PHYSICS $12{ }^{\text {th }}$

1. If the mediun between the charges is not fiee space then electrostatic force will be:
(a) Incre se
lDerease
(c) Remain same (d)
None of these
2. Thenum er of elentens in one coulomb charge is equal to:
(a) $1,6 \times 19-19$
(b)
6.25×10^{-19}
(c)
6.25×10^{18}
(d) 6.25×10^{19}

Relative permittivity ($\epsilon \mathrm{r}$) for air is:
(a)
1.06
(b) 1.006
(c) 1.0006
(d)
1.6
4. Numerical value of permittivity of free space is:
(a) $9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
(b) $8.85 \times 10^{-12} \mathbf{N m}^{2} \mathrm{C}^{-2}$
(c) $8.85 \times 10^{-12} \mathbf{N}^{-1} \mathbf{m}^{-2} \mathbf{C}^{2}$
(d) $9 \times 10^{9} \mathbf{N}^{-1} \mathbf{m}^{-2} \mathbf{C}^{2}$
5. The electrostatic force between two charges is 42 N . If we place a dielectric of $\mathrm{Er}=2.1$ between the charges then the force become equal to:
(a) 42 N
(b) $\quad 88.2 \mathrm{~N}$ (c) $\quad 20 \mathrm{~N}$
(d) 2 N
6. The force between two similar unit charges placed one meter apart in air is:
(a) Zero
(b)
one N
(c) $9 \times 10^{9} \mathrm{~N}$
(d) $9 \times 10^{-9} \mathrm{~N}$
7. If the distance between the two charged bodies is halved, the force between them becomes:
(a) Double
(b) Half
(c) four times
(d) one fourth
8. The force between two charges is 28 N . If paraffin wax of relative permittivity 2.8 is introduced between the charges as medium, then the force reduces to:
(a) 25 N
(b) 20 N
(c) 15 N
(d) 10 N
9. Two oppositely charged balls A and B attract the third ball C, when place near them turn by turn.
(a) Positively charged
(b) Negatively charged
Electrically neutral
(d) Positively and negatively charged
10. The study of electric charges at rest under the action of electric forces is $\underline{\underline{1}}$ nown as
(a) Electromagnetism
(b) Electrostatics
(c) Magnetic Induction
(d) Electric field
11. The unit of electric intensity - her than NC-1 is:
(a) VA^{-1}
(b)
c)
(a) LNC
12. If the distance betweenwo pints charges is balved, the electric intensity becomes.
(a) Half
(b)
(c)
double
(d) 4 time
13. S.I unit of strength of elective freld is:
(a)
(b)
C/V
(c) N / C
(d) J / N

Tha is the force on a proton placed between two parallel plates containing equal positive charges?
(a)
Zero
(b)
$2.6 \times 10^{-19} \mathrm{~N}$
(c) $9 \times 10^{-19} \mathrm{~N}$
(d) $5 \times 10^{-19} \mathrm{~N}$
15. Concept of an electric field lines is introduced by:
(a) Coulomb
(b) Faraday
(c) Einstein
(d) Joseph Henry
16. The electric fields created by positive charge is:
(a) Radically inward
(b)
Zero
(c) Circular
(d) Radically outward
17. The direction of fields lines around an isolated negative charge ' $-q$ ' is:
(a) Radically inward
(b) Radically out ward
(c)
Elliptical
(d) circular
18. A charge on 4 coulomb is in the field of intensity $4 N / C$. The force on the charge is:

Guess Paper Annual 2024

PHYSICS 12

(a) 8 N
(b) 16 N
(c) 4 N
(d) 1 N
19. The force on an electron in a field of $\mathbf{1} \times 108 \mathrm{NC}-1$ will be:
(a)
$1.6 \times 10^{-8} \mathrm{~N}$
(b) $1.6 \times 10^{-11} \mathrm{~N}$
(c) $1.6 \times 10^{-19} \mathrm{~N}$
(d) $1.6 \times 10^{-27} \mathrm{~N} 3$
20. Photo copier and inkjet printer are the application of:
(a) Magnetism
(b) Electricity
(c) Electro-magnetism

(d)
 Electrostatics

21. Identity the practical application of piecrosiatios ore:
(a) Inkjet p it ter
(b)
(c) laser
(d) Z.C generator
22. The heart of a photo copy racine is a drum which is made of:
(a) Copper
(a)]
(c)
Nickel (d)
Cobalt

2 The drum photo copier is coated with layer of:
(a) Aluminium (b) Copper
(c) Selenium
(d) Silver
24. Which one is photo conductor?
(a) Copper
(b) Selenium
(c) Mercury
(d) Aluminium
25. SI unit of electric flux is:
(a) $\quad \mathrm{NmC}^{-1}$
${ }^{-1}$ (b) $\quad \mathrm{Nm}_{-1} \mathrm{C}_{-1}$
(c) $\mathrm{Nm}_{2} \mathrm{C}_{-1}$
(d) $\mathrm{Nm}_{3} \mathrm{C}_{-2}$
26. A changing electric flux creates:
(a) Electric fields
(b) Gravitational
(c) Magnetic field
(d) Electric charge
27. Which one of the following can be taken as measure of electric field intensity?
(a) $\frac{F}{A}$
(b) $\frac{\phi_{c}}{A}$
(c) $\frac{\phi}{A}$
(d) $\frac{\phi \varepsilon_{o}}{A}$
28. Equation $\phi=\overline{\boldsymbol{E}} \cdot \overline{\boldsymbol{A}}$ is applicable to surface.
(a) Spherical
(b)
(c)
(d) Flat
29. For computation of electric flux, the surface area should be:
(a) Parallel
(b) Flat
(c) Curved
(d) Spherical
30. The electric flux through closed surface depends upon:
(a) Charge
(b) Medium
(c) Geometry
(d) Charge and Medium
31. Total flux through a closed surface depends on:
(a) Shape of surface
(b) Charge enclosed only
(c) Medium only
(d) Charge and Medium
32. Gauss's Law can only be applied to:
(a) A curved surface
(b) A flat surface
(c) A surface of any shape
(d) A closed surface
33. The statement $\Phi_{\mathrm{e}}=\frac{1}{\varepsilon_{o}} Q$ was $\boldsymbol{\sigma}$ given Vv.
(a) Faraday
(b)

