	Guess Paper Annual 2024 PHYSICS 12
	PHYSICS 12 th
	(OBJECTOVE FART)
1.	If the medium between the charges is not free space then electrostatic force will be:(a)Increase(c) Remain same (d)None of these
2.	The number of electrons in one coulomb charge is equal to:
	(a) 1.6×10^{-19} (b) 6.25×10^{-19} (c) 6.25×10^{18} (d) 6.25×10^{19}
\mathbb{N}	Relative permittivity (€r) for air is:
J O	(a) 1.06 (b) 1.006 (c) 1.0006 (d) 1.6
4.	Numerical value of permittivity of free space is:
	(a) 9×10^9 Nm ² C ⁻² (b) 8.85×10^{-12} Nm ² C ⁻²
	(c) $8.85 \times 10^{-12} \text{N}^{-1} \text{m}^{-2} \text{C}^2$ (d) $9 \times 10^9 \text{N}^{-1} \text{m}^{-2} \text{C}^2$
5.	The electrostatic force between two charges is 42 N. If we place a dielectric of Er =2.1
	between the charges then the force become equal to:
	(a) 42 N (b) 88.2 N (c) 20 N (d) 2 N
6.	The force between two similar unit charges placed one meter apart in air is:
	(a) Zero (b) one N (c) $9 \times 10^9 N$ (d) $9 \times 10^{-9} N$
7.	If the distance between the two charged bodies is halved, the force between them
	becomes:
	(a) Double (b) Half (c) four times (d) one fourth
8.	The force between two charges is 28 N. If paraffin wax of relative permittivity 2.8 is
	introduced between the charges as medium, then the force reduces to:
	(a) 25 N (b) 20 N (c) 15 N (d) 10 N
9.	Two oppositely charged balls A and B attract the third ball C, when place near them turn
	by turn.
	(a) Positively charged (b) Negatively charged
10	C Electrically neutral (d) Positively and negatively charged
10.	The study of electric charges at rest under the action of electric forces is known as:
	(a) Electromagnetism (b) Electrostatics
11.	(c) Magnetic Induction (d)Electric field The unit of electric intensity other than NC-1 is:
11.	
12.	(a) VA-1 (b) VII ⁻¹ (c) (c) (d) INC If the distance between two points charges 'is halved, the electric intensity becomes.
12,	(a) Half (b) $1/4$ times (c) double (d) 4 time
13.	S.I unit of strength of electric field is:
	(a) VC (b) C/V (c) N/C (d) J/N
NA	What is the force on a proton placed between two parallel plates containing equal
N)	positive charges?
	(a) Zero (b) 2.6×10^{-19} N (c) 9×10^{-19} N (d) 5×10^{-19} N
15.	Concept of an electric field lines is introduced by:
1	(a) Coulomb (b) Faraday (c) Einstein (d) Joseph Henry
16.	The electric fields created by positive charge is:
	(a) Radically inward (b) Zero (c) Circular (d) Radically outward
17.	The direction of fields lines around an isolated negative charge '-q' is:
	(a) Radically inward (b) Radically out ward (c) Elliptical (d) circular
18.	A charge on 4 coulomb is in the field of intensity 4N/C. The force on the charge is:

