

Function:

AFOnction ffom asec X to a set Y is a rule or correspondence that assigns to each 4lallo x in X a unique element y in Y.
Symbolically we write it as $f: X \rightarrow Y$ and read as f is a function from X to Y.

Domain and Range of Function:

If f is a function from X to Y then
X is called the domain of f and the set of corresponding elements in Y is called range of f
For example:
Domain $=\{a, b, c\}$
Range $=\{1,2,3\}$
Example 1: Given $f(x)=x^{3}-2 x^{2}+4 x-1$, find

(i) $f(0)$
(ii) $f(1)$
(iii) $f(-2)$
(iv) $f(1+x)$
(v) $f\left(\frac{1}{x}\right), x \neq 0$

Solution:

$f(x)=x^{3}-2 x^{2}+4 x-1$
(i) $\quad f(0)=(0)^{3}-2(0)^{2}+4(0)-1=0-0+0-1=-1$
(ii) $\quad f(1)=(1)^{3}-2(1)^{2}+4(1)-1=1-2+4-1=2$
(iii) $f(-2)=(-2)^{3}-2(-2)^{2}+4(-2)-1=-8-8-8-1=-25$
(iv) $f(1+x)=(1+x)^{3}-2(1+x)^{2}+4(1+x)-1$

$$
=1+3 x+3 x^{2}+x^{3}-2-4 x-2 x^{2}+4+4 x-1
$$

$$
=x^{3}+x^{2}+3 x+2
$$

(v)

Example 2: Let $f(f)=x^{2}$. Find the domain and range of f.

Solution.

$f(x)$ (is) cetined for every real number x.
Further for every real number $x, f(x)=x^{2}$ is a non- negative real number. So
Domain $f=$ Set of all real numbers.
Range $f=$ Set of all non-negative real numbers.

Example 3: Let $f(x)=\frac{x}{x^{2}-4}$. Find the domain and range of f.
Solution:
$f(x)=\frac{x}{x^{2}-4}$
$f(x)$ is iot defineci: $x^{2}-4=0 \Leftrightarrow x^{2}=-4$ or $= \pm 2$
Domair $f=\operatorname{sit}$ of all real numbers except -2 and 2.
Rarge $t=$ det f_{f} all real numbers.

Hertical Line Test:

If a vertical line meets a graph in more than one point, then it is not a graph of a function.

Piece-Wise (Compound) Function:

A function which is defined by two or more than two rules is called Piece-wise function.
For example:
$f(x)=\left\{\begin{array}{ccc}x & \text { if } & 0 \leq x \leq 1 \\ x-1 & \text { if } & 1<x \leq 2\end{array}\right.$

Algebraic Functions:

Algebraic functions are those functions which are defined by algebraic expressions.
For example:
$f(x)=3 x+5, f(x)=x^{2}+3 x+2$
We classify Algebraic functions as follows:
(i) Polynomial Function:

A function P of the form $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{,}$ for all x, where the coefficients $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$ are real numbers ancthe ex pontints are non-negative integers, is called polymiat fintion ff $a_{n} \neq 0$ then $R(a)$ is called a polynomial function of le
For example:
$P(x)=2 \cdot-3 \cdot x^{3} \cdot 2 x-1$ is phymmial function of degree 4 with leading coefficient 2.
(ii) İncar unctip:

If the dese: on a polynomial function is 1 , then it is called a linear function.
Symbolically we write $f(x)=a x+b$ where $a \neq 0, a, b$ are real numbers.

For example:

$f(x)=3 x+4, f(x)=x+2$ are linear functions of x.
(iii) Identity Function:

For any set X, a function $I: X \rightarrow X$ of the form $I(x)=x \quad \forall x \in X$ is mled an
identity function.
(iv) Constant Function:

Let X and Y he sets of real numbrs. Atacion of $x \rightarrow$ dedined by $C(x)=-0, \forall x=\tilde{X}, R \in \mathcal{C}$ anc fixed is called cosistant function. For example $C: R \rightarrow R$ defined by $c(-=)=2, \forall x-$ is a constant function.
12ainicunction:
A function $R(x)$ of the form $\frac{P(x)}{Q(x)}$, where both $P(x)$ and $Q(x)$ are polynomial functions and $Q(x) \neq 0$, is called a rational function.

Exponential Function:

A function, in which the variable appears as exponent (power), is called an exponential function. The functions $y=e^{a x}, y=e^{x}, y=2^{x}=e^{x \ln 2}$, etc are exponential functions of x.

Logarithmic Function:

If $x=a^{y}$, then $y=\log _{a} x$, where $a>0, a \neq 1$ is called Logarithmic function of x.
(i) If $a=10$, then we have $\log _{10} x$ (written as $\log x$) which is known as the common logarithm of x.
(ii) If $a=e$, then we have $\log _{e} x$ (written as $\ln x$) which is known as the natural logarithm of x.

Hyperbolic Functions:

(i) $\quad \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$ is called hyperbolic sine function. Its domain and range are the set of all real numbers.
(ii) $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ is called hyperbolic cosine funstion. Its domanit
 numbers and the range is the eetor gll nunbers in the in crval $\frac{r}{1,+(0)}$.
(iii) The remain ing forr hyperboficfunct ons aredefined in terms of the hyperbolic sine and the hyperbplic cos ne furction as follows:

$$
\begin{array}{ll}
\operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} \quad ; \quad \sec h x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}} \\
e^{x}+e^{-x} & \csc x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}
\end{array}
$$

Inverse Hyperbolic Functions:

The inverse hyperbolic functions are expressed in terms of natural logarithmi and shall study them in higher classes.
(i)

$$
\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right) \text {, for all } x \quad \text { (ii } \quad \cosh ^{-1} x=\operatorname{n}(x+\sqrt{(2-1}), x \geq 1
$$

(iii)

$$
\begin{aligned}
& \operatorname{tar}^{-1}{ }^{-1} x=\frac{1}{2} \ln \left(\frac{1+1}{11-x}\right), \sqrt{x} \mid<1 \\
& \operatorname{eech}^{-1} \\
& L^{2}=\ln \left(\frac{1}{x}+\frac{\sqrt{1}-\frac{\sqrt{2}}{2}}{x}\right), 0<x \leq 1
\end{aligned}
$$

(iv)

$$
\operatorname{secth} x=\frac{1}{2} \ln \left(\frac{1+1}{x-1}\right),|x|<1
$$

(v)

Ige el icit Function:

If y is easily expressed in terms of the independent variable x, then y is called an explicit function of x.
For example:
$y=x^{2}+2 x-1, y=\sqrt{x-1}$ are explicit functions of x.
Symbolically it can be written as $y=f(x)$.

Implicit Function:

If x and y are so mixed up and y cannot be expressed in terms of the independent variable x, then y is called an implicit function of x. For example,
$x^{2}+x y+y^{2}=2, \frac{x y^{2}-y+9}{x y}=1$ are implicit functions of x and y.
Symbolically it is written as $f(x, y)=0$.

Parametric Functions:

Sometimes a curve is described by expressing both x and y as function of a third variable " t " or " θ " which is called a parameter. The equations of the type $x=f(t)$ and $y=g(t)$ are called the parametric equations of the curve.
The functions of the form:
(i) $\begin{aligned} & x=a t^{2} \\ & y=a t\end{aligned}$
(ii) $\begin{aligned} & x=a \cos t \\ & y=a \sin t\end{aligned}$
(iii) $\begin{aligned} & x=a \cos \theta \\ & y=b \sin \theta\end{aligned}$
(iv) $\begin{aligned} & x=a \sec \theta \\ & y=a \tan \theta\end{aligned}$
are called parametric functions. Here the variable t or θ is called parameter.

Even Function:

A function f is said to be an even function if $f(-x)=f(x)$, for exers nariber x)r domain of f.

For example:

$f(x)=-x)^{2}, f(x)=\cos x$ are evenfurctions of x.

Odd Function

Affinction fis a to be an odd function if $f(-x)=-f(x)$, for every number x in the donain of f.

For example:

$f(x)=\sin x, f(x)=x^{3}$ are odd functions of x.

Some Important Results

Hyperbolic Identities:

- $\cosh ^{2} x+\sinh ^{2} x=\cosh 2 x$
- $\cosh ^{2} x-\sinh ^{2} x=1$
- $2 \sinh x \cosh x=\sinh 2 x$
- $1-\tanh ^{2} x-\sec h^{2} x$
- $\operatorname{coth}^{2} x-1=\operatorname{cosech}^{2} x$

Parametric Ecue tions:

$y==\cos \theta-L_{1}=L^{2}$
$x=a \cos \theta$
$y=b \sin \theta$
represent the equation of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
$x=a \sec \theta$
$y=b \tan \theta$
represent the equation of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

- $x=a t^{2}$
$y=2 a t$
represent the equation of parabola $y^{2}=4 a x$.

