MATHEMATICS $12^{\text {th }}$

OB.EETINE PART

It is Cheflrigethetyou can get $80+$ Marks

1. If $f(x)-x^{2}-2 x+1$, ther $f(0)=$
(7) -1
(b) 0
(c) $\boldsymbol{V} 1$
(d) 2
2. Viten we say that \boldsymbol{f} is function from set X to set Y, then X is called
(a) \checkmark Domain of f
(b) Range of f
(c) Codomain of f
(d) None of these
3. The term "Function" was recognized by \qquad to describe the dependence of one quantity to another.
(a) $\boldsymbol{\checkmark}$ Lebnitz
(b) Euler
(c) Newton
(d) Lagrange
4. If $f(x)=\boldsymbol{x}^{2}$ then the range of \boldsymbol{f} is
(a) $\boldsymbol{V}[0, \infty)$
(b) $(-\infty, 0]$
(c) $(0, \infty)$
(d) None of these
5. $\operatorname{Cosh}^{2} x-\operatorname{Sinh}^{2} x=$
(a) -1
(b) 0
(c) $\boldsymbol{\checkmark} 1$
(d) None of these
6. cosechx is equal to
(a) $\frac{2}{e^{x}+e^{-x}}$
(b) $\frac{1}{e^{x}-e^{-x}}$
(c) $\boldsymbol{V} \frac{2}{e^{x}-e^{-x}}$
(d) $\frac{2}{e^{-x}+e^{x}}$
7. The domain and range of identity function , $I: X \rightarrow X$ is
(a) $\boldsymbol{\checkmark} X$
(b) +iv real numbers
(c) -iv real numbers
(d) integers
8. The linear function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a x}+\boldsymbol{b}$ is constant function if
$a \neq 0, b=1$
(b) $a=1, b=0$
(c) $a=1, b=1$
(d) $\boldsymbol{V} a=0$
9. If $f(x)=2 x+3, g(x)=x^{2}-1$, then $(g o f)(x)=$
(a) $2 x^{2}-1$
(b) $\sqrt{ } 4 x^{2}+4 x$
(c) $4 x+3$
(d) $x^{4}-2 x^{2}$
10. If $f(x)=2 \boldsymbol{x}+3, \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{2}}-1$, then $(\boldsymbol{g o g})(\boldsymbol{x})=$
(b) $2 x^{2}-1$
(b) $4 x^{2}+4 x$
(c) $4 x+3$
(d) $\boldsymbol{\checkmark} x^{4}-2 x^{2}$
11. The inverse of a function exists only if it is
(a) an into function
(b) an onto function
(c) $\boldsymbol{\checkmark}$ (1-1) and into function
(d) None of these
12. If $\boldsymbol{f}(\boldsymbol{x})=2+\sqrt{\boldsymbol{x}-1}$, then domain of $\boldsymbol{f}^{-1}=$
(a) $] 2, \infty[$
(b) $\boldsymbol{V}[2, \infty[$
(c) $[1, \infty[$
(d) $11,0,7$
13. $\lim _{x \rightarrow \infty} e^{x}=$
(a) 1
(b) ∞
14. $\lim _{x \rightarrow 0} \frac{\sin (x-3)}{x-3}=$
(a) $\boldsymbol{\checkmark} 1$
(b)
(c) 0

$\sqrt{(c)} \sin ^{3}-2$
(d) -3
15. $\lim _{x \rightarrow 0} \frac{\sin (x-t)}{x_{n} a}=$
$(x)=x^{3}+x$ is:
(访 ∞
(c) $\frac{\sin a}{a}$
(d) -3
$16 .+(x)-x^{3}+x$ is :
(a) Even
(b) $\boldsymbol{\checkmark}$ Odd
(c) Neither even nor odd
(d) None
16. If $\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ is a function, then elements of \boldsymbol{x} are called
(a) Images
(b) $\boldsymbol{\checkmark}$ Pre-Images
(c) Constants
(d) Ranges
17. $\lim _{x \rightarrow 0}\left(\frac{x}{1+x}\right)=$
(a) e
(b) $\boldsymbol{V} e^{-1}$
(c) e^{2}
(d) \sqrt{e}
18. $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}$ is equal to
(a) $\log _{e^{x}}$
(b) $\log _{a^{x}}$
(c) a
(d) $\boldsymbol{\checkmark} \log _{e} a$
19. $\lim _{x \rightarrow 0} \frac{\operatorname{Sin} x^{\circ}}{x}=$
(a) $\boldsymbol{\wedge} \frac{\pi}{180^{\circ}}$
(b) $\frac{180^{\circ}}{\pi}$
(c) 180π
(d) 1
20. A function is said to be continuous at $\boldsymbol{x}=\boldsymbol{c}$ if
(a) $\lim _{x \rightarrow c} f(x)$ exists
(b) $f(c)$ is defined
(c) $\lim _{x \rightarrow c} f(x)=f(c){ }^{\prime}{ }^{\prime}$
Al of these
21. The function $f(x)=\frac{x^{2}-1}{x-1}$ is discontinuous at
(a) $\boldsymbol{\sim} 1$
(b) 2
(c) 3

L.H.L of $f(x)=15-5 \mid a \pm x=5$ is
22. 5
(b) $\sqrt{0}$
(c) $\%$
(d) 4
23. The change in variabie x is ral ed increment of x.It is denoted by δx which is
(a) + +ina
(in) -iv only
(c) $\boldsymbol{\checkmark}+\mathrm{iv}$ or -iv
(d) none of these
24. The notation $\frac{d y}{d x}$ or $\frac{d f}{d x}$ is used by
(a) $\boldsymbol{\checkmark}$ Leibnitz
(b) Newton
(c)Lagrange
(d) Cauchy
25. The notation $\dot{f}(\boldsymbol{x})$ is used by
(a) Leibnitz
(b) $\boldsymbol{\checkmark}$ Newton
(c) Lagrange
(d) Cauchy
26. The notation $f^{\prime}(x)$ or \boldsymbol{y}^{\prime} is used by
(a) Leibnitz
(b) Newton
(c) $\boldsymbol{\checkmark}$ Lagrange
(d) Cauchy
27. The notation $D f(x)$ or $D y$ is used by
(a) Leibnitz
(b) Newton
(c) Lagrange
(d) $\boldsymbol{\checkmark}$ Cauchy
28. $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=$
(a) $\boldsymbol{V} f^{\prime}(x)$
(b) $f^{\prime}(a)$
(c) $f(0$
(d) $f(x-a)$
29. $\frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}}\left(\boldsymbol{x}^{\boldsymbol{n}}\right)=\boldsymbol{n} \boldsymbol{x}^{\boldsymbol{n}-\mathbf{1}}$ is called
(a) \checkmark Power rule
(b) Product rule
(c) Quotient rule
(d) Constant
30. The derivative of a constant function is
(a) one
(b) $\boldsymbol{\checkmark}$ zero
(c) undefined
(d) None of these
31. The process of finding derivatives is called
(a) \checkmark Differentiation
(b) differential
(c) Increment
(d) Integration
32. If $\boldsymbol{f}(\boldsymbol{x})=\frac{1}{x}$, then $\boldsymbol{f}^{\prime \prime}(\boldsymbol{a})=$
(a) $-\frac{2}{(a)^{3}}$
(b) $-\frac{1}{a^{2}}$
(c) $\frac{1}{a^{2}}$
(d) $\boldsymbol{\checkmark} \frac{2}{a^{3}}$
33. $(\boldsymbol{f o g})^{\prime}(x)=$
(a) $f^{\prime} g^{\prime}$
(b) $f^{\prime} g(x)$
(c) $\boldsymbol{V} f^{\prime}(g(x)) g^{\prime}(x)$
(d) cannot be calculated
34. $\frac{d}{d x}(g(x))^{n}=$
(a) $n[g(x)]^{n-1}$
(b) $n\left[(g(x)]^{n-1} g(x)\right.$
(c)
$\nabla n[(g(x)]]^{n}-1 g^{\prime \prime}(x)$

