks.

According to principle, each point on a wavefront acts as a source
of secondary

In Young's experiment, the distance between two adjacent bright fringes for
violet light is than that for green light.

The distance between bright fringes in the interference pattern as
the wavelength of light used increases.

1 A diffraction grating is used to make a diffraction pattern for yellow light and
then for red light. The distances between the red spots will be than
that for yellow light.

V) The phenomenon of polarization of light reveals that light waves are W
waves,

/1) A polaroid is a commercial
(Vi) A polaroid glass glare of light produced at a road surface.

‘NUMERICAI:PROBLEMS

Light of wavelength 546 nm is allowed to illuminate the slits of Young's experiment. The
separation between the slits is 0.10 mm and the distance of the screen from the slits
where interference effects are observed is 20 cm. At what angle the first minimum will
fall? What will be the linear distance on the screen between adjacentmaxima?

(Ans: 0.16° 1.1 mm)



Calculate the wavelength of light, which illuminates two slits 0.5 mm apart and
produces an interference pattern on a screen placed 200 cm away from the slits. The
first bright fringe is observed ata distance of 2.40 mm from the central bright image.

(Ans: 800 nm)

~ In a double slit experiment the second order maximum occurs at 6= 0.25°. The
wavelength is 650 nm. Determine the slit separation.

(Ans: 0.30 mm)

. A monochromatic light of A = 588 nm is allowed to fall on the half silvered glass
plate G4, in the Michelson Interferometer. If mirror M, is moved through 0.233 mm,
how many fringes will be observed to shift?

(Ans: 792)

. A second order spectrum is formed at an angle of 38.0° when light falls normally on
a diffraction grating having 5400 lines per centimetre. Determine wavelength of the
light used.

( Ans. 570 nm)

o & A lightis incident normally on a grating which has 2500 lines per centimetre. Compute

the wavelength of a spectral line for which the deviation in second order is 15.0".
(Ans: 518 nm)

. 7 Sodium light (»= 589 nm) is incident normally on a grating having 3000 lines per

centimetre. What is the highest order of the spectrum obtained with this grating?
(Ans: 5th)

1 # Blue light of wavelength 480 nm illuminates a diffraction grating. The second order

image is formed at an angle of 30° from the central image. How many lines in a
centimetre of the grating have been ruled?

(Ans: 5.2 x 10 lines per cm)

9 9 X-rays of wavelength 0.150 nm are observed to undergo a first order reflection at a

Bragg angle of 13.3° from a quartz (Si0,) crystal. What is the interplanar spacing of
the reflecting planes in the crystal?

(Ans: 0.326 nm)

2 10An X-ray beam of wavelength % undergoes a first order reflection from a crystal
when its angle of incidence to a crystal face is 26.5% and an X-ray beam of
wavelength 0.097 nm undergoes a third order reflection when its angle of incidence
to that face is 60.0°. Assuming that the two beams refiect from the same family of
planes, calculate (@) the interplanar spacing of the planes and (b) the wavelength /.

[Ans: (a) 0.168 nm (b) 0.150 nm]
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OPTICAL INSTRUMENTS

At the end of this chapter the students will be able to:

Recognize the term of least distance of distinct vision.
© Understand the terms magnifying power and resolving power.

Derive expressions for magnifying power of simple microscope, compound
microscope and astronomical telescope.

' Understand the working of spectrometer.
- Describe Michelson rotating mirror method to find the speed of light.
. Understand the principles of optical fibre.
7 Identify the types of optical fibres.
Appreciate the applications of optical fibres.

l n this chapter, some optical instruments that are based on the principles of reflection
and refraction, will be discussed. The most common of these instruments are the

optical fibres, which has developed a great importance in medical diagnostics,
telecommunication and computer networking, is also included.

10.1 LEAST DISTANCE OF DISTINCT VISION

The normal human eye can focus a sharp image of an object on the eye if the object is
located any where from infinity to a certain point called the near point.

The minimum distance from the eye at which an object appears to be
distinct is called the least distance of distinct vision or near point.
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This distance represented by d is about 25 cm from the eye
If the object is held closer to the eye than this distance the
image formed will be blurred and fuzzy. The location of
the near point, however, changes with age.

When an object is placed in front of a convex lens at a point
beyond its focus, a real and inverted image of the objectis
formed as shown in the Fig. 10.1.

|¢— p —dle—o G —>

‘;g 0.1

The ratio of the size of the image to the size
of the object is called magnification.

As the object is brought from a far off point to the focus, the
magnification goes on increasing. The apparent size of an
object depends on the angle subtended by it at the eye.Thus,
the closer the object is tothe eye,the greater is the angle
subtended and larger appears the size of the object
(Fig.10.2). The maximum size of an object as seen by
naked eye is obtained when theobject is placed at the
least distance of distinct vision. For lesser distance, the
image formed looks blurred and the details of the object

are not visible.
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When the same object is viewed at
a shorter distance, the image on the
retina of the eye is greater; so the
object appears larger and more
details can be seen. The angle 6
the object subtends in (a) is grealer
than 8 in (b).



If you find it difficult to read small

print, make a pinhole in a piece of
paper and hold it in front of your
sye close to the page. You will see
the print clearly.

The optical resolution of a microscope or a telescope tells
us how close together the two point sources of light can be
so that they are still seen as two Separate sources. If two
point sources are too close, they will appear as one becau-
se the optical instrument makes a point source look like a
small disc or spot of light with circular diffraction fringes.

Although the magnification can be made as large as one
desires by choosing appropriate focal lengths, but the
magnification alone is of no use uniess we can see the
details of the object distinctly.

The resolving power of an instrument is its ability to reveal
the minor details of the object under examination.

ﬁesolving power is expressed as the reciprocal of minimum angle
which two point sources subtends at the instrument so that
theirimages are seen as two distinct spots of light rather
than one. Raleigh showed that for light of wavelength )
through a lens of diameter D, the resolving power is
givenby R=1 =p '

Gmin, 1,22 4

Where o =1 .22'5 (10.1)

..........

The smaller the value of « min, gréater is the resolving power
because two distant objects which are close together can
then be seen separated through the instrument.
In the case of a graling spectrometer, the resolving power
R of the grating is defined as

A

R L

2
A2k AL

where A =2, ~ 3, and A% = Az — 1. Thus, we see that a
grating with high resolving power can distinguish small
difference in wavelength. If N is the number of rulings on
the grating, it can be shown that the resolving power in the
mth-order diffraction equals the product N x m,i e,

: R=Nxm TR (10.3)
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As discussed above, a conve gns can be
used to help the eye to see small objects distinctly. A
watch maker uses convex lens to repair the watches. The
object is placed inside the focal point of the lens. The
magnified and virtual image is formed at least distance of
distinct vision d or much farther from the lens.

Let us. now, calculate the magnification of a simple
microscope. In Fig. 10.3 (a), the image formed by the
object, when placed at a distance d, on the eye is shown.
In Fig. 10.3 (b), a lens is placed just in front of the eye and
the object is placed in front of the lens in such a way that a
virtual image of the object is formed at a distance d from

the eye. The size of the image is now much larger than
without the lens.

If p and o are the respective angles subtended by the
object when seen through the lens (simple microscope)
and when viewed directly, then angular magnification M is
defined as

M=

RIT

(1()_4)

When angles are small, then they are nearly equal to their
tangents. From Fig. 10.3 (a) and (b), we find

Size of the object
Distance of the object

a=tana =

=9
d

Size of the image

and B=tanp = =
' q

Distance of the image

Since the image is at the least distance of distinct vision,

hence, qg=d
Therefore, B = $oa=¥
q d
: : Id !
the angular magnification M=—=—
“ e 0d O
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Fig.10.4 (b).
A Compound Microscope

C

As we already know that

I _  Size of the image _ Distance of the image _ q

O  Sizeoftheobject  Distance of the object  p
% Bl
Therefore, M2 Bl Sl e baisbn.: (10_5)
P p
For virtual image, the lens formula is written as
1

But q =d

3 d
H 20 et s

ence o -
Hence the magnification of a convex lens (simple
microscope) can be expressed as

d
=1+ =
f

d d
.7 e T A N )
. 7 (10.6)
It is, thus, obvious that for a lens of high éngular
magnification the focal length should be small. If, for
example,/= 5 cm and d = 25 cm. then M =8, the object
would loek six times larger when viewed through such a lens.

Whenever high magnification is desired, a compound
microscope is used. It consists of two convex lenses, an
object lens of very short focal length and an eye-piece of
comparatively longer focal length. The ray diagram of a
compound microscope is given in Fig. 10.4 (a).

R T R p—— . ]

=2
o

e

Flg.10.4(a).
Ray diagram of a Compound Microscope
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The object of height h is placed just beyond the principal
focus of the objective. This produces a real, magnified
image of height h, of the object at a place situated within
the focal point of the eye-piece. It is then further magnified
by the eye-piece. In normal adjustment, the eye-piece is
positioned so that the final image is formed at the near
point of the eye at a distance d.

The angular magnification M of a compound microscope is
defined to be the ratio tan®,/tan 6, where 0, is the angle
subtended by ‘the final image of height h, and 6 is the
angle that the object of height h would subtend at the eye if
placed at the near point d (Fig. 10.3 a). Now

h h
tan = — and tan 0, = -2
d - od
Eoa) tanBs _ h
Thus, magnificaton M= = e g By
tano d ns..h

h
or M= —L 2
h hy
where ratio h,/h is the linear magnification M; of the
objective and h,/h; is the magnification M of the eyepiece.
Hence, total magnification is

M=M1M;:
By Eq. 10.5 and Eq. 10.6 , M; =q/pand M,=1+ difs

Hence, M=9 (1+ i) .......... (10.7)
P fo

It is customary to refer the values of M as multiples of 5, 10,
40 efc., and are marked as x5, x10, x40 etc., on the
instrument.

The limit to which a microscope can be used to resolve
details, depends on the width of the objective. A wider
objective and use of blue light of short wavelength
produces less diffraction and allows more details to be
seen.
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Example 10.1: A microscope has an objective lens of
10 mm focal length, and an eye piece of 25.0 mm focal
length. What is the distance between the lenses and its
magnification, if the object is in sharp focus when it is
10.5 mm from the objective?

Solution: If we consider the objective alone
il pelliogonrd
105mm 9  10mm

or q@=210mm

If we consider the eye piece alone, with the virtual image at
the least distance of distinct vision o = =250 mm

8.7 T el or p=227mm
P -250mm  25mm

Distance between Lenses =q+p=21 Omm+22.7mm=233mm

Magnification by objective

M1=i= 210 mm =200

P 10.5mm

Total magnification

M= M1 X Mg
=20 x (-11.0) = -220
-ive sign indicates that the image is virtual.

) o 4- TN Ay 5 (..A'-.x.-‘d.r--.x; - (5 oy
Telescope is an optical device used for viewing distant
objects. The image of a distant object viewed through a
teléscope appears larger because it subtends a bigger
visual angle than when viewed with the naked eye. Initially
the extensive use of the teiescopes was for astronomical
observations. These telescopes are called astronomical
telescopes. A simple astronomical telescope consists of

two convex lenses, an objective of long focal length £, and

ARt >
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an eye piece of short focal length f,. The objective forms a
real. inverted and diminished image AB of a distant object

AB. This real image A’B’ acts as object for the eye
piece which is used as a magnifying glass. The final image

seen through the eye-piece is virtual, enlarged and inverted.