EXERCISE 1.1

Q. 1 Given that:

(a) $\quad f(x)=x^{2}-x$
(b) $\quad f(x)=\sqrt{x+4}$

Find
(i) $\quad f(-2)$
(ii) $\quad f(0)$
(iii) $\quad f(x-1)$
(iv) $\quad f\left(x^{2}+4\right)$
(a) $\quad f(x)=x^{2}-x$
(i) $\quad f(-2)$

Solution:

$$
\begin{aligned}
& f(x) \\
& \text { Pat } 7:=-2 \\
& \text { f) }\left(-2,2-(-2)^{2}-(-2)\right. \\
& =4+2 \\
& f(-2)=6
\end{aligned}
$$

(ii) $\quad f(0)$

Solution:

$$
f(x)=x^{2}-x
$$

Put $x=0$

$$
f(0)=0^{2}-0
$$

$$
f(0)=0
$$

(iii) $\quad f(x-1)$

Solution:

$$
f(x)=x^{2}<x
$$

$$
\operatorname{Rg} \text { lace } x \text { by } x-1
$$

$$
J_{f}(x-1)=(x-1)^{2}-(x-1)
$$

$$
\begin{aligned}
& =x^{2}-2 x+1-x+1 \\
& 1)=x^{2}-3 x+2
\end{aligned}
$$

(iv) $\quad f\left(x^{2}+4\right)$

Solution:

$$
f(x)=x^{2}-x
$$

Replace x by $x^{2}+4$

$$
\begin{aligned}
f\left(x^{2}+4\right) & =\left(x^{2}+4\right)^{2}-\left(x^{2}+4\right) \\
& =x^{4}+8 x^{2}+16-x^{2}-4 \\
f\left(x^{2}+4\right) & =x^{4}+7 x^{2}+12
\end{aligned}
$$

(b) $\quad f(x)=\sqrt{x-4}$
(i) $\quad f(-2)$

Solution:

$$
\begin{aligned}
& f(x)=\sqrt{x}+\frac{1}{4} \\
& \text { put } x=-2 \\
& f(-2)=\sqrt{-2+4} \\
& f(-2)=\sqrt{2}
\end{aligned}
$$

(ii) $\quad f(0)$

Solution:

$$
\begin{aligned}
f(x) & =\sqrt{x+4} \\
\text { Put } x & =0 \\
f(0) & =\sqrt{0+4}=\sqrt{4} \\
f(0) & =2
\end{aligned}
$$

(iii) $\quad f(x-1)$

Solution:

$$
f(x)=\sqrt{x+4}
$$

Replace x by $x-1$
$f(x-1)=\sqrt{x-1+4}$

$$
f(x-1)=\sqrt{x+3}
$$

(iv) $\quad f\left(x^{2}+4\right)$

Solution:

$$
f(x)=\sqrt{x+4}
$$

Replace x by $x^{2}+4$
$f\left(x^{2}+4\right)=\sqrt{x^{2}+4+4}$

where,

(i) $\quad f(x)=6 x-9$
(ii) $f(x)=\sin x$
(iii) $f(x)=x^{3}+2 x^{2}-1$
(iv) $\quad f(x)=\cos x$
(i)

Solution:

$$
f(x)=6 x-9
$$

$$
\begin{aligned}
& \frac{f(a+h)-f(a)}{h} \\
& =\frac{[6(a+h)-9]-(6 a-9)}{h} \\
& =\frac{6 a+6 h-9-6 a+9}{h} \\
& =\frac{6 h}{h} \\
& \frac{f(a+h)-f(a)}{h}=6
\end{aligned}
$$

(ii) $\quad f(x)=\sin x$

Solution:

$$
\begin{aligned}
& f(x)=\sin x \\
& \frac{f(a+h)-f(a)}{h} \\
& =\frac{\sin (a+h)-\sin a}{h} \\
& =\frac{1}{h}[\sin (a+h)-\sin a]
\end{aligned}
$$

$$
\because \sin P-\sin Q=2 \cos \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right)
$$

$$
=\frac{1}{h}[2 \cos (a+h+1 / 2
$$

$$
J=-\left[\cos \left(\frac{2 a+}{2} \frac{h}{2}\right) \sin \left[\frac{n}{2}\right)\right]
$$

$$
\frac{f(a+h)-f(a)}{h}=\frac{2}{h}\left[\cos \left(a+\frac{h}{2}\right) \sin \left(\frac{h}{2}\right)\right]
$$

(iii) $\quad f(x)=x^{3}+2 x^{2}-1$

Solution:

$$
\begin{aligned}
& f(x)=x^{3}+2 x^{2}-1 \\
& \frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

$=\frac{\left[(a+h)^{3}+2(a+h)^{2}-1\right]-\left[a^{3}+2 a^{2}-1\right]}{h}$
$=\frac{a^{3}+3 a^{2} h+3 a h^{2}+h^{3}+2\left(a^{2}+2 a h+h^{2}\right)-1-a^{3}-2 a^{2}+1}{h}$
$=\frac{\left.3 a^{2} h+3 a h^{2}+h^{3}+2 a^{2}+4 a h+2 h^{2}-2 a^{2}-2-2\right)}{}$

$\frac{\left[3 a+3 x+n^{2}+4 a+2 h\right]}{h}$

$$
\frac{f(a+h)-f(a)}{h}=3 a^{2}+3 a h+h^{2}+4 a+2 h
$$

(iv) $f(x)=\cos x$

Solution:

$$
\begin{aligned}
& f(x)=\cos x \\
& \frac{f(a+h)-f(a)}{h} \\
& =\frac{\cos (a+h)-\cos a}{h} \\
& =\frac{1}{h}[\cos (a+h)-\cos a] \\
& \because \cos P-\cos Q=-2 \sin \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right) \\
& =\frac{1}{h}\left[-2 \sin \left(\frac{a+h+a}{2}\right) \sin \left(\frac{a+h-a}{2}\right)\right] \\
& =-\frac{2}{h}\left[\sin \left(\frac{2 a+h}{2}\right) \sin \left(\frac{h}{2}\right)\right] \\
& \frac{f(a+h)-f(a)}{h}=-\frac{2}{h}\left[\sin \left(a+\frac{h}{2}\right) \sin \left(\frac{h}{2}\right)\right]
\end{aligned}
$$

Q. 3 Express the following:

(a) The perimeter P of square as $?$ function of its areas.
Solution:
Ietfo be the leigh het each side of qqua e hhen

$$
\begin{aligned}
A & =x^{2} \Rightarrow \sqrt{A}=\sqrt{x^{2}} \\
x & =\sqrt{A} \\
P & =4 x \ldots \text { (i) }
\end{aligned}
$$

Put $x=\sqrt{A}$ in equation (i)

$$
P=4 \sqrt{A}
$$

(b) Thearea A of circleas funcion f is circumference C.

Solation:

Let r be the radius of circle, then
$A=\pi r^{2} \ldots$ (i)
$C=2 \pi r \Rightarrow r=\frac{C}{2 \pi}$
Put $r=\frac{C}{2 \pi}$ in equation (i)
$A=\pi\left(\frac{C}{2 \pi}\right)^{2}$
$A=\pi \times \frac{C^{2}}{4 \pi^{2}}$
$A=\frac{C^{2}}{4 \pi}$
(c) The volume V of a cube as a function of the area A of its base.

Solution:

Let x be the length of each edge of a cube, then
$V=x^{3} \ldots$ (i)
$A=x^{2} \Rightarrow \sqrt{A}=\sqrt{x^{2}}$
$\sqrt{A}=x$
Put $x=\sqrt{A}$ in equation (i)
$V=(\sqrt{A})^{3}$
$\underline{V}=\underline{A}^{2}$
sind the ciomain and the range of the function g defined below, and sketch the graph of g.
(i) $\quad g(x)=2 x-5$

Solution:

$$
g(x)=2 x-5
$$

Domain $g=R$
Range $g=R$
(ii) $\quad g(x)=\sqrt{x^{2}-4}$

Solution:

$$
g(x)=\sqrt{x^{2}-4}
$$

$g(x)$ is defined in real nuraberrs 1
$x^{2}-4 \geq 0$
$x^{2} \geq 4$
$x-2$
$x-20$
Somain $g=(-\infty,-2] \cup[2, \infty)$
Range $g=[0, \infty)$
(iii) $g(x)=\sqrt{x+1}$

Solution:
$g(x)=\sqrt{x+1}$
$g(x)$ is defined in real numbers if
$x+1 \geq 0$
$x \geq-1$
Domain $g=[-1, \infty)$
Range $g=[0, \infty)$
(iv) $\quad g(x)=|x-3|$

Solution:
$g(x)=|x-3|$
Domain $g=R$
Range $g=[0, \infty)$
(v) $g(x)= \begin{cases}6 x+7 & x \leq-2 \\ 4-3 x & -2<x\end{cases}$

Solution:
$g(x)= \begin{cases}6 x+7 & x \leq-2 \\ 4-3 x & -2<x\end{cases}$
Domain $g=R$
For range:
If $x \leq-2$
Multiplein Eph sines by ó
$6 x \leq-12$
Adriing 7 on bethesides
$5 x+78-12+7$
$0 x+7 \leq-5$
$g(x) \leq-5$
$g(x) \in(-\infty,-5]$
If $x>-2$

Multiplying both sides by -3
$-3 x<6$
Adding 4 mabo h siaes

Range $g=(-\infty, 10)$
(vi)

$$
g(x)=\left\{\begin{array}{ccc}
x-1 & , & x<3 \\
2 x+1 & , & 3 \leq x
\end{array}\right.
$$

Solution:

$g(x)=\left\{\begin{array}{cc}x-1, & x<3 \\ 2 x+1, & 3 \leq x\end{array}\right.$
Domain $g=R$

For range:

If $x<3$
Subtracting ' 1 ' on both sides
$x-1<3-1$
$x-1<2$
$g(x)<2$
$g(x) \in(-\infty, 2)$
If $x \geq 3$
Multiplying both sides by 2
$2 x \geq 6$
$2 x+1 \geq 7$
$g(x) \geq 7$
$g(x) \in[7, \infty)$
Range $g=(-\infty, 2) \cup[7, \infty)$
(vii)

Soin ion:

$g(x)=\frac{x-3 x+2}{x+1}, \quad x \neq-1$
$g(x)$ is not defined if
$x+1=0 \Rightarrow x=-1$
Domain $g=R-\{-1\}$
Note: After the correction
For range:
$g(x)=\frac{x^{2}+3 x+2}{x+1}, \quad x \neq-1$

$$
\begin{array}{ll}
g(x)=\frac{x^{2}+2 x+x+2}{x+1}, \quad x \neq-1 \\
g(x)=\frac{x(x+2)+1(x+2)}{x+1}, x \neq-1 \\
g(x)=\frac{(x+2)(x+1)}{},
\end{array}
$$

$$
g(x)=, 2,
$$

By putting $x=-1$
$g(-)=-1+2=1$
Range $g=R-\{1\}$
(viii) $g(x)=\frac{x^{2}-16}{x-4}, \quad x \neq 4$

Solution:

$$
g(x)=\frac{x^{2}-16}{x-4}, \quad x \neq 4
$$

$g(x)$ is not defined if
$x-4=0 \Rightarrow x=4$
Domain $g=R-\{4\}$

For range:

$\begin{array}{ll}g(x)=\frac{(x-4)(x+4)}{x-4}, & x \neq 4 \\ g(x)=x+4, & x \neq 4\end{array}$
By putting $x=4$
$g(4)=4+4$
$g(4)=8$
Range $g=R-\{8\}$
Q. 5 Given $f(x)=x^{3}-a x^{2}+b x+1$.

