78. Find unit vector perpendicular to the plane of \underline{a} and \underline{b} if $\underline{a}=-i-j-\underline{k}, \underline{b}=2 \underline{i}-3 \underline{j}+4 \underline{k}$.
79. Find vertices and equation of directrices of hyperbola $x^{2}-y^{2}=9.17 \mathrm{Grp11}$,
80. Find α so that $\underline{u}=\alpha \underline{i}+2 a \underline{j}-\underline{k}$ and $\underline{v}=\underline{i}+\alpha \underline{j}+3 \underline{k}$ are perpendicular.
81. Find a, so that $|a \underline{i}+(a+1) j+2 \underline{k}|=3$.
82. Fine the value $3 \underline{j} \cdot \underline{k} \times \underline{i}$.
83. If $\overrightarrow{A B}=\overline{C D}$, find coordinates Γ points . If $\bar{b}, \vec{C} D$ are $1,2,(-2,5),(4,1 \%)$
84. If $\underline{a}=2 \underline{i}+\dot{j}-\underline{k}$ and $\underline{b}=i-j+k$ ficc the cross pioduct $\underline{a} \times \underline{b}$
85. If $\underline{u}=3 \underline{i}+j-\underline{i} \operatorname{mav} \underline{v}=\boldsymbol{i}-\boldsymbol{k}$, fir.d the costries of the angle θ between \underline{u} and \underline{v}
86. If O is the prigin and $\bar{\sigma} \vec{P}=A \vec{B}$ find the point P when A and B are $(-3,7)$ and $(1,0)$ respectivel
87. Prove t lat $\mathrm{f} \underline{\hat{c}}+\underline{b}+\underline{\underline{b}}=\mathbf{0}$ then $\underline{a} \times \underline{b}=\underline{b} \times \underline{c}=\underline{c} \times \underline{a}$

Prond $\underline{d} \times(\underline{b}+\underline{c})+\underline{b} \times(\underline{c}+\underline{a})+c \times(\underline{a}+\underline{b})=0$.
Prove that if the lines are perpendicular, then product of their slopes $=-1$
Show that the points $A(3,1), B(-2,-3)$ and $C(2,2)$ are vertices of an isosceles triangle.
91. Show that the points $A(-1,2), B(7,5)$ and $C(2,-6)$ are vertices of a right triangle.
92. Show that the triangle with vertices $A(1,1), B(4,5)$ and $C(12,-5)$ is right triangle.
93. Show that vectors $3 \underline{i}-2 \underline{j}+\underline{k}, \underline{i}-3 \underline{j}+5 \underline{k}$ and $2 \underline{i}+\underline{j}-4 \underline{k}$ from a right triangle.
94. Transform $5 x-12 y+39=0$ into two intercept form. 15 Grp II,
95. Two lines \boldsymbol{l}_{1} and \boldsymbol{l}_{2} with respective slopes \boldsymbol{m}_{1} and \boldsymbol{m}_{2} are parallel if $\boldsymbol{m}_{1}=\boldsymbol{m}_{2}$.
96. Write and equation of parabola with focus $(-1,0)$, vertex $(-1,2)$.
97. Write direction cosine of $\overrightarrow{P Q}$, if $P(2,1,5), Q(1,3,1)$.
98. Write down the equation of straight line with x-intercept $(2,0)$ and y-intercept $(0,-4)$
99. Find the mid-point of line segment joining the points $A\left(-\sqrt{5},-\frac{1}{3}\right)$ and $(-3 \sqrt{5}, 5)$.
100. Find the slope and inclination of the line joining the points $(-2,4)$ and $(5,11)$.
101. Find equation of tangent to the circle $x^{2}+y^{2}=25$ at $(4,3)$.
102. Find the vertex and directrix of parabola $x^{2}=4(y-1)$.
103. Find the centre and vertices of the ellipse $9 x^{2}+y^{3}=18$.
104. Find the sum of vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$, given the four points $A(1,-1), B(2,0), C(-1,3)$ and $D(-2,2)$.
105. Find a vector perpendicular to each of the vectors $\underline{a}=2 \underline{i}+\underline{j}+\underline{k}$ and $\underline{b}=4 \underline{i}+2 \underline{j}-\underline{k}$.
106. Prove that the vectors $\underline{i}-2 \underline{j}+3 \underline{k}-2 \underline{i}+3 \underline{j}-4 \underline{k}$ and $\underline{i}-3 \underline{j}+5 \underline{k}$ are co-planar.
107. Find equation of a line through $(-4,7)$ and parallel to the line $2 x-7 y+4=0$.
108. Find equation of a line through $(-6,5)$ having slope $=7$
109. Find distance from the point $P(6,-1)$ to the line $6 x-14 y+9=0$
110. Find area of triangular region whose vertices are $A(5,3), B(-2,2), C(4,2)$.
111. Find the equation of tangent to the circle $x 2+y 3=25$ at $(4,3)$. 14 Grp 1,
112. Find the equation of parabola whose focus is (2,5) and direcrix is $y=1$
113. Find foci and eccentricity of ellinse
114. Find vector from A to origin $w \cdot e, 1 D: 4-2$ and $E(-? .5)$.
115. Find a vectorwhose magnitude is 2 a sid rale to $i * i * k$.
116. Find α sothat the vectors $2+x_{j}^{j+\beta k}$ and $3 ;+\alpha k$ are perpendicular.