34. The electrifeld intensity die t an int indite sheet of charge:
(a)
$\bar{E} \cdot \frac{\sigma}{\partial \varepsilon_{0}} \hat{p}(p)$
$\bar{E}-\frac{\square}{2}=\frac{0}{0}=$
(c) $\int_{\bar{E}} \cdot \frac{1}{2_{\varepsilon_{0}}} \hat{r}$
(d) $\bar{E} \cdot \frac{\sigma}{\varepsilon_{o}} \hat{r}$
35. AT EGG records the \qquad between points on human skin generated by electric process in the heart:
(a)
Heart beat
(b) pulse rate
(c) pressure (d) voltage
36. Special organ called ampullae of lorenzini that are very sensitive to electric field are found in:
(a) Bats
(b) Cats
(c) Dogs
(d) Sharks
37. If charged body is moved against the electric field, it will gain: (2 Time)
(a) Elastic Potential Energy
(b) Kinetic Energy
(c) Gravitational Energy
(d) Electrical Potential Energy
38. The absolute electric potential at a point distant 20 cm from a charge of 2 uC is:
(a) $9 \times 10^{2} V$
(b)
$9 \times 10^{3} \mathrm{~V}$
(c) $9 \times 10^{4} \mathrm{~V}$
(d) $9 \times 10^{5} \mathrm{~V}$

Guess Paper Annual 2024

PHYSICS 12

39. A charge of 10-10C between two parallel plates 1 can apart experience a force of 10-5 N :
(a) 10 V
(b) $10^{2} \mathrm{~V}$
(c) $10^{3} \mathrm{~V}$
(d) $\quad 10^{4} \mathrm{~V}$
40. Electron volt is the unit of:
(a) Potential
(b) Potential difference
(c) Electric current
(d) Electric entry

41. One electron volt is equal to:
(\%)

(a) 1.6×10^{-19} joule
(c) $1.6 \times 10^{12} \mathrm{~N}$
(d)
42. Charge on alectrontis.
(a) 1.6×10
(b) $1.6 \times 10^{19} \mathrm{C}$
(c) $\quad .6 \times=0^{-7}$ (c)
(d) $1.6 \times 10^{17} \mathrm{C}$
<compat>ᄀ<compat>ํ<compat>. If electric Dat magnetic forces on an electron balance each other, the electric intensity will be:
(a)
$E=\frac{m g}{q}$
(b) $E=\frac{q}{m g}$
(c) $E=\frac{F_{c}}{q}$
(d) $E=\frac{1}{4 \pi \varepsilon_{o}} \frac{q}{r^{2}}$
43. The charge on the oil droplet in Millikan's oil drop experiment calculated by using formula.
(a) $\quad q=\frac{m g}{d}$
(b) $\quad q=\frac{V}{m g d}$
(c) $q=\frac{m g d}{V}$
(d) $\quad q=\frac{V}{m g V}$
44. A capacitor is perfect insulator for:
(a) Alternating current
(b)
Sparking current
(c) Eddy current
(d)
Direct current
45. Coulomb/ volt is called:
(a) Farad
(b) Ampere
(c) Joule
(d) Henry
46. The net charge on a capacitor (each plate having magnitude of charge of charge q) is:
(a) Infinity
(b) $2 q$
(c) $\quad \mathrm{q} / 2$
(d) Zero
47. The capacitance of a parallel plate capacitor in vacuum is: (1 Time)
(a) $\frac{\varepsilon_{0} d}{A}$
(b) $\frac{\varepsilon_{o} A}{d}$
(c) $\frac{A}{\varepsilon_{0} d}$
(d) $\frac{d}{\varepsilon_{o} A}$
48. Presence of dielectric between the plates of a capacitor is doubled then its capacitance become:
(a) Reduces the electric force
(b) Enhances electric force
(c) Does not affect electric force
(d) Double electric force
49. A parallel plate capacitor with oil between the plate $\left(\varepsilon_{f}=2\right)$ has a capacitance C. If the 1 oil is removed then capacitance of capacitor becomes:
(a) C
(b) $\frac{C}{2}$
(c) $\frac{C}{\sqrt{2}}$

Energy stored in the capacitor with the del eciricis.

(. lime
(d Time)

Guess Paper Annual 2024

PHYSICS 12

58. The SI unit of temperature coefficient of resistivity is:
(a) $o h m-m$
(b) k^{-1}
(c) K
(d) ohm
59. Good conductors have conductivities of the order of:
(a) $10^{-7}(\Omega m)^{-1}$
(b) $10^{7}(\Omega m)^{-1}$
(c) $\quad 10^{2}(\Omega m)^{-1}(d)$
) 0^{-7}
60. Which one has negative temperature co-efficjent of resistamre?
(a) Carbon
(b) $\operatorname{Irc\pi }$
(c) Timgsten
(a) Gold
61. The resistance of a conductor if lenfir sooss sccional area ' A ' and resistivity is given
by:
(a)
$R=\frac{\rho}{\boxed{L}}$
(b) $\quad R=2 A L$
$R=\rho \frac{L}{A}$
(d) $\quad R=\rho \frac{A}{L}$
62. On increasing the lengh h rivie specific resistance of the wire:
(a) harcreanes
(b) Decreases
(c) Renains unchanged
(d) First increase then decreases
63. It rourth band is missing on resistance, its tolerance is:
(a) $\pm 5 \%$
(b) $\pm 10 \%$
(c) $\pm 15 \%$
(d) $\pm 20 \%$
64. Resistance tolerance of silver band is:
(a) 10%
(b) 6%
(c) 7%
(d) 5%