If $f(2)=-3$ and $f(-1)=0$.
Find the values of a and b.
Solution:

$$
f(x)=x^{3}-a x^{2}+b x+1
$$

Putting $x=2$ in $f(x)$

2) $\int_{-1} 1$

 $-3=8-\cdot 4 a+2 b+1$$-3=-4 a-20$
$3-9-4 a+2 b$
$-12=-4 a+2 b$
$-12=-2(2 a-b)$
$\frac{-12}{-2}=2 a-b$

Adding equation (i) and equation (ii)
$2 a-b=6$

$a+b=0$
$3 a=6$

$$
\begin{aligned}
& a=\frac{6}{3} \\
& a=2
\end{aligned}
$$

Put $a=2$ in equation (ii)

$$
\begin{aligned}
2+b & =0 \\
b & =-2
\end{aligned}
$$

Q. 6 A stone falls from a height of 60 m on the ground, the height h after x second is approximately given by $h(x)=40-10 x^{2}$.
(i) What is the height of the stone when:
(a) $\quad x=1$ sec.

Solution:

$$
h(x)=40-10 x^{2}
$$

Put $x=1$ in $h(x)$

$$
\begin{aligned}
h(1) & =40-10(1)^{2} \\
& =40-10 \\
& =30 \mathrm{~m}
\end{aligned}
$$

(b) $\quad x=1.5 \mathrm{sec}$.

(ii) When does the stone strike the ground?

Solution:

When stone strikes the ground,
then $h(x)=0$
$40-10 x^{2}=0$

$$
\begin{gathered}
40=10 x^{2} \\
\frac{40}{10}=x^{2} \\
4=x^{2}
\end{gathered}
$$

By taking square root on both sides
As time is alvays a posilivequantuy therefore,
$\lambda=2 \sec$
Snov Pat the parametric equations:
(i) $x=a t^{2}, y=2 a t$ represent the equation of parabola $y^{2}=4 a x$
Solution:

$$
\begin{aligned}
& x=a t^{2} \ldots(\mathrm{i}) \\
& y=2 a t \Rightarrow t=\frac{y}{2 a}
\end{aligned}
$$

Put $t=\frac{y}{2 a}$ in equation (i)
$x=a\left(\frac{y}{2 a}\right)^{2}$
$x=a \times \frac{y^{2}}{4 a^{2}}$
$x=\frac{y^{2}}{4 a}$
$y^{2}=4 a x$
(ii) $x=a \cos \theta, y=b \sin \theta$ represent the equation of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Solution:

$$
x=a \cos \theta \Rightarrow \frac{x}{a}=\cos \theta
$$

Sqating ardadäng

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\cos ^{2} \theta+\sin ^{2} \theta$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(iii) $x=a \sec \theta, y=b \tan \theta$ represent the
equation of hyperesta $\frac{a^{2}}{2}-\frac{10}{b^{2}}=1$
Scituin:

,

$$
y=b \tan \theta \Rightarrow \frac{y}{b}=\tan \theta
$$

Squaring and subtracting
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\sec ^{2} \theta-\tan ^{2} \theta$
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Q. 8 Prove the identities:

(i) $\quad \sinh 2 x=2 \sinh x \cosh x$

Solution:

$$
\begin{aligned}
\text { L.H.S } & =\sinh 2 x \\
& =\frac{e^{2 x}-e^{-2 x}}{2} \ldots(\mathrm{i})
\end{aligned}
$$

R.H.S $=2 \sinh x \cosh x$
$=2\left(\frac{e^{x}-e^{-x}}{2}\right)\left(\frac{e^{x}+e^{-x}}{2}\right)$
$=\frac{\left(e^{x}\right)^{2}-\left(e^{-x}\right)^{2}}{2}$
$=\frac{e^{2 x}-e^{-2 x}}{2} \ldots$ (ii)
From equation (i) and equation (ii)

$$
\sinh 2 x=2 \sinh x \cosh \cdot x
$$

(ii)

$$
\begin{aligned}
& =\left(\frac{2}{e^{x}+e^{-x}}\right)^{2} \\
& =\frac{4}{\left(e^{x}+e^{-x}\right)^{2}} \ldots
\end{aligned}
$$

$$
\text { R.H.S }=1-\tanh ^{2} x
$$

$$
=1-\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{2}
$$

$=1-\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}$

$=\frac{e^{-x}+e^{-2 x}+2-e^{2 x}-e^{-2 x}+2}{\left(e^{x}+e^{-x}\right)^{2}}$
$=\frac{4}{\left(e^{x}+e^{-x}\right)^{2}} \ldots$ (ii)
From equation (i) and equation (ii)

$$
\operatorname{sech}^{2} x=1-\tanh ^{2} x
$$

(iii) $\operatorname{cosech}^{2} x=\operatorname{coth}^{2} x-1$

Solution:

$$
\begin{aligned}
\text { L.H.S } & =\operatorname{cosech}^{2} x \\
& =\left(\frac{2}{e^{x}-e^{-x}}\right)^{2} \\
& =\frac{4}{\left(e^{x}-e^{-x}\right)^{2}} \ldots
\end{aligned}
$$

R.H.S $=\operatorname{coth}^{2} x-1$
$=\left(\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}\right)^{2}-1$
$=\frac{\left(e^{x}+e^{-x}\right)^{2}}{\left(e^{x}-e^{-x}\right)^{2}}-1$

$=\frac{e^{2 x}+e^{-2 x}+2-e^{2 x}-e^{-2 x}+2}{\left(e^{x}-e^{-x}\right)^{2}}$

$$
=\frac{4}{\left(e^{x}-e^{-x}\right)^{2}} \ldots \text { (ii) }
$$

Eromesuatron (i) a equation (ii)
$\operatorname{cosech}^{2} x=\operatorname{coth} x-1$
Determine whether the given function f is even or odd.
(i) $f(x)=x^{3}+x$

Solution:

$$
f(x)=x^{3}+x
$$

Replace x by $-x$

$$
\begin{aligned}
f(-x) & =(-x)^{3}+(-x) \\
& =-x^{3}-x \\
& =-\left(x^{3}+x\right) \\
f(-x) & =-f(x)
\end{aligned}
$$

Hence $f(x)$ is an odd function.
(ii) $\quad f(x)=(x+2)^{2}$

Solution:

$$
f(x)=(x+2)^{2}
$$

Replace x by $-x$

$$
\begin{aligned}
f(-x) & =(-x+2)^{2} \\
& =[-(x-2)]^{2} \\
& =(x-2)^{2}
\end{aligned}
$$

As neither $f(-x)=f(x)$ nor
$f(-x)=-f(x)$
Hence, $f(r)$ is ne hereven or ode

Solution:

$f(x)=x \sqrt{x^{2}+5}$
Replace x by $-x$
$f(-x)=-x \sqrt{(-x)^{2}+5}$
$f(-x)=-x \sqrt{x^{2}+5}$
$f(-x)=-f(x)$
Hence $f(x)$ is an odd function.
(iv) $\quad f(x)=\frac{x-1}{x+1} \quad, \quad x \neq-1$

Solution:

$$
f(x)=\frac{x-1}{x+1}
$$

Replace x by $-x$

\square

$$
=\left(x^{2}\right)^{\frac{1}{3}}+6
$$

(vi) $f(x)=\frac{x^{3}-x}{x^{2}+1}$

Solution:

$$
f(x)=\frac{x^{3}-x}{x^{2}+1}
$$

Replace x by $-x$

$$
\begin{aligned}
f(-x) & =\frac{(-x)^{3}-(-x)}{(-x)^{2}+1} \\
& =\frac{-x^{3}+x}{x^{2}+1} \\
& =\frac{-\left(x^{3}-x\right)}{x^{2}+1} \\
& =-\frac{x^{3}-x}{x^{2}+1} \\
f(-x) & =-f(x)
\end{aligned}
$$

Hence, $f(x)$ is an odd function.

Composition of Functions:

Let f be a function from set X to set Y and g be a function from set Y to set Z.
The composition of f and g is a function, denoted by $g o f$, from X to Z and is defined by

$$
(g \circ f)(x)=g(f(x))=g f(x), \quad \forall x \in X
$$

Example 1: Let the real valued functions f and give defined $\bar{\sigma} f(x)=\{x+\cdots$ ad $g(x)=x^{2}-1$.
Obtained the expressions for (i) fgo (x) (ii) gt (x) (isi) $f^{2}(x)$ (iv) $g^{2}(x)$
Solution:
(i)

$$
f g(x)=f(g(x))=f\left(x^{2}-1\right)=2\left(x^{2}-1\right)+1=2 x^{2}-1
$$

(i) $O f(x)=g(f(x))=g(2 x+1)=(2 x+1)^{2}-1=4 x^{2}+4 x$
(iii) $\quad f^{2}(x)=f(f(x))=f(2 x+1)=2(2 x+1)+1=4 x+3$
(iv) $\quad g^{2}(x)=g(g(x))=g\left(x^{2}-1\right)=\left(x^{2}-1\right)^{2}-1=x^{4}-2 x^{2}$

We observe from (i) and (ii) that $f g(x) \neq g f(x)$

Note:
(i) It is important to note that in general, $g f(x) \neq f g(x)$, because af x means tia is applied first then followed by g, whereas f_{0} (i) mean th it; is alplealiret then followed by f
(ii) We sully write ff as $f f^{2} ; \mathrm{n}\left(\mathrm{d} f \cdot \mathrm{a} \cdot f f^{3}\right.$ and so on
(iii)

Inverse of a Function:

1, At f bealone-one function from X onto Y. The inverse function of f, denoted by f^{-1}, is
a function from Y onto X and is defined by $x=f^{-1}(y), \forall y \in Y$ iff $y=f(x), \forall x \in X$.
Example 2: Let $f: R \rightarrow R$ be the function defined by $f(x)=2 x+1$. find $f^{-1}(x)$

Solution:

We find the inverse of f as follows:
Write $f(x)=2 x+1=y$
So that y is the image of x under f.
Now solve this equation for x as follows:

$$
\begin{array}{ll}
& y=2 x+1 \\
\Rightarrow & 2 x=y-1 \\
\Rightarrow & x=\frac{y-1}{2} \\
\therefore & f^{-1}(y)=\frac{1}{2}(y-1) \quad\left[\because x=f^{-1}(y)\right]
\end{array}
$$

To find $f^{-1}(x)$, replace y by x.

$$
\therefore \quad f^{-1}(x)=\frac{1}{2}(x-1)
$$

Example 3: Without finding the inverse, state the domain and range of f^{-1}, where

$$
f(x)=2+\sqrt{x-1}
$$

Solution:
We see that f is not defined when $\& 1$.
$\therefore \quad$ Domain $f=[1,+\infty$,
As x varies over the inter val $[1+\infty$, the value of $\sqrt{x-1}$ varies over the interval
$[0,-\infty)$. So he clue $n \frac{r}{f}(x)=2+\sqrt{x-1}$ varies over the interval $[2,+\infty)$.
$\sqrt{\text { rate rec range }} f=[2,+\infty)$
By definition of inverse function f^{-1}, we have
Domain $f^{-1}=$ range $f=[2,+\infty)$
Range $f^{-1}=$ domain $f=[1,+\infty)$.