35. $\frac{d}{d x}\left(3 x^{\frac{4}{3}}\right)=$
(a) $4 x^{\frac{2}{3}}$
(b) $\sqrt{4 x^{3}}$
(c) 22^{3}
(d) $3 x^{\frac{-}{3}}$
36. If $x=a t^{2}$ ant $y=2 d t \tan -\frac{y}{a}=$
(a) $\frac{2}{y a}$
(b) $\frac{2}{2 a}$
(c) $\boldsymbol{\swarrow} \frac{2 a}{y}$
(d) $\frac{2}{y}$
$38 \cdot \frac{d}{d x}\left(\tan ^{-1} x-\cot ^{-1} x\right)=$
(a) $\frac{2}{\sqrt{1+x^{2}}}$
(b) $\boldsymbol{\checkmark} \frac{2}{1+x^{2}}$
(c) 0
(d) $\frac{-2}{1+x^{2}}$
37. If $\operatorname{Sin} \sqrt{x}$, then $\frac{d y}{d x}$ is equal to
(a) $\boldsymbol{\operatorname { c o s } \sqrt { x }} \frac{2 \sqrt{x}}{}$
(b) $\frac{\cos \sqrt{x}}{\sqrt{x}}$
(c) $\cos \sqrt{x}$
(d) $\frac{\cos x}{\sqrt{x}}$
38. $\frac{d}{d x} \sec ^{-1} x=$
(a) $\boldsymbol{V} \frac{1}{|x| \sqrt{x^{2}-1}}$
(b) $\frac{-1}{|x| \sqrt{x^{2}-1}}$
(c) $\frac{1}{|x| \sqrt{1+x^{2}}}$
(d) $\frac{-1}{|x| \sqrt{1+x^{2}}}$
39. $\frac{d}{d x} \operatorname{cosec}^{-1} x=$
(a) $\frac{1}{|x| \sqrt{x^{2}-1}}$
(b) $\boldsymbol{\int} \frac{-1}{|x| \sqrt{x^{2}-1}}$
(c) $\frac{1}{|x| \sqrt{1+x^{2}}}$
(d) $\frac{-1}{|x| \sqrt{1+x^{2}}}$
40. Differentiating $\sin ^{3} x$ w.r.t $\cos ^{2} x$ is
(a) $\boldsymbol{V}-\frac{3}{2} \sin x$
(b) $\frac{3}{2} \sin x$
(c) $\frac{2}{3} \cos x$
(d) $-\frac{2}{3} \cos 2$
41. If $\frac{y}{x}=\operatorname{Tan}^{-1} \frac{x}{y}$ then $\frac{d y}{d x}=$
(a) $\frac{x}{y}$
(b) $-\frac{x}{y}$
(c)
42. If $\tan y(1+\tan x)=1-\tan x$ shov chat $\frac{d y}{d x}=$
(a) 0
(b) 1
(ic)
(d) 2
43. $\frac{d}{d x}\left(\operatorname{Sin}^{-1} x\right)=\frac{-1}{\sqrt{1}-\overline{x^{2}}}$ is valit for
(a) $0<x<1 \quad$ (b) $-1<x<0$
(c) $\boldsymbol{V}-1<x<1$
(d) None of these
4.6. 1fy $=2 \sin ^{-1}\left(\frac{x}{a}\right)+\sqrt{a^{2}-x^{2}}$ then $\frac{d y}{d x}=$
(a) $\operatorname{Cos}^{-1} \frac{x}{a}$
(b) $\operatorname{Sec}^{-1} \frac{x}{a}$
(c) $\boldsymbol{\sim} \operatorname{Sin}^{-1} \frac{x}{a}$
(d) $\operatorname{Tan}^{-1} \frac{x}{a}$
44. If $y=e^{-a x}$, theny $\frac{d y}{d x}=$
(a) $\boldsymbol{V}-a e^{-2 a x}$
(b) $-a^{2} e^{a x}$
(c) $a^{2} e^{-2 a x}$
(d) $-a^{2} e^{-2 a x}$
45. $\frac{d}{d x}\left(10^{\sin x}\right)=$
(a) $10^{\cos x}$
(b)
$10^{\sin x} \cdot \cos x \cdot \ln 10$
(c) $10^{\sin x} \cdot \ln 10$
(d) $10^{\cos x} \cdot \ln 10$
46. If $y=e^{a x}$ then $\frac{d y}{d x}=$
(a) $\frac{1}{e^{x}}$
(b) $\boldsymbol{V} a e^{a x}$
(c) $e^{a x}$
(d) $\frac{1}{a} e^{a x}$
47. $\frac{d}{d x}\left(a^{x}\right)=$
(a) a^{x}
(b) $e^{x} \ln a$
(c) $\boldsymbol{\sim} a^{x} \cdot \ln a$
(d) x^{a}. $\ln a$
48. The function $f(x)=a^{x}, a>0, a \neq 0$, and x is any real number is called
(a) $\boldsymbol{\sim}$ Exponential function (b) logarithmic function (c) algebraic function (d) composite function
49. If $a>0, a \neq 1$, and $x=a^{y}$ then the function defined by $y=\log a^{x}(x>0)$ is called a logarithmic function with base
(a) 10
(b) e
(c) $\boldsymbol{\checkmark} a$
(d) x
50. $\log _{\boldsymbol{a}^{a}}=$
(a) $\boldsymbol{V} 1$
(b) e
(c) a^{2}
(d) not defined
51. $\frac{d}{d x} \log _{a^{x}}=$
(a) $\frac{1}{x} \log a$
(b) $\boldsymbol{\checkmark} \frac{1}{x \ln a}$
(c) $\frac{\ln x}{x \ln x}$
(d) $\frac{\ln a}{x \ln x}$
52. $\frac{d}{d x} \ln [f(x)]=$
(a) $f^{\prime}(x)$
(b) $\ln f^{\prime}(x)$
(c)

