o L E T T é‘ National Book Faundation e Unit 2: Comout al Thinking & Atgorith

| s O R P N e) R i 3 Wb h—

S Y -

T — 7 m A@m_---mn
—a1e)\ & N
‘.#'-,I'---h ‘1'. | _F;«-"” e

I-"II
L

Computational Thinking -
& Algorithms

JEEJ Léarmng Gutcumes

T rEE——

At the end of this unit students will be able to:

Identify and apply complex algorithms on data structures such as trees and binary
search

understand and evaluate the computational solutions in terms of efficiem:y t;L\anty
and correctness

A B —— e = ——

)) D O O) 0 N O) Y e == 50) D 0 o

VY LI R R S B Wit
I | T TR N, A R A,
R AL W R

0 VLD Introduction
Enmputati‘dﬁﬂl"ﬁﬁhmng (CT) is a problem-solving process rooted in computer science principles.
It enables individuals to tackle complex challenges by breaking them down into manageable parts
and approaching them logically and systematically. Although CT is fundamental to computer

science, its application extends far beyond — into science, engineering, business, medicine, and
’ everyday life.

The core pillars of computational thinking include:
2 Decomposition: breakinga problem into smaller, more manageable components.
3 Pattern Recognition: identifying similarities or trends to simplify complex tasks.
'I > Abstraction: focusing on important information and ignoring irrelevant details.
2 Algorithm Design: developing clear, step-by-step instructions tosolve a problem.

Together, these elements form the foundation for designing effective andefﬁﬁl mt computational
solutions. At this advanced level, Enmputatimal thlnktng s nnt mlyapplied to deﬂgn algorithms
but also is used to analyze and evatuate these! s‘-plwhm; in terms of correctness, clarity, and
efficiency. Understanding.data stﬂ,lqtures l§ ::entra{ to this process, as they greatly influence how
wella soluliun perfnrms

In this cbaplfﬂ) ﬁil#ﬂ i I:e explnred how computational thinking integrates with algorithms and
data structures to create solutions that are not only correct but also optimized and scalable.

2.1 Data Structures

Data structure defines the way for organizing and storing data so that it can efficiently be
accessed and modified. They provide a framework for managing and organizing data in computer
programs, allowing for various operations to be performed effectively.

Data structures are essential for efficiently organizing and managing data in computer programs.
They dictate how data is arranged in memory and impact the performance of various operations
like insertion, deletion and retrieval. For instance, arrays provide quick access to elements by
. index, while linked lists offer flexibility in dynamic data manipulation. The choice of data
structure e.g. stacks and queues, trees and graphs depends on the speclﬁc needs of the
application and the operations it performs. = oY

| I

Following are some common data structures: "\ . vINCA

2.1.1Arrays At e\ V7

._'. N T ' T, .
AR | et

Arrays are the simplest data 5l;m:ture us&d in programming that contain different elements of
same size, C qnqduaur»memw locations are used to store these elements. The memeory locations
are identifiéd by indexes as shown in Fig.2.1.

i i v, Aol e & i S
P ———— ey pa— e ey =T | | | | |

T e

100 101 102 ‘“x_m‘m .lﬁ.q:s, m\\\m} -—-—-iﬁmuryanan

The arrays are considered efficient because they do not require additional data (metadata) to
store the elements. Additionally, because the memory locations are contiguous, therefare, it
makes accessing the elements fast.

However, the arrays are fixed in size and it requires to declare its size at the start. At some later
stage, when arrays need to be resized, it is costly to do so, because it may require creating new
arrays with larger size and shifting of elements from old array to new. Similarly, the arrays could
not be agood choice when elements are of different type.

The arrays are of two different types:

One-Dimentional (1-D) Array: In 1-D
array , various elements (of same type) .
are stored in a single list. The element_ w
can be reached by knnmng- ~Gl"lf.}‘f RO

single index, One- quqt{ﬁnat (D) i—"
Array example*i:;ﬂ n‘Flg 2.2,
Two-Dimentional (2-D) Array: The 2-D array is
also known as matrix, where the elements are _
stored in the form of matrix or table. The | |
elements can only be reached by knowing two | o |
indexes e.g. row and column. Fig.2.3 shows an |

example of Two-Dimentional (2-D) Arrays.