EXERCISE 1.2

Q. $1 \quad$ The real valued functions f and g are defined below. Find
(a) $\quad f \circ g(x)$
(b) $\operatorname{gof}(x)$
(c) $\quad f \circ f(x)$
(d) $\operatorname{gog}(x)$

$11 \sqrt{f(x)}=0 x+1, \quad g(x)=\frac{3}{x-1}, x \neq 1$

Solution:

$$
f(x)=2 x+1, \quad g(x)=\frac{3}{x-1}, \quad x \neq 1
$$

(a) $\quad f \circ g(x)$

$$
\begin{aligned}
f o g(x) & =f(g(x)) \\
& =f\left(\frac{3}{x-1}\right)
\end{aligned}
$$

Replace x by $\frac{3}{x-1}$ in $f(x)$.

$$
\begin{aligned}
& =2\left(\frac{3}{x-1}\right)+1 \\
& =\frac{6}{x-1}+1 \\
& =\frac{6+x-1}{x-1} \\
f o g(x) & =\frac{x+5}{x-1}
\end{aligned}
$$

(b) $\operatorname{gof}(x)$

$$
\begin{aligned}
g o f(x) & =g(f(x)) \\
& =g(2 x+1)
\end{aligned}
$$

Replace x by $2 x+1$ in $g(. x)$

$$
\begin{aligned}
f \circ f(x) & =f(f(x)) \\
& =f(2 x+1)
\end{aligned}
$$

Replace x by $2 x+1$ in $f(x)$

$=4 x+2+1$
$f_{5}(x)=4 x+3$
(d) $\operatorname{gog}(x)$

$$
\begin{aligned}
\operatorname{gog}(x) & =g(g(x)) \\
& =g\left(\frac{3}{x-1}\right)
\end{aligned}
$$

Replace x by $\frac{3}{x-1}$ in $g(x)$

$$
\begin{aligned}
& =\frac{3}{\frac{3}{x-1}-1} \\
& =\frac{3}{\frac{3-(x-1)}{x-1}} \\
& =\frac{3(x-1)}{3-x+1} \\
\operatorname{gog}(x) & =\frac{3(x-1)}{4-x}
\end{aligned}
$$

(ii) $\quad f(x)=\sqrt{x+1}, g(x)=\frac{1}{x^{2}}, x \neq 0$
(a) $\quad f o g(x)$

Solution:

$$
\begin{aligned}
f \circ g(x) & =f(g(x)) \\
& =f\left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

Replace. ty $\frac{1}{y^{2}} \operatorname{in} f(x)$
$=\sqrt{\frac{1}{x^{2}}+1}$

$$
=\sqrt{\frac{1+x^{2}}{x^{2}}}
$$

$$
f o g(x)=\frac{\sqrt{1+x^{2}}}{x}
$$

(b) $\operatorname{gof}(x)$

Solution:

$$
\begin{aligned}
\operatorname{gof}(x) & =g(f(x)) \\
& =g(\sqrt{x+1})
\end{aligned}
$$

Replace x hy $\sqrt{x+1}$ in $g(x)$

$$
\begin{aligned}
\text { (c) } & \begin{aligned}
& \text { Solution }(x) \\
& f o f(x)=f(f(x)) \\
&=f(\sqrt{x+1})
\end{aligned}
\end{aligned}
$$

Replace x by $\sqrt{x+1}$ in $f(x)$

$$
f \circ f(x)=\sqrt{\sqrt{x+1}+1}
$$

(d) $\operatorname{gog}(x)$

Solution:

$$
\begin{aligned}
\operatorname{gog}(x) & =g(g(x)) \\
& =g\left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

Replace x by $\frac{1}{x^{2}}$ in $g(x)$

$$
\begin{array}{r}
=\frac{1}{\left(\frac{1}{x^{2}}\right)^{2}} \\
=\frac{1}{\left(\frac{1}{x^{4}}\right)} \\
\operatorname{gog}(x)=x^{4}
\end{array}
$$

(iii)

Solution:

$$
\begin{aligned}
g o f(x) & =g(f(x)) \\
& =g\left(\frac{1}{\sqrt{x-1}}\right)
\end{aligned}
$$

Replace x by $\frac{1}{\sqrt{x-1}}$ in $g(x)$.

$$
\begin{aligned}
& =\left[\left(\frac{1}{\sqrt{x-1}}\right)^{2}+1\right]^{2} \\
& =\left(\frac{1}{x-1}+1\right)^{2} \\
& =\left(\frac{1+x-1}{x-1}\right)^{2} \\
& =\left(\frac{x}{x-1}\right)^{2}
\end{aligned}
$$

$$
\operatorname{ggt}(x)=\frac{-\frac{x^{2}}{(x-1)}}{1}
$$

(a) $\operatorname{fog}(x)$

Solation i

1) $g \cdot(x)=f(g(x))$

$$
=f\left(\left(x^{2}+1\right)^{2}\right)
$$

Replace x by $\left(x^{2}+1\right)^{2}$ in $f(x)$

Solution:

$$
\begin{aligned}
f \circ f(x) & =f(f(x)) \\
& =f\left(\frac{1}{\sqrt{x-1}}\right)
\end{aligned}
$$

Replace x by $\frac{1}{\sqrt{x-1}}$ in $f(x)$

(b) $\operatorname{gof}(x)$

Solution:

Replace x by $3_{x}^{x}-2 x^{2}$ in $g(x)$

$$
\begin{aligned}
& =\frac{2}{\sqrt{3 x^{4}-2 x^{2}}} \\
& =\frac{2}{\sqrt{x^{2}\left(3 x^{2}-2\right)}} \\
& \operatorname{gof}(x)=\frac{2}{x \sqrt{3 x^{2}-2}}
\end{aligned}
$$

(c) $\quad f \circ f(x)$

Solution:

$$
\begin{aligned}
f o f(x) & =f(f(x)) \\
& =f\left(3 x^{4}-2 x^{2}\right)
\end{aligned}
$$

Replace x by $3 x^{4}-2 x^{2}$ in $f(x)$

$$
f o f(x)=3\left(3 x^{4}-2 x^{2}\right)^{4}-2\left(3 x^{4}-2 x^{2}\right)^{2}
$$

(d) $\operatorname{gog}(x)$

Solution:

$$
\begin{aligned}
\operatorname{gog}(x) & =g(g(x)) \\
& =g\left(\frac{2}{\sqrt{x}}\right)
\end{aligned}
$$

Replace x by $\frac{2}{\sqrt{x}}$ in $g(x)$
Replace x by $\frac{2}{\sqrt{x}}$ in $f(x)$

$$
f o g(x)=3\left(\frac{2}{\sqrt{x}}\right)^{4}-2\left(\frac{2}{\sqrt{x}}\right)^{2}
$$

$$
\begin{aligned}
f o g(x) & =f(g(x)) \\
& =f\left(\frac{2}{\sqrt{x}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(3) \\
& =\frac{16}{16}=-\frac{48}{x^{2}}
\end{aligned}
$$

$$
\begin{equation*}
f o g(x)=\frac{8(6-x)}{x^{2}} \tag{7}
\end{equation*}
$$

(a) $\quad f \circ g(x)$

Solution:

Q. 2 For the real valued function f defined below find
(a) $\quad f^{-1}(x)$
(b) $\quad f^{-1}(-1)$ and verify
(i) $\quad f(x)=-2 x+q$
(a) $f^{-1}(x)$

Solusient

$$
\begin{aligned}
& y=f(x)=-2 x+8 \\
& y=-2 x+8 \\
& 2 x=8-y \\
& x=\frac{8-y}{2} \\
& \because y=f(x) \Rightarrow f^{-1}(y)=x \\
& f^{-1}(y)=\frac{8-y}{2}
\end{aligned}
$$

Replacing y by x

$$
f^{-1}(x)=\frac{8-x}{2}
$$

(b) $\quad f^{-1}(-1)$

Solution:

$$
f^{-1}(x)=\frac{8-x}{2}
$$

Putting $x=-1$

$$
\begin{aligned}
& f^{-1}(-1)=\frac{8-(-1)}{2} \\
& f^{-1}(-1)=\frac{9}{2}
\end{aligned}
$$

Verification:

$$
\begin{aligned}
& =-2\left(\frac{8-x}{2}\right)+8 \\
& =-8+x+8 \\
& =x
\end{aligned}
$$

Now $f^{-1}(f(x))=f^{-1}(-2 x+8)$
Replace x by $-2 x$ \&in $f^{-1}(x)$

$$
\begin{aligned}
& =\frac{2}{2} \\
& =\frac{2 x}{x} \\
& =x \\
f\left(f^{-1}(x)\right) & =f^{-1}(f(x))=x
\end{aligned}
$$

(ii) $\quad f(x)=3 x^{3}+7$
(a) $f^{-1}(x)$

Solution:

$$
\begin{aligned}
& y=f(x)=3 x^{3}+7 \\
& y=3 x^{3}+7 \\
& y-7=3 x^{3} \\
& \frac{y-7}{3}=x^{3}
\end{aligned}
$$

By taking cube root on both sides.
$\left(\frac{y-7}{3}\right)^{\frac{1}{3}}=x$
$\because y=f(x) \Rightarrow f^{-1}(y)=x$
$f^{-1}(y)=\left(\frac{y-7}{3}\right)^{\frac{1}{3}}$
Replacing y by x
$f^{-1}(x)=\left(\frac{x-7}{3}\right)^{\frac{1}{3}}$
(b) $f-(-(T)$