Fig. 10.5 shows the path of rays through an astronomical
telescope.

S le k. -3}
i i A
- “ ;‘
Rays from distant e A
object AB -
P LS \ \
~

(= Lo

- '?\“‘\~\L ‘\L\:: 2 |

- N
. -~
- -
- -
- e -
- -
- -

Fig.10.5 2

Ray diagram of Astronomical Telescope

When a very distant object is viewed, the rays of light
coming from any of its point (say its top) are considered
parallel and these parallel rays are converged by the
objective to form a real image A’B’at its focus. If it is
desired to see the final image through the eye-piece
without any strain on the eye, the eye-piece must be
placed so that the image A'B’ lies at its focus. The rays
after refraction through the eye-piece will become parallel
and the final image appears to be formed at infinity. In this
condition the image A’ B’ formed by the objective lies at
the focus of both the objective and the eye-piece and the
telescope is said to be in normal adjustment.

Let us now compute the magnifying power of an
astronomical telescope in normal adjustment. The angle a
subtended at the unaided eye is practically the same as
subtended at the objective and it is equal to 2~ A'OB'.Thus

A'B° A'B
o-tanaa=— =
OB’ f,
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The angle P subtended at the eye by the final image is
equalto ~ A’ O’ B .Thus

A'B A'p
=tanf-_—— _Z°
B P 2 B
; A'By,
Magnifying power of the telescope = 71," ¥ ‘B‘
A
h
or < S R e (10.8)
fe
oy ’Q
\\L " ¢

Reflecting Telescope

Large astronomical telescopes
are reflecting type made from
specially shaped very large
mirrors used as objectives. With
Such tele 2 can
stuay stars which are millions light
yearaway.

o Focal length of the objective
Focal length of the eyepiece

Besides having a high magnifying power another probiem
which confronts the astronomers while designing a
telescope to see the distant planets and stars is that they
would like to gather as much light form the object as

A spectrometer is an optical device used to study spectra
from different sources of light. With the help of a
spectrometer, the deviation of light by a glass prism and
the refractive index of the material of the prism can be
measured quite accurately. Using a diffraction grating, the

The essential components of a spectrometer are shown in
Fig. 10.6 (a).
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Schematic diagram of a specﬂoﬁntor.

Collimator

It consists of a fixed metallic tube with a convex lens at one
~nd and an adjustable slit, that can slide in and out of the
‘f.oe, at the other end. When the slit is just at the focus of
the convex lens, the rays of light coming out of the lens

become parallel. For this reason, it is called a collimator.

Turn Table

A prism or a grating is placed on a turn table which is
capable of rotating about a fixed vertical axis. A circular
scale, graduated in half degrees, is attached with it.

Telescope

A telescope is attached with a vernier scale and is
rotatable about the same vertical axis as the turn table.

Before using a spectrometer, one should be sure that the
collimator is so adjusted that parallel rays-of light emerge
out of its convex lens. The telescope is adjusted in such a
way that the rays of light entering it are focussed at the
cross wires near the eye-piece. Finally, the refracting edge
of the prism must be paraliel to the axis of rotation of the
telescope so that the turn table is levelled. This can be
done by using the levelling screws.
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Fig. 10.7

Michelson's method for
measurement of speed of light,

Light travels so rapidly that it is very difficult to measure its
speed. Galileo was the first person to make an attempt to
measure its speed. Although he did not succeed in the
measurement of the speed of light, yet he was convinced
that the light does take some time to travel from one place
to another. Given below is one of the accurate methods of
determining the speed of light which is known as
Michelson's experiment.

In this experiment, the speed. of light was determined by
measuring the time it took to cover a round trip between two
mountains. The distance between the two mountains was
measured accurately. The experimental set up is shown
in Fig.10.7.

An eight-sided polished mirror M is mounted on the shaft of
a motor whose velocity can be varied. Suppose the mirror
is stationary in the position shown in the figure. A beam of
light from the face 1 of the mirror M falls at the plane mirror
m placed at a distance o from M. The beam is reflected
back from the mirror m and falls on the face 3 of the mirror
M. On reflection from face 3, itenters the telescope.

If the mirror M is rotated clockwise, initially the source will
not be visible through the telescope. When the mirror M
gains a certain speed, the source S becomes visible. This
happens when the time taken by light in moving from M to
m and back to M is equal to the time taken by face 2 to
move to the position of face 1.

Angle subtended by any side of the eight-sided mirror at
the centre is 27/8. If f is the frequency of the mirror M,
when the source S is visible through the telescope, then
the time taken by the mirror to rotate through an angle 2=
is 1/f. So, the time taken by the mirror M to rotate through
an angle 2n/8 is

2% 1
x— _— ——
8

t:i
2nf 8f

The time taken by light for its passage from M to m and
back is 2d/c, where c is the speed of light. These two times
are equal,
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CELBFd. . Casenias (10.9)

This equation was used to determine the speed of light by
Michelson. Presently accepted value for the speed of light
in vacuum is

¢ =2.99792458 x10° ms™

we usually round this off to 3.00 x10° ms™.

The speed of light in other materials is always less than c.
In media other than vacuum, it depends upon the nature of
the medium. However, the speed of light in air is
approximately equal to that in vacuum and generally taken
so in calculations.

10.8 lNTMDI,!CﬂON TO FIBRE
—— A

For hundreds of years man has communicated using
flashes of reflected sunlight by day and lanterns by night.
Navy signalmen still use powerful blinker lights to transmit
coded messages to other ships during periods of radio-
silence. Light communication has not been confined to
simple dots and dashes. It is an interesting but little known
fact that Alexander Graham Bell invented a device known
as “photo phone” shortly after his invention of telephone.
Bell's photo phone used a modulated beam of reflected
sunlight, focussed upon a Selenium detector several
hundred metres away. With the device, Bell was able to o
transmit a voice message via a beam of light. The idea E’”‘“”"”"‘Wmﬂ:
remained dormant for many years. During the recent past  eye of a needle. Why is the siza
the idea of transmission of light through thin optical fibres  ofthefibreimportant?

has been revived and is now being used in communication

technology.

The use of light as a transmission carrier wave in fibre
optics has several advantages over radio wave carriers
such as a much wider bandwidth capability and immunity
from electromagnetic interference.



Fig,10.8 (b)

mbg.@mﬁm Itml_i_iuﬁnhis
ol passing through a
fibre optic light guide.

It is also used to transmit light around corners and into
inaccessible places so that the formerly unobservable could
be viewed. The use of fibre optic tools in industry is now
very common, and their importance as diagnostic tools in
medicine has been proved (Fig. 10.8 a and b).

Recently the fibre optic technology has evolved into
something much more important and useful -- g
communication system of enormous capabilities.

One feature of such a system is its ability to transmit
thousands of telephone conversations, several television
programs and numerous data signals between stations
through one or two flexible, hair - thin threads of optical
fibre. With the tremendous information carrying Capacity
called the bandwidth, fibre optic systems have undoubtedly
made practical such services as two way television which
was too costly before the development of fibre optics.
These systems also allow word processing, image
transmitting and receiving equipment to operate efficiently.

In addition to giving an extremely wide bandwidth, the fibre
optic system has much thinner and light weight cables. An
optical fibre with its protective case may be typically 6.0 mm
in diameter, and yet it can replace a 7.62 cm diameter
bundle of copper wires now used to carry the same
amount of signals.

3o U RN |

Propagation of light in an optical fibre requires that the light
should be totally confined within the fibre.

This may be done by total internal reflection and continuous
refraction.

A sl PR s
ol Internal Reflectio

One of the qualities of any optically transparent material is
the speed at which light travels within the material, i.e., it
depends upon the refractive index n of the material. The
index of refraction is merely the ratio of the speed of light
€ in vacuum to the speed of light v in that material.
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Expressed mathematically,

n =

<|o

.......... (10.10) Air n,

The boundary between two optical media, e.g. glass and air
having different refractive indices can reflect or refract light
rays. The amount and direction of reflection or refraction is
determined by the amount of difference in refractive indices
as well as the angle at which the rays strike the boundary. At
some angle of incidence, the angle of refraction is equal to
90° when a ray of light is passing through glass to air. This 45414

angle of incidence is called the critical angle 6. shownin e okl rihe ok s

Fig.10.9(a).We are already familiar with Snell's law 50° the angle of incidence is called
n,sin 0, = n,sin 0, the critical angle.
From Fig. 10.9 (a), when 8,=6, 0,=90° '
thus, nsind.=n, or sinf.=n,/n, ;
For incident angles equal to or greater than the critical angle, i
the glass - air boundary will act as a mirror and no light o <L ‘m%
escapes from the glass (Fig. 10.9 b). For glass-air boundary, :”(‘/ _t‘; 4 \\%
0 i

wehave  sinf= 2 = 10 o 62418 > J? R

n, 1.5 3 it

| Watms Goass or orastc

Let us now assume that the glass is formed into a long, . —
round rod. We know that all the light rays striking the :'9'?“:‘.:’ — .
internal surface of the glass at angles of incidence greater > b Gk Mkawwe geomr
than 41.8° (critical anglg) will be rcgaﬂected back ir?to the mm;m&%"éi
glass, while those with angles lessthan 41.8° will escape  ain

from the glass (Fig.10.10a).Ray 1 is injected intothe rod so

that it strikes the glass air boundary at an angle of incidence

about 30°. 1

Fig. 10.10 (a)

Propagation of light within a glass rod. Outgoing
4 ray

Since this is less than the critical angle, it will escape from '

the rod and be lost. Ray 2 at 42° will be reflected back into

the rod, as will ray 3 at 60°Since the angle of reflection

equals the angle of incidence,these two rays will continue Fig. 10.10 (b)

to propagate down the rod, along paths determined by Llﬁht propagation within &

the original angles of incidence.Ray 4 is called an axial flexible glass fibre.

Incoming
ray
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ray since its path is parallel to the axis of the rod.
Axial rays will travel directly down this straight and rigid rod.
However, in afiexible glass fibre they will be subjected to
the laws of reflection (Fig. 10.10b).

Optical fibres that propagate light by total internal reflection
are the most widely used.

Continuous Refraction

There is another mode of propagation of light through
optical fibres in which light is continuously refracted within
the fibre. For this purpose central core has high refractive
index (high density) and over it is a layer of a lower
refractive index (less density). This layer is called cladding.
Such a type of fibre is called multi-mode step index fibre
whose cross sectional view is shown in Fig.10.11(a).

