(a) $\underline{u} \times \underline{v}$
(b) $|\underline{u} \times \underline{v}|$
(c) $\frac{1}{2}(\underline{u} \times \underline{v})$
(d) $\boldsymbol{\sim} \frac{1}{2}|\underline{u} \times \underline{v}|$
216. The scalar triple product of $\underline{\boldsymbol{a}}, \underline{\boldsymbol{b}}$ and $\underline{\boldsymbol{c}}$ is denoted by
(a) $\underline{a} . \underline{b} . \underline{c}$
(b) $\boldsymbol{V} \underline{a} . \underline{b} \times \underline{c}$
(c) $\underline{a} \times \underline{b} \times \underline{c}$
(d) $(\underline{a}+\underline{b}) \times \underline{c}$
217. Cross product or vector product is defined
(b) In plane only
(b)
in space onlv
(c) every hihere
(a) in vect or field
218. If \underline{u} and \underline{v} are two vectors,, hen $\underline{u}, \underline{\sim}$ is a vect p.
(b) Parallel to \underline{u} and \underline{v}
(b) parallel to $u /$
perker dicular io u ancu \underline{v}
(d) orthogonal to \underline{u}
219. If \underline{u} and \underline{v} be
(b) $\underline{u} \times \underline{v}$
(i) $\bullet|\underline{u} \times \underline{v}|$
(c) $\frac{1}{2}(\underline{u} \times \underline{v})$
(d) $\frac{1}{2}|\underline{u} \times \underline{v}|$
220. $\quad I^{f} \underline{u}$ anc \underline{v} be an ${ }^{2}$ wo vectors, along the adjacent sides of triangle then the area of triangle is
(ip) x^{2} 水
(b) $|\underline{u} \times \underline{v}|$
(c) $\frac{1}{2}(\underline{u} \times \underline{v})$
(d) $\boldsymbol{\checkmark} \frac{1}{2}|\underline{u} \times \underline{v}|$

2\%1. Two non zero vectors are perpendicular iff
(a) $\underline{u} \cdot \underline{v}=1$
(b) $\underline{u} \cdot \underline{v} \neq 1$
(c) $\underline{u} \cdot \underline{v} \neq 0$
(d) $\boldsymbol{\sim} \underline{u} \cdot \underline{v}=0$
222. The scalar triple product of $\underline{a}, \underline{b}$ and $\underline{\boldsymbol{c}}$ is denoted by
(b) $\underline{a} \cdot \underline{b} \cdot \underline{c}$
(b) $\boldsymbol{V} \underline{a} \cdot \underline{b} \times \underline{c}$
(c) $\underline{a} \times \underline{b} \times \underline{c}$
(d) $(\underline{a}+\underline{b}) \times \underline{c}$
223. The vector triple product of $\underline{a}, \underline{b}$ and $\underline{\boldsymbol{c}}$ is denoted by
(a) $\underline{a} \cdot \underline{b} \cdot \underline{c}$
(b) $\underline{a} \cdot \underline{b} \times \underline{c}$
(c) $\boldsymbol{V} \underline{a} \times \underline{b} \times \underline{c}$
(d) $(\underline{a}+\underline{b}) \times \underline{c}$
224. \quad Notation for scalar triple product of $\underline{a}, \underline{b}$ and \underline{c} is
(a) $\underline{a} \cdot \underline{b} \times \underline{c}$
(b) $\underline{a} \times \underline{b} . \underline{c}$
(c) $[\underline{a} . \underline{b} . \underline{c}]$
(d) \boldsymbol{V} all of these
225. If the scalar product of three vectors is zero, then vectors are
(a) Collinear
(b)
coplanar
(c) non coplanar
(d) non-collinear
226. If any two vectors of scalar triple product are equal, then its value is equal to
(a) 1
(b) $\boldsymbol{\checkmark}$
(c) -1
(d) 2
227. Moment of a force $\underline{\boldsymbol{F}}$ about a point is given by:
(a) Dot product
(b) $\boldsymbol{\checkmark}$ cross product
(c) both (a) and (b)
(d) None of these