Long Questions

1. Chapter No. 1 (Functions and Limits)

1. Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} x} 17$ GrpI,
2. Evaluate $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
3. Evaluate $\lim _{\theta \rightarrow 0}\left(\frac{1-\cos p \theta}{1-\cos q \theta}\right)$
4. Evaluate $\lim _{\theta \rightarrow 0} \frac{\tan \theta-\sin \theta}{\sin ^{3} \theta}$
5. Find the values of m and n, so that given function f is continuous at $x=3$.
6. \quad If $f(x)=\left\{\begin{array}{cc}m x & \text { if } x<3 \\ n & \text { if } x=3 \\ -2 x+0 & \text { if } x>\end{array}\right.$

7. Discuss the contin uit of $f(x)$ a $x=2$ and -2 .

8

9. If $f(x)=\left\{\begin{array}{cl}\frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2}, & x \neq 2 \\ k & x=2\end{array}\right.$
10. Find the value of \boldsymbol{k} so that \boldsymbol{f} is continuous at $\boldsymbol{x}=\mathbf{2}$.
11. Let $f(x)=\frac{2 x+1}{x-1} ; x \neq 1$, find $f^{-1}(x)$ and verify $f o f^{-1}(x)=x$
12. Prove $\lim _{x \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e 14$ Grp II, 10. Prove that $\lim _{x \rightarrow 0}\left(\frac{a^{x}-1}{x}\right)=\log _{e} a$
13. Prove that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

Chapter No. 2 (Differentiation)

1. Differentiate $\frac{x^{2}+1}{x^{2}-1}$ w.r.t. $\frac{x-1}{x+1}$
2. Differentiate $x^{2}+\frac{1}{x^{2}}$ w.r.t. $x-\frac{1}{x}$
3. Differentiate $\cos \sqrt{x}$ from the first principle.
4. Differentiate $\sin \sqrt{\frac{1+2 x}{1+x}}$ w.r.t x
5. Find $\frac{d y}{d x}$ if $x=a(\cos t+\sin t), y=a(\sin t-t \cos t)$
6. Find two positive integers whose sum is 9 and the product of one with the square of the other will be maximum.
7. If $x=\sin \theta, y=\sin m \theta$, Show that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$
8. If $y=\left(\cos ^{-1} x\right)^{2}$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$
9. If $y=e^{x} \cdot \sin x$, then prove that $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 v$
10. Prove that $y \frac{d y}{d x}+x=0$ if $x=\frac{1}{1+} \frac{t^{2}}{2}, y=1 \frac{2 t}{1} \frac{2}{t}-$
11. Show thetcos $(+h)=\cos +h-h \sin x-\frac{h_{2}^{2}}{2} \cos x-\frac{h^{3}}{13} \sin x+\cdots$ And evaluate $\cos 61^{\circ}$
12. Show that $\frac{d y}{d x}=: \frac{y}{x}$ if $\frac{y}{x}=\operatorname{Tan}-\frac{y}{x}$

13 Shap that $=\frac{n x}{x}$ has maximum value at $x=e$.
14. Shuw that $y=x^{x}$ has a maximum value at $=\frac{1}{e}$

Chapter No. 3 (Integration)