	Guess Paper Annual 2024				PHYSICS 12
	(a) 8N (b) 16N	(c)	4N	(d)	1N
19.	The force on an electron in a field of 1	×108 N	IC-1 will be:		
	(a) 1.6×10^{-8} N (b) 1.6×10^{-11} N	(c)	1.6×10 ⁻¹⁹ N	(d)	1.6×10 ⁻²⁷ N3
20.	Photo copier and inkjet printer are the	e appli	cation of:		$r \in \mathcal{C}(0)$
	(a) Magnetism	(b)	Electricity	70	
	(c) Electro-magnetism (d)	Elect	rostatics	J /	1 Cuo
21.	Identity the practical application of a	ectrosi	atics force:	IJ	71
	(a) Inkjet p inter	(b)	Z-rays	, ,	
	(c) laser	(d)	Z.C generat	or	
22.	The heart of a photo copy machine is a	a drum			
	(a) Copper 💽 Aluminium		Nickel (d)	Cob	alt
176	The drun in photo copier is coated wi	ith laye	er of:		
NĽ	(a) Aluminium (b) Copper	(c)	Selenium	(d)	Silver
24.	Which one is photo conductor?				
	(a) Copper (b) Selenium	(c)	Mercury	(d)	Aluminium
25.	SI unit of electric flux is:		2		
	(a) NmC ⁻¹ (b) Nm-1C-1 (c)	Nm ₂	C-1 (d)	Nma	3C-2
26.	A changing electric flux creates:				
	(a) Electric fields (b)	Grav	itational		
	C Magnetic field	(d)	Electric cha	rge	
27.	Which one of the following can be tak		measure of el	ectric f	field intensity?
	(a) $\frac{F}{4}$ (b) $\frac{\phi_c}{4}$	(c)	ϕ	(d)	<u>φε₀</u>
30	A A		Α	(u)	Α
28.	Equation $\phi = \overline{E} \cdot \overline{A}$ is applicable to surf		Control	(1)	
20	(a) Spherical (b) Cylindrical	• •	Conical	(d)	Flat
29.	For computation of electric flux, the su				
20	(a) Parallel (b) Flat	(c)	Curved	(d)	Spherical
30.	The electric flux through closed surfac(a)Charge(b)Medium	_	=	(\mathbf{J})	Charge and Madium
31.	(a) Charge (b) Medium Total flux through a closed surface de	(c)	Geometry	(u) (Charge and Medium
51.	(a) Shape of surface	(b)	Charge encl	asad a	mly
	(c) Medium only	(b) (d)	Charge and		
32.	Gauss's Law can only be applied to:	(a)	Charge and	witcui	
92.	(a) A curved surface	(b)	A flat surfac	P	a colli
	(c) A surface of any shape	(d)	A closed su	-	MZLGO"
20				JUL	J Culo
33.	The statement $\Phi_{e} = \frac{1}{\varepsilon_{o}} Q$ was given by	16		U	
	(a) Faraday (b) Deserted	(c)	Gauss (a)		lomb
34.	The electric field intensity due to an in			ge:	
	(a) $\overline{E} \cdot \frac{\sigma}{2\varepsilon_0} \hat{r}(\tau) = \overline{E} \cdot \frac{2\sigma}{2\varepsilon_0} \hat{r}(\tau) = \overline{E} \cdot \frac{1}{2\varepsilon_0}$	$\hat{r}(d)$	$\bar{E}.\frac{\sigma}{\varepsilon_{o}}\hat{r}$		
35.			0	1an el	kin generated by electric
NO.	process in the heart:	cen pe		.a.ii 31	in generated by elecule
$\langle \rangle$		(c)	pressure	(d)	voltage
3 6.	Special organ called ampullae of lor	• •	-		0
	found in:	~1121111	that are ver	y sens	nive to ciccult litit dit
	(a) Bats (b) Cats	(c)	Dogs	(d)	Sharks
37.	If charged body is moved against the	· · ·	0	× /	(2 Time)
57.	(a) Elastic Potential Energy (b)		tic Energy	5 ^{a111,}	(- 1111()
	(c) Gravitational Energy (b)	(d)	Electrical P	otenti	al Energy
38.	The absolute electric potential at a poi				61
50.		(c)	$9 \times 10^4 V$	(d)	$9 \times 10^5 V$
	(a) $9 \times 10^2 V$ (b) $9 \times 10^3 V$	(C)	7 A 10 V	(u)	

	(Succe Danan Annual 2024					DUVS	ICS 12
20		Suess Paper Annual 2024		1101 mlat	as 1 can anom			$\frac{\text{ICS} \ 12}{\text{of} \ 10} = \text{N}$
39	9.	A charge of 10-10C betw	-		-	-		01 10-5 IN:
	_	(a) 10V (b)		(C)	10^{3} V	(d) 10^{44}	/	
40	0.	Electron volt is the unit	t of:					
		(a) Potential		(b)	Potential dif	ference		$\mathcal{C}(0)$
		(c) Electric current		(d)	Electric ener	EN L	21	(GOD-
41	1	One electron volt is equ	ual to.			5) / Y / (<u>الج</u>	mo
T T	L.			205	1 < 10 - 19			inc
		(a) $1.6 \times 10^{-19} joule$	1100	7(0)	1.6×10^{-19}	outomo		
		(c) $1.6 \times 10^{12} \text{ N}$	(q)	1.6×	10 ¹⁸ <i>ioule</i>			
42	2.	Charge on electron is:	$\left(1 \right) \left(1 \right)$	\square	~			
		(a) 1.6×10^{-19} C	(b)	1.6 ×	10 ¹⁹ C			
		(c) 1.6×10^{-17} C	(d)	1.6 ×	$10^{17}C$			
43	ní	If electric and magneti				ach other ti	ne elect	ric intensity
	\mathbb{N}	will be:			fit buiunce et	ien otner, ti		ine intensity
VIN			a		F.	1 a		
0 -		(a) $E = \frac{mg}{q}$ (b)	$E = \frac{q}{ma}$	(C)	$E = \frac{rc}{a}$ (d)	$E = \frac{1}{4\pi s} \frac{q}{r^2}$		
44	1	The charge on the oil						ed by using
	* •	formula.			o on arop e		arcuiat	using
			V		mad		V	
		(a) $q = \frac{mg}{d}$ (b)	$q = \frac{r}{mad}$	(c)	$q = \frac{mgu}{v}$	(d) $q =$	$\frac{1}{maV}$	
45	5.	A capacitor is perfect in			v		ingv	
				Sport	ing current			
		(a) Alternating curre		-	ting current			
		(c) Eddy current	(d)	Direc	t current			
46	6.	Coulomb/ volt is called	l:					
		(a) Farad (b)	Ampere	(c)	Joule	(d) Her	ıry	
47	7.	The net charge on a cap	-			le of charge	of chars	ze a) is:
		(a) Infinity (b)		(c)	q/2	(d) Zer		5- 1)
19	0			• •	T ,			
48	5.	The capacitance of a pa		-		•	'ime)	
		(a) $\frac{\varepsilon_o d}{A}$ (b)	$\frac{\varepsilon_0 A}{d}$	(c)	$\frac{A}{\varepsilon_0 d}$	(d) $\frac{d}{\varepsilon_o A}$		
49	9	Presence of dielectric		lates of			hen its	capacitance
		become:	between the p	futes of	u cupucitor i	b ububicu	inch ho	cupucituitee
			(min (n	T 1	1			
		(a) Reduces the elect	()		nces electric f			
		(c) Does not affect el		(d)	Double elect			
50	0.	A parallel plate capaci	tor with oil be	etween f	the plate (ε_f :	= 2) has a c	apacita	nce C. If the 👖
		oil is removed then cap	acitance of ca	pacitor k	ecomes:		\frown	20101
		(a) C (b)	<u>C</u>	(c)	С	-(1) 127	21	(2000)
			2		$\sqrt{2}$		0,10	
51	1.	Energy stored in the ca			ciric is:	$\left \right \left \right $		
		(a) $\frac{1}{2}\varepsilon_1\varepsilon_0E^2Ad$ (b)	$\varepsilon_0 EAd$ (c)	$\frac{\varepsilon_0 A}{d}$	$ \cup (d) $	$\frac{1}{2}\varepsilon_1\varepsilon_0E^2$		
52	2	The energy density in a			reportional			
52	۷.							
	_	(a) $\varepsilon_0 \varepsilon_r$		(c)	C ²	(d) V^2		
53	3.	The product of resistan	ice and capacit	tance is:				
	~	(a) Ve oci y		(b)	Acceleratior	ı		
201	N	(c) Time		(d)	Force			
	L.V.	Drift velocity of electro	on is:					
Ψ ^ω		(a) 10^{-1} m/s		m/s	(c)	10 ⁻³ m/s	(d)	10 ⁻⁴ m/s
║┍┍	E			,		,	· · ·	10 111/5
55	J.	A device which conver						(1)
		(a) D.C generator	(b) D.C	motor	(c)	A.C generation	ator	(d)
		Transformer						
56	6.	Heat generated by a 50	watt bulb in c	one hour	is:			
		(a) 36000 J	(b) 4800		(c)	18000 J	(d)	180000 J
57	7	One ohm device the gra					(~)	
	•					AC-1	(d)	VA-1
		(a) VC ⁻¹	(b) CV-2	-	(c)	AC 1	(d)	VA
Ľ								

	Guess Paper Annual 2024		PHYS	ICS 12
58.	The SI unit of temperature coefficient of resistivity is:			
	(a) ohm-m (b) k^{-1} (c)	К	(d)	ohm
59.	Good conductors have conductivities of the order of:			~~~~
	(a) $10^{-7} (\Omega m)^{-1}$ (b) $10^{7} (\Omega m)^{-1}$ (c)	$10^{2} (\Omega m)^{-1}$	$(d) 10^{-7}$	(MA)
60.	Which one has negative temperature co-efficient of resis		21	CONG
	(a) Carbon (b) Iron (c)	Tungsten	200	Gold
61.	The resistance of a conductor of length L, cross sectiona			
	by:	500		
		$R = \rho \frac{L}{A}$	(4)	$P = \alpha^{\underline{A}}$
()		11	(u)	$\kappa = \rho \frac{1}{L}$
62.	On increasing the length of whe specific resistance of th	e wire:		
-	(a) increases (b) Decreases			
$\mathcal{V}(\mathcal{V})$	(c) Remains unchanged (d) First increase then de	ecreases		
63. \	It fourth band is missing on resistance, its tolerance is:			
	(a) $\pm 5\%$ (b) $\pm 10\%$ (c)	<u>+</u> 15%	(d)	<u>+</u> 20%
64.	Resistance tolerance of silver band is:			- 0/
	(a) 10% (b) 6% (c)	7%	(d)	5%
	Which one of the following bulbs has the least resistance?			