Q.NO. 2

1. $x=a t^{2}, y=2 a t$ represent the equation of parabola $y^{2}=4 a x$
2. Express the perimeter P of square as a function of its area A.
3. Show that $x=a \cos \theta, y=b \sin \theta$ represent the equation of ellipse
4. \quad Show that: $\sinh 2 x=2 \sinh x \cosh x$

Express the volume V of a cube as a function of the area for its wase.
5. Find $\frac{f(a+h)-f(a)}{h}$ and simplify $f(x)=c v_{0}$
6. $\quad f(x)=\frac{1}{\sqrt{6-1}} x \neq 1 ; a(x)-\left(x^{2}-1\right)^{2}$
7. (a) $f^{-1}\left(x\right.$, b) $f^{-1}\left(-1\right.$ and verify $\left.f(-1(x))=f^{-1} f(x)\right)=x f(x)=\frac{2 x+1}{x-1}, x>1$
8. Show tiat llmax o $\frac{a}{-}-\log _{e} a$
$\sqrt[9]{ } \sqrt{\text { Evaluale } \lim _{x \rightarrow 0} \frac{\sin 7 x}{x}}$
10. Evaluate $\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{\frac{n}{2}}$
11. $\operatorname{Lim}_{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$
12. $\operatorname{Lim}_{x \rightarrow 0}\left(1+2 x^{2}\right)^{\frac{1}{x^{2}}}$
13. Evaluate $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}$
14. Evaluate $\lim _{x \rightarrow 0} \frac{x^{n}-a^{n}}{x^{m}-a^{m}}$
15. $\quad \operatorname{Lim}_{x \rightarrow 0} \frac{e^{1 / x}-1}{e^{1 / x}+1}, x>0$
16.
(i) $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x^{0}}{x}$ (ii) $\operatorname{Lim}_{\theta \rightarrow 0} \frac{1-\cos \theta}{\sin \theta} \quad$ (iii) $\operatorname{Lim}_{x \rightarrow 0} \frac{\operatorname{sinax}}{\sin b x}$
17. Discuss the continuity of the function at $x=3 \quad g(x)=\frac{x^{2}-9}{x-3}$ if $x \neq 3$
18. \quad Discuss the continuity of $f(x)$ at $x=c \int(x)=\left\{\begin{array}{ll}2 x+5 \\ 4 x+1 & f,\end{array}\right)=2$

20. Find the donivativ of the givel urction hy der.nition $f(x)=x^{2}$
21. Find the derive tive of tr e given function by definition $f(x)=\frac{1}{\sqrt{x}}$

22 Fincthe de ivative or $y=(2 \sqrt{x}+2)(x-\sqrt{x})$ w.r. $t^{\prime} x^{\prime}$
2.2. Differentiate $\frac{2 x^{3}-3 x^{2}+5}{x^{2}+1}$ w.r. $t^{\prime} x^{\prime}$
24. If $x^{4}+2 x^{2}+2$, Prove that $\frac{d y}{d x}=4 x \sqrt{y-1}$
25. Differentiate $\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}$ w.r. $t^{\prime} x^{\prime}$.
26. Differentiate $(x-5)(3-x)$
27. Find $\frac{d y}{d x}$ if $x=\theta+\frac{1}{\theta}, y=\theta+1$
28. Find $\frac{d y}{d x}$ by making some suitable substitution if $y=\sqrt{x+\sqrt{x}}$
29. Differentiate $x^{2}+\frac{1}{x^{2}}$ w.r.t $x-\frac{1}{x}$
30. Find $\frac{d y}{d x}$ if $y^{2}-x y-x^{2}+4=0$
31. Find $\frac{d y}{d x}$ if $x^{2}+y^{2}=4$
32. Find $\frac{d y}{d x}$ if $y=x^{n}$ where $n=\frac{p}{q}, q \neq 0$
33. If $y=(a x+b)^{n}$ where n is negative integer, find $\frac{d y}{d x}$ using quotient theorem.
34. Find $\frac{d y}{d x}$ if $x y+y^{2}=2$
35. Differentiate $\left(1+x^{2}\right)$ w.r.t x^{2}
36. Find $\frac{d y}{d x}$ if $3 x+4 y+7=0$
37. Find $\frac{d y}{d x}$ if $y=x \cos y$
38. Differentiate $\sin ^{2} x$ w.r. $\cos ^{2} x$
39. Find $f^{\prime}(x)$ if $f(x)=\ln \left(e^{x}+e^{-x}\right)$
40. Find $f^{\prime}(x)$ if $f(x)=e^{x}(1+\ln x)$
41. Differentiate $(\ln x)^{x}$ w.r. $t^{\prime} x^{\prime}$
42. Find $\frac{d y}{d x}$ if $y=a^{\sqrt{x}}$
43. Find $\frac{d y}{d x}$ if $y=5 e^{3 x-4}$
44. Find $\frac{d y}{d x}$ if $y=(x+1)^{2}$
45. Find $\frac{d y}{d x}$ if $\sqrt{y}=$ re ${ }^{i t} 2 x$
46.