Which one of the following bulbs has the least resistance?
(a) 100 W
(b) 200 W
(c) 500 W
(d) 1000 W
65. The maximum power (pout) is delivered to a load resistance R, when the internal resistance of the source is: (a) $\quad r=\infty$ (b) $r=R$ (c) $\quad \mathrm{r}=0 \quad$ (d) $\quad \mathrm{r}=\mathrm{R} / 4$
66. Kirchhoff's first rule is the manifestation of law of conservation of:
(a) Momentum
(b) Charge
(c) Energy
(d) Mass
67. Kirchhoff's voltage rule is a way of stating conservation of:
(a) Momentum
(b) Charge
(c) Energy
(d) Mass
68. A current flowing towards the reader is denoted by:
(a) Positive sign
(b) A bracket
(c) A dot
(d) Cross
69. The S.I. unit of \bar{E} is NC-1 and that of \bar{B} is NA-1 m-1 than the unit of E / B is:
(a) ms^{-2}
(b) ms
(c) ms^{-1}
(d) $\mathrm{m}^{-1} \mathrm{~s}^{-1}$
70. Write the S.I unit of magnetic flux:
(a) Tesla
(b) Weber
(c) Weber m^{-2}
(d) Tesla m^{-2}
71. Two parallel wires carrying currents in the opposite direction:
(a) Repel each other (b) Attract each other (c) Have no effect upon each other (d) They cancel out their individual magnetic field
72. The S.I unit of magnetic induction is:
(a) Weber
(b) Tesla
(T) Cass.
(d) O ivewton
73. A 5 m wire carrying current 2 A at rigit argle to n form magnetic field of 0.5 T . the force on the wire is:
(c) 2.5 N (Time)
(a) 1.5 Nj
(b) 5 N
(c) $\quad 2.5 \mathrm{~N}$
(d) 4 N
74. The SI unit ol nagntic induction "E" Iesla is equal to:
(7 Time) (a) $N A^{-1} \mathrm{r} \mathrm{I}^{-1}$ (b) Nam^{-1}
(c) $\mathrm{NA}^{-1} \mathrm{~m}$
(d) $\quad \mathrm{NA}^{2} \mathrm{~m}^{-1}$
75. Tap I irlitof nagnetic permeability is:
(c) WbmA^{-1}
(d) WbAm^{-1}
75. The value of permeability of free space in SI unit is:
(a) $4 \pi \times 10^{-9} \mathrm{WbA}^{-1} \mathrm{~m}^{-1}$
(b) $4 \pi \times 10^{-7} W b A^{-1} \mathrm{~m}^{-1}$
(c) $4 \pi \times 10^{-10} \mathrm{WbA}^{-1} \mathrm{~m}^{-1}$
(d) $4 \pi \times 10^{7} \mathrm{WbA}^{-1} \mathrm{~m}^{-1}$
77. The SI unit of flux density is:
(2 Time)
(a) $\mathrm{NA}^{-1} \mathrm{~m}^{2}$
(b) $\quad \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
(c) Nm^{-1}
(d) $\quad \mathrm{NA}^{-1} \mathrm{~m}$
78. The SI unit of magnetic induction.
(a) Weber
(b) Gausses
(c) Tesla
(d) Nm
79. The field inside a solenoid is given by:
(1 Time)
(a) $\mu_{o} n l$
(b) $\mu_{o} n^{2} l$
(c) $\mu_{o} n l^{2}$
(d) $\mu_{o} N l$

Guess Paper Annual 2024

PHYSICS 12
80. If the number of turns become double but length remain same, then magnetic field in the solenoid become:
(1 Time)
(a) Half
(b) Double
(c) Remain same(d)
Zero
81. Magnetic flux density at a point due to current carrying coil is detorned by

(a) Ampere's Law
(b) Gauss's Lalw
(c) Faraday's Law
(d)
Istas tan
82. The relatio $5=\frac{\mu_{0} l}{2 \pi}$ is called:
(a) Amperels 1.0 w
(c) Leaz ${ }^{\prime}$, Law
(b) Faratiay's Law
(c) Le:z: Law (i) Gauss's Law
83. Forema chargeu particle is zero when projected at angle with magnetic field.
(b)
(c) 180°
(d) 270°
84. The magnetic force on an electron travelling with $108 \mathrm{~ms}-1$ parallel to a field strength 1 Webm-2 is:
(a) $\quad 10^{5} \mathrm{~N}$
(b) $10^{-10} \mathrm{~N}$
(c) $1.6 \times 10^{-11} N(\mathrm{~d})$ Zero
85. If a charge is at rest in a magnetic field then force on charge is: (1 Time)
(a) Zero
(b) $q(\bar{v} \times \bar{B})$
(c) $q v B \sin \theta$
(d) $q v B \cos \theta$
86. The magnetic force on an electron travelling with $106 \mathrm{~ms}-1$ parallel to a field strength 1 Webm-2 is:
(a) $10^{-12} \mathrm{~N}$
(b) Zero
(c) $1.6 \times 10^{-11} N(\mathrm{~d})$
$10^{3} \mathrm{~N}$
87. The Lorentz force on a charged particle moving in electric field E and magnetic field B is given by:
(1 Time)
(a)
$F=F_{E}+F_{B}$
(b) $\quad F=F_{E}-F_{B}$
(c) $\quad F=\frac{F_{B}}{F_{E}}$
(d) $F=F_{E} \times F_{B}$
88. Lorentz force is given by:
(a) $\quad q(\bar{E}-\bar{V} \times \bar{B})$
(b) $q(\bar{E}+\bar{V} \times \bar{B})$
(c) $q[\bar{E} \times(-\bar{V} \times \bar{B})]$
(d) $q(\bar{V}+\bar{E} \times \bar{B})$
89. The sum of electric and magnetic force is called:
(a) Maxwell force
(b) Lorentz force
(c) Newton's force
(d) Centripetal force
90. The value of e / m is smallest for:
(a) Proton
(b) Electron
(c) $\quad \beta$-particle
(d)
Positron
91. The unit of \bar{E} is NC-1 and that of \bar{B} NA- $1 \mathrm{~m}-1$ then the unit of $\frac{\bar{E}}{\bar{D}}$:
(a) ms^{-2}
(b) $\mathrm{m}^{-1} \mathrm{~s}^{-1}$
92. Work done on a charged particle mong in anilon ne ghe field: :
(a) Maximu
(6) Zero
(c)
Minimum
(d) Negative
93. Brightness catiod ascilloseopcis controlled by:
(a) Grid
(b) Filamert
(c) Anode(d) Cathode
94. Taebrif tness of the spot on CRO screen is controlled by:
(c) Deflecting plates
(b) Cathode
Grid
(d) Anode
95. Cathode ray oscilloscope works by deflecting a beam of:
(a) Neutrons
(b) Protons
Electrons
(d) Positron
96. Output wave form of sweep or time base generator is:
(a) Saw tooth wave
(b) Digital wave
(c) Sinusoidal wave
(d) Square wave
97. Output waveform of built in voltage of the CRO is:
(2 Time)
(a) Sinusoidal
(b) Saw tooth
(c) Rectangular(d)
Square
98. Sensitivity of a galvanometer can be increased by:
(a) Decreasing the value of tensional couple

Guess Paper Annual 2024

PHYSICS 12

(b) Decreasing number of turns
(c) Decreasing area of plane of coil
(d) Decreasing magnetic field
99. The sensitivity of galvanometer is given by:
(a) $\frac{C A N}{B}$
(b) $\frac{C}{B A N}$
100. In order to measure potentia difference yitn ter is alw y connecteá in:
(a) Series
(b) Paralie
(c) $\operatorname{Both}(A) A R$
(d) Neither in series nor in parallel
101. When ohm mer \&ive fill sale defection it indicates:
(1 Time)
(a) Zëo resistance
Pinall lesistance
(b) infinite resistance
(d) very high resistance
112. A 1 atery is used in:
(a) Ohmmeter
(b) Ammeter
(c) Galvanometer
(d) Voltmeter
103. To convert a galvanometer into a volt meter a high resistance is connected:
(a) in series
(b) in parallel
(c) in perpendicular
(d) Along tangent
104. Which one of the following resistance is used to convert a Galvanometer into an Ammeter?
(a) High resistance
(b) Low resistance in series with galvanometer
(c) Shunt
(d) High resistance series with galvanometer
105. Shunt resistance is:
(1 Time)
(a) Low resistance
(b) High resistance
(c) Zero resistance
(d) Impedance
106. Which one has the least resistance:
(a) Galvanometer
(b) Ammeter
(c) Voltmeter
(d)Ohm meter
107. Useful device to measure resistance, current and voltage is an electronic instrument called:
(a) Voltmeter
(b) Ammeter
(c) Ohmmeter
(d) Digital Multi meter