	(a) 100W (b) 200W (c)	500W	(d)	1000W
65.	The maximum power (pout) is delivered to a load			
	resistance of the source is: (a) $r = \infty$ (b) $r = R$ (c)	• • •	r=R/	4
66.	Kirchhoff's first rule is the manifestation of law of conse	ervation of:		
	(a) Momentum (b) Charge (c)	Energy	(d)	Mass
67.	Kirchhoff's voltage rule is a way of stating conservation	of:		
	(a) Momentum (b) Charge (c)	Energy	(d)	Mass
68.	A current flowing towards the reader is denoted by:			
		A dot	(d)	Cross
69.	The S.I. unit of \overline{E} is NC-1 and that of \overline{B} is NA-1 m-1 than	the unit of E/I	B is:	
	(a) ms ⁻² (b) ms (c)	ms ⁻¹	(d)	m ⁻¹ s ⁻¹
70.	Write the S.I unit of magnetic flux:			
	(a) Tesla (b) Weber (c)	Weber m ⁻²	(d)	Tesla m ⁻²
71.	Two parallel wires carrying currents in the opposite dire	ction:		
	(a) Repel each other (b) Attract each other (c)	Have no	effect	upon each
	other (d) They cancel out their individual magnetic field		\frown	amin
72.	The S.I unit of magnetic induction is:	~ TC	> /	(CO)
	(a) Weber (b) Tesla			Newton
73.	A 5 m wire carrying current 2 A at right angle to uniform	n magnetic fiel	d of 0.5	5T. the force
	on the wire is:	JUS L(1 Ti		
	(a) 1.5 N (b) 5 N (c)	2.5 N	(d)	4 N
74.	The SI unit of magnetic induction "B" Tesla is equal to:		(7 Ti	me)
	(a) $N^{A^{-1}}r^{1}$ (c) Nam ⁻¹ (c)	NA-1m	(d)	ŃA ² m ⁻¹
75.	The SI writ of magnetic permeability is:		× /	(2 Time)
MA	$W^{r}bA^{-1}m^{-1}$ (b) Wbm^{-2} (c)	WbmA ⁻¹	(d)	WbAm ⁻¹
N 6. V	The value of permeability of free space in SI unit is:		(2 Ti	
, <u> </u>	(a) $4\pi \times 10^{-9} W b A^{-1} m^{-1}$ (b)	$4\pi imes 10^{-7}$ W	•	,
	(c) $4\pi \times 10^{-10} W b A^{-1} m^{-1}$ (d)	$4\pi \times 10^7 W$		
77.	The SI unit of flux density is:			(2 Time)
	(a) $NA^{-1}m^2$ (b) $NA^{-1}m^{-1}$ (c)	Nm ⁻¹	(d)	NA ⁻¹ m
78.	The SI unit of magnetic induction.	1 1111	(4)	(2 Time)
70.	(a) Weber (b) Gausses (c)	Tesla	(d)	Nm
79.	The field inside a solenoid is given by:	10510	(u) (1 Ti	
19.	(a) $\mu_o nl$ (b) $\mu_o n^2 l$ (c)	$\mu_o n l^2$	(1 11 (d)	$\mu_o Nl$

	Cuesa Demon Annual 2024
80.	Guess Paper Annual 2024 PHYSICS 12 If the number of turns become double but length remain same, then magnetic field in
001	the solenoid become: (1 Time)
	(a) Half (b) Double (c) Remain same(d) Zero (a)
81.	Magnetic flux density at a point due to current carrying coil is deterraned by
	(2) Time)
	(a) Ampere's Law (b) Gauss's Law
	(c) Faraday's Law (d) Let z's Law
82.	The relation $B = \frac{\mu_0 l}{2\pi r}$ is called.
	(a) Ampere's law (b) Faraday's Law
	(c) Lenz's Law (d) Gauss's Law
83	Force on a charged particle is zero when projected at angle with magnetic field.
$\mathbb{N}\mathbb{N}$	(b) 90° (c) 180° (d) 270°
<u>84</u> .	The magnetic force on an electron travelling with 108ms-1 parallel to a field strength 1
	Webm-2 is: (a) $10^5 N$ (b) $10^{-10} N$ (c) $10 \times 10^{-11} N$ (c)
QE	(a) $10^5 N$ (b) $10^{-10} N$ (c) $1.6 \times 10^{-11} N$ (d) Zero
85.	If a charge is at rest in a magnetic field then force on charge is:(1 Time)(a) Zero(b) $q(\bar{v} \times \bar{B})$ (c) $qvBsin\theta$ (d) $qvBcos\theta$
86.	The magnetic force on an electron travelling with 106ms-1 parallel to a field strength 1
00.	Webm-2 is:
	(a) 10^{-12} N (b) Zero (c) $1.6 \times 10^{-11} N$ (d) 10^{3} N
87.	The Lorentz force on a charged particle moving in electric field E and magnetic field B is
	given by: (1 Time)
	(a) $F = F_E + F_B$ (b) $F = F_E - F_B$ (c) $F = \frac{F_B}{F_E}$ (d) $F = F_E \times F_B$
88.	Lorentz force is given by:
	(a) $q(\bar{E} - \bar{V} \times \bar{B})$ (b) $q(\bar{E} + \bar{V} \times \bar{B})$
	(c) $q[\bar{E} \times (-\bar{V} \times \bar{B})]$ (d) $q(\bar{V} + \bar{E} \times \bar{B})$
89.	The sum of electric and magnetic force is called:
	(a) Maxwell force (b) Lorentz force
	(c) Newton's force (d) Centripetal force
90.	The value of e/m is smallest for:
	(a) Proton (b) Electron (c) β -particle (d) Positron
91.	The unit of \overline{E} is NC-1 and that of \overline{B} NA-1m-1 then the unit of $\frac{E}{\overline{P}}$:
	(a) ms^{-2} (b) $m^{-1}s^{-1}$ (c) ns^{-1}
92.	Work done on a charged particle moving in a uniform in gnetic field is:
	(1 Time)
	(a) Maximum (d) Negative
93.	Brightness in cathode ray oscilloscope is controlled by:
94.	(a) Grid (b) Filament (c) Anode(d) Cathode The brightness of the spot on CRO screen is controlled by:
94.	(a) Deflecting plates (b) Cathode (c) Grid (d) Anode
95.	Cathode ray oscilloscope works by deflecting a beam of:
U 🖓.	(a) Neutrons (b) Protons (c) Electrons (d) Positron
96.	Output wave form of sweep or time base generator is:
	(a) Saw tooth wave (b) Digital wave
	(c) Sinusoidal wave (d) Square wave
97.	Output waveform of built in voltage of the CRO is: (2 Time)