Find $\frac{d y}{x}$ if $y=(n \operatorname{len} x)$
12.

Find $\frac{d y}{d x}$ if $y=\sinh ^{-1}\left(\frac{x}{2}\right)$
48. Find $\frac{d y}{d x}$ if $y=\tanh ^{-1}(\sin x) \quad,-\frac{\pi}{2}<x<\frac{\pi}{2}$
49. If $y=\operatorname{Sin}^{-1} \frac{x}{a}$, then show that $y_{2}=x\left(a^{2}-x^{2}\right)^{-\frac{3}{2}}$
50. Find y_{2} if $y=x^{2} . e^{-x}$
51. Find y_{2} if $x=a \cos \theta, y=\sin \theta$
52. Find y_{2} if $x^{3}-y^{3}=a^{3}$
53. Find the first four derivatives of $\cos (a x+b)$
54. Apply Maclaurin's Series expansion to prove that $e^{2 x}=1+2 x+\frac{4 x^{2}}{2!}+\frac{8 x^{3}}{3!}+\cdots$
55. Apply Maclaurin's Series expansion to prove that $e^{x}=1+x+\frac{x^{2}}{2!}+\cdots$
56. State Taylor's series expansion.
57. Expand $\cos \boldsymbol{x}$ by Maclaurin's series expansion.
58. Define Increasing and decreasing functions.
59. Determine the interval in which $f(x)=n^{2}+3 \approx+2 \cdot x \in[-41$
60. Determine theinterval in wici $f(x)=\cos x ; x \in\left(-\frac{\pi}{2} \frac{\pi}{2}\right)$
61. Find the exteme values of the tin tion $f(x)=3 x^{2}-4 x+5$
62. Find the e, trerne value oi the friction $f(x)=1+x^{3}$
63. Fin αy and a_{y} if $y=x^{2}+2 x$ when x changes from 2 to 1.8

U'se dif eientials find $\frac{d y}{d x}$ and $\frac{d x}{d y}$ in the following equations.
6.. $\quad x y+x=4$
(b) $x y-\ln x=c$
66. Find the approximate increase in the volume of a cube if the length of its each edge changes from 5 to 5.02
67. Find the approximate increase in the area of a circular disc if its diameter is increased form 44 cm to 44.4 cm .

Q.NO. 3

1. \quad Find dy in $y=x^{2}+2 x$ when x changes from 2 to 1.8 .
2. If $\mathrm{x} y+\mathrm{x}=4$, find $\frac{d x}{d y}$ by using differentials.
3. Using differentials find $\frac{d x}{d y} \mathbf{x y}-\ln \mathrm{x}=\mathrm{c}$.
4. Use differential to approximate the value of $\cos 29^{\circ}$
5. Evaluate $\tan ^{2} \int x d x$.
6. Find $\int a^{x^{2}} x d x$
7. Evaluate $\int \cos 3 x \sin 2 x d x$.
8. Evaluate $\int \frac{a x+b}{a x^{2}+2 b x+c} d x$
9. Evaluate $\int \sqrt{1-\cos 2 x} d x,(1-\cos 2 x)>0$.
10. Evaluate $\int \frac{\sec ^{2} x}{\sqrt{\tan x}} d x$
11. Evaluate $\int \frac{e^{2 x}+e^{x}}{e^{x}} d x$
12. Integrate by substitution $\int \frac{-2 x}{\sqrt{4-x^{2}}} d x$.
13. Find the integral $\int \frac{\cos x}{\sin x \ln (\sin x)} d x$
14. Evaluate $\int-\frac{1}{x}$ d.
15. Evaluate $J=\frac{2 x}{1-\sin x} d x$