(d) $f(x)$. f
53. If $y=\log 10^{\left(a x^{2}+b x+c\right)}$ then $\frac{d y}{d x}=$
(a) $\left.\boldsymbol{\sim} \frac{1}{\left(a x^{2}+b\right.}+\right)^{2}$
(b) $\left.\frac{2 a x-b}{(a)^{2}, b x+}-\right)$
(1) $10 x^{2}-b x+c \ln 10$
(d) $\frac{2 a x+b}{\left(a x^{2}+b x+c\right) \ln a}$
54. $\ln \boldsymbol{a}^{e}=$
(a) $\ln C$
(b)
(c) $\frac{1}{\ln a^{e}}$
(d) $\ln e^{e}$
$5 . \ln 1=e^{2 x}$, then $y_{4}=$
(a) $\boldsymbol{\sim} 16 e^{2 x}$
(b) $8 e^{2 x}$
(c) $4 e^{2 x}$
(d) $2 e^{2 x}$
55. If $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{e}^{2 \boldsymbol{x}}$, then $\boldsymbol{f}^{\prime \prime \prime}(\boldsymbol{x})=$
(a) $6 e^{2 x}$
(b) $\frac{1}{6} e^{2 x}$
(c) $\sqrt{ } 8 e^{2 x}$
(d) $\frac{1}{8} e^{2 x}$
56. If $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{3}+\mathbf{2 x}+\mathbf{9}$ then $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})=$
(a) $3 x^{2}+2$
(b) $3 x^{2}$
(c) $\boldsymbol{\int} x$
(d) $2 x$
57. If $y=x^{7}+x^{6}+x^{5}$ then $D^{8}(y)=$
(a) $7!$
(b) $7!x$
(c) $7!+6$!
(d) $\boldsymbol{\checkmark} 0$
58. $1-x+x^{2}-x^{3}+x^{4}+\cdots .+(-1)^{n} x^{n}+\cdots$ is the expansion of
(a) $\frac{1}{1-x}$
(b) $\boldsymbol{\wedge} \frac{1}{1+x}$
(c) $\frac{1}{\sqrt{1-x}}$
(d) $\frac{1}{\sqrt{1+x}}$
59. $f(x)=f(0)+x f^{\prime}(x)+\frac{x^{2}}{2!} f^{\prime \prime}(x)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(x)+\cdots \ldots .+\frac{x^{n}}{n!} f^{n}(x) \ldots$ is called
(a) \checkmark Machlaurin's
(b) Taylor's
(c) Convergent
60. $1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+$ \qquad is an expresion of
(a) e^{x}
(b) $\operatorname{Si} i x$
(c) \cdot

Cos.
ceries.
64. $a_{0}+a_{1} x+a_{2} x+$
(a) Maclaurin's series
(i) Taylor Series
(c) $\boldsymbol{\checkmark}$ Power Series
(d) Bionomial Serie
65. A function ${ }^{\circ}(x)$ i. uch that ata point $x=c, f^{\prime}(x)>0$ at $x=c$, then f is said to be
(a) y chesrg
(b) decreasing
(c) constant
(d) 1-1 function

Ga. Afunction $f(x)$ is such that, at a point $x=c, f^{\prime}(x)<0$ at $x=c$, then f is said to be
(a) Increasing
(b) \boldsymbol{V} decreasing
(c) constant
(d) 1-1 function
67. A function $f(x)$ is such that, at a point $x=c, f^{\prime}(x)=0$ at $x=c$, then f is said to be
(a) Increasing
(b) decreasing (c)
constant
(d) 1-1 function
68. A stationary point is called \qquad if it is either a maximum point or a minimum point
(a) Stationary point
(b) $\boldsymbol{\checkmark}$ turning point
(c) critical point
(d) point of inflexion
69. If $\boldsymbol{f}^{\prime}(\boldsymbol{c})$ does not change before and after $\boldsymbol{x}=\boldsymbol{c}$, then this point is called \qquad
(a) Stationary point
(b) turning point
(c) critical poin
(d) $\boldsymbol{\checkmark}$ point of inflexion
70. Let f be a differentiable function such that $f^{\prime}(c)=0$ then if $f^{\prime}(x)$ changes sign from -iv to +iv i.e., before and after $\boldsymbol{x}=\boldsymbol{c}$, then it occurs relative \qquad at $x=c$
(a) Maximum
(b) \boldsymbol{V} minimum
(c) point of inflexion
(d) none
71. Let f be a differentiable function such that $f^{\prime}(c)=0$ then if $f^{\prime}(x)$ does not change sign i.e., before and after $\boldsymbol{x}=\boldsymbol{c}$, then it occurs \qquad at $x=c$
(b) Maximum
(b) minimum
(c) $\boldsymbol{\Omega}$ point of inflexion
(d) none
72. Let \boldsymbol{f} be differentiable function in neighborhood of \boldsymbol{c} and $\boldsymbol{f}^{\prime}(\boldsymbol{c})=0$ then $\boldsymbol{f}(\boldsymbol{x})$ has relative maxima at \boldsymbol{c} if
(a) $f^{\prime \prime}(c)>0$
(b) $\boldsymbol{V} f^{\prime \prime}(c)<0$
(c) $f^{\prime \prime}(c)=0$
(d) $f^{\prime \prime}(c) \neq 0$
73. If $\int f(x) d x=\varphi(x)+c$, then $f(x)$ is called
(a) Integral
(b) differential
(c) derivative
(d) $\boldsymbol{\checkmark}$ integrand
74. Inverse of $\int \ldots . d x$ is:
(a) $\boldsymbol{V} \frac{d}{d x}$
(b) $\frac{d y}{d x}$
(c) $\frac{d}{d y}$
(d) $\frac{d x}{d y}$
75. Differentials are used to find:
(a) \checkmark Approximate value
(b) exact value
(c) Both (a) and (b)
(d) None of these
76. $\boldsymbol{x d y}+\boldsymbol{y d x}=$
(a) $d(x+y)$
(b) $\boldsymbol{\checkmark d}\left(\frac{x}{y}\right)$
(c) $d(x-v)$
77. If $d y=\cos x d x$ then $\frac{d x}{d y}=$

(a) $\sin x$

(h) $\cos x$
(i) $c=x$

(c) $d(x y)$

78. If $\int f(x) d x=r(x)+c$ when $f(x)$ is cailed
(b) Integral
(k) different al (lderivative
(d) $\boldsymbol{\checkmark}$ integrand
79. If $y=f(x)$ then $d i$ fertial of y is
(b) $\boldsymbol{V} d y=f^{\prime}(x) d x$
(c) $d y=f(x) d x$
(d) $\frac{d y}{d x}$

8c. The inverse process of derivative is called:
(a) Anti-derivative
(b) \checkmark Integration
(c) Both (a) and (b)
(d) None of these
81. If $n \neq 1$, then $\int(a x+b)^{n} d x=$
(a) $\frac{n(a x+b)^{n-1}}{a}+c$
(b) $\frac{n(a x+b)^{n+1}}{n}+c$
(c) $\frac{(a x+b)^{n-1}}{n+1}+c$
(d) $\boldsymbol{V} \frac{(a x+b)^{n+1}}{a(n+1)}+c$
82. $\int \sin (a x+b) d x=$
(a) $\vee \frac{-1}{a} \cos (a x+b)+c$
(b) $\frac{1}{a} \cos (a x+b)+c$
(c) $a \cos (a x+b)+c$
(d) $-a \cos (a x+b)+c$
83. $\int e^{-\lambda x} d x=$
(a) $\lambda e^{-\lambda x}+c$
(b) $-\lambda e^{-\lambda x}+c$
(c) $\frac{e^{-\lambda x}}{\lambda}+c$
(d) $\boldsymbol{V} \frac{e^{-\lambda x}}{-\lambda}+c$
84. $\int a^{\lambda x} d x=$
(a) $\frac{a^{\lambda x}}{\lambda}$
(b) $\frac{a^{\lambda x}}{\ln a}$
(c) $\sqrt{ } \frac{a^{\lambda x}}{a \ln a}$
(d) $a^{\lambda x}$
85. $\int[f(x)]^{n} f^{\prime}(x) d x=$
(a) $\frac{f^{n}(x)}{n}+c$
(b) $f(x)$