Solution:

$$
f^{-1}(x)=\left(\frac{x-7}{3}\right)^{\frac{1}{3}}
$$

By putting $x=-1$

$$
\begin{aligned}
f^{-1}(-1) & =\left(\frac{-1-7}{3}\right)^{\frac{1}{3}} \\
& =\left(\frac{-8}{3}\right)^{\frac{1}{3}}
\end{aligned}
$$

Verification:

$$
f\left(f^{-1}(x)\right)=f\left(\left(\frac{x-7}{3}\right)^{\frac{1}{3}}\right)
$$

$$
\begin{aligned}
& =3\left(\frac{x-7}{3}\right)+7 \\
& =x-7+7 \\
& =x
\end{aligned}
$$

(iii) $\quad f(x)=(-x+9)^{3}$
(a) $\quad f^{-1}(x)$

Solution:

$f^{-1}(y)=9-y^{\frac{1}{3}}$

Now $f^{-1}(f(x))=f^{-1}\left(3 x^{3}+7\right)$
Replace x by $3 x^{3}+7$ in $f^{-1}(x)$

$$
\begin{aligned}
& =\left(\frac{3 x^{3}+7-7}{3}\right)^{\frac{1}{3}} \\
& =\left(\frac{3 x^{3}}{3}\right)^{\frac{1}{3}} \\
& =\left(x^{3}\right)^{\frac{1}{3}} \\
& =x \\
f\left(f^{-1}(x)\right) & =f^{-1}(f(x))=x
\end{aligned}
$$

$$
\begin{aligned}
y=f(x) & =(-x+9)^{3} \\
y & =(-x+9)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =9-\left((-x+9)^{3}\right)^{\frac{1}{3}} \\
& =9-(-x+9) \\
& =9+x-9 \\
& =x \\
f\left(f^{-1}(x)\right) & =f^{-1}(f(x))=x
\end{aligned}
$$

Verification:

$$
f\left(f^{-1}(x)\right)=f\left(9-x^{\frac{1}{3}}\right)
$$

Replace x by $9-x^{\frac{1}{3}}$ in $f(x)$

$$
\begin{aligned}
& =\left(-\left(9-x^{\frac{1}{3}}\right)+9\right)^{3} \\
& =\left(-9+x^{\frac{1}{3}}+9\right)^{3} \\
& =\left(x^{\frac{1}{3}}\right)^{3} \\
& =x
\end{aligned}
$$

$$
x=9-y^{\frac{1}{3}}
$$

$$
\because y=f(x) \Rightarrow f^{-1}(y)=x
$$

(iv) $f(x)=\frac{2 x+1}{x-1}, x>1$
(a) $\quad f^{-1}(x)$

Solution:

$$
y=f(x)=-\frac{2 x+1}{-\frac{1}{2}}
$$

$f(x-1)=2 x+1$

$$
\begin{aligned}
& x y-y=2 x+1 \\
& x y-2 x=y+1 \\
& x(y-2)=y+1 \\
& x=\frac{y+1}{y-2} \\
& \because y=f(x) \Rightarrow f^{-1}(y)=x \\
& f^{-1}(y)=\frac{y+1}{y-2}
\end{aligned}
$$

Replacing y by x

$$
f^{-1}(x)=\frac{x+1}{x-2}
$$

(b) $\quad f^{-1}(-1)$

Solution:

$$
f^{-1}(x)=\frac{x+1}{x-2}
$$

Putting $x=-1$

$$
\begin{aligned}
& f^{-1}(-1)=\frac{-1+1}{-1-2} \\
& f^{-1}(-1)=0
\end{aligned}
$$

Verification:

$$
=\frac{2\left(\frac{x+1}{x-2}\right)+1}{\frac{x+1}{x-2}-1}
$$

$$
=\frac{\frac{2(x+1)+x-2}{x}}{x+2}
$$

(ii) $\quad f(x)=\frac{x-1}{x-4}, x \neq 4$

Solution:

$$
f(x)=\frac{x-1}{x-4}, x \neq 4
$$

Domain $f-R-\{4\}$
Range $=R-\{1\}$
By the definition of inverse function

Domain $f^{-1}=$ Range $f=R-\{1\}$
Range $f^{-1}=$ Domain $f=R-\{4\}$
(iii) $\quad f(x)=\frac{1}{x+3}, x \neq-3$

Solution:

$$
f(x)=\frac{1}{x+3}
$$

Domain $f=R-\{-3\}$

Range $f=R-\{0\}$
By the definitionsforse finetion
隹

$$
\text { (iv) } \quad f(x)=(x-5)^{2}, x \geq 5
$$

Solution:

$f(x)=(x-5)^{2}, x \geq 5$
Domain $f=[5, \infty)$
Range $f=[0, \infty)$
By the definition of inverse function f^{-1}, we have
Domain $f^{-1}=$ Range $f=[0, \infty)$
Range $f^{-1}=$ Domain $f=[5, \infty)$

Limit of a Function:

Let a function $f(x)$ be defined in an open interval near the number a (need not at a).
If, as x approaches a from both left and right side of $a, f(x)$ approaches a specific number L, then L is called the limit of $f(x)$ as x approaches a. Symbolically it is written as: $\operatorname{Lim}_{x \rightarrow a} f(x)=L$ (read as "limit of $f(x)$, as $x \rightarrow a$, is L ")
Example: If $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ is a polynomial function of degree n, then show that: $\operatorname{Lim}_{x \rightarrow c} P(x)=P(c)$

Solution:

Using the theorems on limits, we have

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow c} P(x) & =\operatorname{Lim}_{x \rightarrow c}\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\right) \\
& =a_{n} \operatorname{Lim}_{x \rightarrow c} x^{n}+a_{n-1} \operatorname{Lim}_{x \rightarrow c} x^{n-1} \biguplus+a_{1} \lim _{\rightarrow c} x+a_{x}^{\operatorname{Lin}} a_{0} \\
& =a_{n} c^{n}+a_{n-1} c^{n-1}+\ldots-a_{a}
\end{aligned}
$$

$\left.\therefore \operatorname{Lim}_{x \rightarrow c}()^{\prime}\right)=P(c)$

Limits Of Imports

Tharerr: Frotrat $\operatorname{Lim}_{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$, where n is an integer and $a>0$.
graf: Case-I: Suppose n is a positive integer.
By substituting $x=a$, we get $\left(\frac{0}{0}\right)$ form, so we make factors as follows:

$$
x^{n}-a^{n}=(x-a)\left(x^{n-1}+a x^{n-2}+a^{2} x^{n-3}+\ldots \ldots \ldots .+a^{n-1}\right)
$$

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a} & =\operatorname{Lim}_{x \rightarrow a} \frac{(x-a)\left(x^{n-1}+a x^{n-2}+a^{2} x^{n-3}+\ldots \ldots \ldots+a^{n-1}\right)}{(x-a)} \\
& =\operatorname{Lim}_{x \rightarrow a}\left(x^{n-1}+a x^{n-2}+a^{2} \ldots n^{n-3}+\ldots \ldots \ldots+a^{n}\right) \\
& =a^{n-1}+a a^{n-2}+a^{2} a^{n-3}+\ldots \cdot \ldots \ldots \ldots+a^{n} \\
& =a^{n-1}+a^{n-1}+a^{n-1}-\ldots \ldots+a^{n-1}
\end{aligned}
$$

Case-II: $\quad \$ 4 \mathrm{pl}$ Sse n is a restive inter (say $n=-m$), where m is a positive integer

$$
\begin{aligned}
& \frac{x-a^{n}}{x-a}=\frac{x^{-m}-a^{-m}}{x-a} \\
&=\frac{\frac{1}{x^{m}}-\frac{1}{a^{m}}}{x-a} \\
&=\frac{\frac{a^{m}-x^{m}}{x^{m} a^{m}}}{x-a} \\
&=\frac{-1}{x^{m} a^{m}}\left(\frac{x^{m}-a^{m}}{x-a}\right),(a \neq 0)
\end{aligned}
$$

Now, $\quad \operatorname{Lim}_{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=\operatorname{Lim}_{x \rightarrow a} \frac{-1}{x^{m} a^{m}}\left(\frac{x^{m}-a^{m}}{x-a}\right)$

$$
=\left(\operatorname{Lim}_{x \rightarrow a} \frac{-1}{x^{m} a^{m}}\right) \times\left(\operatorname{Lim}_{x \rightarrow a} \frac{x^{m}-a^{m}}{x-a}\right)
$$

$$
=-m a^{m-1-m-m}
$$

$$
=n a^{n-1} \quad(n=-m)
$$

Example 1: Evaluate $\operatorname{Lim}_{x \rightarrow-\infty} \frac{4 x^{4}-5 x^{3}}{3 x^{5}+2 x^{2}+1}$

Solution:

Since $x<0$, so dividing up and down by $(--x)^{5}=-x^{5}$ vert

$$
=\frac{-1}{a^{m} a^{m}} m a^{m-1} \quad(\text { By Case-I) }
$$

$$
=(-m) a^{-m-1}
$$

\therefore Dividing up and down by $-x$, we get

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow-\infty} \frac{2-3 x}{\sqrt{3+4 x^{2}}}=\operatorname{Lim}_{x \rightarrow-\infty} \frac{-\frac{2}{x}+3}{\sqrt{\frac{3}{x^{2}}}+1} \\
&=0+3=3 \\
& \sqrt{6+4}
\end{aligned}
$$

Example 30. Evaluaty $\operatorname{lin}_{2}-\frac{2}{\sqrt{3+4 x^{2}}}$

sonatien:

Here $\sqrt{x^{2}}=|x|=x$ as $x>0$
\therefore Dividing up and down by x, we get

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow+\infty} \frac{2-3 x}{\sqrt{3+4 x^{2}}}=\operatorname{Lim}_{x \rightarrow+\infty} \frac{\frac{2}{x}-3}{\sqrt{\frac{3}{x^{2}}+4}} \\
& =\frac{0-3}{\sqrt{0+4}}=-\frac{3}{2}
\end{aligned}
$$

Theorem: \quad Prove that $\operatorname{Lim}_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$

Proof:

By the binomial theorem, we have

$$
\begin{aligned}
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =1+n\left(\frac{1}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{1}{n}\right)^{2}+\frac{n(n-1)(n-2)}{3!}\left(\frac{1}{n}\right)^{3}+\ldots \\
& =1+1+\frac{1}{2!} n(n-1) \times \frac{1}{n^{2}}+\frac{1}{3!} n(n-1)(n-2) \times \frac{1}{n^{3}}+\ldots \\
& =2+\frac{1}{2!} n^{2}\left(1-\frac{1}{n}\right) \cdot \frac{1}{n^{2}}+\frac{1}{3!} n^{3}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \frac{1}{n^{3}}+\ldots \\
& =2+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\ldots
\end{aligned} \\
\begin{aligned}
\operatorname{Lim}_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} & =\operatorname{Lim}_{n \rightarrow \infty}\left[2+\frac{1}{2!} 11-\frac{1}{n}\right) \\
& =2+\frac{1}{2!}(1-0)+\frac{1}{3!}(1-0)(1-0)+\ldots \\
& =2+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots \\
& =2+0.5+0.166667+0.0416667+\ldots \\
& =2.718281 \ldots
\end{aligned}
\end{aligned}
$$

As approximate value of e is 2.718281, so

$$
\operatorname{Lim}_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=e
$$

Deduction: $\operatorname{Lim}_{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e$
Proof:
We know that Lin

$\left(+\frac{1}{n}\right)^{\prime \prime}=e$

Put $n=\frac{1}{x}$, then $\frac{1}{n}=x$
When $n \rightarrow \infty, x \rightarrow 0$
As $\operatorname{Lim}_{x \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$

$$
\operatorname{Lim}_{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e
$$

Theorem: Prove that $\operatorname{Lim}_{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a$

Proof:

Put $a^{x}-1=y$
Then $a^{x}=1+y$
Taking logarithm on both sides with base a.

$$
\log _{a} a^{x}=\log _{a}(1+y)
$$

$$
x \cdot \log _{a} a=\log _{a}(1+y)
$$

So $x=\log _{a}(1+y)$
From (i) when $x \rightarrow 0, y \rightarrow 0$

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a
$$

Deduction: $\quad \operatorname{Lim}_{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right)=\log _{e} e=1$
We kn(6) hat $\left.\operatorname{Lim}_{x \rightarrow 0} \frac{\left(a^{x}-1\right.}{x}\right)=\log _{e} a$
(i)

$$
\begin{aligned}
& \text { Fut } a=\operatorname{lin} \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{e^{x}-1}{x}=\log _{e} e=1
\end{aligned}
$$

The Sandwitch Theorem:

Let f, g and h be functions such that $f(x) \leq g(x) \leq h(x)$ for all numbers x in some open interval containing c, except possibly at c itself.
If $\operatorname{Lim}_{x \rightarrow c} f(x)=L$ and $\operatorname{Lim}_{x \rightarrow c} h(x)=L$, then $\operatorname{Lim}_{x \rightarrow c} g(x)=L$
Theorem: If θ is measured in radian, then $\operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$
Proof: \quad Take θ a positive acute central angle of a circle with radius $r=1$.
Produce $\overline{O B}$ to D, so that $\overline{A D} \perp \overline{O A}$.
Draw $\overline{B C} \perp \overline{O A}$. Join A and B. As show in figure, $O A B$ represent a sector of the circle.
Given $|\overline{O A}|=|\overline{O B}|=1 \quad$ (radii of unit circle)
In right $\triangle O C B, \sin \theta=\frac{|\overline{B C}|}{|\overrightarrow{O B}|}=|\overline{B C}| \quad \quad(|\overline{O B}|=1)$
In right $\triangle O A D, \tan \theta=\frac{|\overrightarrow{A D}|}{|\overrightarrow{O A}|}=|\overline{A D}| \quad(|\overrightarrow{O A}|=1)$

In terms of θ, the areas are expressed as:
(i) Area of $\triangle O A B=\frac{1}{2}|\overline{O A}||\overline{B C}|=\frac{1}{2}(1) \sin \theta=\frac{1}{2} \sin \theta$
(ii) Area of \sec or $O A B=1-r^{2} \theta=\frac{1}{2}(t)^{2} \theta=1-\theta \leq(\cdot=1)$
(ivi)

$$
\text { Area of } A C A D=\frac{1}{2} A \left\lvert\,-\frac{1}{2}(1) \tan \theta\right.
$$

irom the figure we see that
Area or $\triangle O A B<$ Area of sector $O A B<$ Area of $\triangle O A D$
$\frac{1}{2} \sin \theta<\frac{\theta}{2}<\frac{1}{2} \tan \theta$
$\frac{1}{2} \sin \theta<\frac{\theta}{2}<\frac{1}{2} \frac{\sin \theta}{\cos \theta}$

As $\sin \theta$ is positive, so on division by $\frac{1}{2} \sin \theta$, we get

©..., $1>\frac{\sin \theta}{\theta}>\cos \theta \quad$ or $\quad \cos \theta<\frac{\sin \theta}{\theta}<1$
when $\theta \rightarrow 0, \cos \theta \rightarrow 1$
since $\frac{\sin \theta}{\theta}$ is sandwitched between 1 and a quantity approaching 1 itself.
So, by the sandwitch theorem, it must also approach 1 .
i.e., $\operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$

Limits of Important Functions:

EXERCISE 1.3

Q. 1 Evaluate each limit by using theorems of limits:
(i) $\quad \operatorname{Lim}_{x \rightarrow 3}(2 x+4)$

Solution:

$$
\begin{aligned}
& \left.\operatorname{Lim}_{x \rightarrow 3}(2 x) \cdot 4\right) \\
& \because \operatorname{Lim}_{x-a}[f(x)+g(x)]=\lim _{x \rightarrow 3}^{\operatorname{Lim}} f(x)+\operatorname{Lim}_{x \rightarrow a} g(x) \\
& \\
& \because \operatorname{Lim}_{x \rightarrow 3}(4) \\
& =2 \operatorname{Lim}_{x \rightarrow a}[k f(x)]=k\left[\operatorname{Lim}_{x \rightarrow a} f(x)\right] \\
& =2(3)+4 \\
& =6+4 \\
& =10
\end{aligned}
$$

$$
\operatorname{Lim}_{x \rightarrow 3}(2 x+4)=10
$$

(ii) $\operatorname{Lim}_{x \rightarrow 1}\left(3 x^{2}-2 x+4\right)$

Solution:

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 1}\left(3 x^{2}-2 x+4\right) \\
\because & \operatorname{Lim}_{x \rightarrow a}[f(x) \pm g(x)]=\operatorname{Lim}_{x \rightarrow a}[f(x)] \pm \operatorname{Lim}_{x \rightarrow a}[g(x)]
\end{aligned}
$$

$$
=\operatorname{Lim}_{x \rightarrow 1}\left(3 x^{2}\right)-\operatorname{Lim}_{x \rightarrow 1}(2 x)+\operatorname{Lim}_{x \rightarrow 1}(4)
$$

$$
\because \operatorname{Lim}_{x \rightarrow a}[k f(x)]=k\left[\operatorname{Lim}_{x \rightarrow a} f(x)\right]
$$

$$
=3 \operatorname{Lim}_{x \rightarrow 1}\left(x^{2}\right)-2 \operatorname{Lim}_{x \rightarrow 1}(x)+4
$$

$$
=3(1)^{2}-2(1)+4
$$

$$
=3-2+4
$$

$$
=5
$$

(iii)

Solution:
$\lim _{x \rightarrow 3} \sqrt{9}+x+4$

$$
\begin{aligned}
& \because \operatorname{Lim}_{x \rightarrow a}[f(x)]^{n}=\left[\operatorname{Lim}_{x \rightarrow a} f(x)\right]^{n} \\
& =\sqrt{\operatorname{Lim}_{x \rightarrow 3}\left(x^{2}+x+4\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \because \operatorname{Lim}_{x \rightarrow a}[f(x)]^{n}=\left[\operatorname{Lim}_{x \rightarrow a} f(x)\right]^{n} \\
& =\sqrt{\operatorname{Lim}_{x \rightarrow 2}\left(x^{3}+1\right)}-\sqrt{\operatorname{Lim}_{x \rightarrow 2}\left(x^{2}+5\right)} \\
& \because \operatorname{Lim}_{x \rightarrow a}[f(x)+g(x)]=\operatorname{Lim}_{x \rightarrow a} f(x)+\operatorname{Lim}_{x \rightarrow a} g(x) \\
& =\sqrt{\operatorname{Lim}_{x \rightarrow 2} x^{3}+\operatorname{Lim}_{x \rightarrow 2} 1}-\sqrt{\operatorname{Lim}_{x \rightarrow 2} x}+\sqrt{\operatorname{iv}_{x \rightarrow 2} 15} \\
& =\sqrt{2^{3}}+1-\sqrt{2^{2}+5} \\
& =\sqrt{9}-\sqrt{9} \\
& \lim _{x \rightarrow 2}\left(\sqrt{x^{3}}+1-\sqrt{x^{2}+5}\right)=0 \\
& \text { (vi) } \operatorname{Lim}_{x \rightarrow-2} \frac{2 x^{3}+5 x}{3 x-2}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow-2} \frac{2 x^{3}+5 x}{3 x-2} \\
& \because \operatorname{Lim}_{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\operatorname{Lim}_{x \rightarrow a} f(x)}{\underset{x \rightarrow a}{\operatorname{Lim} g(x)}} \\
& =\frac{\operatorname{Lim}_{x \rightarrow-2}\left(2 x^{3}+5 x\right)}{\operatorname{Lim}_{x \rightarrow-2}(3 x-2)} \\
& \because \operatorname{Lim}_{x \rightarrow a}[f(x) \pm g(x)]=\operatorname{Lim}_{x \rightarrow a}[f(x)] \pm \operatorname{Lim}_{x \rightarrow a}[g(x)] \\
& =\frac{\operatorname{Lim}_{x \rightarrow-2}\left(2 x^{3}\right)+\operatorname{Lim}_{x \rightarrow-2}(5 x)}{\operatorname{Lim}_{x \rightarrow-2}(3 x)-\operatorname{Lim}_{x \rightarrow-2}(2)} \\
& \because \operatorname{Lim}_{x \rightarrow a}[k f(x)]=k\left[\operatorname{Lim}_{x \rightarrow a} f(x)\right] \\
& =\frac{2 \operatorname{Lim}_{x \rightarrow-2}\left(x^{3}\right)+5 \operatorname{Lim}_{x \rightarrow-2}(x)}{3 \operatorname{Lim}_{x \rightarrow-2}(x)-\operatorname{Lim}_{x \rightarrow-2}(2)} \\
& =\frac{2(-2)^{3}+5(-2)}{3(-2)-2} \\
& =\frac{2(-8)+5(-2)}{3(-2)-2}
\end{aligned}
$$