1. Evaluate $\int\left(\frac{1-\sin x}{1-\cos x}\right) e^{x} d x$
2. Evaluate $\int\left(\frac{1-\sin x}{1-\cos x}\right) e^{x} d x$
3. Evaluate $\int \frac{\sqrt{2}}{\sin x+\cos x} d x$
4. Evaluate $\int \frac{e^{x}(1+\sin x)}{(1+\cos x)} d x$
5. Evaluate $\int \frac{1}{x\left(x^{3}-1\right)} d x$
6. Evaluate $\int \cos ^{3} x \sqrt{\sin x} d x,(\sin x>0)$
7. Evaluate $\int \operatorname{cosec}^{3} x d x$
8. Evaluate $\int \frac{\cos x}{\sin x \ln \sin x} d x$
9. Evaluate $\int \frac{d x}{\frac{1}{-5} \sqrt{\ln }+\frac{\sqrt{3}}{2} \cos x}$
10. Evaluate $\int^{2} x \cos 3 x x$
11. Evaluate $\int \tan ^{3} \lambda \sec x \cdot d x$
12. Evanate $\int_{\rho_{\frac{\pi}{\pi}}^{\pi}}^{\frac{\pi}{\operatorname{r}}} \frac{\cos x(2+\sin x)}{\cos } d x$
13. Evaluate $\int_{0}^{\frac{\pi}{4}} \cos ^{4} t d t$
14. Evaluate $\int_{0}^{\frac{\pi}{6}} \cos ^{3} \boldsymbol{\theta} d \boldsymbol{\theta}$
15. Evaluate $\int_{0}^{\pi / 4} \frac{\sin x-1}{\cos ^{2} x} d x$
16. Evaluate $\int_{0}^{\pi / 4} \frac{\sec \theta}{\sec \theta+\cos \theta} d \theta$
17. Evaluate $\int_{-1}^{2}(x+|x|) d x$
18. Evaluate $\int_{2}^{3} \frac{3 x^{2}-2 x+1}{(x-1)\left(x^{2}+1\right)} d x$
19. 19. Evaluate $\int_{2}^{3}\left(x-\frac{1}{x}\right)^{2} d x$
1. Evaluate the indefinite integral $\int \sqrt{a^{2}-x^{2}} d x$
2. Find the area between the x-axis and the curve $y=\sqrt{2 a x-x^{2}} ; a>0$
3. Find the area bounded by the curve $y=x^{3}-4 x$ and x-axis
4. Show that $\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+c$
5. Solve the differential equation $\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0$
6. Solve the following differential equation $\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0$
7. Solve the following differential equation $1+\cos x \tan y \frac{d y}{d x}=0$
8. Solve the following differential equation $x d y+y(x-1) d x$
9. Use differentials to approximate the values of $(31)^{1 / 5}$
10. $y=\sqrt{2 a x-x^{2}}$ when $a>0$.

Chapter No. 4 (Intro. tosnailyiogeonetry)

1. Find a joint equation of the straight/iresthough the orioin perenalcular to the lines represented by $x^{2}+x y-6 \sqrt{2}=0$
2. Find an ecuet or of the perper dicularbislecior joining the points $A(3,5)$ and $B(9,8)$
3. Find an eq ration the oe pendicular bisector of the segment joining the points $A(3,5)$ and $B(9,8)$
4. $-\operatorname{ind}$ equation of the sides, altitudes and medians of the triangle whose vertices are $A(-3,2), B(5,4)$ and C (3, 8).
5. Find equations of two parallel lines perpendicular to $2 x-y+3=0$ such that the product of the x intercept and y-intercept of each is 3 .
6. Find h such that the points $A(\sqrt{3},-1), B(0,2), C(h,-2)$ are the vertices of a right triangle with right angle at the vertex A.
7. Find interior angles of a triangle whose vertices are $A(6,1), B(2,7)$ and $C(-6,7)$.
8. Find the condition that the line $y=m x+c$ touches the circle $x^{2}+y^{2}=a^{2}$ at a single point.
9. Find the condition that the lines $y=m_{1} x+c_{1} ; m_{2} x+c_{2} ; y=m_{3} x+c_{3}$ are concurrent.
10. Find the distance between the given parallel lines. Also find equation of parallel lying midway between them. $3 x-4 y+3=0$ and $3 x-4 y+7=0$
11. Find the equations of altitudes of $\triangle A B C$ whose vertices are $A(-3,2), B(5,4)$ and $C(3,-8)$
12. Find the interior angles of a triangle whose vertices are $A(6,1), B(2,7), C(-6,-7)$.
13. Find the length of the chord cut off from the line $2 x+3 y=13$ by the circle $x^{2}+y^{2}=26$.
14. 14. Find the lines represented by each of the following and also find measin of the angle ver them $x^{2}+2 x y \sec \alpha+y^{2}=0$
1. Prove that the line segment joining themidpoints of ivo sicies of a triargle is paralle co the third side and half as long.
2. Prove that the line segments jcining the mic-p ir ts piciesof quadrilateral taken in order form a parallelorra .
3. Prove tha the micpo int of the hypoten:se of a right triangle is the circumcenter of the triangle. 11 Grp II,
18 Thecpints $1(-1,2), B(6,3)$ and $C(2,-4)$ are vertices of a triangle. Show the line joining the midpoint D of $A B$ and the midpoing E of $A C$ is parallel to $B C$ and $D E=\frac{1}{2}$
4. The three points $A(7,-1), B(-2,2)$ and $C(1,4)$ are consecutive vertices of a parallelogram, find the fourth vertex.
5. The vertices of a triangle are $A(-2,3), B(-4,1)$ and $C(3,5)$. Find the circumcircle of the triangle.