16 Capate $\int \frac{\left.\frac{e^{x}(1-x)}{2}+x\right)^{2}}{2} d x$
12. Evauate $\int x \ln x d x$
18. Evaluate $\int \frac{3-x}{1-x+6 x^{2}} d x$
19. Evaluate $\int_{-1}^{3}\left(x^{3}+3 x^{2}\right) d x$.
20. $\int_{0}^{\frac{\pi}{6}} x \cos x d x$
21. Solve the differential equations $\frac{d y}{d x}=\frac{y^{2}+1}{e^{-x}}$.
22. Write two properties of definite integral.
23. Find the area between the x-axis and curve $y=4 x-x^{2}$
24. Solve the differential equation $\frac{x^{2}+1}{y+1}=\frac{x}{y} \frac{d y}{d x}$
25. Evaluate $\int \frac{1}{\sqrt{x+1}-\sqrt{x}} d x$
26. Evaluate $\int \frac{d x}{x(\ln 2 x)^{3}} x>0$
27. Evaluate $\int x^{5} \ln x d x$
28. Evaluate $\int \frac{2 a}{a^{2}-x^{2}} d x, x<a$
29. Evaluate $\int_{-1}^{2}|x+|x|] d x$
30. Evaluate $\frac{-3}{0} \frac{d x}{2}+9$
31. Evaluate $\int \tan ^{-1} \boldsymbol{x} d x$

3. Evaluate $\int \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x$
34. Evaluate $\int x^{2} \ln x d x$
35. Evaluate integral $\int \boldsymbol{x} \cdot \sin \boldsymbol{x} d \boldsymbol{x}$
36. Find indefinite integral $\int e^{a x}\left[a \sec ^{-1} x+\frac{1}{x \sqrt{x^{2}-1}}\right] d x$
37. Evaluate $\int \frac{5 x+8}{(x+3)(2 x-1)} d x$ by using partial fraction
38. Solve $x^{2}(2 y+1) \frac{d y}{d x}-1=0$.
39. Show that $y=\tan \left(e^{x}+c\right)$ is solution of $\frac{d y}{d x}=\frac{y^{2}+1}{e^{-x}}$
40. Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos t d t$.
41. What is differential coefficient?
42. Define Definite integral.
43. Define integral
44. Calculate the integral $\int_{0}^{\frac{\pi}{4}} \sec x(\sec x+\tan x) d x$.
45. If $\int_{-2}^{1} f(x) d x=5, \int_{-2}^{1} g(x) d x=4$ then Evaluate $\int_{-2}^{1}[3 f(x)-2 g(x)] d x$
46. Show that the points $A(3,1), B(-2,-3)$ and $C(2,2)$ are vertices of an isosceles triangle.
47. Find the mid-point of the line segment joining the vertices $A(-8,3), B(2,-1)$.
48. Show that the vertices $(-1,2), B(7,5), C(2,-6)$ are vertices of a right triangle.
49. Find the points trisecting the join of $A(-1,-4)$ and $B(6,2)$.
50. Find h such that $(-1, h), B(3,2)$, and $C(7,3)$ are collinear.
51. Describe the location in the plane of point $P(x, y)$ for whcih $x=y$.
52. The point $C(-5,3)$ is the centre of a circle and $P(7,-2)$ lies antine fircle. Whazi is the radisooftine circle?
53. Find the point three-fifth of the ivay alow the line egneint irom $A(-5,8)$ o $B(5,3)$.
54. The two pointe P and O^{\prime} are gi er in $x y$-wordii ate system find the X^{v}-coordinates of P referred to the transatel axes $0 x$ and C^{\prime} it $P\left(-2,6\right.$ and $n^{\prime}(-3,2)$.
55. The $\boldsymbol{x} y$-crordinet? a res are trar slated through point \boldsymbol{O}^{\prime} whose coordinates are given in $x y$-csodi a e sys er. The coordinates of P are given in the $X Y$-coodinate system. Find the Coordrate: 0 il $12 x y$-coordiante system if $(-5,-3), O^{\prime}(-2,3)$.
56. N Mitare cranslated axes.
5.