(a)

(b)

Now a days, a new type of optical fibre is used in which the
Fig. 10.11 central core has high refractive index (high density) and its
Cross sectional view of density gradually decreases towards its periphery. This type
‘;) :w step im of optical fibre is called a multi mode graded index fibre. lts
M ™ cross sectional view is shown in Fig. 10.11 (b). '

In both these fibres the propagation of light signal is
through continuous refraction. We already know that a ray
passing from a denser medium to a rarer medium bends
away from the normal and vice versa, In step index or
graded index fibre, a ray of light entering the optical fibre,
as shown in Fig. 10.12, is continuously refracted through
. these steps and is reflected from the surface of the outer
Fig.10.12 layer. Hence light is transmitted by continuous refraction

Light propagation within and total internal reflection.
hypothetical multi layer fibre, e

types of optical fibres whichare classified
on the basis of the mode by which they propagate light. These
are (i) single mode step index (ii) multi mode step index and
(iii) multi mode graded index. The term ‘'mode’ is described
as the method by which light is propagated within the fibre,
i.e. the various paths that light can take in travelling down
the fibre. The optical fibre is also covered by a plastic
jacket for protection.
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(i) Single Mode Step Index Fibre

Single mode or mono mode step index fibre has a very thin
core of about 5 um diameter and has a relatively larger
cladding (of glass or plastic) as shown in Fig. 10.13.Since
it has a very thin core, a strong monochromatic light source
i.e., alLaser source has to be used to send light signals
through it. It can carry more than 14 TV channels or 14000
phone calls.

(ii) Multimode Step Index Fibre

This type of fibre has a core of relatively larger diameter such
as 50 um. It is mostly used for carrying white light but due to

dispersion effects, it is useful for a short distance only. The
fibre core has a constant refractive index n,, such as 1.52,
from its centre to the boundary with the cladding as shown
in Fig. 10.14. The refractive index then changes to a lower
value n,, such as 1.48, which remains constant throughout
the cladding.

Fig. 10.14

This is called a step-index multimode fibre, because the
refractive index steps down from 1.52 to 1.48 at the
boundary with the cladding.

(ili) Multimode Graded Index Fibre

Multi mode graded index fibre has core which ranges in
diameter from 50 to 1000 um. It has a core of relatively high
refractive indexand the refractive index decreases gradually
from the middle to the outer surface of the fibre. There is no
noticeable boundary between core and cladding. This type
of fibre is called a multi mode graded-index fibre (Fig. 10.15)
and is useful for long distance applications in which white
light is used. The mode of transmission of light through this
type of fibre is also the same, i.e., continuous refraction from
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Fig. 10.13

Single-mode step-index fibre.

Fig. 10.15

Light propogation through Muiti-
‘mode graded-index fibre



the surfaces of smoothly decreasing refractive index and the
total internal reflection from the boundary of the outer
surfaces.

Example 10.2: Calculate the critical angle and angle of entry
for an optical fibre having core of refractive index 1.50 and
cladding of refractive index 1.48.

Solution: We have n, =150, n,=148

Fig. 10.16

From Snell's law n,sin 6, = n,sin 0,

When 8,=6,,0,=90°

So, 1.50sin 6, = 1.48 sin 90°

Which gives 8.= 80.6°

From the Fig. 10.16, 0'=90°- 0.=94°

Again using Snell's law, we have SinQ -n, _15
sin 6 n 1

which gives Sin8=1.50sin6" or 0=14.2°

If light beam is incident at the end of the optical fibre at an
angle greater than 14.2°, tota internal reflection would not
take place.

A fibre optic communication system consists of three major
components: (i) a transmitter that converts electrical
signals to light signals, (ii) an optical fibre for guiding the
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Such a light will travel much faster through optical fibres
than will either visible or ultra-violet light. The lasers and
LEDs used in this application are tiny units (less than half
the size of the thumbnail) in order to match the size of the
fibres. To transmit information by light waves, whether it is
an audio signal, a telvision signal or a computer data
signal, it is necessary to modulate the light waves. The
most common method of modulation is called digital
modulation in which the laser or LED is flashed on and off
at an extremely fast rate. A pulse of light represents the
number 1 and the absence of light represents zero. In a
sense, instead of flashes of light travelling down the fibre,
ones (1s) and zeros (0s) are moving down the path.
Optical fibre

Microphone Laser Earpiece
| Electrical

(sound)

Fig. 10.17

With computer type equipment, any communication can be
represented by a particular pattern or code of these 1s and
0s. The receiver is programmed to decode the 1sand Os, thus
it receives, the sound, pictures or data as required. Digital
modulation is expressed in bits ( binary digit ) or megabits
(10° bits) per second, where a bitisa 1 ora 0.

Despite the ultra-purity (99.99% glass) of the optical fibre,
the light signals eventually become dim and must be
regenerated by devices called repeaters. Repeaters are
typically placed about 30km apart, but in the newer
systems they may be separated by as much as 100 km.

At the end of the fibre, a photodiode converts the light
signals, which are then amplified and decoded, if necessary,
to reconstruct the signals originally transmitted (Fig. 10.17).

P

When a light signal travels along fibres by multiple
reflection, some light is absorbed due to impurities in the
glass. Some of it is scattered by groups of atoms which are
formed at places such as joints when fibres are joined
together. Careful manufacturing can reduce the power loss
by scattering and absorption.
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The information received at the other end of a fibre can be
inaccurate due to dispersion or Spreading of the light signal.

o

Fig. 10.18 (a) shows the paths of light of three different
e wavelengths 4, A, and As. &4 meets the core-cladding at
2 the critical angle and %, and A3 at slightly greater angles. All

Ay

(@) So the light of different wavelengths reaches the other end

The disadvantage of the step-index fibre (Fig. 10.18 a) can
= N considerably be reduced by using a graded index fibre. As
LUX 2 Sy shown in Fig. 10.18 (b), the different wavelengths still take

Lig

and (b) graded-index fibre,

) different paths and are totally internally reflected at
different layers, but sti they are focussed at the same
point like X and Y etc. |t is possible because the speed is
ht paths in (a) step-index inversely-proportional o the refractive index. So the
wavelength 3, travels g longer path than Az Or A3 but at a
greater speed.

Inspite of the different dispersion, all the wavelengths
arrive at the other end of the fibre at the same time. With a
step-index fibre, the overall time difference may be about
33ns per km length of fibre. Using a graded index fibre, the
time difference is reduced to about 1 ns per km.

Least distance of distinct vision is the minimum distance from the eye at which an
objectappears to be distinct.

€quals to the ratio of the distance of the image to the distance of the object from
the lens or mirror.

Resolving power is the ability of an instrument to reveal the minor details of the
object under examination.
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Simple microscope is in fact a convex lens used to help the eye to see small objects
distinctly. The magnifying power of a simple microscope is given by

M:.g.=1+g
p f

Compound microscope consists of two convex lenses, an objective lens of very short
focal length anr% an eye piece of moderate focal length. The magnifying power of a
compound micréscope is given by

d
M=9(1+2
p ( fs ) i
Telescope is an optical instrument used to see distant object. The magnifying power of

the telescope is given by

f,
M==
fo

Spectrometer is an optical device used to study spectra from different sources of light.

Index of refraction is the ratio of speed of light in vacuum to the speed of light in the
- material.

Critical angle is the angle of incidence in the denser medium for which the angle of
refraction in the rarer medium is equal to 90°.

When the angle of incidence becomes greater than the critical angle of that material,
the incident ray is reflected in the same material, which is called total internal
reflection.

Cladding is a layer of lower refractive index (less density) over the central core of
high refractive index (high density).

Multi mode step index fibre is an optical fibre in which a layer of lower refractive
index is over the central core of high refractive index.

Multi mode graded index fibre is an optical fibre in which the central core has high
refractive index and its density gradually decreases towards its periphery.

QUESTIONS

What do you understand by linear magnification and angular magnification?
Explain how a convex lens is used as a magnifier?

Explain the difference between angular magnification and resolving power of an
optical instrument. What limits the magnification of an optical instrument?

Why would it be advantageous to use blue light with a compound microscope?

One can buy a cheap microscope for use by the children. The images seen in such
a microscope have coloured edges. Why is this so?
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10.5 Describe with the help of diagrams, how (-’ a single biconvex lens can be used as
a magnifying glass. ») biconvex lenses can be arranged to form a microscope.

106 If a person was looking fhrough a lelescope at the full moon, how would the
appearance of the moon be changed by covering half of the objective lens.

10.7 A magnifying glass gives a five times enlarged image at a distance of 25 cm from
the lens. Find, by ray diagram, the focal length of the lens.

10.8 Identify the correct answer.

(i) The resolving power of a compound microscope depends on:
Length of the microscope.
The diameter of the objective lens.
The diameter of the eyepiece.
The position of an observer's eye with regard to the eye lens.

(ii) The resolving power of an astronomical telescope depends on:
The focal length of the objective lens.
The least distance of distinct vision of the observer.
The focal length of the eye lens,
The diameter of the objective lens.

10.9 Draw sketches showing the different light paths through a single-mode and a multi
mode fibre. Why is the single-mode fibre preferred in telecommunications?

10.10 How the light signal is transmitted through the optical fibre?
10.11 How the power is lost in optical fibre through dispersion? Explain.

NUMERICAL PROBLEMS

10.1 A converging lens of focal length 5.0 cm is used as a magnifying glass. If the
near point of the observer is 25 em and the lens is held close to the eye, calculate (i)
the distance of the object from the lens (i) the angular magnification. What is the
angular magnification when the final image is formed at infinity?

[Ans: (i)4.2cm (ii)6.0 : 5.0]

10.2 A telescope objective has focal length 96 cm and diameter 12 em. Calculate the
focal length and minimum diameter of a simple eye piece lens for use with the
telescope, if the linear magnification required is 24 times and all the light transmitted
by the objective from a distant point on the telescope axis is to fall on the eye piece.

(Ans: f, = 4.0 cm, dia = 0.50 cm)
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102 A telescope is made of an objective of focal length 20 cm and an eye piece of
5.0cm, both convex lenses. Find the angular magnification.

(Ans: 4.0)

10.4 A simple astronomical telescope in normal adjustment has an objective of focal
length 100 cm and an eye piece of focal length 5.0 cm. (i) Where is the final image
formed ? (i) Calculate the angular magnification. '

[Ans: (i) infinity (ii) 20]

10.5 A point object is placed on the axis of and 3.6 cm from a thin convex lens of focal
length 3.0 cm . A second thin convex lens of focal length 16.0 cm is placed coaxial
with the first and 26.0 cm from it on the side away from the object. Find the position
of the final image produced by the two lenses.

(Ans: 16 cm from second lens)

10.6 A compound microscope has lenses of focal length 1.0 cm and 3.0 cm. An object
is placed 1.2 cm from the object lens. If a virtual image is formed, 25 cm from the
eye, calculate the separation of the lenses and the magpnification of the instrument.

(Ans: 8.7 cm, 47)

10.7  Sodium light of wavelength 589 nm is used to view an object under a microscope.
If the aperture of the objective is 0.90 cm, (i) find the limiting angle of resolution,
(i) using vigible light of any wavelength, what is the maximum limit of resolution for
this microscope.

[Ans: (i) 8.0 x 10° rad, (ii) 5.4 x 10” rad]

10.8  An astronomical telescope having magnifying power of 5 consist of two thin lenses
24 cm apart. Find the focal lengths of the lenses.