(c) $=1+2 x)+$
(d) $n)^{n+1}(x)+c$
86. $\int \frac{f^{\prime}(x)}{f(x)} d x=$
(a) $f(x)+c$
$\left(6, f^{\prime}(x)+\right.$
c) $\div \ln |x|+c$
(nd) $\ln \left|f^{\prime}(x)\right|+c$
87. $\int \frac{d x}{\sqrt{x+a}+\sqrt{x}}$ can be e raiuated if
(a)
(b) $x<0, a>0$
(c) $x<0, a<0$
(d) $x>0, a<0$

3a. $\int \frac{x}{x^{2}+3} d x=$
(a) $\boldsymbol{\nu} \sqrt{x^{2}+3}+c$
(b) $-\sqrt{x^{2}+3}+c$
(c) $\frac{\sqrt{x^{2}+3}}{2}+c$
(d) $-\frac{1}{2} \sqrt{x^{2}+3}+c$
89. $\int \frac{d x}{x \sqrt{x^{2}-1}}=$
(a) $\boldsymbol{\sim} \operatorname{Sec}^{-1} x+c$
(b) $\operatorname{Tan}^{-1} x+c$
(c) $\operatorname{Cot}^{-1} x+c$
(d) $\operatorname{Sin}^{-1} x+c$
90. $\int \frac{d x}{x \ln x}=$
(a) $\boldsymbol{V} \ln \ln x+c$
(b) $x+c$
(c) $\ln ^{\prime}(x)+c$
(d) $f^{\prime}(x) \ln f(x)$
91. In $\int\left(x^{2}-a^{2}\right)^{\frac{1}{2}} d x$, the substitution is
(a) $x=\operatorname{atan} \theta$
(b) $\boldsymbol{\checkmark} x=a \sec \theta$
(c) $x=a \sin \theta$
(d) $x=2 a \sin \theta$
92. The suitable substitution for $\int \sqrt{2 a x-x^{2}} d x$ is:
(a) $x-a=a \cos \theta$
(b) $\boldsymbol{V} x-a=a \sin \theta$
(c) $x+a=a \cos \theta$
(d) $x+a=a \sin \theta$
93. $\int \frac{x+2}{x+1} d x=$
(a) $\ln (x+1)+c$
(b) $\ln (x+1)-x+c$
(c) $\boldsymbol{\nu} x+\ln (x+1)+c$
(d) None
94. The suitable substitution for $\int \sqrt{a^{2}+x^{2}} d x$ is:
(b) $\boldsymbol{V} x=\operatorname{atan} \theta$
(b) $x=a \sin \theta$
(c) $x=a \cos \theta$
(d) None of these
95. $\int u d v$ equals:
(a) $u d u-\int v u$
(b) $u v+\int v d u$
(c) $\boldsymbol{\checkmark} u v-\int v d u$
(d) $u d u+\int v d u$
96. $\int x \cos x d x=$
(a) $\sin x+\cos x+c$
(b) $\cos x-\sin x+c$
(c) $\boldsymbol{\checkmark} x \sin x+\cos x+c$
(d) None
97. $\int \frac{e^{\operatorname{Tan}^{-1} x}}{1+x^{2}} d x=$
(a) $e^{\operatorname{Tan} x}+c$
(b) $\frac{1}{2} e^{\operatorname{Tan}^{-1} x}+c$

(c) $r e^{1} a<x x+c$
(d) $\cdot 2^{t e^{-1}}+c$
98. $\int e^{x}\left[\frac{1}{x}+\ln x\right]=$
(a) $e^{x} \frac{1}{x}+c$
(0) $-e^{x}-1$
c' $\int^{x} \ln x+c$
(d) $-e^{x} \ln x+c$
99. $\int e^{x}\left[\frac{1}{x}-\frac{1}{y^{2}}\right]=$
(a)
(b) $-e^{x} \frac{1}{x}+c$
(c) $e^{x} \ln x+c$
(d) $-e^{x} \frac{1}{x^{2}}+c$
100. $\int_{\int} \frac{2 a}{x^{2}-a^{2}} d x=$
(a) $\frac{x-a}{x+a}+c$
(b) $\boldsymbol{V} \ln \frac{x-a}{x+a}+c$
(c) $\ln \frac{x+a}{x-a}+c$
(d) $\ln |x-a|+c$
101. $\int_{\pi}^{-\pi} \sin x d x=$
(a) $\boldsymbol{\checkmark} 2$
(b) -2
(c) 0
(d) -1
102. $\int_{-1}^{2}|x| d x=$
(a) $\frac{1}{2}$
(b) $-\frac{1}{2}$
(c) $\frac{5}{2}$
(d) $\boldsymbol{\checkmark} \frac{3}{2}$
103. $\quad \int_{0}^{1}(4 x+k) d x=2$ then $k=$
(a) 8
(b) -4
(c) $\boldsymbol{\checkmark} 0$
(d) -2
104. $\quad \int_{0}^{3} \frac{d x}{x^{2}+9}=$
(a) $\frac{\pi}{4}$
(b) $\boldsymbol{\nu} \frac{\pi}{12}$
(c) $\frac{\pi}{2}$
105. $\int_{0}^{-\pi} \sin x d x$ equals to:
(a) -2
(b) 0
106. $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \operatorname{ccst} t=$
(a) $\boldsymbol{V} \frac{\sqrt{3}}{2}-\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}-\frac{1}{2}$
(c) $\frac{1}{2}-\frac{\sqrt{3}}{2}$
(d) None $107 . \sqrt{\mathrm{Na}} \cdot \mathrm{a}(\pi)=$
(a) (1)
(b) $\int_{b}^{a} f(x) d x$
(c) $\int_{b}^{a} f(x) d x$
(d) $\int_{a}^{a} f(x) d x$
108. $\int_{0}^{2} 2 x d x$ is equal to
(a) 9
(b) 7
(c) $\sqrt{ } 4$
(d) 0
109. To determine the area under the curve by the use of integration , the idea was given by
(a) Newton
(b) $\boldsymbol{\checkmark}$ Archimedes
(c) Leibnitz
(d) Taylor
110. The order of the differential equation : $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2=0$
(a) 0
(b) 1
(c) $\boldsymbol{V} 2$
(d) more than 2