2.1.2 Linked Lists

Linked Lists are basic data structures in which elements (called nodes) are connected to each
other using the concept of pointers. The nodes contain the values te, l;iﬁtored &le pointer is the
reference (memory address) of the next nngte in Ihesequmtea's shp'émm F‘lg 2.4.

- e ._ .- ! R
L ‘ ~ b et AT

W NN N -

Head nodz Data node Next node

The linked lists are capable to store different types of data and it also makes insertion and
deletion operations easy as compared to arrays. The insertion/deletion could be performed at

T) [

i \ (FL0O)0aN
(o 'r— ";_I'-". ". | .I LA '-,\ | =
'.'..-'f'-".l'-.kI _"a'- = L

‘.
any position in the se ubnr;@ud?' ﬁﬁ!gﬁd\:?t Another advantage of linked lists is that they are
dynarniti @mpd to'specify the size of linked list at the start, rather they can grow and
shrink as qjj.\m'ement

Singly Linked List

Singly linked list is basic and simple type of list, it maintains two parts ineach node.
| < data to be stored

2 reference to next node in the sequence

Fig.2.5 shows an example scenario:

The last node of the linked list cuntajng,
inFig.2.6. M\ ﬂ '.". kS

Doubly Linked List

The doubly linked list is complex as compared to singly linked list but it also provides more
advantages. The major advantage is that it allows traversal in both directions and for that
purpose it needs to maintain pointers for both directions e.g. reference to previous node and
reference to next node. Therefore, the node in doubly linked list have three parts (Fig.2.7):

< reference to previous node in the sequence

2 datatobestored 0
2> reference to next nude in the Seql.ﬂEDC‘E‘-. (1 u'-. \ _\ "-."-._‘ B “J

R 4 A
) W '-III'- \.J/_ﬁ\

— A
) { Ry

I] - ! paid ok el R mlmls el o X .h'—LL—.
R e p——————epe—p————————ry T] T | | [| |

Fig.2.8 shows anexample scenario: e I, \] (5. jﬁ =

Prev.
e

|

Prw.

Hext

Prev
T i

Mext

The first node and the last node in the sequence of linked list contains NULL because it does not
refer to any other nodes.

Circular Linked List

It is a special type of linked list where all nodes are connected in a circle - forming a loop. Unlike
other types, where last node points to NULL, the last node in circular linked linked is connected
back ta the first node. Therefore, while traversing in circular linked linked, it never reached to
NULL. The structure of Ein:utarLink List is depicted in Fig 2.9,

-

(-

The circular linked list could be made from both of theabove types e.g. Singly linked list or doubly
linked list. Fig.2.10shows formation of a circular doubly linked list.

2.1.3. Stacks
The stacks use the LIFO (Last-In, First-Out) principle, where thr\ re@@jﬁ ch'Ied element
(last element in the atack) is the first to b@rem This| ‘q‘nportant’ for understanding

algorithms that need to manage tasgain\‘u a/ sﬁmjﬁﬁ q‘nﬁ&ﬁ "fhe LIFO principle makes it simple
because the operations on tﬁﬂﬂa@ are. perfarmed on tap position of the stack. Stack are
considered memor theh.ﬂze of the stack could be fixed or dynamic, it depends upon the

1rnplanentatium [\

Following are the basic operation that can be performed onsstack:
% Push: Add anew element at the top of stack

2 Pop: remove existing elenient from the top of stack

el

KL _q'._"u."‘n\ ".I":-"ﬂ.

rrmﬂmuwu :
B)] i }
> Top: retumthetnpelenf } ngit

2 IsEmpty: W 1\ \".Le . .
2 IsFull: Check, if stack is full

The wuﬂdna of Stackvdthcoreuperatinnsis shown F1|‘.| 2 11.

=y
2.1.4. Queues v g AN
The Queues use th R}L ﬂut] principle, where the first element added is the first
to be r or managing tasks that need to be processed in the order they

arrive. Unli slack, the operations on queues occur at two ends. The new elements are added at
the end of queue, whereas the existing elements are removed from the start of the quevue.