Chapter No. 5 (Linear Inequalities and Linear Programming)

1. Graph the feasible region of system of linear inequalities and find the corner points.
2. $2 x+3 y \leq 18, x+4 y \leq 12,3 x+y \leq 12 x \geq 0, y \geq 0$
3. Graph the feasible region of system of linear inequalities and find the corner points.
4. $3 x+7 y \leq 21,2 x-y \leq-3, y \geq 0$
5. Shade the feasible region and also find the corner points of: $2 x-3 y \leq 6,2 x+3 y \leq 12, x \geq 0, y \geq 0$
6. Minimize $z=2 x+y$ subject to the constraints. $x+y \geq 3 ; 7 x+5 y \leq 35 ; x \geq 0 ; y \geq 0$
7. Graph the feasible region of system of linear inequalities and find the corner points.
8. $x+y \leq 5 ;-2 x+y \leq 2 ; y \geq 0$
9. Graph the feasible region of system of linear inequalities and find the corner points.
10. $2 x-3 y \leq 6 ; 2 x+y \geq 2 ; y \geq 0, y \geq 0$
11. Minimize $\mathrm{f}(x, y)=x+3 y$ subject to constraint.
12. $2 x+5 y \leq 30 ; 5 x+4 y \leq 20 ; x \geq 0, y \geq 0$
13. Minimize $\mathrm{f}(x, y)=2 x+3 y$ subject to constraint.
14. $2 x+y \leq 8 ; x+2 y \leq 14 ; x \geq 0, y \geq 0$
15. Find the minimum value of $\phi(x, y)=4 x+6 y$ under the constrains:, $2 x-3 y \leq 6,2 x+y \geq 2,2 x+$ $3 y \leq 12 x \geq 0, y \geq 0$
16. Minimize the function $z=3 x+y$ subject to the constrains: $3 x+5 y \geq 6, x+6 y=$

Chapter No. \mathbf{G} (Conic Secticins)

1. Find an equavion of orabola noving it focus at the origin and directrix parallel to y-axis.
2. Find the centry, fofi, er cent ic ty vericices and equation of directices of $\frac{y^{2}}{4}-x^{2}=1$.
3. Fi