Show that the points $A(-3,6), B(3,2)$ and $C(6,0)$ are collinear.
58. Find an equation of the straight line if its slope is $\mathbf{2}$ and y-axis is 5 .
59. Find the slope and inclination of the line joining the points $(-2,4) ;(5,11)$
60. Find k so that the line joining $A(7,3) ; B(k,-6)$ and the line joining $C(-4,5) ; D(-6,4)$ are perpendicular.
61. Find an equation of the line bisecting the I and III quadrants.
62. Find an equation of the line for x - intercept: -3 and y-intercept: 4
63. Find the distance from the point $P(6,-1)$ to the line $6 x-4 y+9=0$
64. Find whether the given point $(5,8)$ lies above or below the line $2 x-3 y+6=0$
65. Check whether the lines are concurrent or not.

$$
3 x-4 y-3=0 ; 5 x+12 y+1=0 ; 32 x+4 y-17=0
$$

66. Transform the eqution $5 x-12 y+39=0$ to "Two-intercept form".
67. Find the point of intersection of the lines $x-2 y+1=0$ and $2 x-y+$
68. Find an equation of the line through the point $(2,-9)$ and the intensctin of the lines $2 x+3 ; 8=$ 0 and $3 x-4 y-6=0$.
69. Determine the value of p suct that the :2 $2 x-3 y-1=0,3 x-y-5=0$ and $3 x+p y+8=0$ meet at a point,
70. Find the angle neasned from the tine l_{1} to the ine i_{2} where l_{1} : Joining $(2,7)$ and $(7,10)$ l_{2} : Joining (1,1) and $(-5,5)$
71. Expresc the g ven s ster cf equations in matrix form $\quad 2 x+3 y+4=0 ; x-2 y-3=0 ; 3 x+$ $7-a=0$
Find the angle from the line with slope $-\frac{7}{3}$ to the line with slope $\frac{5}{2}$.
7\%.
Find an equation of each of the lines represented by $20 x^{2}+17 x y-24 y^{2}=0$
72. Define Homogenous equation.
73. Write down the joint equation.

Q.NO. 4

1. Find a joint equation of the straight lines through the origin perpendicular to the lines represented by $x^{2}+x y-6 y^{2}=0$.
2. Find measure of angle between the lines represented by $x^{2}-x y-6 y^{2}=0$.
3. Define "Corner Point" or "Vertex".
4. Graph the solution set of linear inequality $3 x+7 y \geq 21$.
5. Indicate the solution set of $3 x+7 y \geq 21 ; x-y \leq 2$
6. What is "Corresponding equation".
7. \quad Graph the inequality $x+2 y<6$.
8. Graph the feasible region of $x+y \leq 5 ;-2 x+y \leq 0 \quad x \geq 0 ; y \geq 0$
9. Graph the feasible region of $5 x+7 y \leq 35 ; x-2 y \leq 4 \quad x \geq 0 ; y \geq 0$
10. Define "Feasible region".
11. Graph the feasible region of $2 x-3 y \leq 6 ; 2 x+y \geq 2 \quad x \geq 0 ; y \geq 0$
12. $\underline{a}=3 \underline{i}-2 \underline{j}+\underline{k}, \underline{b}=\underline{i}+j$, find $b \times a$
13. A force $\underline{F}=7 \underline{i}+4 \underline{j}-3 \underline{k}$ is applied at $P(1,-2,3)$. Find its moment about the point $Q(2,1,1)$.
14. By means of slope, show the points lie on the same line $A(-1,-3), B(1,5),(2,9)$
15. Calculate the projection of \underline{a} along \underline{b} when $\underline{a}=\underline{\boldsymbol{t}} \boldsymbol{k}, \underline{b}=;$
16. Check the position of the point $(5,6)$ vith respect otl eircle $2 x^{2}+2 y^{2}+12 x-8 y+1=0$.
17. Check whether $(-2,4)$ lies above obov $+x+5 y-2,0 \square$
18. Check whether he point -24) ies above or beiou theine $4 x+5 y-3=0$.
19. Check whather tha point $(-4,7)$ is above beiow of the line $6 x-7 y+70=0$.
20. Convert $2-4 y+11=0$ int -1 ope intercept form.
21. Comer the ervaticn $x+7 y-2=0$ into two intercept form.