Following are the basic operation that can be performed on queues:

& Enqueue: Add a new element at the end(back/tail/rear) of the queue

2 Dequeue: remove existing element at the start (front/head) of the queue.
<» Front: return the start element without removing it

2 IsEmpty: Check, if queue is empty

D IsFull: Check, if queue is full

The working of Queues with core operations is shown Fig.2.12.

0 O N |))) D) D

=l d'. '.l."

: on | I~ .I'
0 A Vi | '-r“ 5\\\“ En o™=

They are key consideres key data strucl;urg Jn/ aig\onlhnwlﬂteﬂ br‘eédth ﬂrst search (BFS) and in
various real-world scenarios li schﬁulinﬁ“aﬁd\mffeﬁﬂg.

\x“ (] _-.\ ';"-.-f
2.1.5. Grap!]_r]r@;y}}l NN ot
The graph data structure also consist of nodes (called vertices) connected to each other by edges.

The graphs model complex relationships and networks. Graphs help in understanding problems
related to social networks, routing and resource management. They are essential for algorithms
related to network analysis, shortest paths (e.g., Dijkstra’s algorithm) and connectivity as shown
in Fig.2.13.

r.'l —-—'W-- i T T TR T T T LT T —-—-—-—_:--'i""-:‘lﬂ']
1 0]

F”f:’-.
_1 ‘Jw Uy

Following are tr;eb@w\dﬂﬁnthat can be performed on graphs:
3 Add Vertex: AdJl\ anew node tothe graph

3 Add Edge: Create connection between two nodes

3 Remove Vertex/Edge: Delete node or edge from the graph

2 Traversal: Visiting graphin specific order.

Ty B

e U
Primarily, there are two typesof graphs: H-.r ArANY ,»f N\ k},;-

Illl. |III|I|III.:|I

Connected Graph: Agraph whgqr,rat lgast nrre [ﬁam eﬁmts between every pair of node. If you can
start at any node and reach any ﬂthe‘r {luda hn any -:hrectlunll, it is connected. An example is
siwwmnFig Z. 14 ”\\J “k"l \‘u r_}",‘__j.'- !

Directed Gmph‘i‘k. graph where edges have direction associated with them as represented in
Fig.2.15.

|

s
e v el ;“a e =

] -
1 e . i e
————

50 VU VP N O N P Y Y S N W D N (R) S N P 0 D B v g

2.1.6Trees r TR QLSS

The trees repre enhhiérarch*iml structures consisting of nodes. The top most node is called root.
The d1rectly‘¢annected nodes make a relationship of parent-child. The higher node in hierarchy is
parent, whereas, lower is child. The node which do not have child is referred as leaf node. The
relationship between nodes is referred as edge. Each node consist of two things: value and
pointer toits child. An example is shown in Fig.2.16.

The trees are crucial for understanding complex relationships between data. Trees are used in
various algorithms such as traversal (in-order, pre-order, post-order) and are foundational for
understanding more advanced data structures.

In computer Science, Directory structure in an operating system or Tag structure in HTML
Language are best examples tounderstand trees.

—

Following are the basic operation that can be performed on trees:
2 Insertion: Add a new node at specified locationin the tree
. 3 Deletion: Remove existing node
= Search: Find specific node in the tree
& Traversal: Visiting tree in specific order

Tree traversal

..\... I_'|

A tree traversal is always done in a systematic way and it ‘i{wnlvesa i’l mechanism to visit all the
nodes. There are several methnds for, ’tree utfaversal andeath have different purpose. Following is
a brief overview of some commnn ffEEttaversa[‘ methﬂds

> In-DrderTi‘aversal{fnr Binary'!—'rées} -see Fig.2.17;

2. "Ihsit the root node.
3. Traverse the right subtree.

o it N N e S - O el R . RS D ¢ R O Rl N e Bl D s N D) B (R e |

e -——_W-E—H___-—--_”- . T P | W N
A (}'una.u-"

ut _.-,11.'-'151"".\\ (:

So the order of traversal of nodesis4->2->5->1->3-> 6.
This traversal is often used with binary search trees {BSTs} he:ause it visits nndea in ascendinq
order. :
2 Pre-Order Traversal - see Fig.2,18:
1. Visit the root node. 0 m/_\:ﬁuﬂq
2. Traverse the left suhtﬁ?” '5‘\’)\ AR
3. Travers i Btree.