Find thf cosruinates of the points of intersection of the line $2 x+y+5=0$ and the circle $x^{2}+y^{2}+$ $2 x-9=0$. Also find the length of intercepted chord.
Find equation of parabola with elements directrix : $x=-2$, focus $(2,2)$.
6. Find an equation of parabola whose focus is $F(-3,4)$, directrix line is $3 x-44 y+5=0$.
7. Find the focus, vertex and the directrix of the parabola $x^{2}-4 x-8 y+4=0$.
8. Write an equation of the parabola with axis $y=0$ and passing through $(2,1)$ and $(11,-2)$.
9. Show that the line $3 x-2 y=0$ and $2 x+3 y-13=0$ are tangents to the circle $x^{2}+y^{2}+6 x-4 y=$ 0.17
10. Show that the equation $9 x^{2}-18 x+4 y^{2}+8 y-23=0$ represent an ellipse. Find its elements (foci, vertices and directrices)
11. Show that the equation $x^{2}+16 x+4 y^{2}-16 y+76=0$ represent an ellipse. Find its foci eccentricity, vertices and directrices.
12. Write equations of tangent lines to the circle $x^{2}+y^{2}+4 x+2 y=0$ down from the point $P(-1,2)$ ATso 1 find the tangential distance.
13. Prove that in any triangle ABC by vector method $a^{2}=b^{2}+c^{2}-2 b c c e s A$
14. Find equation of ellipse having vertices $(0, \pm 5)$ and ec \in nt ic ty $\frac{3}{5}$
15. Find an equation of the circle passing through tre oont $(-2,-5$ and touching the line $3 x+4 y-24=0$ at the point (4,3)
16. Find the foci, vert ex and cirirectr x of theparaloo $y-6 x^{2}-1$.,
17. Find equation o the tange ts to the sircle $x^{2}+y^{2}=2$
18. Find ariectatic n or ar cllipse with Foci $(-3 \sqrt{3}, 0)$ and vertices $(\pm 6,0)$
29. Kind eunctio.OJ the circle passing through $\mathrm{A}(a, 0), \mathrm{B}(0, b)$ and $\mathrm{C}(0,0)$
20. Find an equation of the parabola with focus $(1,2)$ and vertex $(3,2)$,
21. Write an equation of the circle that passes through the point $A(a, 0), B(0, b), C(0,0)$,
22. Write an equation of the circle that passes through the points $A(4,5), B(-4,-3)$, and $C(8,-3)$.

Chapter No. 7 (Vectors)

1. Find the value of α, in the coplanar vectors $\alpha \underline{i}+\underline{j}, \underline{i}+\underline{j}+3 \underline{k}$, and $2 \underline{i}+\underline{j}-2 \underline{k}$.
2. If $\underline{a}=3 \underline{i}-\underline{j}-4 \underline{k} ; \underline{b}=-2 \underline{i}-4 \underline{j}-3 \underline{k}$ and $\underline{c}=\underline{i}+2 \underline{j}-\underline{k}$, then find a unit vector parallel to $-3 \underline{a}-2 \underline{b}+$ 4c, 16
3. (Example) Find the volume of the tetrahedron whose vertices are $A(2,1,8), B(3,2,9), C(2,1,4)$ and D $(3,3,10)$.
4. Prove that $\sin (\alpha-\beta)=\sin a \cdot \cos \beta-\cos \alpha \sin \beta$ by method of vectors.
5. Find the volume of the tetrahedron with the vertices of $A(0,1,2), B(3,2,1), C(1,2,1)$ and $D(5,5,6)$
6. Find the constant a such that the vectors are coplanar $\underline{i}-\underline{j}+\underline{k}, \underline{i}-2 \underline{j}-3 \underline{k}$, and $3 \underline{i}-a \underline{j}+5 \underline{k}$.
7. The position vectors of the points A, B, C and D are $2 \underline{i}-\underset{j}{j}+\underline{k}, \mathbf{3} \underline{i}+\underline{j}, 2 \underline{i}+4 \underline{j}-2 \underline{k}$ and $-\underline{i}+2 \underline{j}+\underline{k}$ respecetively. Show that $A B$ is parallel to $C D$.
8. A force of magnitude 6 units acting parallel to $2 \underline{i}-2 \underline{j}+\underline{k}$ displaces the point of application from (1, 2, 3) to $(5,3,7)$. Find the work done.
 the third side and half as long.
9. If $\underline{a}+\underline{b}+\underline{c}=0$ then prove that $\underline{a} \underline{b}=\underline{b} \underline{c}=\underline{c} \times a$
10. A force $\underline{F}=4 \boldsymbol{i}-2 k$ passes through the point $4(2-2,5$, Find + moment the force about the point $B(1,-3,1)$
11. Find a unit vecto perpendicular to botil vectors \underline{a} and \underline{b} where $\underline{a}=-\underline{i}-j-k$ and $\underline{b}=2 \underline{i}-3 \underline{j}+4 \underline{k}$,
12. If $\underline{a}=3 \underline{i}-j-4 h, \underline{b}-2 \underline{i}-4 \underline{j}-3 \underline{k}$ and $\underline{c}=\underline{i}+2 \underline{j}-\underline{k}$ find a unit vector parallel to $3 \underline{a}-2 \underline{b}+4 \underline{c}$. 24. Firce equation of the circle of radius 2 and tangent to the line $x-y-4=0$ at $A(1,-3)$