(1 Time)

108. A 20.0 cm wire charging a current of 10.0 A is placed in a uniform magnetic field 0 f 030 a If the wire makes Electromagnetic induction obeys law of conser at on ot
(a) Charge
(b) Energy
(ci) Momen r (1) d)
109. When a conductor move across a mighetictielo, n erif is set up is carled:
(a) Variable
(b) Constant em
(c) Badie cm
(d) Induced emf
110. The relationof enfs on wo dllo $\frac{E_{2}}{z_{2}}$ is
(a) $\frac{I_{2}}{I_{1}}$
(b) $\frac{I_{1}}{I_{2}}$
(c) $\frac{1}{I_{1} I_{2}}$
(d) $\frac{1}{I_{2}}$
111. A metal od of 12 is moving at a speed of $1 \mathrm{~ms}-1$ in a direction making an angle 300 mith 057 magnetic field. The emf produced is:
(a)
0.25 N
(b) $\quad 2.5 \mathrm{~N}$
(c) 0.25 V
(d) 2.5 V
112. The motional emf depends upon the:
(a) Length of conductor
(b) Speed of conductor
(c) Strength of magnetic
(d) All of these
113. Emf is induced due to change in:
(a) Charge
(b) Current
(c) Magnetic flux
(d)

Electric field
114. Len's Law is in accordance with the law of conservation of:
(8 Time)
(a) Momentum
(b)
Angular momentum(c)
Energy
(d) Charge
115. Lenz's law deal with:
(2 Time)
(a) Magnitude of emf
(b) Direction emf
(c) Direction of induced current
(d) Resistance
116. Lenz's law deals with:
(a) Direction of emf
(c) Direction of induced of current
(b) invgrifude of er of
(d)
Resistance (6 Time)
117. Mutual induction play role in:
(a) Generator
(c) Galvaromer

(10)
(d)
D. motor

Transformer
118. The mutual inductance of the coils depend upon:
(1 Time)
(a) Stiil fness of the woins
(b) Density of coils
(-5) Mlateriai or coils
(d) Geometry of the coils
19. 19. unit of Henry which is:
$\begin{array}{ll}\text { (a) } \mathrm{VsA}^{-1} & \text { (b) } \mathrm{Vs}^{-1} \mathrm{~A}\end{array}$
(c) $\quad \mathrm{Vs}^{-1} \mathrm{~A}^{-1}$
(d) VsA
19. 19. unit of Henry which is:
$\begin{array}{ll}\text { (a) } \mathrm{VsA}^{-1} & \text { (b) } \mathrm{Vs}^{-1} \mathrm{~A}\end{array}$
19. 19. unit of Henry which is:
$\begin{array}{ll}\text { (a) } \mathrm{VsA}^{-1} & \text { (b) } \mathrm{Vs}^{-1} \mathrm{~A}\end{array}$ (8 Time)
120. The self induction emf is sometimes called:
(4 Time)
(a) Motional emf
(b) Constant emf
(c) Back emf
(d)Variable emf
121. Unit of self induction is: (1 Time)
(a) Weber
(b) Tesla
(c) Henry
(d) Farad
122. Henry is SI unit of:
(b) Resistant
(a) Current
(d) Self induction
(c) Flux
(2 Time)
(d) Sel
(1 Time)
123. Self induction does not depend on
(a) Number of turns of the coil
(b) Area of cross-section of the core
(c) Nature of material of the core (d) Current through inductor
124. The energy stored in the inductor per unit volume is:
(a) $\frac{1}{2} \frac{B^{2}}{\mu_{o}}$
(b) $\frac{1}{2} \frac{B}{\mu}$
(c) $\frac{1 B}{2 u_{o}^{2}}$
(d) $\frac{1 B}{2 u_{o}}$
125. The energy stored in inductor is:
(4 Time)
(a) $\frac{1}{2} L I$
(b) $\frac{1}{2} L I$
(c) $\frac{1}{2} L^{2} I$
(d) $\frac{1}{2} L^{2} I^{2}$
126. The self inductance of solenoid is:
(2 Time)
(a) $L=\mu_{o} n a L$
(b) $L=\mu_{0} N^{2} A I$
(c) $L=\mu_{0} n^{2} A L$
(d) $L=\mu_{0} N A L$
127. If 10 A current passes through 100 mH inductor, then energy stored is: (1 Time)
(a) 100 J
(b) 5 J
(c) 20 J
(d)
128. When current flowing through an inductor is doubled, then energy stoved in it beondes:
(a) Half
(b) Four) timed
129. Energy stored per unit volume in margi:fie
(a) Energy density
(b) Electrif flux,
iscalld
One for th
(d) Double
A.C generatom ba. d aponthe.
(a) Lenz': Law
(gi) Faradays surs of electromagnet induction
(d) Vintual induction
131. Which one is not present in A.C generator?
(5 Time)
(a) Armature
(b) Magnet
(c) Slip rings
(d) Commutator
132. The emf produced by an alternating current generate is:
(2 Time)
(a) $\mathrm{N} \omega \mathrm{AB} \sin \theta$
(b) $\mathrm{N} \omega A B \cos \theta$
(c) $\mathrm{N} \omega A B \sin 2 \theta$
(d) $\mathrm{N} \omega \mathrm{AB} \cos 2 \theta$
133. In A.C generator, when plane of coil is perpendicular to magnetic field, then output of generator is:
(a) $N \omega A B \sin \theta$
(b) $N \omega A B \cos \theta$
(c) Maximum
(d)
Zero
134. Commentator was invented by:
(a) Henry
(b) Ousted
Maxwell
(d) William sturgeon
(Time)

1. Tine
(c)
2. The only difference between the construction of D.C and A.C is:
(a) Carbon burshes
(b) Coil
(d) Magnetic field.
3. The devices in the circuit the tonsyme electical nerg are kionf as:
(a) Dissinaters
(b) Generato
load
(d) Motor
4. A device which convert Tectrcaleneg into mechanical energy is called:
(a) Transfo.iner
(b) A.C generator
(d) D.C generator
(2 Time)

(a) Increases
(b) Decreases

Remain constant
(d) Zero
139. When the back emf is zero, its draw:
(1 Time)
(a) Zero current
(c) Maximum current
(d)
(b) Minimum current