Conver: The equation into two intercept form $4 x+7 y-2=0$.
Deine direction angles and direction cosines of a vector
Define focal chord of parabola.
25. Define parabola.
26. Define trapezium.
27. Define unit vector.
28. \quad Find a scalar " α " so that the vectors $2 \underline{i}+\alpha \underline{j}+5 \underline{k}$ and $3 \underline{i}+\underline{j}+\alpha \underline{k}$ are perpendicular.
29. Find a vector of length 5 , in the direction of opposite that of $\underline{v}=\underline{i}-2 \underline{j}+3 \underline{k}$.
30. Find a vector perpendicular to each of the vector $\underline{a}=2 \underline{i}-\underline{j}-\underline{k}$ and $\underline{b}=4 \underline{i}+2 \underline{j}-\underline{k}$.
31. Find a vector perpendicular to each of the vectors $=2 \hat{\boldsymbol{l}}+\hat{\boldsymbol{\jmath}}+\hat{\boldsymbol{k}}$ and $=4 \hat{\boldsymbol{l}}+2 \hat{\boldsymbol{\jmath}}-\mathbf{k}$.
32. Find a vector whose magnitude is ' 4 ' and is parallel to $2 \underline{i}-3 \underline{j}+6 \boldsymbol{k}$.
33. Find an equation of a line bisecting $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants.
34. Find an equation of a line through the points $(-2,1)$ and $(6,-4)$.
35. Find an equation of a line with x-intercept: -9 a d slope:
36. Find an equation of hyperbola if its foc ($(1), \pm 0)$, and direc rices $y= \pm 4$.
37. Find an equation of the line th ough (7,-7, and k erpardicular to the 1 ne having slope $\frac{-3}{2}$
38. Find the angle frome ir.e w ith slope $\frac{-7}{3}$ th the line with slope $\frac{5}{2}$
39. Find an equatipn of the lire hroug ($5,-8$) and perpendicular to the join of $A(-15,-8), B(10,-7)$
40. Find an equatic n, 1 the line with x-intercept: -3 and y-intercept: 4