[Ans: 20 cm, 4 cm]

10.9 Adglass light pipe in air will totally internally reflect a light ray if its angle of incidence
is at least 39°. What is the minimum angle for total internal reflection if pipe is in
water? (Refractive Index of water = 1.33)

[Ans: 57°]

1010 The refractive index of the core and cladding of an optical fibre are 1.6 and 1.4
respectively. Calculate (i) the critical angle for the interface (ii) the maximum angle
of incidence in the air of a ray which enters the fibre and is incident at the critical

angle on the interface.
[Ans: (i) 61°, (ii) 51°]
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D 11

'HEAT AND THERMODYNAMICS

Learning Objectives

At the end of this chapter the students will be able to:

State the basic postuiates of Kinetic theory of gases.

Explain how molecular movement causes the pressure exerted by a gas and
derive the equation P=2/3N.<)k mv?>, where N, is the number of molecules
per unit volume of the gas.

Deduce that the average translational kinetic energy of molecules is proportional
to temperature of the gas.

Derive gas laws on the basis of Kinetic theory.

Describe that the internal energy of an ideal gas is due to kinetic energy of its -
molecules. :

Understand and use the terms work and heat in thermodynamics.
Differentiate between isothermal and adiabatic processes.
Explain the molar specific heats of a gas.
Apply first law of thermodynamics to derive C-C.=R.
Explain the second law of thermodynamics and its meaning in terms of entropy.
Understand the concept of reversible and irreversible processes.
Define the term heat engine.
Understand and describe Carnot thecrem.
Describe the thermodynamic scale of temperature.
Describe the working of petrol and diesel engines.
Explain the term entropy. -
AQ

- Explain that change in entropy AS = + T

Appreciate environmental crisis as an entropy crisis.
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T hermodynamics deals with various phenomena of

energy and related properties of matter, especially the
transformation of heat into other forms of energy. An example
of such transformation is the process converting heat into
mechanical work. Thermodynamics thus plays central role in
technology, since almost all the raw energy available for our
use is liberated in the form of heat. In this chapter we shall
study the behaviour of gases and laws of thermodynamics,
their significance and applications.

The behavior of gases is well accounted for by the kinetic
theory based on microscopic approach. Evidence in favour
of the theory is exhibited in diffusion of gases and
Brownian motion of smoke particles etc.

The following postulates help to formulate a mathematical
model of gases.

A finite volume of gas consists of very large
number of molecules.

1ne size of the molecules is much smaller than
the separation between molecules.

The gas molecules are in random motion and
may change their direction of motion after every
collision.

Collision between gas molecules themselves
and with walls of container are assumed to be
perfectly elastic.

Molecules do not exert force on each other
except during a collision.

According to kinetic theory, the pressure exerted by a gas
is merely the momentum transferred to the walls of the
container per second per unit area due to the continuous
collisions of molecules of the gas. An expression for the
pressure exerted by a gas can, therefore, be obtained as
follows:
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Fig. 11.1

Let a cubical vessel of side / » contains N molecules, each of
mass m (Fig.11.1). The velocity v, of any one of these molecules
canbe resolved into three rectangular components Vix,Viy, Viz

parallel to three co-ordinate axes x, y and z.

Initial momentum of the molecule striking the face ABCDA
is then mv,,. If the collision is assumed perfectly elastic,
the molecule will rebound from the face ABCDA with the
same speed. Thus each collision produces a change in
momentum, which is equal to

Final momentum - Initial momentum

or change in momentum = - mvy, - mv;,

Change in momentum= -2 MV L0 (11.1)

After recoil the molecule travels to opposite face EFGHE
and collides with it, rebounds and travels back to the face
ABCDA after covering a distance 2/. The time At between
two successive collisions with face ABCDA is

% :
F=—2ahmelon Yo wdyms. . £
=28 (11.2)

So the number of collisions per second that the molecule

will make with this face is =%1*—

Thus the rate of change of momentum of the molecule due

2

to collisions with face ABCDA = -2 mu,, x ‘%: '_'"IhL

The rate of change of momentum of the molecule is equal
to the force applied by the wall. According to Newton's
third law of motion, force Fix exerted by the molecule on
face ABCDA is equal but opposite, so

Fo=2tmi) _ mvi
I

Similarly the forces due to all other molecules can be
determined. Thus the total x. directed force F, due to N
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number of molecules of the gas moving with velocities v,

2
e Fig mvy . MVgo L mve, + MV

As pressure is normal force per unit area, hence pressure
P, on the face perpendicular to x-axis is

P.= f_x_ = F?‘_
A 2
1| mv. mv mva, mvy,
=— 1x 2 - S +—DN
12 l [ I I
i A R s (11.3)

As the mass of single molecule is m, the mass of N
molecules will be mN.

. . M
Since density P = o -ﬂf‘-
Volume /
Hence, m._pe
j7 A

Substituting the value of lﬂ in equation (11.3)

we get
Pq= ﬁ* (fo +Va +Vae Fereonons +Vie )
- 2 2 2 P
or P.= p[vu +Voy Vg F o +v~x]
N

VE o+ Ve VE % V]
where[ I~ "o ﬁ - N | js called the mean of

squared velocities of the molecules moving along x
direction, known as mean square velocity, represented by
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<v?>, Substituting < v > in parenthesis of pressure
expression

szp <V‘2> .......... (11-4)

Similarly pressure on the faces perpendicular to yand z
axeswillbe Py =p <vf>andP,=p <2 >

As there is no preference to one direction or another and
molecules are supposed to be moving randomly, the mean
square of all the component velocities will be equal. Hence

<vf>=<vy2>=<vf>
and from vector addition < v?> =<2 > + < W+ <yl

thus, <vi>=3<y?>

1
or <VX2>=?<V2>

putting this value of < v > in equation 11.4
P= % <vis>

We have considered the pressure on the face
perpendicular to x-axis.

By Pascal's Law the pressure on the other sides and
everywhere inside the vessel will be the same provided the
gas is of uniform density. So

Px=Py=P,=-§ <v?>

Thus in general

1 2
= —p<yi>
39

Since  density p = N
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Hence P= —§V<v2>
S
or P= 2y <2,mv’> .......... (11.5)
P= —%—N°<—;—mv2>

where N, is the number of molecules per unit volume.
Thus, P = Constant <K.E.>
or P <K.E.>

While deriving the equation for pressure we have not
accounted rotational and vibrational motion of molecules
except the linear motion.

Hence pressure exerted by the gas is directly proportional
to the average translational kinetic energy of the gas
molecules.

Interpretation of Temperature

From experimental data the ideal gas law is deduced to be
PALERRT T R (11.6)

Where n is the number of moles of the gas contained in
volume V at absolute temperature 7 and R is called
universal gas constant. Its value is 8.314 J mol” K

If N4 is the Avogadro number, then the above equation can
be written as

PV= —RT

Mo
Ny
or PY2NKT - s (11.7)

where k = R/N4 is the Boltzman constant. It is the  gas

constantper molecule and has the value = 1.38 x 102 J4K".
Comparing equations 11.5 and 11.7
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=2 S
NkT = 3 N<?mv >

o R 1 2
or T= 3K < 7 Mv> (11.8)
or T = constant < K.E. >
S0 Tx<KE. >

This relation shows that Absolute temperature of an ideal
gas is directly proportional to the average translational
kinetic energy of gas molecules.

We can, therefore, also say that average translational
kinetic energy of the gas molecules shows itself
macroscopically in the form of temperature,

Derivation of Gas Laws
.(i) Boyie's Law

From kinetic theory of gases (Eq. 11.5)

PV = % N <—:} mv?>

If we kejf the temperature constant, average K.E. i.e.,

<1/2 mv' > remains constant, so the right hand side of the
equation is constant.
Hence . PV = Constant
i
ar P o V

Thus pressure P is inversely proportional to volume V at
constant temperature of the gas which is Boyle's law.

(ii) Charles’ Law

Equation 11.5 can be written as

" nrassice is kept constant



V « <—;—mv2>

As <_;.mv2>oc7'

Hence VT

Thus volume is directly proportional to absolute
temperature of the gas provided pressure is kept constant.
This is known as Charles’ law.

Example 11.1: What is the average translational
Kinetic energy of molecules in a gas at temperature 27C™

Solution:
Using Eq. 11.8 T=22 e B>
T
or <K.E>= gf-r—
2
where T=27+273=300K
k=138%x10% JK"
s0 ES = %X‘I.SB %102 JK % 300K

=621x 107 J

-

Example 11.2: Find the average speed of oxygen
molecule in the air at S.T.P.

Solution: Under standard conditions

Temperature T=0C =273K
From Eq. 11.8
T= 2 <t mv>
8k R
or <V2> = ?kI_
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Using Avogadro’s number Nx = 6.022 x 10%, the mass m
of one molecule of oxygen is

molecular mass - 329 __ 32kg
% 6.022 x10%®  6.022x10%

m=

Substituting the values of k, T and m, we get

23 1 26
<Vz>___3x1.38)(10 JstzizaKxG.Mwa =212693m’s?

or <v> =461 ms"

E) L e e S B A e T e 4
L = 9 i “ - * ) .
=f NERG -;'{f?:‘;: B
! il LSy g -

o T LA TN S

Y |
"mes

Do You Know?

The sum of all forms of molecular energies (kinetic and
potential) of a substance is termed as its internal energy. In
the study of thermodynamics, usually ideal gas is
considered as a working substance. The moalecules of an
ideal gas are mere mass points which exert no forces on
one another. So the internal energy of an ideal gas system
is generally the translational K.E. of its molecules. Since
the temperature of a system is defined as the average K.E,
of its molecules, thus for an ideal gas system, the internal
energy is directly proportional to its temperature.

When we heat a substance, energy associated with its
atoms or molecules is increased ie., heat is converted (o
internal energy.

It is important to note that energy can be added to a
system even though no heat transfer takes place. For
example, when two objects are rubbed together, their
internal energy increases because of mechanical work.
The increase in temperature of the object is an indication
of increase in the internal energy. Similarly, when an object
slides over any surface and comes to rest because of
frictional forces, the mechanical work done on or by the
system is partially converted into internal energy.

In thermodynamics, internal energy is a function of state.
Consequently, it does not depend on path but depends on
initial and final states of the system. Consider a system which
undergoes a pressure and volume change from P, and V, to
P,.and V, respectively, regardless of the process by which
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the system changes from initial to final state. By experiment it
has been seen that the change in internal energy is always
the same and is independent of paths C; and C: as shown in
the Fig. 11.2.

Thus internal energy is similar to the gravitational PE. So
like the potential energy, it is the change in internal energy
and not its absolute value, which is important.

We know
energy by some means. The idea was first applied to the
steam engine where it was natural to pump heat in and
get work out. Consequently it made a sense to define both
heat in and work out as positive quantities. Hence work
done by the system on its environment is considered +ive
while work done on the system by the environment is taken
as —ive. If an amount of heat Q enters the system it could

manifest itself as either an increase in internal energy or as,

a resulting quantity of work performed by the system on
the surrounding or both.

We can express the work in terms of directly measurable
variables. Consider the gas enclosed in the cylinder with a
moveable, frictionless piston of cross-sectional area A (Fig.
11.3 a). In equilibrium the system occupies volume V, and
exerts a pressure P on the walls of the cylinder and its
piston. The force F exerted by the gas on the piston is PA.