Steady current
140. With the speed of motor, magnitude of back emf:
(a) remain same
(b) Increases
(c) decreases
(d) First increases then decreases
141. When motor is just started, back emf is almost:
(a) Maximum
(b) Zero
(c) Minimum
(d) Infinite
i. The working principle of transformer is:
(1 Time)
(a) Self induction
(d)
(b) Electromagnetic induction
(c) Mutual induction
Faraday's Law
(1 Time)
142. The core of transformer' is laminated so reduce:
(a) Magnetic loss
(c) Eddy current loss
(d)
143. Transformer is used to change:
(b) Hysteresis loss
Electric loss
(a) Electric power
(b) Magnetic field
(c) Alternating voltage
(d) Phase of A.C
(1 Time)
144. A real transformer does not change:
(1 Time)
(a) Voltage level
(c) Frequency level
(d)
(b) Current leys!
145. Efficiency of transformer does not effected by:
(a) Input voltage
(c) Insulation between shee
146. If a step-urty norne were 100% efficient the primary and secondary winging would have the sarat:
(a)
Current
(c) Noitage
(b) power
(d) Direction of winding

14:7. My mos each cycle A.C voltage reaches a peak value:
(a) Once
(b) Thrice (c)
Twice (d)
Four time
148. The frequency of A.C sources used in Pakistan is:
(a) 50 Hz
(b)
60 Hz (c)
45 Hz
(d) 70 Hz
(1 Time)
149. The most common source of an A.C voltage over a complete cycle is:
(a) Positive
(b) Negative
Zero
(d) Infinite
150. The most common source of an A.C voltage is:
(1 Time)
(a) Motor (b)
Cell
(c) Generator
(d) Thermocouple
151. The sum of positive and negative peak value is called:
(2 Time)
(a) RMS value
(b) P-P value
(c) Peak value
(d)
Average value
152. Root mean square value of voltage is given by:
(a) $V_{r m s}=2 V_{o}$
(b) $\quad V_{r m s}=\sqrt{2} V_{o}$ (c)
$V_{r m s}=\frac{V_{o}}{\sqrt{2}}$
(d) $\quad V_{r m s}=\frac{V_{o}}{2}$
153. The phase of A.C at positive peak from origin is:
(a) $\frac{3 \pi}{2}$
(b) $\frac{\pi}{2}$
(c)
$\frac{\pi}{4}$
154. The basic circuit element in A.C circuit who cl coat obs currier t
(a) Resistor only
(c) Inductor only
(o) capacitor only
(d) Nilor these
155. Direct current cancotion though. \qquad
(3 Time)
(a) Inductor
(b) Resistor
(c) Transistor
156. In case of caparito the unit of reactance is:
(2 Time)
(d) Capacitor
(2 Time)
(b) Mho
(c) Farad
(d) Henry
1.5% At high frequency the value of reactance of capacitor in A.C circuit will be:
(a) Small
(b) Zero
(c) Large
(d) Infinite
158. The device which allows the only continuous flow of A.C through it is:
(a) Capacitor
(b) Inductor
(c) Battery
(d) Thermistor
159. In a pure inductive A.C circuit the current:
(a) Lags behind voltage by 90° (b)
Leads the voltage by 90°
(c) In phase with voltage
(d) Leads the voltage by 270°
160. An inductor of 1 Henry inductance has a reactance 500 ohms , then the frequency required is approximately:
(a) 50 Hz
(b) 100 Hz
(c) 80 Hz
(d)
120 Hz
161. The device which allows only the flow of D.C is:
(a) Capacitors
(b) Transformer (c)
Inductor
(d) Generator
162. The combined effect of resistance and reactance is knows as:
(a) Inductance
(b) Conductance (c)
Resistance
(d) Impedance
163. When 10 V are applied to an A.C circuit, the current flowing in it is 100 mA . It impedance is:
(a) 100Ω
(b) 10Ω
(c) $1000 \Omega(\mathrm{~d})$
1Ω
164. The phase angle of a series RLC circuit at resonant frequency is:
(a) $\frac{\pi}{2}$
(b) zero
(c) $\frac{\pi}{4}$
(d) π
165. Power dissipated in a pure inductor is:
(a) Large
(b) Small
(c) Infinite
(d) Zero
166. The power factor in A.C circuit is:
(a) $\sin \theta$
(b) $\cos \theta$
(c)

(c)
cor θ
167. At resonance frequency, the inpedanee of $k L$ ce rips circuit is:
(a) Maximum
(b) Minipuyn
(c) Zero
(d) Infinite
168. Inductive reactance of an ind ctr is:
(a) $\left.X_{L}=\tau\right) L$
(i)
$<_{L}=4 \pi \sigma_{L}$
(c) $\quad X_{L}=2 \pi f L$
(d) $X_{L}=2 \pi L$
169. In RLE $\sqrt{6}$ fries dicyit, he current at resonance frequency is: (b) Maximum (c) Zero
parallel circuit the resonance frequency is:
(d) Infinite

11 O IORLC parallel circuit the resonance frequency is:
(a) $2 \pi \sqrt{L C}$
(b) $\frac{2 \pi}{\sqrt{L C}}$
(c) $\frac{\pi}{\sqrt{L C}}$
(d)
$\frac{1}{2 \pi \sqrt{L C}}$
171. The SI unit of $\sqrt{L C}$ is:
(a) Second
(b) Ampere
(c) Hertz
(d) Farad
172. In three phase A.C generator the phase difference between each pair of coil is:
(a) 45°
(b) 60°
(c) 90°
173. In three phase voltage across any two lines is about:
(a) 220 V
(b) 230 V
(c) $\quad 400 \mathrm{~V}$
(1 Time)
174. Metal detectors consists of:

L-C circuit (b)
b) R-L circuit
(c) R-C circuit
(d) RLC series circuit
175. Choke consumes extremely small.
(a) Current
(b) Charge
(c) Power (d)
Potential
176. Resistance of Choke is:
(a) Zero
(b) Large
(c) Very Small in) L1finte
177. The A.M transmission frequency range from:
(a) 540 kHz to 1000 kHz
(c) 520 kHzton 1600 kHz
(rb)
540 kHz to $600 \mathrm{kF} / \mathrm{zz}$
178. High frequency radio wo De is called as:
(a) Fluctia ire
(c) Matte wed oe
(d) Mechanical wave