	(a) Sinusoidal (b) Saw tooth (c) Rectangular(d) Square
98.	Sensitivity of a galvanometer can be increased by:
	(a) Decreasing the value of tensional couple

	Guess F	Paper Annual 2024					PHYS	ICS 12
 ⁻	(b)	Decreasing numb	er of tur	ms				
	(c)	Decreasing area o						
	(d)	Decreasing magne	-					- 50
99.	. ,	ensitivity of galva				2/	\frown	2011
550		<u>CAN</u>				BAN	24	BN
	(a)	В	(b)	BAN	75	n N I ((d)0	CA
100.		ler to measure pote			ter is alwa	ys connecte	a 1n:	
	(a)	Series	(b)	Parallel		J = D		
	(c)	Both A and B		Neither in seri-		arallel		
101.	When	ohm meter gives :	ful scal	le deflection it ir	dicates:		(1 Ti	me)
	(a)	Zero resistance	ل (b) ۲	infinite resistar	ce			
-	(O)	Small resistance	(d)	very high resist	ance			
102	A bat	tery is used in:						
NV	(a)	Ohmmeter	(b)	Ammeter				
	(c)	Galvanometer	• •	Voltmeter				
103.	. ,	nvert a galvanome	()		gh resista	nce is conne	ected:	
2001	(a)	in series	(b)	in parallel	8			
	(c)	in perpendicular		Along tangent				
104.		h one of the foll			ad to co	nvort 2 Ca	lvanomo	tor into an
104.	Amm		lowing	resistance is us	eu lo co	livelt a Ga	Ivanome	tel illo all
			(1-)	T and mariatan as			an at an	
	(a)	High resistance	(b)			•		
10	(c)	Shunt	(d)	High resistance	series wi	th galvanom		`
105.		t resistance is:	<i>(</i> 4)				(1 Ti	me)
	(a)	Low resistance	(b)	High resistance	2			
	(c)	Zero resistance	(d)	Impedance				
106.	Whicl	h one has the least						
	(a)	Galvanometer	(b)	Ammeter	(c)	Voltmeter	(d)O	hm meter
107.	Usefu	I device to measure	ure resi	istance, current	and volta	ige is an el	ectronic	instrument
	called							
	(a)	Voltmeter	(b)	Ammeter				
	(c)	Ohmmeter	(d)	Digital Multi m	eter			
	(1 Tir	ne)		C				
108.	``) cm wire charging	g a curre	ent of 10.0A is pla	aced in a	uniform mag	gnetic fie	eld of 0 .307
		wire makes Electr						C(0)))
	(a)	Charge	(b)	Energy	_(G)	Momentu		Mass
109.	· ·	a conductor move			an emf i			
	(a)	Variable	C 1	orstanten			d) Induce	ed emf
110	· · ·			. / /	Care		a) Indiace	
110.	i ne re	elation of emfs of	1 1 1 1	5 - 15 - 15 - 1 - 5				
	(a)	$\frac{I_2}{I_1}$	(b) (V_1	(c)	$\frac{1}{I_1 I_2}$	(d)	$\frac{1}{I_2}$
		tal 10d of 1 in is 1		l_2				-
111)51' magnetic fiel	•	-	115-1 III a		laking a	in aligie 500
	INTERV	0.25 N		2.5 N	(a)	0.25 V	(\mathbf{A})	2.5 V
111.	177 .		(b)		(C)	0.23 V	(d)	2.5 V
N	(a)		ndc	m me:				
111. 112.	(a) The n	notional emf deper			/1 \	Cross 1 (
N	(a) The n (a)	notional emf dependent dependent conduction	tor		(b)	Speed of co		
112.	(a) The n (a) (c)	notional emf dependent Length of conduct Strength of magne	tor etic		(b) (d)	All of these	e	
N	(a) The n (a) (c) Emf is	notional emf depen Length of conduct Strength of magne s induced due to cl	tor etic hange i i	n:	(d)	All of these (17)	e F ime)	
112.	(a) The n (a) (c)	notional emf depen Length of conduct Strength of magne s induced due to cl Charge	tor etic			All of these	e F ime)	(d)
112. 113.	(a) The n (a) (c) Emf is (a)	notional emf depen Length of conduct Strength of magne s induced due to ch Charge Electric field	tor etic hange i i (b)	n: Current	(d) (c)	All of these (1 7 Magnetic	e F ime) flux	(d)
112. 113.	(a) The n (a) (c) Emf is (a)	notional emf depen Length of conduct Strength of magne s induced due to cl Charge	tor etic hange i i (b)	n: Current	(d) (c) ervati <u>on</u> d	All of these (1 7 Magnetic	e F ime)	(d)

	Guess Paper Annual 2024					PHYS	ICS 12
115.	Lenz's law deal with:						(2 Time)
	(a) Magnitude of emf			(b)	Directio	n emf	
	(c) Direction of induce	d curi	rent	(d)	Resistar	nce	- rai
116.	Lenz's law deals with:					10	C(0)
	(a) Direction of emf		_	(b)	Magni	u le of emf	Ger
	Direction of induce	d of c	urrent	In Tidi	- 1 K V		(2 Time)
117.	Mutual induction play ro				$\left(117 \right)$	(6 Time)	`
	(a) Generator		\///\\(() (CA)	D.C	motor	
	(c) Galverometer	٦) [SIL	(d)		nsformer	
118.		thed	eils depend i			(1 Ti	ime)
1101	(a) Stilfness of the coils			ity of coils		(
01	(c) Material of coils	,		(d)	Geomet	ry of the coi	19
MAY	SI unit of Henry which is	•		(u)	Ocomet	8 Time)	
N	(a) VsA ⁻¹	(b)	Vs ⁻¹ A	(c)	Vs-1A-1	•	VsA
120.	The self induction emf is	· ·		(C)	V 5 11	(u) (4 Ti	
120.	(a) Motional emf	(b)	Constant er	mf (c)	Back er	•	ariable emf
121.	Unit of self induction is:	(D)	Constant er	.111 (C)	Dackel	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
121.		(b)	Toolo	(a)	Uonm	•	,
100	(a) Weber	(b)	Tesla	(C)	Henry	(d)	Farad
122.	Henry is SI unit of:	(1_)	Docisterel			(2 Ti	iiie)
	(a) Current	(b)	Resistant				
100	(c) Flux	(d)	Self inducti	on			(1 57)
123.	Self induction does not d	-		•		C .1 ()	(1 Time)
	(a) Number of turns of				s-section o	t the core (c) Nature of
			ent through i				