1. The equation $y=x^{2}-2 x+c$ represents (c being a parameter)
2.

One parabola
(b) $\sqrt{ }$ family of parabolas
(c) family of line
(d) two parabolas
112. Solution of the differential equation : $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
(a) $\boldsymbol{\wedge} y=\sin ^{-1} x+c$
(b) $y=\cos ^{-1} x+c$
(c) $y=\tan ^{-1} x+c$
(d) None
113. The general solution of differential equation $\frac{d y}{d x}=-\frac{y}{x}$ is
(a) $\frac{x}{y}=c$
(b) $\frac{y}{x}=c$
(c) $\boldsymbol{\checkmark} x y=c$
(d) $x^{2} y^{2}=c$
114. Solution of differential equation $\frac{d v}{d t}=2 t-7$ is :
(a) $v=t^{2}-7 t^{3}+c$
(b) $v=t^{2}+7 t+c$
(c) $v=t-\frac{7 t^{2}}{2}+c$
(d) $\boldsymbol{\checkmark} v=t^{2}-7 t+c$
115. The solution of differential equation $\frac{d y}{d x}=\sec ^{2} x$ is
(a) $y=\cos x+c$
(b) $\boldsymbol{\checkmark} y=\tan x+c$
(c) $y=\sin x+c$
(d) $y=\cot x+c$
116. If $x<0, y<0$ then the point $P(x, y)$ lies in the quadrant
(a) 1
(b) II
(c) $\boldsymbol{\nu}$ III
117. The point P in the plane that correcponds the the ored par x, y is cill d
(a) \checkmark graph of (x, y)
(b) mid-point of x,
(\%) absci.sc of x,
(d) ord inate of x, y
118. The straight line which pases hrough onevert and perpendicula: 20 opposite side is called:
(a) Median
(b) altitude
c) perpendicular bisector
(d) normal
119. The p oint wh ere the redians of atrangle intersect is called \qquad of the triangle.
(a) \checkmark Centroia
(b) cen re
(c) orthocenter
(d) circumference
12. No pont where the altitudes of a triangle intersect is called \qquad of the triangle.
(a) Centroil
(b) centre
(c) \boldsymbol{V} orthocenter
(d) circumference
121. The centroid of a triangle divides each median in the ration of
(a) $\boldsymbol{V} 2: 1$
(b) $1: 2$
(c) $1: 1$
(d) None of these
122. The point where the angle bisectors of a triangle intersect is called \qquad of the triangle.
(a) Centroid
(b) \boldsymbol{V} in centre
(c) orthocenter
(d) circumference
123. The two intercepts form of the equation of the straight line is
(a) $y=m x+c$
(b) $y-y_{1}=m\left(x-x_{1}\right)$
(c) $\boldsymbol{V} \frac{x}{a}+\frac{y}{b}=1$
(d) $x \cos \alpha+y \cos \alpha=p$
124. The Normal form of the equation of the straight line is
(a) $y=m x+c$
(b) $y-y_{1}=m\left(x-x_{1}\right)$
(c) $\frac{x}{a}+\frac{y}{b}=1$
(d) $\sqrt{ } x \cos \alpha+y \cos \alpha=p$

125．In the normal form $x \cos \alpha+y \cos \alpha=p$ the value of p is
（a）\checkmark Positive
（b）Negative
（c）positive or negative
（d）Zero

126．If α is the inclination of the line l then $\frac{x-x_{1}}{\cos \alpha}=\frac{y-y_{1}}{\sin \alpha}=r(s a y)$
（a）Point－slope form
（b）normal form
（c） $\boldsymbol{\checkmark}$ symmetric form
（dinone dithose

127．The slope of the line $a x+b y+c=0$ is
（a）$\frac{a}{b}$
（b）

（c）$\frac{b}{a}$
128.

The slope of the line perpendicalar
$a x-b y$
$c=0$
（d）$-\frac{b}{a}$
（a）$\frac{a}{b}$
河一解
（c） \boldsymbol{V}_{a}^{b}
（d）$-\frac{b}{a}$
129．The general cquation of the traigitline in two variables x and y is
（a） $\boldsymbol{\checkmark} a x+b \cdot+c=0$
（b）$a x^{2}+b y+c=0$
（c）$a x+b y^{2}+c=0$
（d）$a x^{2}+b y^{2}+c=0$

130．Tiere－intercept $4 x+6 y=12$ is
（ia） 4
（b） 6
（c） $\boldsymbol{\checkmark} 3$
（d） 2

131．The lines $2 x+y+2=0$ and $6 x+3 y-8=0$ are
（a） $\boldsymbol{\checkmark}$ Parallel
（b）perpendicular
（c）neither
（d）non coplanar

132．If φ be an angle between two lines l_{1} and l_{2} when slopes m_{1} and m_{2} ，then angle from l_{1} to l_{2}
（a） $\tan \varphi=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$
（b） $\boldsymbol{\checkmark} \tan \varphi=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}$
（c） $\tan \varphi=\frac{m_{1}+m_{2}}{1+m_{1} m_{2}}$
（d） $\tan \varphi=\frac{m_{2}+m_{1}}{1+m_{1} m_{2}}$

133．If φ be an acute angle between two lines l_{1} and l_{2} when slopes m_{1} and m_{2} ，then acute angle from l_{1} to l_{2}
（a）$\left|\tan \varphi=\frac{m_{1}-m_{2}}{1+m_{1 m_{2}}}\right|$
（b） $\boldsymbol{\checkmark}\left|\tan \varphi=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}\right|$
（c）$\left|\tan \varphi=\frac{m_{1}+m_{2}}{1+m_{1} m_{2}}\right|$
（d）$\left|\tan \varphi=\frac{m_{2}+m_{1}}{1+m_{1 m_{2}}}\right|$

134．Two lines \boldsymbol{l}_{1} and \boldsymbol{l}_{2} with slopes \boldsymbol{m}_{1} and \boldsymbol{m}_{2} are parallel if
（a） $\boldsymbol{\checkmark} m_{1}-m_{2}=0$
（b）$m_{1}+m_{2}=0$
（c）$m_{1} m_{2}=0$
（d）$m_{1} m_{2}=-1$

135．Two lines \boldsymbol{l}_{1} and \boldsymbol{l}_{2} with slopes \boldsymbol{m}_{1} and \boldsymbol{m}_{2} are perpendicular if
（b）$m_{1}-m_{2}=0$
（b）$m_{1}+m_{2}=0$
（c）$m_{1} m_{2}=0$
（d） $\boldsymbol{\checkmark} m_{1} m_{2}=-1$

136．The lines represented by $a x^{2}+2 h x y+b y^{2}=0$ are orthogonal if
（a）$a-b=0$
（b） $\boldsymbol{\wedge} a+b=0$
（c）$a+b>0$
（d）$a-b<0$

137．The lines lying in the same plane are called
（a）Collinear
（b） $\boldsymbol{\checkmark}$ coplanar
（c）non－collinear
（d）non－coplanar

138．The distance of the point $(3,7)$ from the x－axis is
（a） \boldsymbol{V}_{7}
（b）-7
（c） 3
（d）-3

139．Two lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are parallel if
（a） $\boldsymbol{V} \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
（b）$\frac{a_{1}}{b_{1}}=-\frac{a_{2}}{b_{2}}$
（c）$\frac{a_{1}}{c_{1}}=\frac{a_{2}}{c_{2}}$
（d）$\frac{b_{1}}{c_{1}}=\frac{b_{2}}{c_{2}}$

140．The equation $\boldsymbol{y}^{2}-\mathbf{1 6}=\mathbf{0}$ represents two lines．
（a） $\boldsymbol{\checkmark}$ Parallel to x－axis
（b）Parallel y－axis
（c）not｜to $x=$ axis
（d）not

141．The perpendicular distance of the ine $3 x+4 y, 0=0$ from the crign is
（a） 0
（b） 1
（c）-2
（त） 3

142．The lines represented oy $a x^{2}-2 \cdot \boldsymbol{h} \cdot \boldsymbol{y}+\boldsymbol{b},^{2}=0$ are orthogonal if
（b）$a-b=0$
（b）$c a+c=0$
c）$u+b>0$
（d）$a-b<0$

143．Every ho rogehous equation oi second degree $a x^{2}+b x y+b y^{2}=0$ represents two straight lines
（Ta）•••Aromehtroctigin
（b）not through the origin（c）two｜｜line
（d）two \perp ar lines