We assume that the gas expands through AV very slowly,
so that it remains in equilibrium (Fig. 11.3 b). As the piston
moves up through a small distance Ay, the work (W) done
by the gas is

W=FAy=PAAy
AAy = AV (Change in volume)
W = PAV A (11.9)

The work done can also be calculated by area of the
curve under P-V graph as shown in Fig.11.4.

Since

Hence

Knowing the details of the change in internal energy and
the mechanical work done, we are in a position to describe
the general principles which deal with heat energy and its
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transformation into mechanical energy. These principles
are known as laws of thermodynamics.

11.4 FIRST LAW OF THERMODYNAMICS

When heat is added to a system there is an increase in the

Heat internal energy due to the rise in temperature, an increase

— @ste;l +Q in pressure or change in the state. If at the same time, a
pasitive ™ substance is allowed to do work on its environment by
Heat expansion, the heat Q required will be the heat necessary
Q sy"‘"'}_"_-nmm to change the internal energy of the substance from U in
the first state to U, in the second state plus the work W
done on the environment.
Work Thus Q=(U-U)+WwW
System | .

o or Q= AF+ M 15 55 ciie (11.10)

W @_\f’m Thus the change in internal energy AU = U, - U, is defined

as Q-W Since it is the same for all processes concerning
the state, the first law of thermodynamics, thus can be

stated as,

positive

In any thermodynamic process, when heat Q is
added to a system, this energy appears as an
increase in the internal energy AU stored in the

"~ system plus the work W done by the system on
its surroundings.

A bicycle pump provides a good example.When we pump
on the handle rapidly, it becomes hot due to
mechanical work done on the gas, raising thereby its internal
energy. One such simple arrangement is shown in Fig.11.5.
It consists of a bicycle pump with a blocked outlet. A
thermocouple connected through the blocked outlet allows
the air temperature to be monitored. When piston is rapidly
pushed, thermometer shows a temperature rise due to
increase of internal energy of the air. The push force does
work on the air, thereby, increasing its internal energy,
which is shown, by the increase in temperature of the air,

Human metabolism also provides an example of energy
conservation. Human beings and other animals do work
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when they walk, run, or move heavy objects. Work requires
energy. Energy is also needed for growth to make new
cells and to replace old cells that have died. Energy
transforming processes that occur within an organism are
named as metabolism. We can apply the first law of
thermodynamics,

AU= Q-W

to an organism of the human body. Work (W) done will
result in the decrease in internal energy of the body.
Consequently the body temperature or in other words
internal energy is maintained by the food we eat.

Example 11.3: A gas is enclosed in a container fitted
with a piston of cross-sectional area 0.10 m’. The pressure
of the gas is maintained at 8000 Nm™. When heat is slowly
transferred, the piston is pushed up through a distance of
4.0 cm. If 42 J heat is transferred to the system during the
expansion, what is the change in internal energy of the
system?

Solution:
The work done by the gas is
W =PAV = PAAy = 8000 Nm? x 0.10 m* x 4.0 x 10% m
=32Nm=32J

The change in internal energy is found from first law of
thermodynamics,

AU=Q-W=42J-32J=10J

_Isothermal Process

It is a process which is carried out at constant temperature
and hence the condition for the application of Boyle's Law
on the gas is fulfilled. Therefore, when gas expands or
compresses isothermally, the product of its pressure and
volume during the process remains constant. If P;, V, are
initial pressure and volume where as P,, V; are pressure
and volume after the isothermal change takes place
(Fig11.6 a), then

PV, = PV,
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Fig. 11.8(b)

In case of an ideal gas, the P.E. associated with its
molecules is zero, hence, the internal energy of an ideal
gas depends only on its temperature, which in this case
remains constant, therefore, AU =0.Hence, the first
law of thermodynamics reduces to

Q=W

Thus if gas expands and does external work W, an amount

of heat Q has to be supplied to the gas in order to produce
an isothermal change. Since transfer of heat from one place
to another requires time, hence, to keep the temperature of
the gas constant, the expansion or compression must take
place slowly. The curve representing an isothermal process
is called an isotherm (Fig. 11.6a).

Adiabatic Process

An adiabatic process is the one in which no heat enters or
leaves the system. Therefore, Q =0 and the first law of
thermodynamics gives -

W=-AU

Thus if the gas expands and does external work, it is done
at the expense of the internal energy of its molecules and,
hence, the temperature of the gas falls. Conversely an
adiabatic compression causes the temperature of the gas to
rise because of the work done on the gas.

Adiabatic change occurs when the gas expands or is
compressed rapidly, particularly when the gas is contained
in an insulated cylinder. The examples of adiabatic
processes are

(i) The rapid escape of air from a burst tyre.

(ii) The rapid expansion and compression of air through
which a sound wave is passing.

(iii) Cloud formation in the atmosphere.

In case of adiabatic changes it has been seen that

PV'= Constant
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where, v is the ratio of the molar specific heat of the gas at
constant pressure to molar specific heat at constant volume.
The curve representing an adiabatic process is called an
adiabat (Fig. 11.6 b).

. ™ Fe P St N " y;
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One kilogram of different substances contain different
number of molecules. Sometimes it is preferred to consider
a quantity called a mole. since one mole of any substance
contains the same number of molecules. The molar
specific heat of the substance is defined as the heat
required to raise the temperature of one mole of the
substance through 1 K. In case of solids and liquids the
change of volume and hence work done against external
pressure during @ change of temperature is negligibly
small. But same can not be said about gases which suffer
variation in pressure as well as in volume with the rise in
temperature. Hence, to study the effect of heating the
gases, either pressure or volume is kept constant. Thus, it
is customary to define the molar specific heats of a gas in
two ways.

(i) The molar specific heat at constant volume is the
amount of heat transfer required to raise the
temperature of one mole of the gas through1 K at
constant volume and is symbolized by C..

If 1 mole of an ideal gas is heated at constant volume
so that its temperature rises by AT, the heat
transferred Q, must be equal to  C, AT. Because
AV = 0, no work is done (Fig 11.7. a). Applying first
law of thermodynamics,

Q=AU+W
Hence, C, AT=AU+0
s Ot e B AT, capaear Al

.

(ii) The molar specific heat at constant pressure is the
amount of heat transfer required to raise the
temperature of one mole of the gas through 1 K at
constant pressure and it is represented by symbol
C,. To raise the temperature of 1 mole of the gas
by AT at constant pressure, the heat transfer Q,
must be equal to C, AT (Fig 11.7 b). Thus,
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80 (11.12)

Derivation of C,-C =R

When one mole of a gas is heated at constant pressure, the
internal energy increases by the same amount as at
constant volume for the same rise in temperature AT. Thus
from Eq. 11.11

Since the gas expands to keep the pressure constant, so it
does work W =P AV. where AVis the increase in volume.

Substituting the values of heat transfer Q,, internal energy
AU and the work done W in Eq.11.10, we get

Co AT=CLAT+PAV . ... (11.13)
Using equation 11.6 for one mole of an ideal gas,
PYSERT BTV 15 Presen (11.14)

At constant pressure P, amount of work done by one mole
of a gas due to expansion AV (Fig. 11.7 b) caused by the
rise in temperature AT is given by Eq. 11.14

PAV=RAT
Substituting for P AV in Eq. 11.13

CoAT=C, AT+R AT
or C,=C.+R
or C,-C.=R (11.15)

It is obvious from Eq. 11.15 that Cs > C, by an amount
equal to universal gas constant R.

11.6 REVERSIBLE AND IRREVERS
 PROCESSES : o A
A reversible process is one which can be retraced in
exactly reverse order, without producing any change in the
surroundings. In the reverse process, the working
substance passes through the same slages as in the direct
process but thermal and mechanical effects at each stage
are exactly reversed. If heat is absorbed in the direct

o
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process, it will be given out in the reverse process and if
work is done by the substance in the direct process, work
will be done on the substance in the reverse process.
Hence, the working substance is restored to its original
conditions.

A succession of events which bring the system
back to its initial condition is called a cycle. A
reversible cycle is the one in which all the
changes are reversible.

Although no actual change is completely reversible but the
processes of liquefaction and evaporation of a substance,
performed slowly, are practically reversible. Similarly the
slow compression of a gas in a cylinder is reversible
process as the compression can be changed to
expansion by slowly decreasing the pressure on the

piston to reverse the operation.

If a process can not be retraced in the
backward direction by reversing the
controlling factors, it is an irreversible
process.

All changes which occur suddenly or which involve friction
or dissipation of energy through conduction, convection or
radiation are irreversible. An example of highly irreversible
process is an explosion.

A heat engine converts some thermal energy to
mechanical work. Usually the heat comes from the burning
of a fuel. The earliest heat engine was the steam engine. It
was developed on the fact that when water is boiled in a
vessel covered with a lid, the steam inside tries to push the
lid off showing the ability to do work. This observation
helped to develop a steam engine.

g oy
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Do You Know?

The steam engine is &



Schematic representation of a
heat engine. The engine absorbs
heat Q, from the hot reservoir,
expels heat Q. to the cold resarvoir
and does work W.

First law of thermodynamics telis us th

Basically a heat engine (Fig. 11.8) consists of hot reservoir
or source which can supply heat at high temperature and a
cold reservoir or sink into which heat is rejected at a lower
temperature. A working substance is needed which can
absorb heat Q, from source, converts some of it into work
W by its expansion and rejects the rest heat Q; to the cold
reservoir or sink. A heat engine is made cyclic to provide
a continuous supply of work.

Bl d Abdhd

at heat energy can
be converted into equivalent amount of work, but it is silent
about the conditions under which this conversion takes
place. The second law s concerned with the
circumstances in which heat can be converted into work
and direction of flow of heat.

L e

Before initiating the discussion on formal statement of the
second law of thermodynamics, let us analyze briefly the
factual operation of an engine. The engine or the system
represented by the block diagram Fig. 11.8 absorbs a
quantity of heat Q, from the heat source at temperature T,.
It does work W and expels heat Q: to low temperature
reservoir at temperature T». As the working substance goes
through a cyclic process, in which the substance eventually
returns to its initial state, the change in internal energy is
zero. Hence from the first law of thermodynamics, net work
done should be equal to the net heat absorbed.

.W=Q1-Qz

In practice, the petrol engine of a motor car extracts heat
from the burning fuel and converts a fraction of this energy
to mechanical energy or work and expels the rest to
atmosphere. It has been observed that petrol engines
convert roughly 25% and diesel engines 35 to 40%
available heat energy into work.

The second law of thermodynamics is a formal statement
based on these observations. It can be stated in a number of
differentways,




According to Lord Kelvin's statement based on the working
of a heat engine

This means that a single heat reservoir, no maiter how
much energy it contains, can not be made to perform any
work. This is true for oceans and our atmosphere which
contazin a large amount of heat energy but can not be
converted into useful mechanical work. As a consequence
of second law of thermodynamics, two bodies at different
temperatures are essential for the conversion of heat into
work. Hence for the working of heat engine there must be
a source of heat at a high temperature and a sink at low
temperature to which heat may be expelled. The reason for
our inability to utilize the heat contents of oceans and
atmosphere is that there is no reservoir at a temperature
lower than any one of the two.

isothermal and adiabatic processes. He showed that a
heat engine operating in an ideal reversible cycle. between
two heat reservoirs at different temperatures, would be the
most efficient engine. A Carnot cycle using an ideal gas as
the working substance is shown on PV diagram (Fig. 11.9).
It consists of following four steps.