124.	The energy stored in the	induc	tor per unit v	olume is:			
	(a) $\frac{1}{2} \frac{B^2}{2}$	(b)	<u>1 Β</u> 2 μ	(c)	$\frac{1B}{2u_0^2}$	(d)	<u>1B</u>
125.	The energy stored in indu		•		$2u_{o}^{2}$	(4 Ti	$2u_o$
123.	4				$\frac{1}{L^2I}$	•	,
	2	(b)	$\frac{1}{2}LI$	(c)	$\frac{-L^2}{2}$	(d)	$\frac{1}{2}L^{2}I^{2}$
126.	The self inductance of so			_			(2 Time)
	(a) $L=\mu_o naL$	(b)	$L=\mu_0 N^2 AI$			AL (d)	•
127.	If 10 A current passes three	o <u>ug</u> h :	100 mH indu		nergy store	•	e)
	(a) 100 J	(b)	5 J	(c)	20 J	(d)	zer
128.	When current flowing the	rough	an inductor	is doubled,	then energy		
		_	0 [1-11	~)/V	(01)0	,
	(a) Half	(b)	Four times		One fo	× /	Double
129.	Energy stored per unit vo		1// 19/11 1		d L	/ (1 Ti	me)
	(a) Energy density		Electric flu	(c)	Work	(d)	Power
130.	A.C generator was ed upor	n the:	NU				
	(a) Lenz's Law](b)]	Maxwell's r	elation			
	Faradays Law of ele	ctrom	agnet inducti	on			
NTV	(d) Matual induction		-				
31.	Which one is not present	in A.0	C generator?			(5 Time)	
-	(a) Armature	(b)	Magnet			. /	
	(c) Slip rings	(d)	Commutate	or			
132.	The emf produced by an	· · ·				(2 Ti	me)
	(a) N ω ABsin θ	(b)	ΝωΑΒςοsθ	-		,	-,
	(c) $N\omega ABsin 2\theta$	(d)	NωABcos2				
133.	In A.C generator, when	· ·			to magnet	ic field the	en output of
100.	generator is:	r		renational	to mugnet	the intervention of the second s	output of
	6	NmA	<i>Bcosθ</i> (c)	Maximun	n (d)	Zero	
	(4) 11011251110 (0)			ivia/unitali			

	Guess Paper Annual 2024		PHYSICS 12
134.	Commentator was invented by:		
	(a) Henry (b)	Ousted	(c)
	Maxwell (d)	William sturgeon	500
135.	The only difference between the		C and A.C is:
100.	(a) Carbon burshes (b)	Coil	
	Commutator (d)	Magnetic tield	$1 \int \left(\int \left(\int \left(\int \right) \right) \right) \left(\int \left($
136.	The devices in the circuit that of		DEED AND ICODATE AC
130.	1 1		
107		Generator	load (d) Motor
137.	A device which convert electrica		
		A.C generator	
100	D.C. Motor (d)	D.C generator	(2 Time)
n R	When a nictor is covered loaded		
$N \mid N$	(a) Increases (b)	Decreases	(C)
J U	Remain constant (d)	Zero	
139.	When the back emf is zero, its d	raw:	(1 Time)
	(a) Zero current		(b) Minimum current
	(c) Maximum current	(d)	Steady current
140.	With the speed of motor, magni	tude of back emf:	
	(a) remain same (b)	Increases	
	(c) decreases (d)	First increases then	decreases
141.	When motor is just started, back		(1 Time)
	(a) Maximum (b)	Zero	(c) Minimum (d) Infinite
i.	The working principle of transfo		(1 Time)
	(a) Self induction		(b) Electromagnetic induction
	(c) Mutual induction	(d)	Faraday's Law
142.	The core of transformer' is lamin	· · /	(1 Time)
142.		llateu so reduce.	
	(a) Magnetic loss	(4)	(b) Hysteresis loss Electric loss
140	(c) Eddy current loss	(d)	
143.	Transformer is used to change:		(1 Time)
	(a) Electric power		(b) Magnetic field
	(c) Alternating voltage	(d) Phase of A.C	
144.	A real transformer does not chan	nge:	(1 Time)
	(a) Voltage level		(b) Current level
	(c) Frequency level		(d) Power level
145.	Efficiency of transformer does n	ot effected by:	$1\Gamma_0 \langle V (0, J_0 \rangle)$
	(a) Input voltage	SGIII	(b) Core of transformer
	(c) Insulation between shee	(d) Resistance of	coils
146.	If a step-up transformer were 10	0% officient, the p	rimary and secondary winging would
	have the same:	NU	
	(a) Current		(b) power
	(c) Voltage		(d) Direction of winding
AN	During each cycle A.C voltage r	eaches a peak value	
N V	(a) Once (b) Thrice		Four time
148.	The frequency of A.C sources us		(1 Time)
	(a) 50 Hz (b) 60 Hz (c)	45 Hz (d) 70 Hz	· ,
149.	The most common source of an		
	(a) Positive (b) Nega		(d) Infinite
150.	The most common source of an		(d) Innucc (1 Time)
130.	(a) Motor (b) Cell	(c) Generator	
151			
151.	The sum of positive and negative		
	(a) RMS value (b) P-P va	alue (c) Peak	value (d) Average value

	Guess Paper Annual 2024		PHYSICS 12
152.	Root mean square value of volt	age is given by:	(3 Time)
	(a) $V_{rms} = 2V_o$ (b) $V_{rms} = 2V_o$	$=\sqrt{2}V_o(c)$ $V_{rms} = \frac{V_o}{\sqrt{2}}$	(d) $V_{rms} = \frac{V_o}{2}$
153.	The phase of A.C at positive pe	ak from origin is:	(1 Time)
	(a) $\frac{3\pi}{2}$ (b) $\frac{\pi}{2}$	(c) $\frac{\pi}{4}$	(a) π
154.		4	
134.	(a) Resistor only		
155.		d All of thes	(2 Time)
155.			, , ,
156.			c (d) Capacitor (2 Time)
150.		(c) Farad	· · · · · ·
NBA			
N		-	
150		(c) Large	(d) Infinite
158.		-	-
150		ctor (c) Battery	(d) Thermistor
159.	·		1 000
	(a) Lags behind voltage by 90		
1.00	(c) In phase with voltage		
160.	-	nce has a reactance 5000	hms, then the frequency required
	is approximately:		
	(a) 50 Hz (b) 100 Hz		Hz
161.	5		
	(a) Capacitors (b) Trans		
162.			