144．The equation $10 x^{2}-23 x y-5 y^{2}=0$ is homogeneous of degree
（a） 1
（b） $\boldsymbol{V} 2$
（c） 3
（d）more than 2

145．The equation $\boldsymbol{y}^{2}-\mathbf{1 6}=\mathbf{0}$ represents two lines．
（a）\checkmark Parallel to x－axis
（b）Parallel y－axis
（c）not｜｜to x－axis
（d）not｜｜to y－axis
146.
$(0,0)$ is satisfied by
（a）$x-y<10$
（b） $2 x+5 y>10$
（c） $\boldsymbol{\checkmark} x-y \geq 13$
（d）None

147．The point where two boundary lines of a shaded region intersect is called \qquad point．
（a）Boundary
（b）
corner
（c）stationary
（d）feasible
148. If $\boldsymbol{x}>\boldsymbol{b}$ then
(a) $-x>-b$
(b) $-x<b$
(c) $x<b$
(d) $\boldsymbol{V}-x<-b$
149. The symbols used for inequality are
(a) 1
(b) 2
(c) 3
150. An inequality with one or two variables has \qquad solutions.
(a) One
(b) two
(c) chree
(d) v ir fir itelv manis
151.
$a x+b y<c$ is not a linear ineantcy if
(a) $\quad \checkmark a=0, b=n$
(b) $a+0, b \neq 0$
$(f) a=0 \quad b \neq 9$
(d) $a \neq 0, b=0, c=0$
152. The gron of corresponding lirear ecuctio: of the linear inequality is a line called \qquad
(a) \checkmark Boundary line
(b) nor izonta line
(c) vertical line
(d) inclined line

1. The graph if a in eir cation of the form $a x+b y=c$ is a line which divides the whole plane into \qquad dis.cints darts.
(a) Uo
(b) four
(c) more than four
(d) infinitely many
2. The graph of the inequality $\boldsymbol{x} \leq \boldsymbol{b}$ is
(a) Upper half plane
(b) lower half plane
(c) $\boldsymbol{\checkmark}$ left half plane
(d) right half plane
3. The graph of the inequality $\boldsymbol{y} \leq \boldsymbol{b}$ is
(b) Upper half plane
(b) $\boldsymbol{\sim}$ lower half plane
(c) left half plane
(d) right half plane
4. The feasible solution which maximizes or minimizes the objective function is called
(a) Exact solution
(b)
optimal solution
(c) final solution
(d) objective function
5. Solution space consisting of all feasible solutions of system of linear in inequalities is called
(a) Feasible solution
(b) Optimal solution
(c) \boldsymbol{V} Feasible region
(d) General solution
6. Corner point is also called
(a) Origin
(b) Focus
(c) $\boldsymbol{\checkmark}$ Vertex
(d) Test point
7. For feasible region:
(a) $\boldsymbol{V} x \geq 0, y \geq 0$
(b) $x \geq 0, y \leq 0$
(c) $x \leq 0, y \geq 0$
(d) $x \leq 0, y \leq 0$
8. $\boldsymbol{x}=\mathbf{0}$ is in the solution of the inequality
(a) $x<0$
(b) $x+4<0$
(c) $\sqrt{2} x+3>0$
(d) $2 x+3<0$
9. Linear inequality $2 x-7 y>3$ is satisfied by the point
(a) $(5,1)$
(b) $(-5,-1)$
(c) $(0,0)$
(d) $\boldsymbol{V}(1,-1)$
10. The non-negative constraints are also called
(a) $\boldsymbol{\checkmark}$ Decision variable
(b) Convex variable
(c) Decision constraints
(d) concave variable
11. If the line segment obtained by joining any two points of a region lies entirely within the region , then the region is called
(a) Feasible region
(b) \checkmark Convex region
(c) Solution region
(d) Concave region
12. A function which is to be maximized or minimized is called:
(a) Linear function
(b) $\boldsymbol{\checkmark}$ Objective function
(c) Feasible funstion
(d) Norre of these
13. For optimal solution we evaluate the object ve f in tion a:
(a) Origen
(b) Vertex
(1) Cohvex points
14. We find corner pointsat

(d) Convex region
(a) Origen
(b) Vertex
c) Feasible region
15. The set of poonts wich re erual distance from a fixed point is called:
(a)
16. Tirc'e
(h) Parabola
(c) Ellipse
(d) Hyperbola
17. Mly: © cie whose radius is zero is called:
(a) Unt circle
(b) $\boldsymbol{\checkmark}$ point circle
(c) circumcircle
(d) in-circle
18. The circle whose radius is 1 is called:
(a) \checkmark Unit circle
(b) point circle
(c) circumcircle
(d) in-circle
19. The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents the circle with centre
(a) (g, f)
(b) $\boldsymbol{\checkmark}(-g,-f)$
(c) $(-f,-g)$
(d) $(g,-f)$
20. The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents the circle with centre
(a) $\boldsymbol{\checkmark} \sqrt{g^{2}+f^{2}-c}$
(b) $\sqrt{g^{2}+f^{2}+c}$
(c) $\sqrt{g^{2}+c^{2}-f}$
(d) $\sqrt{g+f-c}$
21. The ratio of the distance of a point from the focus to distance from the directrix is denoted by
(a) $\boldsymbol{V} r$
(b) R
(c) E
(d) e
22.

Standard equation of Parabola is:
(a) $y^{2}=4 a$
(b) $x^{2}+y^{2}=a^{2}$
(c) $\boldsymbol{\sim} y^{2}=4 a x$
(d) $S=v t$
172. The focal chord is a chord which is passing through
(a) $\boldsymbol{\checkmark}$ Vertex
(b) Focus
(c) Cming
(i) Nore of chese
173. The curve $y^{2}=4 a x$ is symmetric about
(a) $\boldsymbol{\wedge} y$-axis
(b) $x-a x$ s
(c) 30 th $(c)=1 n c)(k)$
(d) Nons of these
174. Latusrac ul of $x^{2}=-4 a y$ is
(a) $x=a$
$(b ; x=-d$
c) $y=a$
(d) $\boldsymbol{\checkmark} y=-a$
175. Eccentricity of the elivse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
(a) $\stackrel{a}{c}$
(b) $a c$
(c) $\boldsymbol{\vee} \frac{c}{a}$
(d) None of these
1.7. Focus of $y^{2}=-4 a x$ is
(a) $(0, a)$
(b) $\boldsymbol{V}(-a, 0)$
(c) $(a, 0)$
(d) $(0,-a)$
177. A type of the conic that has eccentricity greater than 1 is
(a) An ellipse
(b) A parabola
(c) $\boldsymbol{\checkmark}$ A hyperbola
(d) A circle
178. $x^{2}+y^{2}=-5$ represents the
(a) Real circle
(b) \boldsymbol{V} Imaginary circle
(c) Point circle
(d) None of these
179. Which one is related to circle
(a) $e=1$
(b) $e>1$
(c) $e<1$
(d) $\boldsymbol{\nu} e=0$
180. Circle is the special case of :
(a) Parabola
(b) Hyperbola
(c) $\boldsymbol{\checkmark}$ Ellipse
(d) None of these
181. Equation of the directrix of $x^{2}=-4 a y$ is:
(a) $x+a=0$
(b) $x-a=0$
(c) $y+a=0$
(d) $\sqrt{ } y-a=0$
182. The midpoint of the foci of the ellipse is its
(a) Vertex
(b) $\boldsymbol{\checkmark}$ Centre
(c) Directrix
(d) None of these
183. Focus of the ellipse always lies on the
(a) Minor axis
(b) $\boldsymbol{\checkmark}$ Major axi
(c) Directrix
(d) None of these
184. Length of the major axis of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ is
(a) $\boldsymbol{\wedge} 2 a$
(b) $2 b$
(c) $\frac{2 b^{2}}{a}$
(d) None of these
185. In the cases of ellipse it is always true that:
(a) $\boldsymbol{\checkmark} a^{2}>b^{2}$
(b) $a^{2}<b^{2}$
(c) $a^{2}=b^{2}$
(d) $a<0, b<0$
186. Two conics always intersect each other in \qquad points
(a) No
(b) one
(c) two
(d) \boldsymbol{V} four
187. The eccentricity of ellipse $\frac{x^{2}}{10}+\frac{y^{2}}{9}=1$ is
(a) $\smile \frac{\sqrt{7}}{4}$
(b) $\frac{7}{2}$
(c) 16
d) 9
188. The foci of ancinose π (1, 1) and (0,1) thenits centre is:
(a) $(4,2)$
(k) $/ 2,2,1$)
(c) $(2,0)$
(d) $(1,2$
189.