179 The arndivae modulated transmission waves have:
(a) 540 kHz to 1600 kHz 88 MHz to 108 mHz
(d) 540 MHz to 1600 MHz
180. Which one is not a crystalline solid?
(a) Zinc
(b) Copper
(c) Nylon (d) Zirconia
181. In glass, molecules are irregularly arranged so it is known as:
(a) Solid
(b) Liquid (c)
Solid liquid(d)
Gas
182. The SI unit of stress is same as that of:
(a) Pressure
(b) Force
(c) Momentum (d)
Work
183. The young's modulus of steel is:
(a) Zero
(b) 1
(c) 2
(d) 3
184. Glass and high carbon steel are the example of:
(a) Ductile substance
(b)
Brittle substance
(c) Soft substance
(d) Magnetic substance
185. If stress is increased beyond the elastic limit of material, it becomes permanently changed, this behavior of material is called:
(2 Time)
(a) Strain
(b) Stress
(c) Elasticity
(d) Plasticity
186. Substance which break just after the elastic limit is reached are called as:
(a) Brittle substance
(b) Ductile substance
(c) Non magnetic substance (d) Magnetic substance
187. Conductors have conductivities of the order of:
(a) $10^{3}(\Omega \mathrm{~m})^{-1}$
(b) $10^{7}(\Omega \mathrm{~m})^{-1}$
(c) $10^{5}(\Omega \mathrm{~m})^{-1}$
(d) $\quad 10^{9}\left(n_{m}\right)^{-1}$
188. The ratio of adding impurity in a semi conductor is:
(a) 1 to 10^{3}
(b) 1 to 10^{4}
(c) 1 to 105

189. In " N " type material, the minority chargecurr ers ate:
(a) Free electrons
(c) Protons
(b)
-jones
(d) Mesons
190. Which one vo nt valenti in purity
(a) Bran (b)
Gallium
(c) Antimony
(d) Indium
191. In ectype sulstinees, the minority carriers are:
(a) Electrons
(b) Protons
(c) Holes
(d) Neutrons
192. The critical temperature of Aluminum is:
(a) 3.72 K
(b) 1.18 K
(c) 7.2 K
(d) $\quad 8.2 \mathrm{~K}$
193. A single domain in ferromagnetic substance contains nearly:
(a) $10^{8} \rightarrow 10^{9}$
(b) $10^{12} \rightarrow 10^{16}$ (c)
$10^{15} \rightarrow 10^{20}(\mathrm{~d})$
$10^{12} \rightarrow 10^{20}$
194. Curie temperature for iron is:
(a) $710^{\circ} \mathrm{C}$
(b) $730^{\circ} \mathrm{C}$
$750^{\circ} \mathrm{C}$
(d) $780^{\circ} \mathrm{C}$
195. A device used to detect very weak magnetic field produced by brain is named as:
(a) MRI
(b) CAT scans
(c) Squid
(d) CRO
196. Potential difference across depletion region in case of silicon:
(a) 0.7 V
(b)
0.5 V
(c) 0.3 V
(d) 0.9 V
197. Reverse current through a semi conductor is due to:
(4 Time)
(a) Majority charge carries
(b) Minority charge carries
(c) Electrons
(d) Holes
198. Which factor does not affect the conductivity of Pn-iunction diode?
(a) Doping
(b) Temperatue(c)

Forage
199. A p-n-junction cannot be used as:
(a) Rectifier
(b)
$A n p$ iffier
(e) I) exactor
(') T
(d) I restive
LED
200. In full wave rectification nun br on dices required are equal to:
(a) 4
(l)
(c) 2
(d) 5
201. For rectificat on wo ese:
(a) Trisformer(b)
Diode (c)
Choke (d)
Generator
21)2. A device used for the conversion of A.C into D.C is called:
(a) An oscillator
(b)
Detector
(c) An amplifier

(d) Rectifier

203. A light emitting diode (LED) emits light only when:
(a) Reverse biased
(b) Forward biased
(c) Unbiased
(d) None of these
204. A photo diode can turn its current ON and $O F F$ in:
(a) Micro seconds
(b) Mega seconds
(c) Nano seconds
(d) Milli Seconds
205. The thickness of base in a transistor is of the order of:
(a) $10^{-9} \mathrm{~m}$
(b) $10^{-7} \mathrm{~m}$
(c) $10^{-8} \mathrm{~m}$
(d) $\quad 10^{-6} \mathrm{~m}$
206. The central region of a transistor is called:
(a) Base
(b) Emitter
(c) Collector
(d) Neutral
207. The SI unit of current gain is:
(a) Volt
(b) Ampere
(c) Coulomb
(d) No unit
208. A sensor of light is:
(a) Transistor
(b) LED
(c) Diode
(d)
Light dependent resistance
209. The gain of transistor amplifier depends upon:
(a) Resistance connected with collector
(b) Resistance connected with base voltage
(c) Input Voltage
(d)
210. Greater concentration of impurity is added in
(a) Base
(b) Einilter
(-) collector
(d) y ED
211. The open loop gain of the amplifier is oder of.
(a) 10^{6}
(6) 10^{5}
(c) 107
(d) 10^{3}
212. The input resist lance of an pp -a pinier is:
(a)
(b) Low
(d) Equal to output resistance
2.3. Find the gain of inverting amplifier of external resistance $R_{1}=10 \mathrm{k} \Omega$ and $R_{2}=100 \mathrm{k} \Omega$
(a) -5
(b) -10
(c) -1
(d) 50
213. The resistance between the inverting (-) and non-inverting inputs is called input resistance and is the order of:
(a) Ohms (b) Kilo ohms
(c) Thounds ohms(d)
Mega ohms
214. The gain of amplifier is given as:
(a)
$1+\frac{R_{2}}{R_{1}}$
(b) $1+\frac{R_{1}}{R_{2}}$
(c) $-\frac{R_{2}}{R_{1}}$
(d) $-\frac{R_{1}}{R_{2}}$
215. For non-inverting amplifier if $\boldsymbol{R}_{1}=\infty \mathrm{ohm}, \boldsymbol{R}_{2}=\mathbf{0} \mathrm{ohm}$ then gain of amplifier is:
(a) -1
(b) 0
(c) +1
(d) Infinite
216. Which is not a basic logic operation?
(a) NOT
(b) AND
(c) $\quad \mathrm{OR}$
(d) NAND
217. Output of exclusive Or gate is X.
(a) $\overline{A . B}$
(b) $\bar{A} . B+\overline{A \cdot \bar{B}}$
(c) $A \cdot \bar{B}+\bar{A} \cdot B$
(d) $\overline{A B-b A}$
218. The Boolean expression of Exclusive NOR fate is:
(a) $X=A B+B A$
(b)
(c) $\quad X=\overline{A \bar{B}+\bar{B} A}$