The gas is allowed to expand isothermally at
temperature T,;, absorbing heat Q; from the hot
reservoir. The process is represented by curve AB.

The gas is then allowed to expand adiabatically until
its temperature drops to T, The process is
represented by curve BC.

The gas at this stage is compressed isothermally at
temperature T rejecting heat Q; to the cold reservoir.
The process is represented by curve CD.
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According to the Kelvin statement
of the second law of
thermodynamics, the process

pictured here is impossible. Heat
from a source at a single
temperature cannot be converted
entirely into work.
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Interesting Information

A waterfall analogy for the
heat engine.

4. Finally the gas is compressed adiabatically to restore
its initial state at temperature T,. The process is
represented by curve DA.

Thermal and mechanical equilibrium is maintained all the
time so that each process is perfectly reversible. As the
working substance returns to the initial state, there is no
change in its internal energy i.e. AU =D,

The net work done during one cycle equals to the area
enclosed by the path ABCDA of the PV diagram. It can
also be estimated from net heat Q absorbed in one cycle.

Q=Q/-Q;

From 1° law of thermodynamics
Q=AU+ W
W=Q,-Q:

The efficiency n of the heat engine is defined as

_ Output (Work)
Input (Energy)

Q,-Q Q
thus, Ma L2 =g 27 81 11.16
” Q, Q, ( )

The energy transfer in an isothermal expansion or
compression turns out to be proportional to Kelvin
temperature. So Q, and Q: are proportional to Kelvin
temperatures T, and T, respectively and hence,

i Tvr'_172=1--;f_ .......... (11.17)

The efficiency is usually taken in percentage, in that case,

percentage efficiency = 6 - %} 100

1

Thus the efficiency of Carnot engine depends on the
temperature of hot and cold reservoirs. It is independent of
the nature of working substance. The larger the
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temperature difference of two reservoirs, the greater is the
efficiency. But it can never be one or 100% unless cold
reservoir is at absolute zero temperature (7: = 0 K).

Such reservoirs are not available and hence the maximum
efficiency is always less than one. Nevertheless the Carnot
cycle establishes an upper limit on the efficiency of all heat
engines. No practical heat engine can be perfectly
reversible and also energy dissipation is inevitable. This
fact is stated in Carnot's theorem

No heat engine can be more efficient than a Carnot
engine operating between the same two temperatures.

The Carnot's theorem can be extended to state that,

All Carnot’s engines operating between the same
two temperatures have the same efficiency,
irrespective of the nature of working substance.

In most practical cases, the cold reservoir is nearly at room
temperature. So the efficiency can only be increased by
raising the temperature of hot reservoir. All real heat
engines are less efficient than Camot engine due to friction
and other heat losses.

Example 11.4: The turbine in a steam power plant takes
steam from a boiler at 427°C and exhausts into a low
temperature reservoir at 77°C. What is the maximum possible
efficiency?

Solution:

Maximum efficiency for any engine operating between
temperatures T; and T3 is

= T,-T,
n _—T,
where T,=427 +273=700K
and T,=77+273=350K

19
N
N

Arefrigerator transfers heat from a
low-temperature compartment to
higher-temperature surroundings
with the help of external work. ILis
2 heat engine operating in reverse
cider.
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Atriple-point cell, in which solid ice,
liquid water, and water vapour
coexist in thermal equilibrium. By
international agreement, the
temperature of this mixture has
been defined to be 273.16 K. The
bulb of a constant-volume gas
thermometer is shown inserted into
the well of the call.

Fig. 11.10(a)

For Your Information

S0

Generally a temperature scale is established by two fixed
points using certain physical properties of a material which
varies linearly with temperature. The Carnot cycle provides
us the basis to define a temperature scale that is
independent of material properties. According to it, the ratio
Q:/Q: depends only on the temperature of two heat
reservoirs. The ratio of the two temperatures T,/T, can be
found by operating a reversible Carnot cycle between these
two temperatures and carefully measuring the heat transfers
Q; and Q;. The thermodynamic scale of temperature is
defined by choosing 273.16 K as the absolute temperature
of the triple point of water as one fixed point and absolute
zero, as the other. The unit of thermodynamic scale is
kelvin. 1 K is defined as 1/273.16 of the thermodynamic
temperature of the triple point of water. It is a state in which
ice, water and vapour coexists in equilibrium and it occurs
uniquely at one particular pressure and temperature. If heat
Q is absorbed or rejected by the system at corresponding
temperature T when the system is taken through a Carnot
cycle and Q; is the heat absorbed or rejected by the system
when it is at the temperature of triple point of water, then
unknown temperature T in kelvin is given by

i Q .
T=27316 —  .......... 11.18
5 (11.18)

Since this scale is independent of the property of the
working substance, hence, can be applied at very low
temperature.

Yo
Rt
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Although different engines may differ in their construction
technology but they are based on the principle of a Carnot
cycle. A typical four stroke petrol engine (Fig. 11.10 a) also
undergoes four successive processes in each cycie.

256




The cycle starts on the intake stroke in which piston
moves outward and petrol air mixture is drawn through
an inlet valve into the cylinder from the carburetor at
atmospheric pressure.

On the compression stroke, the inlet valve is closed and
the mixture is compressed adiabatically by inward
movement of the piston.

On the power stroke, a spark fires the mixture causing a
rapid increase in pressure and temperature. The burning
mixture expands adiabatically and forces the piston to
move outward. This i the stroke which delivers power to
crank shaft to drive the flywheels.

On the exhaust stroke, the outlet valves opens. The
residual gases are expelled and piston moves inward.

The cycle then begins again. Most motorbikes have one
cylinder engine but cars usually have four cylinders on the
same crankshaft (Fig 11.10 b). The cylinders are timed to fire
turn by turn in succession for a smooth running of the car. The
actual efficiency of properly tuned engine is usually not more
than 25% to 30% because of friction and other heat losses.

-:_’D]ése_l Engifi€

No spark plug is needed in the diesel engine (Fig. 11.11).
Diesel is sprayed into the cylinder at maximum compression.
Because air is at very high temperature immediately after
compression, the fuel mixture ignttes on contact with the air in
the cylinder and pushes the piston outward. The efficiency of
diesel engine is about 35% to 40%.
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The concept of entropy was introduced into the study of
thermodynamics by Rudolph Clausius in 1856 to give a
quantitative basis for the second law. It provides another
variable to describe the state of a system to go along with
pressure, volume, temperature and internal energy. If a
system undergoes a reversible process during which it
absorbs a quantity of heat AQ at absolute temperature T,
then the increase in the state variable called entropy S of
the system is given by

L R S T (11.19)
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Like potential energy or internal energy, it is the change in
entropy of the system which is important.

Change in entropy is positive when heat is added and
negative when heat is removed from the system. Suppose.
an amount of heat Q flows from a reservoir at temperature
+ through a conducting rod to a reservoir at temperature
T, when T; > T>. The change in entropy of the reservoir. at
temperature T, which loses heat, decreases by Q/T, and
of the reservoir at lemperature T, which gains heat,
increases by Q/T,. As T, > 7250 Q/T; will be greater than
Q/Tie Q/T,;>Q/T,.
Hence, net change in entropy = 7(?2—; % is positive.
It follows that in all natural processes where heat flows
from one system to another, there is always a net increase
in entropy. This is another statement of 7 law of
thermodynamics. According to this law

If a system undergoes a natural process, it will
go in the direction that causes the entropy of
the system plus the environment to increase.

It is observed that a natural process tends to proceed
towards a state of greater disorder. Thus, there is a
relation between entropy and molecular disorder. For
example an irreversible heat flow from a hot tc a cold
substance of a system increases disorder because the
molecules are initially sorted out in hotter and cooler
regions. This order is lost when the system comes to
thermal equilibrium. Addition of heat to a system increases
its disorder because of increase in average molecular
speeds and therefore, the randomness of molecular
motion. Similarly, free expansion of gas increases its
disorder because the molecules have greater randomness
of position after expansion than before. Thus in both
examples. entropy is said to be increased.

We can conclude that only those processes are probable
for which entropy of the system increases or remains
constant. The process for which entropy remains constant
is a reversible process; whereas for all irreversible
processes, entropy of the system increases.
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Every time entropy increases, the opportunity to convert
some heat into work is lost. For example there is an increase
in entropy when hot and cold waters are mixed. Then warm
water which results cannot be separated into a hot layer and
a cold layer. There has been no loss of energy but some of
the energy is no longer available for conversion into work.
Therefore, increase in entropy means degradation of energy
from a higher level where more work can be extracted to a
lower level at which less or no useful work can be done. The
energy in a sense is degraded, going from more orderly form
to less orderly form, eventually ending up as thermal energy.

In all real processes where heat transfer occurs, the
energy available for doing useful work decreases. In other
words the entropy increases. Even if the temperature of
some system decreases, thereby decreasing the entropy, it
is at the expense of net increase in entropy for some other
system. When all the systems are taken together as the
universe, the entropy of the universe always increases.

Example 11.5: Calculate the entropy change when
1.0kgice at 0°C melts into water at 0°C. Latent heat

of fusion of ice Ly = 3.36 x10° J kg
Solution:
m=1kg
T=0°C=273K
L;=3.36 x10° Jkg'
- AQ
S
where AQ =mL;
_ mLg
AS = 5

_ 1.00kgx3.36 x10° J kg’

AS
273K

AS=1.23 x10° JK'

Thus entropy increases as it changes to water. The increasein
entropy in this case is a measure of increase in the disorder of
water molecules that change from solid to liquid state.
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efficiencies of
various devices

Device E"“"’(%)“‘Y
Electricgenerator 70-99
Electric motor 50-93
Dry cell battery 90
Domestic gas furnace 70-85
Storage battery 72
Hydrogen-oxygen fuel cell 60
Liquid fuel rocket a7
Steam lurbine 35-46
Fossil-fuel power plant 30-40
Nuclear power plant 30-35
Nuciear reactor 39
Aircraft gas turbine cngine 36
Solid-state laser 30
SR redess
Gallium arsenide solarcells  >20
Fluorescant lamp 20
Silicon solar cell 12-16
Steam locomotive 8

Incandescent lamp
Watt's steam engine

5
1




.~ Fot Your information

. 2 ' -l
The jet engines on this alrcraft
convert menna;emrgytowork. but
the visible exhaust clearly shows
that a considerable amount of
thermal energy is lost as waste heat.

The second law of thermodynamics provides us the key for
both understanding our environmental crisis, and for
understanding how we must deal with this crisis.

and greed. From a physical standpoint, however, the
environmental crisis is an entropy or disorder crisis
resulting from our futile efforts to ignore the second law of
thermodynamics. According to which, any increase in the
order in a system will produce an even greater increase in
entropy or disorder in the environment. An individual
impact may not have a major consequence but an impact
of large number of all individuals disorder producing
activities can affect the overall life support system.