The foci of hy pert ola -lways lie on :
(a) $\propto-a \times i \leqslant$
(b) \checkmark Transverse axis
(c) $y-a x i s$
(d) Conjugate axis
190. Length of transverse axis of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
(a) $\boldsymbol{\wedge} 2 a$
(b) $2 b$
(c) a
(d) b
191. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is symmetric about the:
(a) y-axis
(b) x-axis
(c) $\boldsymbol{\sim}$ Both (a) and (b)
(d) None of these

1. Two vectors are said to be negative of each other if they have the same magnitude and
\qquad direction.
(a) Same
(b) \boldsymbol{V} opposite
(c) negative
(d) parallel
2. Parallelogram law of vector addition to describe the combined action of two forces, was used by
(a) Cauchy
(b) $\boldsymbol{\checkmark}$ Aristotle
(c) Alkhwarzmi
(d) Leibnitz
3. The vector whose initial point is at the origin and terminal point is \boldsymbol{P}, is called
(a) Null vector
(b) unit vector
(c) $\boldsymbol{\sim}$ position vector
(d) normal vector
4. If \boldsymbol{R} be the set of real numbers, then the Cartesian plane is defined as
(a) $R^{2}=\left\{\left(x^{2}, y^{2}\right): x, y \in R\right\}$ (b)
b) $\boldsymbol{V} R^{2}=\{(x, y): x, y \in R\}$
(c) $R^{2}=$
$(x, y): x, y \in R, x=-y$
(c) $\mathrm{K}^{2}=$ $\{(x, y): x, y \in R, x=y\}$
5. The element $(x, y) \in R^{2} r$ peson a
(a) Space
(b)
(c) vectol
(d) line
6. If $\left.\underline{\boldsymbol{u}}=\Gamma_{r}, v\right]$ in \boldsymbol{R}^{2}, then $\underline{\boldsymbol{u}}^{\prime}=$?
(a) $x^{2}+y^{2}$
(b) $\nu \sqrt{x^{2}}-y^{2}$
(c) $\pm \sqrt{x^{2}+y^{2}}$
(d) $x^{2}-y^{2}$
$197 \sqrt{k}|x|=\sqrt{x}+\sqrt{y^{2}}=0$, then it must be true that
(a) $x=0,1 \geq 0$
(b) $x \leq 0, y \leq 0$
(c) $x \geq 0, y \leq 0$
(d) $\boldsymbol{\checkmark} x=0, y=0$
7. Each vector $[x, y]$ in R^{2} can be uniquely represented as
(a) $x \underline{i}-y \underline{j}$
(b) $\boldsymbol{V} x \underline{i}+y j$
(c) $x+y$
(d) $\sqrt{x^{2}+y^{2}}$
8. The lines joining the mid-points of any two sides of a triangle is always \qquad to the third side.
(a) Equal
(b) $\boldsymbol{\checkmark}$ Parallel
(c) perpendicular
(d) base
9. If $\underline{u}=3 \underline{i}-\underline{j}+2 \underline{k}$ then $[3,-1,2]$ are called \qquad of \underline{u}.
(a) Direction cosines
(b) \boldsymbol{V} direction ratios
(c) direction angles
(d) elements
10. Which of the following can be the direction angles of some vector
(a) $45^{\circ}, 45^{\circ}, 60^{\circ}$
(b) $30^{\circ}, 45^{\circ}, 60^{\circ}$
(c) $\boldsymbol{\sim} 45^{\circ}, 60^{\circ}, 60^{\circ}$
(d) obtuse
11. Measure of angle $\boldsymbol{\theta}$ between two vectors is always.
(a) $0<\theta<\pi$
(b) $0 \leq \theta \leq \frac{\pi}{2}$
(c) $\boldsymbol{\nu} 0 \leq \theta \leq \pi$
(d) obtuse
12. If the dot product of two vectors is zero, then the vectors must be
(a) Parallel
(b) \boldsymbol{V} orthogonal
(c) reciprocal
(d) equal
13. If the cross product of two vectors is zero, then the vectors must be
(a) $\boldsymbol{\checkmark}$ Parallel
(b) orthogonal
(c) reciprocal
(d) Non coplanar
14. If $\boldsymbol{\theta}$ be the angle between two vectors \underline{a} and \underline{b}, then $\cos \boldsymbol{\theta}=$
(a) $\frac{\underline{a} \times \underline{b}}{|\underline{a}||\underline{b}|}$
(b) $\boldsymbol{\checkmark} \frac{a \cdot \underline{b}}{|\underline{a}||\underline{b}|}$
(c) $\frac{a \cdot b}{|\underline{b}|}$
(d) $\stackrel{a \cdot \underline{b}}{|\underline{b}|}$
15. If $\boldsymbol{\theta}$ be the angle between two vectors \underline{a} and \underline{b}, then projection of \underline{b} along \underline{a} is
(a) $\frac{\underline{a} \times \underline{b}}{|\underline{a}||\underline{b}|}$
(b) $\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$
(c) $\boldsymbol{\sim} \frac{a \cdot b}{|\underline{b}|}$
(d) $\stackrel{a \cdot \underline{b}}{|\underline{b}|}$
16. If $\boldsymbol{\theta}$ be the angle between two vectors \underline{a} and \underline{b}, then projection of \underline{a} along \underline{b} is
(a) $\frac{\underline{a} \times \underline{b}}{|\underline{a}||\underline{b}|}$
(b) $\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$
(c) $\frac{a \cdot \underline{b}}{|\underline{b}|}$
(d)
17. Let $\underline{u}=\boldsymbol{a} \underline{i}+\boldsymbol{b} \underline{j}+\boldsymbol{c} \underline{\boldsymbol{k}}$ then projection of $\underline{\boldsymbol{u}}$ along \underline{i} is
(a) $\sqrt{ } a$
(b) b
(c) C
$\square(d) u$
18. In any $\triangle A B C$, the law of cosineis
(a) $\nu a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A$ in $a=b c \operatorname{os} C$
$c c o s$
$k+a . b=0$
(d) $a-b=0$
19. In an $\mathcal{A} A B C$, the law of preje cion i.
(a) $a^{2}=b^{2}+c^{2}-2 \operatorname{LcCO} O S$
(k) $\checkmark c=b \operatorname{Cos} C+c \operatorname{Cos} B$
(c) $a . b=0$
(d) $a-b=0$
20. \quad ff \underline{u} is a vecol such tonat $\underline{\boldsymbol{u}} \underline{i}=0, \underline{u} . \underline{j}=0, \underline{u} \cdot \underline{k}=0$ then \underline{u} is called
(a) whit entor
(b) \boldsymbol{V} null vector
(c) $[\underline{i}, \underline{j}, \underline{k}]$
(d) none of these
21. Cross product or vector product is defined
(a) In plane only
(b) $\boldsymbol{\checkmark}$ in space only
(c) everywhere
(d) in vector field
22. If $\underline{\boldsymbol{u}}$ and \underline{v} are two vectors , then $\underline{\boldsymbol{u}} \times \underline{v}$ is a vector
(a) Parallel to \underline{u} and \underline{v}
(b) parallel to \underline{u}
(c) \boldsymbol{V} perpendicular to \underline{u} and \underline{v}
(d) orthogonal to \underline{u}
23. If \underline{u} and \underline{v} be any two vectors, along the adjacent sides of ||gram then the area of ||gram is
(a) $\underline{u} \times \underline{v}$
(b) $\boldsymbol{V}|\underline{u} \times \underline{v}|$
(c) $\frac{1}{2}(\underline{u} \times \underline{v})$
(d) $\frac{1}{2}|\underline{u} \times \underline{v}|$
24. If \underline{u} and \underline{v} be any two vectors, along the adjacent sides of triangle then the area of triangle is
(a) $\underline{u} \times \underline{v}$
(b) $|\underline{u} \times \underline{v}|$
(c) $\frac{1}{2}(\underline{u} \times \underline{v})$
(d) $\boldsymbol{\sim} \frac{1}{2}|\underline{u} \times \underline{v}|$
25. The scalar triple product of $\underline{\boldsymbol{a}}, \underline{\boldsymbol{b}}$ and $\underline{\boldsymbol{c}}$ is denoted by
(a) $\underline{a} . \underline{b} . \underline{c}$
(b) $\boldsymbol{V} \underline{a} . \underline{b} \times \underline{c}$
(c) $\underline{a} \times \underline{b} \times \underline{c}$
(d) $(\underline{a}+\underline{b}) \times \underline{c}$
26. Cross product or vector product is defined
(b) In plane only
(b)
in space onlv
(c) every hihere
(a) in vect or field
27. If \underline{u} and \underline{v} are two vectors,, hen $\underline{u}, \underline{\sim}$ is a vect p.
(b) Parallel to \underline{u} and \underline{v}
(b) parallel to $u /$
perker dicular io u ancu \underline{v}
(d) orthogonal to \underline{u}
28. If \underline{u} and \underline{v} be
(b) $\underline{u} \times \underline{v}$
(i) $\bullet|\underline{u} \times \underline{v}|$
(c) $\frac{1}{2}(\underline{u} \times \underline{v})$
(d) $\frac{1}{2}|\underline{u} \times \underline{v}|$
29. $\quad I^{f} \underline{u}$ anc \underline{v} be an ${ }^{2}$ wo vectors, along the adjacent sides of triangle then the area of triangle is
(ip) x^{2} 水
(b) $|\underline{u} \times \underline{v}|$
(c) $\frac{1}{2}(\underline{u} \times \underline{v})$
(d) $\boldsymbol{\checkmark} \frac{1}{2}|\underline{u} \times \underline{v}|$