$X=A \bar{B}+\bar{B} A$
$X=\bar{A} \bar{A} \bar{B}$
219. A diode chän teristics carve is p tot between:
(a) Currest analine
(b) Voltage and time
(c) voltage and cuiren
(d) Current and time
220. Thergipur of lighi cnitted by a LED depends on:
(a) Itsfow ward biased
(b) Its reverse biased
(c) Amount of forward current
(d) The type of semi conductor material used
221. Automatic function of street lights can be done by the use of:
(a) Inductor
(b) Rectifier
(c) Comparator(d)
Emf
222. Using relativistic effects the location of an air craft after an hour fight can be predicated about:
(a) 20 m
(b) 50 m
(c) 760 m
(d) 780 m
223. The length of a rod will becomes half at the speed:
(a) $\frac{1}{2} c$
(b) $\frac{3}{2} c$
(c) $\frac{1}{\sqrt{2}} c$
(d) $\frac{\sqrt{3}}{2} c$
224. Earth orbital speed is:
(a) $10 \mathrm{~km} / \mathrm{s}$
(b) $20 \mathrm{~km} / \mathrm{s}$
(c) $30 \mathrm{~km} / \mathrm{s}$
(d) $40 \mathrm{~km} / \mathrm{s}$
225. The special theory of relativity based on:
(a) One postulate
(b)
(c) Three postulate
(d) Four postulate
226. 1 kg mass will be equivalent to energy:
(a) $9 \times 10^{8} \mathrm{~J}$
(b) $9 \times 10^{12} \mathrm{~J}$
(c) $9 \times 10^{16} \mathrm{~J}$
(d) $9 \times 10^{19} \mathrm{~J}$
227. By modern system of NAVSTAR, the speed anywhere on the earth can be determined to accuracy about:
(a) $20 \mathrm{~ms}^{-1}$
(b) $10 \mathrm{~ms}^{-1}$
(c) $2 \mathrm{cms}^{-1}$
(d) $2 \mathrm{~ms}^{-1}$
228. Platinum wire becomes yellow at a temperature of:
(a) $900^{\circ} \mathrm{C}$
(b) $1300^{\circ} \mathrm{C}$
(c) $1600^{\circ} \mathrm{C}$
229. When platinum is it becomes orange at:
(a) $500^{\circ} \mathrm{C}$
(b) $900^{\circ} \mathrm{C}$
(c) $100 \cdot \mathrm{C}$
230. A platinum wire becomes wive at temprathe of
(a) $1600^{\circ} \mathrm{C}$
(b) 130000
(c) 112000
(d) 50906
231. When plation wre is heated, i changis to cherry red at temperature:
(a) $500^{\circ} \mathrm{C}$
(b) 9000 (c)
$1100^{\circ} \mathrm{C}$
(d) $1300^{\circ} \mathrm{C}$
232. Mopenfi m phoug pnoton is give by:
(b) $\frac{h c}{\lambda}$
(c) $\quad h f$
(d) $\frac{n \lambda}{c}$
233. Stefen-Boltzmann law is given by:
(a) $E=h f$
(b) $E=m c^{2}$
(c) $E=\sigma T^{-1}$
(d) $\lambda \times T=$ constant
234. The value of Stefen's constant σ is given by:
(a) $6.67 \times 10^{-8} \mathrm{Wm}^{2} \mathrm{k}^{-4}$
(b) $6.67 \times 10^{8} \mathrm{Wm}^{-2} \mathrm{k}^{-4}$
(c) $6.67 \times 10^{-18} \mathrm{Wm}^{-2} \mathrm{k}^{-4}$
(d) $5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{k}^{-4}$
235. Joule-second is the unit of:
(a) Energy
(b) Wein's constant
(c) Planck's constant
(d) Boyle's law
236. The momentum of photon is given by the equation:

Guess Paper Annual 2024

PHYSICS 12

(a) $\quad p=m v$
$p=\frac{h}{\lambda}$
(c) $\quad p=\frac{\lambda}{h}$
(d) $p=h \lambda$
238. Who explained the photo electric effect?
(a) Max Planck (b)
Einstein
(c) Henry (d)
Rutherford
239. The energy of photon is given by:
(a) $\frac{m v^{2}}{2}$
(b)
hf
(c)
$\square \mathrm{v}$ 응

240. Albert Einstein was awarded Nobel mize in physics in.
(a) 1905
(b)
(c) $1=18$
(d) 1921
241. Amount of energyrepased d e to con m late conversion of $1 \mathbf{~ k g}$ mass into energy is:
(a) 9×10^{15},
(b) $9 \times 10^{3} \mathrm{~J}$
(c) $9 \times 10^{20} \mathrm{~J}$
(d) $9 \times 10^{8} \mathrm{~J}$
242. The quantity/fy tor $\frac{1}{m_{0}}$ c has the dimension of:
跑 Length
(b) Time
(c) Mass
(d) Energy
243. The Compton shift in wavelength will be maximum when angle of scattering is:
(a) 90°
(b) 45°
(c) 180°
(d) 30°
244. Energy each position is given by:
(a) 2 MeV
(b)
1.02 MeV
(c) 0.51 MeV
(d) 5 MeV
245. The minimum energy required to create pair production is:
(a) 0.51 MeV
(b) 1.02 MeV
(c) 931 MeV
(d) $\quad 2.10 \mathrm{MeV}$
246. The rest mass of photon is:
(a) Zero
(b) $1.67 \times 10^{-27} \mathrm{~kg}$
(c) $9.1 \times 10^{-31} \mathrm{~kg}$
(d) $1.67 \times 10^{-31} \mathrm{~kg}$
247. Wave nature of light appears in:
(a) Pair production
(b) Compton effect
(c) Photo electric
(d) Interference
248. If a particle of mass ' m ' is moving with speed ' v ' then de-Broglie wavelength λ associated with it will be:
(a) $\lambda=\frac{3 h}{m v}(b)$
$\lambda=\frac{2 h}{m v}(\mathbf{c})$
$\lambda=\frac{h}{m v}(\mathrm{~d})$
$\lambda=\frac{h}{2 m v}$
249. The life time of an electron in an excited state is about $10-8 \mathrm{~s}$. What is its uncertainty in energy during this time:
(a)
$6.63 \times 10^{-34} \mathrm{~J}$
(b) $\quad 9.1 \times 10^{-31} \mathrm{~J}$
(c) $1.05 \times 10^{-26} \mathrm{~J}$
(d) $7.2 \times 10^{-15} \mathrm{~J}$
250. Ballmer series lies in region of electromagnetic spectrum:
(a) Infrared
(b) Visible
(c) Ultraviolet
(d) Γ infrared
251. Ballmer series lies in:
(a) Visible green
(c) Ultraviolet region
252. Rydberg constant has value:

(a)
1.0974×10^{-1}
(b) $6.02 \times 10^{-34} \mathrm{~m}^{-1}$
(c) $3 \times 1 \sqrt{5}^{8} n^{-1}$
(d) $1.6 \times 10^{19} \mathrm{~m}^{-1}$
253. The shortest wa elect in Lyman series is equal to:
(ci) h
(b) $\frac{R_{H}}{2}$
(c) $\frac{1}{R_{H}}$
(d) $\frac{2}{3} R_{H}$
254. Which of the following series of hydrogen spectrum lies in ultra violet region?
(a) Lyman series
(b) Ballmer series
(c) Paschen series
(d) Bracket series
255. The longest wavelength of Paschen series is:
(a) 656 nm (b)
1875 nm
(c) 2000 nm
(d) 1094 nm
256. Earth orbital speed is:
(a) $10 \mathrm{~km} / \mathrm{s}$
(b) $20 \mathrm{~km} / \mathrm{s}$
(c) $30 \mathrm{~km} / \mathrm{s}$
(d) $40 \mathrm{~km} / \mathrm{s}$
257. The value of radius of 1st Bohr's orbit is:
(a) 0.53 nm
(b) 0.053 nm
(c) $\quad 0.0053 \mathrm{~nm}$
(d) 0.00053 nm
258. The energy of the 4th orbit in hydrogen atom is:
(a) -2.51 eV
(b) $\quad-3.50 \mathrm{eV}$
(c) -13.60 eV
(d) $\quad-0.85 \mathrm{eV}$
259. In an electronic transition atom cannot emit:
(a) Infrared radiations
(b) Visible radiations
(c) Ultraviolet radiations
(d) Gama radiatiorss

260. Production of X-rays is reverse process of:
(a) Photo-electric effect
(c) Annihilation
(h)
Rompton iffiect
(d) Parpreduction
261. In metal stabies stite alectron stays for:
(a) $10^{-3} \mathrm{~s}$ or ore
(b)
(c) aforsorione
(d) 10^{-8} or less
$2 ; 2 \sqrt{\text { fu }}$ Heliun Neun laser, discharge tube is filled with Neon gas:
(a) 10%
(b) 15%
(c) 85%
(d) 90%
263. The radius of 10th orbit in hydrogen atom is:
(a) 0.053 nm
(b) 0.53 nm
$5.3 \mathrm{~nm}(\mathrm{~d})$
53 nm
264. The number of Neutron in ${ }_{92}^{238} U$ is:
(a) 92
(b) 238
(c) 146
(d) 330
265. The number of neutrons ${ }_{3}^{7} L$ in are:
(a) 3
(b) 7
(c) 4
(d) 2
266. The number of isotopes of cesium are:
(a) 4
(b) 32
(c) 22
(d) 36
267. What is different in isotopes?
(a) Number of protons
(b) Number neutrons
(c) Number of electrons
(d) Charge Number
268. The binding energy per nucleon is maximum for:
(a) Helium
(b) Iron
(c) Polonium
(d) Radium
269. Energy released by conversation of 1 amu is:
(a) $1.6 \times 10^{-19} \mathrm{eV}$
(b) $1.6 \times 10^{-19} \mathrm{MeV}$
(c) 200 MeV
(d) 931 MeV
270. There is no change in A and Z of any radioactive element by the emission of:
(a) α-partical
(b) β-partical
(c) γ-partical
(d) X-rays
271. The unit of decay constant:
(a) Second
(b) $\quad(\text { Second })^{-1}$
(c) m^{-1}
(d) mk
272. The charge on $\boldsymbol{\beta}$-partical is:
(a) $+e$
(b) -e
(c) $-2 e$

273. γ-rays emitted from radioactive element have sp ed:
(a) $1 \times 10^{7} \mathrm{~ms}^{-1}$
(b) $1 \times 10^{18} \mathrm{~m}^{3}$

- <1 (18) $\mathrm{m},-1$ (u)
ii) $4 \times 10^{19} \mathrm{~ms}^{-1}$

274. A device that shows the visible pah onze particie is called:
(a) GMcothter
(b) Solid state detector
(c) Scalar
275. Tapdad tine se ciger-Muller Counter is of the order of:
(a) Nícro second(b)
Millisecond
(c) More than millisecond (d) Nanosecond

2'76. Energy needed to produce an electron hole in solid state detector is:
(a) 1 to 2 eV
(b) 3 to 4 eV
(c) 6 to 7 eV
(d) 8 to 9 eV
277. Fission chain reaction is controlled by:
(a) Cadmium rods
(b) Iron rods
(c) Platinum rods
(d) Steel rods
278. Hydrogen bomb is an example of:
(a) Nuclear fission
(b) Nuclear fusion
(c) Chain reaction
(d) Chemical reaction
279. The particles equal in mass but greater than proton are:

PHYSICS 12

(a) Mesons
(b) Baryons
(c) Leptons
(d) Hadrons
280. A proton consists of quarks which are:
(a) Two up, one down
(b) One up, two down
(c) All up
(d) All down
281. The building blocks of protons and neutrons are called.
(a) Muons
(b) Mesons
(c)
Frotons
282. Which pair belongs to hadrons?
(a) Protons and Neutrons
(b)
Neutrons and electrons
(c) Photers ard electrons
(a) Positrons and electrons

SECTION-I

SHORT QUESTIONS (SQs)

1. Define Coulomb's law, write its mathematical formula?
2. Describe five/four properties of electric field lines.
3. Define xerography and photoconductor?
4. Distinguish between conductor and photo conductor.
5. Define electric flux, Gaussian surface.
6. State and write formula of Gauss's law.
7. Define Gaussian surface and electric lines of force.
8. Show that $1 \mathrm{~N} / \mathrm{C}=1 \mathrm{~V} / \mathrm{m}$
9. Define potential gradient. Give its unit.
10. What is meant by EEG and ERG?
11. Define electric potential with unit.
12. Differentiate between electric potential difference and electric potential at a point.
13. Convert 1 joule electron volt.
14. Write two similarities and dissimilarities among electric force and gravitational force?
15. Define Capacitor and Farad.
16. Define capacitance and electric polarization.
17. What is the effect of polarization on the capalitare of a capacitor?
18. What is time constant of a capacitor esis arce cicuit and proue that R.C=time constant.
19. Define timerontant for kigut alto dww (q t) graph for charging capacitor in RC circuit.
20. The potenticl is constant the rognout a given region of space. Is the electric field zero or norazen n this ledion? Explain.
21. सthcaryou identify that which plate of a capacitor is positively charged?

22 Electric lines of force never cross. Why?
23. Is E necessarily zero inside a charged rubber if balloon is spherical? Assume that charge is distributed uniformly over the surface? Explain.
24. Do electrons tend to go to region of high potential or of low potential?
25. A particle carrying a charge of 2 e falls through a potential difference of 3.0 V . Calculate the energy acquired by it.
26. Define Tesla. Write its mathematical formula.
27. Define magnetic flux and its units.
28. Distinguish between magnetic flux and magnetic flux density. Write their SI units.