	(a) Inductance (b) Cond		
163.		C circuit, the current flow	wing in it is 100mA. It impedance
	is:		
		(c) $1000\Omega(d)$	
164.	The phase angle of a series RLC π	π -	
	(a) $\frac{\pi}{2}$ (b) zero	(c) $\frac{\pi}{4}$	(d) π
165.	Power dissipated in a pure indu	ictor is:	
	(a) Large (b) Small	(c) Infinite	d) Zero
166.	The power factor in A.C circuit	is:	
	(a) $sin\theta$ (b) $cos\theta$	(c) t ст. Ө	(c) $coi\theta$
167.			rcuit is:
	(a) Maximum (b) Mini		(d) Unfinite
168.			
	(a) $X_L = \tau f L$ (b) $X_L =$	$4\pi jL$ (c) $X_L = 2\pi fL$	$X_L (d) \qquad X_L = 2\pi L$
169.			
0	(a) Minimum (b) Maxi		(d) Infinite
110	In RLC parallel circuit the reson	nance frequency is:	、 <i>'</i>
NU.	(a) $2\pi\sqrt{LC}$ (b) $\frac{2\pi}{\sqrt{LC}}$	(c) $\frac{\pi}{\sqrt{LC}}$ (d)	
171		$\langle C \rangle = \sqrt{LC}$	$2\pi\sqrt{LC}$
171.		America (a) Ha	ute (1) Equal
4 20	(a) Second (b)	1	rtz (d) Farad
172.	1 0	-	_
4 50	(a) 45° (b) 60°	(c) 90°	(d) 120°
173.	1 0	-	(1 Time)
	(a) 220 V (b) 230 V	(c) 400 V	(d) 430 V
174.	Metal detectors consists of:		

	Guess Paper Annual 2024				PHYSICS 12
	(a) L-C circuit (b) R-L circuit	t (c)	R-C circuit	(d)	RLC series circuit
175.	Choke consumes extremely small.				
	(a) Current (b) Charge	(c)	Power(d)	Poter	ntial – 🐨
176.		(*)	1 0 1 (u)	1 0 001	
170	(a) Zero (b) Large	(c)	Very Small	(B)	Infinite
177.					
1//.				cho LL	
		n ph	540 kHz to 1		
	(c) 520 kHz to 1600 kHz	(d)	520 kHz to 1	1400 KF	1Z
178.		S. Com			
	(a) Fluctuative	(b)	Carrier wav	e	
	(c) Matter wave (d)		anical wave		
17	The amplitude modulated transmiss				
NI	(a) 540 kHz to 1600 kHz	(b)	88 kHz to 10).8 kHz	
JO	(c) 88 MHz to 108 mHz (d)	540 N	4Hz to 1600 M	1Hz	
180.	Which one is not a crystalline solid?	•			
	(a) Zinc (b) Copper	(C)	Nylon (d)	Zirco	nia
181.			5 ()	as:	
-	(a) Solid (b) Liquid(c)		liquid(d)	Gas	
182.			1 (-)		
	(a) Pressure (b) Force	(c)	Momentum	(d)	Work
183.		(C)	Womentum	(a)	() OIK
100.	(a) Zero (b) 1	(c)	2	(d)	3
19/				(u)	3
104.	Glass and high carbon steel are the c	_			
	(a) Ductile substance (b)		e substance	1 .	
405	(c) Soft substance	(d)	Magnetic su		
185.	5				t becomes permanently
	changed, this behavior of material is		(2 Ti	'	
		sticity	· · ·	2	
186.	Substance which break just after the				alled as:
	(a) Brittle substance	• • •	Ductile subs		
	(c) Non magnetic substance (d)			e	
187.					
	(a) $10^3 (\Omega m)^{-1}$ (b) $10^7 (\Omega m)^{-1}$	¹ (c)	$10^{5} (\Omega m)^{-1}$	(d)	$10^{9}(\Omega m)^{-1}$
188.	The ratio of adding impurity in a set	mi condı	ictor is:	-0	$\Pi \leq 1 (\Pi \cup \cup \cup \cup$
	(a) $1 to 10^3$ (b) $1 to 10^4$	(c) 🔽	1 to 195		1 to 106
189.	In "N" type material, the minerity d	harge car	riers are:		
	(a) Free electrons	(b)	Holes	IU I	
	(c) Protons	(b) /	Mesons		
190.	Which one is pentavanlent impurity		/0/10/11		
1900	(a) Boron (b) Gallium. (c)		nony (d)	Indiu	m
101	In p-type substances, the minority c		2 ()	mana	
		(C)	Holes (d)	Neut	rong
ND		· · ·	Tibles (u)	Ineut	TOTIS
J\192.				(1)	0.01/
400	(a) 3.72K (b) 1.18K	(c)	7.2K	(d)	8.2K
193.	0 0				4.012 4.020
	(a) $10^8 \to 10^9$ (b) $10^{12} \to 10^{12}$	¹⁰ (C)	$10^{15} \rightarrow 10^{20}$	(d)	$10^{12} \rightarrow 10^{20}$
194.	Curie temperature for iron is:				
	(a) 710°C (b) 730°C	(C)	750°C	(d)	780°C
195.	A device used to detect very weak m	nagnetic f	field produce	d by bi	rain is named as:
	(a) MRI (b) CAT scan		-	CRO	
196.	Potential difference across depletion	• • •		con:	
	I	0			

	Guess Paper Annual 2024				PHYSICS 12
	(a) 0.7V (b) 0.5V	(c)	0.3V	(d)	0.9V
197.			due to:	(4 Ti	ime)
	(a) Majority charge carries	(b)	Minority ch	`	
	(c) Electrons	(d)	Holes	800	
198.		· · ·		an Sie	
170.	(a) Doping (b) Temperatu	1-	Voltage		Iressure
199.				ine)	litessate
199.				1 7	
200	(a) Rectifie. (b) Amplifier	1 1.1.	Detector	(d)	LED
200.				_	
	(a) 4 (b) 3	(c)	2	(d)	5
201.	For rectification we use:				
M	(a) Transformer(b) Diode (c)			erator	
202.		A.C into	D.C is called	1:	
J U	(a) An oscillator (b)	Dete	ctor		
	(c) An amplifier (d)	Recti	ifier		
203.		ight onl	y when:		
	(a) Reverse biased	(b)	Forward bi	ased	
	(c) Unbiased	(d)	None of the	ese	
204.					