The energy processes We use are not very efficient. As a
resuit most of the energy is lost as heat to the environment.
Although we can improve the efficiency but 2™ |aw eventually
imposes an upper limit on efficiency improvement. Thermal
pollution is an inevitable consequence of 2™ |aw of
thermodynamics and the heat is the ultimate death of any
form of energy. The increase in thermal pollution of the
environment means increase in the entropy and that causes
great concern. Even small temperature changes in the

The imperative from thermodynamics is that whenever you
do anything, be sure to take into account its present and
possible future impact on your environment. This is an
ecological imperative that we must consider now if we are
to prevent a drastic degradation of life on our beautiful but
fragile Earth. >
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From the Kinetic theory of gases P = %p<v’ >,

The first law of thermodynamics states that energy is conserved.

The sum of all forms of molecular energy present in a thermodynamic system is
called its internal energy.

Isothermal process is the process in which Boyle's law holds good.

Adiabatic process is the one in which no thermal energy is added or extracted from
the system.

Molar specific heat at constant volume is the amount of heat required to raise the
temperature of one mole of the gas through 1 K keeping volume constant.

Molar specific heat at constant pressure is the amount of heat required to raise the
temperature of one mole of the gas through 1 K keeping pressure constant.

A heat engine is a device which converts a part of thermal energy into useful work.

Efficiency of Carnot engine is 1-—?— y
1
The second law of thermodynamics can be stated as

(i) There is no perpetual motion machine that can convert the given amount of
heat completely into work.

(ii) The total entropy of any system plus that of its environment increases as a
result of any natural process.
Entropy change AS due to heat transfer AQ at absolute temperature T is given by
AQ

= AR
AS .

Thermal pollution is an inevitable consequence of 2nd law of thermodynamics.

QUESTIONS

1 Why is the average velocity of the molecules in a gas zero but the average of the
square of velocities is not zero?

1.2 Why does the pressure of a gas in a car tyre increase when it is driven through

some distance?
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A system undergoes from state P, V; to state P,V as shown in Fig 11.12. What
will be the change in internal energy?

P -
I
1
T I Constant
I Temperature
P |
(Pa) ! )
1x10°! \
) s i .
1 1 4 1
Vv, V—>> Vv,

Variation of volume by pressure is given in Fig 11.13. A gas is taken along the
paths ABCDA, ABCA and A to A. What will be the change in internal energy?
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Specific heat of a gas at constant pressure is greater than specific heat at constant

volume. Why?

Give an example of a process in which no heat is transferred to or from the system

but the temperature of the system changes.

Is it possible to convert internal energy into mechanical energy? Explain with an

example.

Is it possible to construct a heat engine that will not expel heat into the atmosphere?
A thermos flask containing milk as a system is shaken rapidly. Does the

temperature of milk rise?

What happens to the temperatureof the room, when an airconditioner is left running on

a table in the middle of the room?
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11.11 Can the mechanical energy be converted completely intc heat energy? If so ¢

an example.
11 12Does entropy of a system increase or decrease due to friction?

11 13Give an example of a natural process that involves an increase in entropy.

11 14An adiabatic change is the one in which
No heat is added to or taken out of a system
No change of temperature takes place
Boyle's law is applicable
. Pressure and volume remains constant
11.15Which one of the following process is irreversible?
2. Slow compressions of an elastic spring
Slow evaporation of a substance in an isolated vessel
Slow compression of a gas
1. A chemical explosion
11.16An ideal reversible heat engine has
100% efficiency
0. Highest efficiency
An efficiency which depends on the nature of working substance
None of these

NUMERICAL PROBLEMS

111 Estimate the average speed of nitrogen molecules in air under standard conditions

of pressure and temperature.

(Ans: 493 ms™')

11.2 Show that ratio of the root mean square speeds of molecules of two different gases
at a certain temperature is equal to the square root of the inverse ratio of their

masses.

113 A sample of gas is compressed to one half of its initial volume at constant pressure
of 1.25 x 10° Nm™ During the compression, 100 J of work is done on the gas.

Determine the final volume of the gas.

(Ans: 8 x 10" m¥)
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114 A thermodynamic system undergoes a process in which its internal energy
decreases by 300 J. If at the same time 120 J of work is done on the system, find
the heat lost by the system.

(Ans: - 420 J)

5 Acamot engine utilises an ideal gas. The source temperature is 227°C and the sink
temperature is 127°C. Find the efficiency of the engine. Also find the heat input from
the source and heat rejected to the sink when 10000 J of work is done.

(Ans: 20%, 5.00 x 10'J, 4.00 x 10%))

1.5 A reversible engine works between two temperatures whose difference is 100°C. If
it absorbs 746 J of heat from the source and rejects 546 J to the sink, calculate the
temperature of the source and the sink.

(Ans: 100°C, 0°C)

1.7 A mechanical engineer develops an engine, working between 327°C and 27°C and
claims to have an efficiency of 52%. Does he claim correctly? Explain.

(Ans: No)

1.9 A heat engine performs 100 J of work and at the same time rejects 400 J of heat
energy to the cold reservoirs. What is the efficiency of the engine?

(Ans: 20%)

1.9 A Carnot engine whose low temperature reservoir is at 7°C has an efficiency of
50%. It is desired to increase the efficiency to 70%. By how many degrees the
temperature of the source be increased?

(Ans: 373°C)

¢ A sleam engine has a boiler that operates at 450 K. The heat changes water to
steam, which drives the piston. The exhaust temperature of the outside air is about
300 K. What is maximum efficiency of this steam engine?

(Ans: 33%)

1111 336 J of energy is required to melt 1 g of ice at 0°C. What is the change in
entropy of 30 g of water at 0°C as it is changed to ice at 0°C by a refrigerator?

(Ans:-36.8JK™)



“Appendix Q|

Standard Definitions of Base Units

Metre: The unit of length is named as metre. Before 1960 it was defined as the distance
between two lines marked on the bar of an alloy of platinum (90%) and iridium (10%) kept under
controlled conditions at the International Bureau of Weights and Measures in France. The 11"
General Conference on Weights and Measures (1960) redefined the standard metre as follows:
One metre is a length equal to 1,650,763.73 wave lengths in vacuum of the orange red radiation
emitted by the Krypton 86-atom. However, in 1983 the metre was redefined to be the distance
traveled by light in vacuum during a time of 1/299,792,458 second. In effect, this latest definition
establishes that the speed of light in vacuum is 299,792,458 ms .

Kilogram: The unit 6f mass is known as kilogram. It is defined as the mass of a platinum (90%)
and iridium (10%) alloy cylinder, 3.9 cm in diameter and 3.9 cm in height, kept at the International
Bureau of Weights and Measures in France. This mass standard was establishedin 1901.

Second: The unitof time is termed as second. It is defined as 1/86400 part of an average day of the
year 1900 A.D. The recenttime standard is based on the spinning motion of electronsin atoms. This is
since 1967 when the International Committee on Weights and Measures adopted a new definition of
second, making one second equal to the duration in which the outer most electron of the cesium-133
atom makes 9,192,631,770 vibrations.

Kelvin: Temperature is regarded as a thermodynamic quantity, because its equality
determines the thermal equilibrium between two systems. The unit of temperature is kelvin. It is
the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. It should be
noted that the triple point of a substance means the temperature at which solid, liquid and vapour
phases are in equilibrium. The friple point of water is taken as 27316 K. This standard was
adopted in 1967.

Ampere: The unit of electric current is ampere. It is that constant current which if maintained in
two straight parallel conductors of infinite length, of negligible circular cross-section and placed a
metre apart in vacuum, would produce between these conductors a force equal to 2 x 10”7 newton per
metre of length. This unitwas establishedin 1971.

Candela: The unit of luminous intensity is candela. It is defined as the luminous intensity in the
perpendicular direction of a surface of 1/600000 square metre of a black body radiator at the
solidification temperature of platinum under standard atmospheric pressure. This definition was
adopted by the 13" General Conference of Weights and measuresin 1967.

Mole: The mole is the amount of substance of a system which contains as many elementary
entities as there are atoms in 0.012 kg of carbon 12 (adopted in 1971). When this unit i.e. mole is
used, the elementary entities must be specified; these may be atoms, molecules, ions, electrons,
other particles or specified groups of such particles. One mole of any substance contains
6.0225 x 10* entities. '
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Appendix 3P4

Possible Errorin A Compound Quantity

(i) ERROR IN THE COMPOUND QUANTITY z= xX+y
If the errors in the quantities x and y are Ax and Ay respectively, the possible sum is then;
XTAX+y it Ay
The maximum possible error is when we have
X+Ax+y+ Ay
or X-AX+y- Ay
Hence, the quantity can be expressed as X+yt(Ax+ Ay)

i.e., the errors are added.

Hence, error in z = error in x + error in y (A21)

(ii) ERROR IN THE COMPOUND QUANTITY z= xy

If the errors in the quantities x and y are Ax and Ay respectively, the compound
qQuantity could be as large as (x + AX) (y + Ay) or as small as (x - Ax) (y - Ay). The product is
thus between about xy + x Ay + yAx +Ax Ay and xy - x Ay - y Ax +Ax Ay.If we neglect Ax Ay,
as being small, then the error is between

XAy+yAx and - (x Ay+ yAX)
or t (x Ay + y Ax)
The possible fractional error is thus

Xy S

which is the sum of possible fractional errors. Since the fractional error is generally
written as percentage error, hence the possible percentage error is the sum of the
percentage errors for the product of the two physical quantities.

ie, %errorinz=%errorinx+%errorlny (A2.2)
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(i)  ERRORIN THE COMPOUND QUANTITY z=k x* y*

Let z, x and y be the numerical values of the physical quantities and k be a constant.
Taking log of both sides;

logz=logk+alog x+blogy

Differentiating: o =0+a e b o
z X Y

.
(dz]mo ["]mmb[ﬂjmo
V4 X y

If dx, dy and dz represent the errors in the quantltles x, ¥, and z respectively, then
%mwzam% wm xw- 6 é%min y) (A2.3)

Muitiply by 100
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To find uncertainty in an average value obtained by plottlng graphs, the first step is to
draw best straight line through the plotted points using a transparent ruler. The best
straight line passes through as many of plotted points as possible or which leaves
almost an equal distribution of points on either side of the line. The second step is to
pivot a transparent ruler about the centre of best straight line to draw greatest and least
possible slopes. If slope of best straight line is m and greatest and least slopes are m;
and mas illustrated in Fig. A 2.1, then evaluate m, - m and m, - m which ever of these is

R R T
100 HH Hp
- T + 'y .‘ T T

@
=

T

—
=

=

S
T

! IR R AR et sanns anas 3 % suma
e e e

0 5 10 15 20 25
x(mm) —>

Fig. A 2.1

greater is the maximum possible uncertainty in the slope. If the intercept on a particular
axis is required, the similar procedure can be followed.
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“AppendixIh,

Fig.A 3.1

(i) (@+b)"=a"+na""'b+ '_n("‘ =4 a"2p? + n{

Mathematical Review

A LINEAR EQUATION
A linear equation has the general form

y=ax+bhb (A3.1)
Where a and b are constants. This equation is referred to
as being linear because the graph of y versus x is a
straight line, as shown in Fig. A3.1. The constant b, called
the intercept, represents the value of y at which the straight
line intersects the Y-axis. The constant a is equal to the
slope of the straight line and is also equal to the tangent of
the angle that the line makes with the X-axis. If any two
points on the straight line are specified by the coordinates
(x:, y1) and (xz, ¥2). @s in Fig. A 3.1, then the slope of the
straight line can be expressed

Yiw ¥
Slope a= 2 1= -png (A32)
- SR R -
; 2 1
Note that a and b can be either positive or negative.