Hence $\operatorname{Lim}_{x \rightarrow-2} \frac{2 x^{3}+5 x}{3 x-2}=\frac{13}{4}$
Q. 2 Evaluate each limit by using algebraic technignes.
(i)

Sclition:

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow-1} \frac{x^{3}-x}{x+1} \\
& =\operatorname{Lim}_{x \rightarrow-1} \frac{x\left(x^{2}-1\right)}{x+1} \\
& =\operatorname{Lim}_{x \rightarrow-1} \frac{x(x-1)(x+1)}{x+1} \\
& =\operatorname{Lim}_{x \rightarrow-1} x(x-1) \\
& =-1(-1-1) \\
& =-1(-2) \\
& =2 \\
& \operatorname{Lim}_{x \rightarrow-1} \frac{x^{3}-x}{x+1}=2
\end{aligned}
$$

(ii) $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{3 x^{3}+4 x}{x^{2}+x}\right)$

Solution:

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0}\left(\frac{3 x^{3}+4 x}{x^{2}+x}\right) \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{x\left(3 x^{2}+4\right)}{x(x+1)} \\
& =\frac{0+4}{0+1} \\
& =4 \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{3 x^{3}+4 x}{x^{2}+x}=4
\end{aligned}
$$

(iii) $\operatorname{Lim}_{x \rightarrow 2} \frac{x^{3}-8}{x^{2}+x-6}$

Solution:

$$
\operatorname{Lim}_{x \rightarrow 2} \frac{x^{3}-8}{x^{2}+x-6}
$$

$$
=\operatorname{Lim}_{x \rightarrow 2}, \frac{x}{3 x}-2^{3}=6
$$

$$
=\operatorname{Lim}_{x \rightarrow 2} \frac{P x-2)\left(x^{2}+2 x+2^{2}\right)}{x(x+3)-2(x+3)}
$$

$$
=\operatorname{Lim}_{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x+3)(x-2)}
$$

$$
=\operatorname{Lim}_{x \rightarrow 2} \frac{x^{2}+2 x+4}{x+3}
$$

$$
=\frac{2^{2}+2(2)+4}{2+3}
$$

$$
=\frac{4+4+4}{5}
$$

$$
=\frac{12}{5}
$$

$$
\operatorname{Lim}_{x \rightarrow 2} \frac{x^{3}-8}{x^{2}+x-6}=\frac{12}{5}
$$

(iv) $\quad \operatorname{Lim}_{x \rightarrow 1} \frac{x^{3}-3 x^{2}+3 x-1}{x^{3}-x}$

Solution:

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 1} \frac{x^{3}-3 x^{2}+3 x-1}{x^{3}-x} \\
= & \operatorname{Lim}_{x \rightarrow 1} \frac{\left(x^{3}\right)-3(x)^{2}(1)+3(x)(1)^{2}-(1)^{3}}{x\left(x^{2}-1\right)} \\
= & \left.\operatorname{Lim}_{x \rightarrow-1} x-x-1\right)
\end{aligned}
$$

(vi) $\operatorname{Lim}_{x \rightarrow 4} \frac{2 x^{2}-32}{x^{3}-4 x^{2}}$

Solution:
$\operatorname{Lim}_{x \rightarrow 4} \frac{2 x^{2}-32}{x^{3}-4 x^{2}}$

$=\operatorname{Lim}_{x \rightarrow 4} \frac{2(x-4)(x+4)}{x^{2}(x-4)}$
$=\operatorname{Lim}_{x \rightarrow 4} \frac{2(x+4)}{x^{2}}$
$=\frac{2(4+4)}{4^{2}}$

$$
\begin{aligned}
& =\frac{2 \times 8}{16} \\
& =1 \\
& \operatorname{Lim}_{x \rightarrow 4}\left(\frac{2 x^{2}-32}{x^{3}-4 x^{2}}\right)=1
\end{aligned}
$$

(vii)

$\operatorname{Lim}_{x \rightarrow 2} \frac{\sqrt{x}-\sqrt{2}}{x-2}$

Solution.

$$
\lim _{x \rightarrow 2} \frac{\sqrt{9}-\sqrt{2}}{x-2}
$$

By Rationalizing the numerator

$$
\begin{aligned}
& =\operatorname{Lim}_{x \rightarrow 2} \frac{\sqrt{x}-\sqrt{2}}{x-2} \times \frac{\sqrt{x}+\sqrt{2}}{\sqrt{x}+\sqrt{2}} \\
& =\operatorname{Lim}_{x \rightarrow 2} \frac{(\sqrt{x})^{2}-(\sqrt{2})^{2}}{(x-2)(\sqrt{x}+\sqrt{2})} \\
& =\operatorname{Lim}_{x \rightarrow 2} \frac{x-2}{(x-2)(\sqrt{x}+\sqrt{2})}
\end{aligned}
$$

$$
=\operatorname{Lim}_{x \rightarrow 2} \frac{1}{\sqrt{x}+\sqrt{2}}
$$

$$
=\frac{1}{\sqrt{2}+\sqrt{2}}
$$

$$
=\frac{1}{2 \sqrt{2}}
$$

$$
\operatorname{Lim}_{x \rightarrow 2} \frac{\sqrt{x}-\sqrt{2}}{x-2}=\frac{1}{2 \sqrt{2}}
$$

(viii) $\operatorname{Lim}_{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$

Solution:

$$
\operatorname{Lim}_{h \rightarrow 0} \frac{\sqrt{x+h}}{}-\frac{\sqrt{x}}{}
$$

By raticnalizily the nu nerator

$$
=\operatorname{Lim}_{h \rightarrow 0} \frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h[\sqrt{x+h}+\sqrt{x}]}
$$

Q. 3 Evaluate the following limits:
(i) $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 7 x}{x}$

Solution:

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{\sin (7 x)}{x}
$$

Multiply and divide by?
$=\operatorname{Lim}_{x \rightarrow 1} 7 \times-11^{2} x$

$=-\lim _{x \rightarrow 0} \frac{\sin 7 x}{7 x}$
As $x \rightarrow 0$, then $7 x \rightarrow 0$

$$
=7 \operatorname{Lim}_{7 x \rightarrow 0} \frac{\sin 7 x}{7 x}
$$

$=7(1)$

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 7 x}{x}=7
$$

(ii) $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x^{\circ}}{x}$

Solution:

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x^{\circ}}{x}
$$

As $\quad 1^{\circ}=\frac{\pi}{180}$ radian

$$
x^{\circ}=\frac{\pi x}{180} \text { radian }
$$

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x^{\circ}}{x}=\operatorname{Lim}_{x \rightarrow 0} \frac{\sin \left(\frac{\pi x}{180}\right)}{x}
$$

Multiply and divide by $\frac{\pi}{180}$

$$
=\operatorname{Lim}_{x \rightarrow 0} \frac{\pi}{100} \times \frac{\sin \left(\frac{\pi x}{180}\right)}{\pi}
$$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0} \frac{\sin x^{\circ}}{x}=\frac{\pi}{180} \\
& \hline
\end{aligned}
$$

$$
\text { (iii) } \operatorname{Lim}_{\theta \rightarrow 0} \frac{1-\cos \theta}{\sin \theta}
$$

Solution:

$$
\operatorname{Lim}_{\theta \rightarrow 0} \frac{1-\cos \theta}{\sin \theta}
$$

By rationalizing the numerator
$=\operatorname{Lim}_{\theta \rightarrow 0} \frac{1-\cos \theta}{\sin \theta} \times \frac{1+\cos \theta}{1+\cos \theta}$
$=\operatorname{Lim}_{\theta \rightarrow 0} \frac{1^{2}-\cos ^{2} \theta}{\sin \theta(1+\cos \theta)}$
$=\operatorname{Lim}_{\theta \rightarrow 0} \frac{1-\cos ^{2} \theta}{\sin \theta(1+\cos \theta)}$
$=\operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin ^{2} \theta}{\sin \theta(1+\cos \theta)}$
$=\operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin \theta}{1+\cos \theta}$
$=\frac{\sin 0}{1+\cos 0}=\frac{0}{1+1}=\frac{0}{2}=0$
$\operatorname{Lim}_{\theta \rightarrow 0} \frac{1-\cos \theta}{\sin \theta}=0$
$\lim _{x \rightarrow \pi} \frac{\sin x}{\pi-x}$
Let $\quad \begin{aligned} \theta & =\pi-x \\ x & =\pi-\theta\end{aligned}$
When $\quad x \rightarrow \pi$, we have $\theta \rightarrow 0$ then

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow \pi} \frac{\sin x}{\pi-x}=\operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin (\pi-\theta)}{\theta} \\
& \because \sin (\pi-\theta)=\sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \\
& =1 \\
\operatorname{Lim}_{x \rightarrow \pi} \frac{\sin x}{\pi-x} & =1
\end{aligned}
$$

(v) $\quad \operatorname{Lim}_{x \rightarrow 0} \frac{\sin x}{\sin }-\sqrt{x}$

Solution:

$$
\lim _{\rightarrow-\infty} \sin _{x} x
$$

$$
=\operatorname{Lim}_{x \rightarrow 0} \frac{\left(\frac{\sin a x}{a x}\right) \times a x}{\left(\frac{\sin b x}{b x}\right) \times b x}
$$

$$
=\frac{a}{b} \operatorname{Lim}_{x \rightarrow 0} \frac{\left(\frac{\sin a x}{a x}\right)}{\left(\frac{\sin b x}{b x}\right)}
$$

$$
=\frac{a}{b} \frac{\operatorname{Lim}_{x \rightarrow 0}\left(\frac{\sin a x}{a x}\right)}{\operatorname{Lim}_{x \rightarrow 0}\left(\frac{\sin b x}{b x}\right)}
$$

$$
=\frac{a}{b}\left(\frac{1}{1}\right)
$$

$$
=\frac{a}{b}
$$

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{\sin a x}{\sin b x}=\frac{a}{b}
$$