_010	(a) Micro seconds	(b)	Mega secor	nds	
	(c) Nano seconds	(d)	Milli Secon		
205.		~ /		us	
205.					10-6
200	(a) 10 ⁻⁹ m (b) 10 ⁻⁷ m	(c)	10 ⁻⁸ m	(d)	10 ⁻⁶ m
206.			C 11 ·	(1)	
	a) Base (b) Emitter	(c)	Collector	(d)	Neutral
207.	8				
	(a) Volt (b) Ampere	(c)	Coulomb	(d)	No unit
208.	A sensor of light is:				
	(a) Transistor	(b)	LED		
	(c) Diode (d)	Ligh	t dependent r	esistan	nce
209.	The gain of transistor amplifier depe	nds up	on:		
	(a) Resistance connected with colle	ector			
	(b) Resistance connected with base	e voltage	5		
	(c) Input Voltage	(d)	Output Vol	tage	$\Gamma \geq \Gamma (Q) $
210.			- P V	$\gamma \gamma$	V/(0,10)
	(a) Base (b) Emitter	200	Collector	(d)	LED
211.					\cup
	(a) 10^6 (b) 10^5	TR	107	(d)	10 ³
212.		ier is	10	(4)	
~1~,		(b)	Low		
		()		+	nistanco
SA		(d)	Equal to ou	-	
N_{12}	Find the gain of inverting amplifier of				
, ~	(a) -5 (b) -10	(c)	-1	(d)	50
214.		ting (-)	and non-in	verting	g inputs is called input
	resistance and is the order of:				
	(a) Ohms (b) Kilo ohms (c)	Thou	unds ohms(d)	Meg	ga ohms
215.					
	(a) $1 + \frac{R_2}{R_1}$ (b) $1 + \frac{R_1}{R_2}$	(c)	$\underline{R_2}$	(d)	$-\frac{R_1}{2}$
010			1		2
216.	For non-inverting amplifier if $R_1 = \circ$				
	(a) -1 (b) 0	(c)	+1	(d)	Infinite

					DINSICS 12
	Guess Paper Annual 2024	,			PHYSICS 12
217.	Which is not a basic logic operation?			(1)	
010	(a) NOT (b) AND	(c)	OR	(d)	NAND
218.					
	(a) $\overline{A.B}$ (b) $\overline{A.B} + \overline{A.\overline{B}}$		$A.\overline{B} + \overline{A}.B$	(d)	$\overline{A3 + bA}$ (())
219.	The Boolean expression of Exclusive			\mathcal{N}	VIGIOS
	(a) $X = AB + BA$ (b)	X = 1	$A\overline{B} + \overline{B}A$	$\left \right $	
	(c) $X = \overline{A\overline{B} + \overline{B}A}$	TRE	$A\overline{B} + \overline{A}\overline{B}$	JU	
220.	A diode characteristics carve is a plo	t betwe	en:		
	(a) Current and time	Lb)	Voltage and	l time	
	c voltage and current (d)	Curr	ent and time		
221.					
n	hs forward biased (b)	-	everse biased		
$N \mathcal{N}$	(c) Amount of forward current	100 10			
ju .	(d) The type of semi conductor ma	terial 11	sed		
222.	Automatic function of street lights ca			of	
,	(a) Inductor (b) Rectifier	(c)	Comparato		Emf
223.	Using relativistic effects the location				
 .	about:	i or arr c			in fight can be predicated
	(a) 20m (b) 50m	(c)	760m	(d)	780m
224.				(u)	70011
224.					$\sqrt{3}$
	(a) $\frac{1}{2}c$ (b) $\frac{3}{2}c$	(c)	$\frac{1}{\sqrt{2}}C$	(d)	$\frac{\sqrt{3}}{2}C$
225.	Earth orbital speed is:		·		
	(a) 10 km/s (b) 20 km/s	(c)	30 km/s	(d)	40 km/s
226.	The special theory of relativity based				
	(a) One postulate	(b)	Two postul	ate	
	(c) Three postulate	(d)	Four postul		
227.	1 kg mass will be equivalent to energy	• • •	1		
	(a) $9 \times 10^8 J$ (b) $9 \times 10^{12} J$	(c)	9×10^{16}	(d)	9×10^{19} /
228.	By modern system of NAVSTAR, th				
	accuracy about:	1	5		
	(a) 20 ms^{-1} (b) 10 ms^{-1}	(c)	2 cms ⁻¹	(d)	2 ms ⁻¹
229.	Platinum wire becomes yellow at a t			(-)	
	(a) 900°C (b) 1300°C	(c)	1600°C	(d)_	5905 COULU
230.	When platinum is it becomes orange		2000 0	-	
	(a) 500°C (b) 900°C) (c)	1100 C	d)	900°C
231.					
_010	(a) 1600°C (b) 1300°C	(C)	110000	(d)	900°C
232.	When platizern wire is heated, i cha				
202.	(a) 500°C (b) 900°C (c)	1100	•	1300	
233	Momentum of noving photon is giv		c (u)	1000	C
			h f	(1)	hλ
$\mathbb{N}\mathbb{N}$	(b) $\frac{hc}{\lambda}$	(c)	hf	(d)	$\frac{h\lambda}{c}$
234.	Stefen-Boltzmann law is given by:				
	(a) $E = hf$ (b) $E = mc^2$	(c)		(d)	$\lambda \times T = constant$
235.	The value of Stefen's constant σ is given by	•			
	(a) $6.67 \times 10^{-8} W m^2 k^{-4}$ (b)		$\times 10^8 Wm^{-2}k$		
	(c) $6.67 \times 10^{-18} W m^{-2} k^{-4}$	(d)	5.67×10^{-8}	Wm^{-2}	k^{-4}
236.	Joule-second is the unit of:	—			
	(a) Energy	(b)	Wein's cons	stant	
	C Planck's constant	(d)	Boyle's law		
237.	The momentum of photon is given b	· · ·			
	1 0		-		

	Guess Paper Ann	ual 2024						РНҮ	SICS 12	
	(a) $p = mv$		$p = \frac{h}{\lambda}$	(c)	$p = \frac{\lambda}{h}$		(d)			
229					P = h		(u)	p = nn		
238.	Who explained the photo electric effect?(a)Max Planck(b)Einstein(c)Henry (d)Rutherford									
220	• •			(c)	пеш	y (a)	Kum	eriora	COMM	
239.	m_{1}^{2}			_	~	\sim	20	121	(GOD)	
	(a) $\frac{mv^2}{2}$ (b) hf (c) v_{e2} (c) $r_{10}c^2$								0	
240.	Albert Einstein	was awa	rdea Nobel 🚽	nize in	physic	s in:	L			
	(a) 1905	(b)	1911	(c)	1918	21	(d)	1921		
241.	Amount of erler	rgy releas	ent due to con	nplete	conver	sion of	1 kg r	nass into en	ergy is:	
	(a) 9×10^{15}	(b)	$9 \times 10^{9} J$	(c)	9×1	0 ²⁰ J	(d)	$9 \times 10^{8} J$		
242.	The quantity/fa	ctor - h	as the dimen	nsion of	f:					
			Time		Mass		(4)	Enorm		
243.		(b) hift in w		(c) 11 bo m			(d)	Energy	or ic:	
24.5.	Tne Compton s (a) 90°	(b)	45°	n be m (c)	180°	n wher	(d)	30°	ig 15:	
244.		()		(C)	100°		(u)	30°		
244.	0, 1			0.511	MoV	(d)	5 Mo	M.		