2\%1. Two non zero vectors are perpendicular iff
(a) $\underline{u} \cdot \underline{v}=1$
(b) $\underline{u} \cdot \underline{v} \neq 1$
(c) $\underline{u} \cdot \underline{v} \neq 0$
(d) $\boldsymbol{\sim} \underline{u} \cdot \underline{v}=0$
222. The scalar triple product of $\underline{a}, \underline{b}$ and $\underline{\boldsymbol{c}}$ is denoted by
(b) $\underline{a} \cdot \underline{b} \cdot \underline{c}$
(b) $\boldsymbol{V} \underline{a} \cdot \underline{b} \times \underline{c}$
(c) $\underline{a} \times \underline{b} \times \underline{c}$
(d) $(\underline{a}+\underline{b}) \times \underline{c}$
223. The vector triple product of $\underline{a}, \underline{b}$ and $\underline{\boldsymbol{c}}$ is denoted by
(a) $\underline{a} \cdot \underline{b} \cdot \underline{c}$
(b) $\underline{a} \cdot \underline{b} \times \underline{c}$
(c) $\boldsymbol{V} \underline{a} \times \underline{b} \times \underline{c}$
(d) $(\underline{a}+\underline{b}) \times \underline{c}$
224. \quad Notation for scalar triple product of $\underline{a}, \underline{b}$ and \underline{c} is
(a) $\underline{a} \cdot \underline{b} \times \underline{c}$
(b) $\underline{a} \times \underline{b} . \underline{c}$
(c) $[\underline{a} . \underline{b} . \underline{c}]$
(d) \boldsymbol{V} all of these
225. If the scalar product of three vectors is zero, then vectors are
(a) Collinear
(b)
coplanar
(c) non coplanar
(d) non-collinear
226. If any two vectors of scalar triple product are equal, then its value is equal to
(a) 1
(b) $\boldsymbol{\checkmark}$
(c) -1
(d) 2
227. Moment of a force $\underline{\boldsymbol{F}}$ about a point is given by:
(a) Dot product
(b) $\boldsymbol{\checkmark}$ cross product
(c) both (a) and (b)
(d) None of these

Q.NO. 2

1. $x=a t^{2}, y=2 a t$ represent the equation of parabola $y^{2}=4 a x$
2. Express the perimeter P of square as a function of its area A.
3. Show that $x=a \cos \theta, y=b \sin \theta$ represent the equation of ellipse
4. \quad Show that: $\sinh 2 x=2 \sinh x \cosh x$

Express the volume V of a cube as a function of the area for its wase.
5. Find $\frac{f(a+h)-f(a)}{h}$ and simplify $f(x)=c v_{0}$
6. $\quad f(x)=\frac{1}{\sqrt{6-1}} x \neq 1 ; a(x)-\left(x^{2}-1\right)^{2}$
7. (a) $f^{-1}\left(x\right.$, b) $f^{-1}\left(-1\right.$ and verify $\left.f(-1(x))=f^{-1} f(x)\right)=x f(x)=\frac{2 x+1}{x-1}, x>1$
8. Show tiat llmax o $\frac{a}{-}-\log _{e} a$
$\sqrt[9]{ } \sqrt{\text { Evaluale } \lim _{x \rightarrow 0} \frac{\sin 7 x}{x}}$
10. Evaluate $\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{\frac{n}{2}}$
11. $\operatorname{Lim}_{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$
12. $\operatorname{Lim}_{x \rightarrow 0}\left(1+2 x^{2}\right)^{\frac{1}{x^{2}}}$
13. Evaluate $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}$
14. Evaluate $\lim _{x \rightarrow 0} \frac{x^{n}-a^{n}}{x^{m}-a^{m}}$