Sotheorderof traversal of nodesis1->2->4->5->3->6,

This is useful when we need to work with the root node before its children.

3 Post-Order Traversal - see Fig.2.19: & N
1. Traverse the left subtree.
2. Traverse the right subtree.
3, Visit the root node.

Sothe order of traversal of nodesis4->5->2->6->3-> 1,
This is often used for deleting nodes or freeing memory, as it processes children before their
parent.

Eﬂmpl'e N I(- I - .|- \.\ I'I (,_/_/_-._‘I.ﬁ -
Fig.2.20 shows examples of fnnrde,r, Preurdgr and Pasmrder Tmfersal

Data Structures Support Computational Thinking:

2 Problem Decomposition: Different data structures. help“bi’eak dﬂm problems into
manageable components, making it eaﬁl&r td deaign and implemeut algorithms.

2 Efficiency Cunsiderat}nn;, ’l‘{'fey i\luﬂs:anetﬁde -offs between different operations (e.g.,
access time vs, uvfsamnh timear Hetping in choosing the most appropriate structure for a
given prﬂplfm NP

2 Algorithmic Thinking: Understanding these structures aids in developing and analyzing
algorithms, improving problem-solving skills by selecting the right tool for each task.

Overall, data structures are not just tools for storing data; they shape the way we think about
solving problems and designing algorithms. Mastery of these concepts is crucial for effective
computational thinking and developing efficient algorithms.

2.2 Evaluating Computational Solutions
When evaluating computational solutions, it is essential to consider the following criteria:

2.2.1 Correctness

An algorithm is considered correct if it generates the expected-output for all vaiid inputs. To

verify correctness, multiple test cases 5huuld be used that csq?euanuus scenarios, including

edge cases. ENRV7AR e R e

Example 1: Sorting Algon thrn ushﬂ Buhbie Sort.ﬂlgnnthm

Test Case: Gwep]qml Inse t edarray [5,2,9,1, 5, 6], Bubble Sort should correctly sortto[1, 2,5, 5,
6, 9).

If the algorithm consistently produces the sorted array for various test cases, including edge cases

like an empty array or an array withone element, it can be considered correct,

Example 2: Search Algorithm using Binary Search Algorithm

Uit & Computational Thinkine & Alearithm }>

il I-\.I|.III
R

(i
g Iu-,-- '-”Q:.

'," r~. g

Case: Given asortedarray[1, 2, 3, 4, 51 and(&;Eahiﬁ I:gy.",,aﬁma-‘ny Searchshould return the index
2 (assuming zero- basedmdémng}« e RN S

To verify correctn lensﬂra Biriarir Search works for various search keys (existing and non-
existing) an@fﬁﬂiﬂ?’ of different sizes.

2.2.2 Clarity

An algorithm is clear if its steps are logically structured and easily understandable. For this '
purpose, multiple things should be taken care of, for example using descriptive names for
variables and functions and ensuring that the steps are ordered logically. Similarly,
documentation and comments in code can also enhance clarity.

Example: Consider two python implementations of a function that calculates the factorial of a
number.

Case 1: Clear Code

1 1 v de-F Factnria{,(ﬂ) ,"’._ ,«i
if p’“ﬁa,: iﬁa)\ N

{l\ ‘return 1

else:
| return n * factorial(n - 1)

ef fct n):

| return 1 if n == @ else n * fcl:(n _11\

2 I-; ~ L
---*’i'“‘I\'x: o\ ;K ~
1 1 '. L A

The first case is easily readahlrdnd uﬁdedtandabté because the function name (factorial)
represents what logic 1mlqa~thg~fm&mn will be doing. Similarly, the conditional statement
(if n==0) is alm @W'c{esﬁhat what it means in the code. However, the second case uses a
shorter functtrcm name and a ternary operator, which, while valid, may be less immediately

understandable to someone new to the code.

2.2 .3 Efficiency
Efficiency refers to how well an algorithm uses computer resources, such as time and memory. It is