41 Finc an eguatisn of the perpendicular bisector of the segment joining the points $A(3,5)$ and $B(9,8)$.
42. Find an equation of the vertical line through ($-5,3$).
43. Find an unit vector in the direction of the vector $v=\frac{1}{2} \frac{i}{2}+\frac{\sqrt{3}}{2} \boldsymbol{j}$.
44. Find centre and radius of circle $5 x^{2}+5 y^{2}+14 x+12 y-10=0$.
45. Find centre and vertices of ellipse $\frac{(x-1)^{2}}{4}+\frac{(y-1)^{2}}{9}=1$.
46. Find condition that the lines $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}, y=m_{3} x+c_{3}$ are concurrent.
47. Find direction cosine of $\underline{v}=3 \underline{i}-\underline{j}+2 \underline{k}$.
48. Find eccentricity of the ellipse $x^{2}+4 y^{2}=16$.
49. Find equation of hyperbola with foci $(\pm 5,0)$ and vertex of $(3,0)$.
50. Find equation of latux rectum of parabola $y^{2}=-8(x-3)$
51. Find focus and vertex of the parabola $y=6 x^{2}-1$
52. Find h such that $A(-1, h), B(3,2)$ and $C(7,3)$ are collinear.
53. Find length of tangent segment from $(-5,4)$ to $5 x^{2}+5 y^{2}-10 x+15 y-131=0$
54. Find measure of the angle between the lines represented by $x^{2}-x y-6 y^{2}=0$
55. Find point which divide $A(-6,3)$ ad $B[(5,-2)$ internally in $2: 3$
56. Find position vector of a point which divide the join of E with position vector $5 i$ and F with position vector $4 \underline{i}+\underline{j}$ in ratio 2 : 5.
57. Find slope and inclination of the line joining points $(4,6),(4,8)$
58. Find the angle between the vectors $\underline{u}=2 \underline{i}-\underline{j}+\underline{k}$ and $\underline{v}=-\underline{i}+\underline{j}$.
59. Find the area of the triangle with vertices $A(1,-1,1), B(2,1,-1)$ and $C(-1,1,2)$
60. Find the centre and radius of the circle $x^{2}+y^{2}+12 x-10 y=0$
61. Find the coordinate of the points of the points of intersection of the line $x+2 y=6$ with the circle $x^{2}+y^{2}-2 x-2 y-39=0$.
62. Find the coordinates of the points of intersection of the line $2 x+y=5$ a $1 \mathrm{~d} x^{2}+y^{2}+2,-2=0$.
63. Find the direction cosines for $\overrightarrow{P Q}$, where $P(2,1,5, \cap(1,3,1)$
64. Find the direction cosines of t vector $6-2 j+\underline{k}$.
65. Find the distance from the noint $P(6,-1): 0$ the lire $6 x-1 y+9=0$. 10
66. Find the aq. ation eflipse win foci $\pm 3,0$ and minor axis of length 10
67. Find the equation of he line through $\left.\frac{1}{-}-0,5\right)$ having slope 7.
68. Find tro? fo u and dir c riv oi the parabola $y=6 x^{2}-1$.

69 Finc the focusani vertex of parabola $(x-1)^{2}=8(y+2)$.
Fine the lines represented by $20 x^{2}+17 x y-24 y^{2}=0$.
Find the lines represented by $x^{2}-x y-6 y^{2}=0$, also find the angle between them.
72. Find the measure of angle between the lines represented by $x^{2}-x y-6 y^{2}=0$.
73. Find the mid-point of the line joining the two points $A(-8,3), B[2,1)$.
74. Find the point three-fifth of the way along line segment from $A(-5,8)$ to $B(5,3)$ -
75. Find the projection of vector \underline{a} along vector \underline{b} and projection of vector \underline{b} along when $\underline{a}=\hat{\boldsymbol{i}}-\hat{\hat{k}}, \underline{b}=$ $\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$
76. Find the value of $3 \boldsymbol{j}$. $\underline{k} \times \underline{a}$.
77. Find the value of $2 \underline{i} \times 2 \underline{j}-\underline{k}$.
78. Find unit vector perpendicular to the plane of \underline{a} and \underline{b} if $\underline{a}=-i-j-\underline{k}, \underline{b}=2 \underline{i}-3 \underline{j}+4 \underline{k}$.
79. Find vertices and equation of directrices of hyperbola $x^{2}-y^{2}=9.17 \mathrm{Grp11}$,
80. Find α so that $\underline{u}=\alpha \underline{i}+2 a \underline{j}-\underline{k}$ and $\underline{v}=\underline{i}+\alpha \underline{j}+3 \underline{k}$ are perpendicular.
81. Find a, so that $|a \underline{i}+(a+1) j+2 \underline{k}|=3$.
82. Fine the value $3 \underline{j} \cdot \underline{k} \times \underline{i}$.
83. If $\overrightarrow{A B}=\overline{C D}$, find coordinates Γ points . If $\bar{b}, \vec{C} D$ are $1,2,(-2,5),(4,1 \%)$
84. If $\underline{a}=2 \underline{i}+\dot{j}-\underline{k}$ and $\underline{b}=i-j+k$ ficc the cross pioduct $\underline{a} \times \underline{b}$
85. If $\underline{u}=3 \underline{i}+j-\underline{i} \operatorname{mav} \underline{v}=\boldsymbol{i}-\boldsymbol{k}$, fir.d the costries of the angle θ between \underline{u} and \underline{v}
86. If O is the prigin and $\bar{\sigma} \vec{P}=A \vec{B}$ find the point P when A and B are $(-3,7)$ and $(1,0)$ respectivel
87. Prove t lat $\mathrm{f} \underline{\hat{c}}+\underline{b}+\underline{\underline{b}}=\mathbf{0}$ then $\underline{a} \times \underline{b}=\underline{b} \times \underline{c}=\underline{c} \times \underline{a}$