245.										
243.	(a) 0.51MeV		1.02MeV	(c)	931 N		(d)	2.10MeV		
246.	The rest mass o			(C)	<i>701</i> N		(u)	2.101/10 /		
_10.	(a) Zero	- Photon	10.	(b)	1.67	$\times 10^{-22}$	⁷ ka			
	(c) 9.1×10^{-10}	$^{\cdot 31}ka$		(d)		$\times 10^{-32}$	-			
247.	. ,	-	pears in:	(01)	2107	. 20				
	(a) Pair proc			(b)	Com	pton ef	fect			
	(c) Photo ele			(d)		ference				
248.	()		'm' is movir					le-Broglie v	wavelength λ	
	If a particle of mass 'm' is moving with speed 'v' then de-Broglie wavelength λ associated with it will be:									
	(a) $\lambda = \frac{3h}{m}$ (b)	$\lambda = -\frac{1}{2}$	$\frac{2h}{nv}$ (c) $\lambda = \frac{1}{2}$	$\frac{h}{d}$	$\lambda = -$	h				
249.	The life time o						0-8s I	What is its 1	incertainty in	
21).	energy during t			cited st	<i>ate</i> 15 t	loout	0 03. 1	viiut 15 105 0	incertainty in	
	(a) 6.63×10^{-10}		(b)	91 x	(10 ⁻³¹)					
	(c) 1.05×10^{-10}		(d)		(10^{-15})					
250.	Ballmer series l				-					
_00.	(a) Infrared	(b)	Visible	(c)	-	violet	(d)	Frainfrare		
251.	Ballmer series l	\ /	101210	(0)	~	~		<u>IIZI</u>	(GOD)	
	(a) Visible g		(b)	Invis	siblene	rich	7 I L	V C	0	
	(c) Ultraviol				red reg		L			
252.	Rydberg consta	0	1 1 1 1 1			21	3	\square		
	(a) 1.0974 ×		alla/	(b)	6.02	$\times 10^{-34}$	m^{-1}			
	(c) 3×10^8 m	-1	1110-	(d)	$1.6 \times$	$10^{19}m$	-1			
253.	The shortest w	velength	in Lyman se	ries is	equal to):				
m		(b)	$\frac{R_H}{2}$	(c)	$\frac{1}{R_H}$		(d)	$\frac{2}{3}R_H$		
254.	Which of the fo		-	rogon		m line		5	on?	
j ⊊,	(a) Lyman se	•	(b)	•	ner seri			u violet legi	011;	
	(c) Paschen		(\mathcal{O})	(d)		cs ket serie	PS			
255.	The longest wa		of Paschen se	· · ·						
	(a) 656nm(b	-		2000		(d)	1094	nm		
256.				_000		(~)	1071			
	(a) 10 km/s	(b)	20 km/s	(c)	30 kn	n/s	(d)	40 km/s		
257.	· · ·	· · ·	,			/ -	()	, 0		
	(a) 0.53 nm	(b)	0.053 nm	(c)	0.005	3 nm	(d)	0.00053 nr	n	
	()		· · · · · · · · ·	\ ⁻∕			<u>\</u> - /			

	Guess Paper Annual 2024				PHYSICS 12				
258.	The energy of the 4th orbit in hydroge								
	(a) -2.51eV (b) -3.50eV	(c)	-13.60eV	(d)	-0.85eV				
259.						(n)			
	(a) Infrared radiations (b)		le radiations		$\pi G (0)$	Πr			
	(c) Ultraviolet radiations		Gama radia	tions					
260.		of:		11/	Jeso				
	(a) Photo-electric effect (b)		pton effect	1U					
	(c) Annihilation (d) Pair production								
261.	In metal stables state electron stays for:								
	(a) 10^{-3} s or nore (b) 10^{-3} s or less								
	(c) 10^{-8} or 10^{-8} or less								
199	In Helium Neon las <u>er</u> , discharge tube	is fille	d with Neon	gas:					
NIN	(a) 10% (b) 15%	(c)	85%	(d)	90%				
263.	The radius of 10th orbit in hydrogen at	tom is:	:						
	(a) 0.053 nm (b) 0.53 nm (c) 5.3 nm(d) 53 nm								
264.	The number of Neutron in $^{238}_{92}U$ is:								
	(a) 92 (b) 238	(c)	146	(d)	330				
265.	The number of neutrons $\frac{7}{3}L$ in are:								
	(a) 3 (b) 7	(c)	4	(d)	2				
266.	The number of isotopes of cesium are:			. /					
	(a) 4 (b) 32	(c)	22	(d)	36				
267.	What is different in isotopes?								
	(a) Number of protons (b)	Num	ber neutrons						
	(c) Number of electrons	(d)	Charge Nur	nber					
268.	The binding energy per nucleon is ma	· · /	0						
	(a) Helium (b) Iron	(c)	Polonium	(d)	Radium				
269.		mu is:							
	(a) $1.6 \times 10^{-19} eV$ (b) $1.6 \times 10^{-19} MeV$								
	(c) 200MeV	931MeV							
270.	There is no change in A and Z of any r	(d) adioac	tive element	by the	emission of:				
	(a) α - partical (b) β -partical	(c)	γ -partical	(d)	X-rays				
271.	The unit of decay constant:		-			4			
	(a) Second (b) (Second) ⁻¹	(c)	m-1	(d)	mk	(\mathbb{N})			
272.	The charge on β -partical is:			-0	TSI CUU	0			
	(a) +e (b) -e	(c) 🔽	-2e	$(\phi)_{c}$	None of these				
273.				$\left \right $					
	(a) $1 \times 10^7 \text{ ms}^{-1}$ (b) $1 \times 10^{18} \text{ ms}^{-1}$		3×10^{8} ms ⁻¹		$4 \times 10^{19} \mathrm{ms}^{-1}$				
274.	A device that shows the visible path lo	omze p	orficie is call	ed:					
	(a) GM counter (b)	Solid	state detector	r	(c) Scalar				
	(d) Wilson cloud	d cham	nber						
275.	The dead time of Geiger-Muller Count		f the order of	f :					
\mathcal{M}	(a) Micro second (b) Millisecond	. ,			cond (d) Nanosecond				
276.	Energy needed to produce an electron	hole ir	n solid state d						
	(a) 1 to 2eV (b) 3 to 4eV	(c)	6 to 7eV	(d)	8 to 9eV				
277.									
	(a) Cadmium rods	(b)	Iron rods						
	(c) Platinum rods	(d)	Steel rods						
278.	Hydrogen bomb is an example of:								
	(a) Nuclear fission	(b)	Nuclear fus						
	(c) Chain reaction	(d)	Chemical re	action					
279.	The particles equal in mass but greater	r than j	proton are:						