B. QUADRATIC EQUATION
The general form of a quadratic equation is

a+bx+c=0 (A 3.3)

where x is unknown quantity and a, b and ¢ are numerical
factors referred to as coefficients of the equation. This
equation has two roots, given by

_ -b+Vb®-dac

x= A34
= ( )
If b% > 4ac, the roots will be real.
o THE BINOMIAL THEOREM
PN T2) pas (A3s)

2x1 3x2x1
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Ifx <1, then

(1 +x)" =1 + nx + negligible terms e 3.6) Table A 3.1
Areas and volumes of
D. GEOMETRY some geometrical shapes.
(i) Areas and volumes of some geometrical shapes
are given in Table A3.1. {
(ii) TABLE A 3.2 w
Condition Theorem
(i) Rectangle
1. If AB is_ parallel to CD, s wia
then a=8
2. If O' C'is perpendicularto h
OB and OD is
perpendicular to OA, then L
a=f (i) Triangle
Area = -; bh
Y i 3. a+B +vy=180°
> 4, a=PB+y
B ¥
c
5. The radius OA is e,
A perpendicular to the B
tangent line BC. Area = nr'

(Circumference =2 r)



(iv)  Cylinder
volume = nrl

(v) Rectangular box
volume = Iwh

{vi) Sphere
Surface area = 4nr”

B 2
volume = 3 nr

E TRIGONOMETRY

sin’ 0+ cos® B=1 (A37)
cos (90° +6) = sind (A 3.8)
sin (90° +0) = -cos@ ' (A3.9)
sin (180°-0) = sin® (A'3.10)
cos (180°-8) = - cosé (A3.11)

sin (8+¢)=sin Ocosp +cosBsing  (A3.12)
cos (D) =cos Acos¢ FsinN@ sing (A3.13)
sin 26 = 2 sin 6 cos O (A3.14)
cos 26= cos®0 - sin’0 (A 3.15)

According to our definitions, the trigonometric functions are
limited to angles in the range [0, 90°]. We extend the
meaning of these functions to negative or larger angles by
a circle of unit radius, the unit circle (Fig.A 3.2). Theangle is
always measured with respect to the positive x axis
counter clockwise positive and clockwise negative. The
hypotenuse of the right angled triangle OAB is the radius
of the unit circle. Its length is equal to 1, and it is always
positive. The other two sides are assigned a sign
according to the usual conventions i.e., positive to the right
of the x-axis, and so on. With these conventions the
trigonometric functions in each of the four quadrants have
the signs listed in Table A 3.3.

If 0 exceeds 360°, the whole pattern of signs and values
repeats itself on the next pass around the circle. Thus,
sine, cosine, and tangent are periodic functions of an
angle with period 360°.

Table A 3.3
The Signs of the
Quadrant sin0) cost lant
| + = +
] + ~ ”
1] - - +
v - B »
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Adiabatic process

Angular acceleration
Angular displacement

Angular momentum

Angular velocity
Antinode
Artificial gravity

Average acceleration

Average velocity

Base quantities
Blue shift

Bulk modulus
Centre of mass

Centripetal force
Cladding

Compression
Conservative field

Constructive
interference

Core

Crest
Critical angle
CRO

GLOSSARY

A completely isolated process in which no heat transfer
can take place.

The rate of change of angular velocity with time.

Angle subtended at the centre of a circle by a particle
moving along the circumference in a given time.

The cross product of position vector and linear momentum.
Angular displacement per second.
The point of maximum displacement on a stationary wave.

The gravity like effect produced in orbiting space ship to
overcome weightlessness.

Ratio of the change in-velocity, that occurs within a time
interval, to that time interval.

Average rate at which displacement vector changes with
time.

Certain physical quantities such as length, mass and time.

The shift of received wavelength from a star into the
shorter region.

Ratio of volumetric stress to volumetric strain.

The point at which all the mass of the body is
assumed to be concentrated.

The force needed to move a body arouhd a circular path.

A layer of lower refractive index (less density) over the
central core of high refractive index (high density).

The region of maximum density of a wave.
The field in which work done along a closed path is zero.
When two waves meet each other in the same phase.

The central part of optical fibre which has relatively high
refractive index (high density).

The portion of a wave above the mean level,
The angle of incidence for which the angle of refraction is 90°.
A device used to display input signal into waveform.
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Damping

Denser medium
Derived Quantities

Destructive
interference

Diffraction
Dimension

Displacement
Doppler shift
Drag force
Elastic collision

Energy
Entropy

Escape velocity

Forced oscillations
Free oscillations

Freely falling body
Fundamentaj mode

Geo-stationary
satellite

Harmonics
Heat engine

Ideal fluid
Impulse
Inelastic collision

A process whereby energy is dissipated from the
oscillatory system.

The medium which has greater density.
The physical quantities defined in terms of base quantities.
When two waves averlap each other in opposite phases.

Bending of light around obstacles.

One of the basic measurable physical Property such as
length, mass and time.

The change in the position of a body from its initial position
to its final position.

The apparent change in the frequency due to relative
motion of source and observer.

A retarding force expeérienced by an object moving
through a fluig.

The interaction in which both momentum and kinetic
energy conserve.

Capacity to do work.

Measure of increase in disorder of g thermodynamic
system or degradation of energy.

Oscillations of 3 body at its own frequency without the
interference of an external force.

A body moving under the action of gravity only.
Stationary wave setup with minimum frequency.

The satellite whose orbita| motion is synchronized with the
rotation of the Earth.

Stationary waves setup with integral multiples of the
fundamenta| frequency.

A device that converts a part of input heat energy into
mechanical work.

An incompressible fluid having no viscosity.
The product of force and time for which it acts 0N a body.
The interaction in which kinetic energy does not conserve.
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Instantaneous
acceleration

Instantaneous velocity
Internal energy

Isothermal process
Kinetic energy
Laminar flow

Least distance of
distinct vision

Line spectrum
Longitudinal wave

Magnification

Modulus of elasticity

Molar specific heat at
constant pressure

Molar specific heat at
constant volume

Moment Arm

Moment of inertia
Momentum

Muiti-mode graded
index fibre

Node
Null vector
Orbital velocity

Oscillatory motion
Periodic motion
Phase

Acceleration at a particular instant of time.

Velocity at a particular instant of time.

The sum of all forms of molecular energies in a
thermodynamic system.

A process in which Boyle's law is applicable.
Energy possessed by a body due to its motion.
Smooth sliding of layers of fluid past each other.

The minimum distance from the eye at which an object can
be seen distinctly.

Set of discrete wavelengths.

The wave in which the particles of the medium vibrate
parallel to the propagation of the wave.

The ratio of the angle subtended by the image as seen
through the optical device to that subtended by the object at
the unaided eye,

Ratio of stress and the strain.

Amount of heat needed to change the temperature of one
mole of a gas through 1K keeping pressure constant.

Amount of heat needed to change the temperature of one
mole of a gas through 1K keeping volume constant.

Perpendicular distance between the axis of rotation and
line of action of the force.

The rotational analogue of mass in linear mation.
The product of mass and velocity of an object.

An optical fibre in which the central core has high refractive
index which gradually decreases towards its periphery.

The point of zero displacement.
A vector of magnitude zero without any specific direction.

The tangential velocity to put a satellite in orbit around the
Earth.

To and fro motion of a body about its mean position.
The motion which repeats itself after equal intervals of time.

A quantity which indicates the state and direction of motion
of a vibrating particle.
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Pitch

Plane wavefront
Polarization
Position vector
Potential energy
Power
Progressive wave
Projectile

Radar speed trap

Random error
Range of a projectile

Rarefaction
Rarer medium
Rays

Red shift

Resolving power
Resonance
Restoring force

Resultant vector

Root mean square
velocity

Rotational equilibrium
Scalar quantity

Scalar product
Significant figures

The characteristics of sound by which a shrill sound can be
distinguished from the grave sound.

A disturbance lying in a plane surface.

The orientation of vibration along a particular direction.

A vector that describes the location of a point.

Energy possessed by a body due to its position.

The rate of doing work.

The wave which transfers energy away from the source.
An object moving under the action of gravity and moving
horizontally at the same time. .

An instrument used to detect the speed of moving object
on the basis of Doppler shift. 2

Error due to fluctuations in the measured quantity.

The horizontal distance from the point where the projectile
is launched to the point it returns to its launching height.

The region of minimum density.
The medium which has relatively less density.
Radial lines leaving the point source in all directions.

The shift in the wavelength of light from a star towards
longer wavelength region.

The ability of an instrument to reveal the minor details of
the object under examination.

A specific response of vibrating system to a periodic force
acting with the natural period of the system.

The force that brings the body back to its equilibrium
position.
The sum vector of two Or more vectors.

Square root of the average of the square of
molecular velocities,

A body having zero angular acceleration.
A physical quantity that has magnitude only.
The product of two vectors that results into a scalar quantity.

The measured or calculated digits for a quantity which are
reasonably reliable,
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Simple harmonic
motion

Slinky spring

Space time curvature
Spherical wavefront

Stationary wave

System international

(sh)
Systematic error

Terminal velocity

Torque

Total internal
reflection

Trajectory

Translational
equilibrium

Transverse wave

Trough
Turbulent flow
Unit vector
Vector quantity
Vector product
Wavefront

Wavelength
Work

directly
position

A motion in which acceleration is
proportional to displacement from mean
and is always directed towards the mean position.

A loose spring which has small initial length but a relatively
large extended length.

Einstein's view of gravitation.

When the disturbance is propagated in all directions from a
point source.

The resultant wave arising due to the interference of two

~identical but.oppositely directed waves.

The internationally agreed system of units used
almost world over.

Error due to incorrect design or calibration of the
measuring device.

Maximum constant velocity of an object falling vertically
downward.

The turning effect of a force.
When the angle of incidence increases by the critical

. angle, then the incident light is reflected back in the same

material.
The path through space followed by a projectile.
A body having zero linear acceleration.

The wave in which the particles of the medium vibrate
perpendicular to the propagation of wave.

The lower portion of a wave below the mean level.
Disorderly and changing flow pattern of fluids.

A vector of magnitude one used to denote direction.

A physical quantity that has both magnitude and direction.
The product of two vectors that results into another vector.

A surface passing through all the points undergoing a
similar disturbance (i.e., having the same phase) at a
given instant.

The distance between two consecutive wavefronts.

The product of magnitude of force and that of
displacement in the direction of force.
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