Prond $\underline{d} \times(\underline{b}+\underline{c})+\underline{b} \times(\underline{c}+\underline{a})+c \times(\underline{a}+\underline{b})=0$.
Prove that if the lines are perpendicular, then product of their slopes $=-1$
Show that the points $A(3,1), B(-2,-3)$ and $C(2,2)$ are vertices of an isosceles triangle.
91. Show that the points $A(-1,2), B(7,5)$ and $C(2,-6)$ are vertices of a right triangle.
92. Show that the triangle with vertices $A(1,1), B(4,5)$ and $C(12,-5)$ is right triangle.
93. Show that vectors $3 \underline{i}-2 \underline{j}+\underline{k}, \underline{i}-3 \underline{j}+5 \underline{k}$ and $2 \underline{i}+\underline{j}-4 \underline{k}$ from a right triangle.
94. Transform $5 x-12 y+39=0$ into two intercept form. 15 Grp II,
95. Two lines \boldsymbol{l}_{1} and \boldsymbol{l}_{2} with respective slopes \boldsymbol{m}_{1} and \boldsymbol{m}_{2} are parallel if $\boldsymbol{m}_{1}=\boldsymbol{m}_{2}$.
96. Write and equation of parabola with focus $(-1,0)$, vertex $(-1,2)$.
97. Write direction cosine of $\overrightarrow{P Q}$, if $P(2,1,5), Q(1,3,1)$.
98. Write down the equation of straight line with x-intercept $(2,0)$ and y-intercept $(0,-4)$
99. Find the mid-point of line segment joining the points $A\left(-\sqrt{5},-\frac{1}{3}\right)$ and $(-3 \sqrt{5}, 5)$.
100. Find the slope and inclination of the line joining the points $(-2,4)$ and $(5,11)$.
101. Find equation of tangent to the circle $x^{2}+y^{2}=25$ at $(4,3)$.
102. Find the vertex and directrix of parabola $x^{2}=4(y-1)$.
103. Find the centre and vertices of the ellipse $9 x^{2}+y^{3}=18$.
104. Find the sum of vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$, given the four points $A(1,-1), B(2,0), C(-1,3)$ and $D(-2,2)$.
105. Find a vector perpendicular to each of the vectors $\underline{a}=2 \underline{i}+\underline{j}+\underline{k}$ and $\underline{b}=4 \underline{i}+2 \underline{j}-\underline{k}$.
106. Prove that the vectors $\underline{i}-2 \underline{j}+3 \underline{k}-2 \underline{i}+3 \underline{j}-4 \underline{k}$ and $\underline{i}-3 \underline{j}+5 \underline{k}$ are co-planar.
107. Find equation of a line through $(-4,7)$ and parallel to the line $2 x-7 y+4=0$.
108. Find equation of a line through $(-6,5)$ having slope $=7$
109. Find distance from the point $P(6,-1)$ to the line $6 x-14 y+9=0$
110. Find area of triangular region whose vertices are $A(5,3), B(-2,2), C(4,2)$.
111. Find the equation of tangent to the circle $x 2+y 3=25$ at $(4,3)$. 14 Grp 1,
112. Find the equation of parabola whose focus is (2,5) and direcrix is $y=1$
113. Find foci and eccentricity of ellinse
114. Find vector from A to origin $w \cdot e, 1 D: 4-2$ and $E(-? .5)$.
115. Find a vectorwhose magnitude is 2 a sid rale to $i * i * k$.
116. Find α sothat the vectors $2+x_{j}^{j+\beta k}$ and $3 ;+\alpha k$ are perpendicular.

Long Questions

1. Chapter No. 1 (Functions and Limits)

1. Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} x} 17$ GrpI,
2. Evaluate $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