(vi) $\operatorname{Lim}_{x \rightarrow 0} \frac{x}{\tan x}$

Solution:

$$
=\operatorname{Lim}_{x \rightarrow 0} \frac{\cos x}{\left(\frac{\sin x}{x}\right)}
$$

$=\frac{1}{1+1}$	(xi) $\quad \operatorname{Lim}_{\theta \rightarrow 0} \frac{1-\cos p \theta}{1-\cos q \theta}$

$=\frac{1}{2}$
$\operatorname{Lim}_{x \rightarrow 0} \frac{1-\cos x}{\operatorname{cim}^{2}}=\frac{1}{2}$

(ix)

Solation:
$\operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin ^{2} \theta}{\theta}$

$$
\begin{aligned}
& =\operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \sin \theta \\
& =\left(\operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin \theta}{\theta}\right)\left(\operatorname{Lim}_{\theta \rightarrow 0} \sin \theta\right) \\
& =1 \times \sin 0 \\
& =1 \times(0) \\
& =0 \\
& \operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin ^{2} \theta}{\theta}=0
\end{aligned}
$$

(x) $\quad \operatorname{Lim}_{x \rightarrow 0} \frac{\sec x-\cos x}{x}$

Solution:

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0} \frac{\sec x-\cos x}{x} \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{\frac{1}{\cos x}-\cos x}{x} \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{\frac{1-\cos ^{2} x}{\cos x}}{x} \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{\sin ^{2} x}{x \cos x} \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x \sin x}{\cos x} \\
& =\left(\operatorname{Lim}_{\sin }^{2} x\right)
\end{aligned}
$$

$=1 \times \tan (0)$

$$
\begin{aligned}
& =0 \\
& \operatorname{Lim}_{x \rightarrow 0} \frac{\sec x-\cos x}{x}=0
\end{aligned}
$$

Solution:

$\sqrt[L i t]{L_{\theta} \rightarrow 0}\left[\frac{1}{1-\cos } \frac{\cos }{\cos \theta} \frac{1}{\theta}\right.$

$$
=\operatorname{Lim}_{\theta \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{p \theta}{2}\right)}{2 \sin ^{2}\left(\frac{q \theta}{2}\right)}
$$

$$
=\operatorname{Lim}_{\theta \rightarrow 0}\left[\frac{\sin \left(\frac{p \theta}{2}\right)}{\sin \left(\frac{q \theta}{2}\right)}\right]^{2}
$$

$$
\because 1-\cos \theta=2 \sin ^{2}\left(\frac{\theta}{2}\right)
$$

$$
=\operatorname{Lim}_{\theta \rightarrow 0}\left[\frac{\frac{\sin \left(\frac{p \theta}{2}\right) \times \frac{p \theta}{2}}{\frac{p \theta}{2}}}{\frac{\sin \left(\frac{q \theta}{2}\right) \times \frac{q \theta}{2}}{\frac{q \theta}{2}}}\right]^{2}
$$

$$
\begin{aligned}
& =\left[\operatorname{Lim}_{\theta \rightarrow 0} \frac{\frac{\sin \left(\frac{p \theta}{2}\right)}{\frac{p \theta}{2}} \times p}{\sin \left(\frac{a^{\rho}}{2}\right.} \frac{q^{2}}{2}\right) \times \times @
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{p^{2}}{q^{2}}\left(\frac{1}{1}\right)^{2} \\
& =\frac{p^{2}}{q^{2}}
\end{aligned}
$$

(Xii)

$$
\operatorname{lig}_{t \rightarrow 0}-\cos ^{-2} \frac{\sin \theta}{\sin ^{3} \theta}
$$

solution:

$$
\begin{aligned}
& \operatorname{Lim}_{\theta \rightarrow 0} \frac{\tan \theta-\sin \theta}{\sin ^{3} \theta} \\
& =\operatorname{Lim}_{\theta \rightarrow 0} \frac{\frac{\sin \theta}{\cos \theta}-\sin \theta}{\sin ^{3} \theta}
\end{aligned}
$$

$$
=\operatorname{Lim}_{\theta \rightarrow 0} \frac{\sin \theta\left(\frac{1}{\cos \theta}-1\right)}{\sin ^{3} \theta}
$$

$$
=\operatorname{Lim}_{\theta \rightarrow 0} \frac{\frac{1-\cos \theta}{\cos \theta}}{\sin ^{2} \theta}
$$

$$
=\operatorname{Lim}_{\theta \rightarrow 0} \frac{1-\cos \theta}{\cos \theta\left(1-\cos ^{2} \theta\right)}
$$

$$
=\operatorname{Lim}_{\theta \rightarrow 0} \frac{1-\cos \theta}{\cos \theta(1-\cos \theta)(1+\cos \theta)}
$$

$$
=\operatorname{Lim}_{\theta \rightarrow 0} \frac{1}{\cos \theta(1+\cos \theta)}
$$

$$
=\frac{1}{\cos 0(1+\cos 0)}
$$

$$
\operatorname{Lim}_{\theta \rightarrow 0} \frac{\tan \theta-\sin \theta}{\sin ^{3} \theta}=\frac{1}{2}
$$

Q. 4 Express each limit in terms of e :

(i)

Scintion:

$\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)$

$$
=\operatorname{Lim}_{n \rightarrow+\infty}\left[\left(1+\frac{1}{n}\right)^{n}\right]^{2}
$$

$$
=\left[\operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}\right]^{2}
$$

$$
=e^{2}
$$

$$
\operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{2 n}=e^{2}
$$

(ii) $\operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{\frac{n}{2}}$

Solution:

$$
\operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{\frac{n}{2}}
$$

$$
=\operatorname{Lim}_{n \rightarrow+\infty}\left[\left(1+\frac{1}{n}\right)^{n}\right]^{\frac{1}{2}}
$$

$$
=\left[\operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}\right]^{\frac{1}{2}}
$$

$$
=e^{\frac{1}{2}}
$$

Solution:

$$
\begin{aligned}
& \operatorname{Lim}_{n \rightarrow+\infty}\left(1-\frac{1}{n}\right)^{n} \\
& =\operatorname{Lim}_{n \rightarrow \infty}\left[\left(1-\frac{1}{n}\right)^{-n}\right]^{-1}
\end{aligned}
$$

$$
=\left[\operatorname{Lim}_{n \rightarrow \infty}\left(1+\left(-\frac{1}{n}\right)\right)^{-n}\right]^{-1} \quad \begin{aligned}
& \text { (vi) } \operatorname{Lim}_{x \rightarrow 0}(1+3 x)^{\frac{2}{x}} \\
& \text { Solution: }
\end{aligned}
$$

Solution:

$$
=e^{-1}
$$

$$
=\frac{1}{e}
$$

$$
(\mathbf{I v}) \operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{1}{3 n}\right)^{n}
$$

Solution:

$$
\operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{1}{3 n}\right)^{n}
$$

$$
=\operatorname{Lim}_{n \rightarrow+\infty}\left[\left(1+\frac{1}{3 n}\right)^{n}\right]^{\frac{3}{3}}
$$

$$
=\left[\operatorname{Lim}_{n \rightarrow \infty}\left(1+\frac{1}{3 n}\right)^{3 n}\right]^{\frac{1}{3}}
$$

$$
\operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{1}{3 n}\right)^{n}=e^{\frac{1}{3}}
$$

(v) $\quad \operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{4}{n}\right)^{n}$

Solution:

$$
\operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{4}{n}\right)^{n}
$$

(viii) $\operatorname{Lim}_{h \rightarrow 0}(1-2 h)^{\frac{1}{h}}$

Solution:

$$
\operatorname{Lim}_{h \rightarrow 0}(1-2 h)^{\frac{1}{h}}
$$

$$
\operatorname{Lim}_{n \rightarrow+\infty}\left(1+\frac{4}{n}\right)^{n}=e^{4}
$$

(ix) $\operatorname{Lim}_{x \rightarrow \infty}\left(\frac{x}{1+x}\right)^{x}$

Solution:

$$
\operatorname{Lim}_{x \rightarrow \infty}\left(\frac{x}{1+x}\right)^{x}
$$

$$
=\operatorname{Lim}_{x \rightarrow \infty}(1+x
$$

$\sqrt{ } \sqrt{N-\min _{1}(1}(x+)^{-\lambda}$

$$
\begin{aligned}
& =\operatorname{Lim}_{x \rightarrow \infty}\left[\left(1+\frac{1}{x}\right)^{x}\right]^{-1} \\
& =\left[\operatorname{Lim}_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\right]^{-1} \\
& =e^{-1} \\
& =\frac{1}{e} \\
& \operatorname{Lim}_{x \rightarrow \infty}\left(\frac{x}{1+x}\right)^{x}=\frac{1}{e}
\end{aligned}
$$

(x) $\operatorname{Lim}_{x \rightarrow 0} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, x<0$

Solution:

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, x<0
$$

Replace x by $-y$ where $y>0$
$=\operatorname{Lim}_{y \rightarrow 0} \frac{e^{-\frac{1}{y}}-1}{e^{-\frac{1}{y}}+1}$

$\sqrt[\sim]{\sim} \sim_{-1}^{e}$
$=\frac{e^{\frac{1}{0}}}{\frac{1}{e^{\frac{1}{0}}}+1}$

$$
=\frac{1-\frac{1}{e^{\frac{1}{0}}}}{1+\frac{1}{e^{\frac{1}{0}}}}
$$

$$
=\frac{1-\frac{1}{e^{\infty}}}{1+\frac{1}{e^{\infty}}}
$$

$$
=\frac{1-\frac{1}{\infty}}{1+\frac{1}{\infty}}
$$

$=\sqrt{-\frac{-}{-1} \frac{0}{0}}$

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, x>0=1
$$

Left Hand Limit:

$\operatorname{Lim}_{x \rightarrow c^{-}} f(x)=L$ is read as the limit of $f(x)$ is equal to L as x approaches c from the left i.e., For all x sufficiently close to c, but less than c, the value of $f(x)$ can be made as close as we please to L.

Right Hand Limit:

$\operatorname{Lim}_{x \rightarrow c^{+}} f(x)=M$ is read as the limit of $f(x)$ is equal to M as x approaches from the right i.e., for all x sufficiently close to c, but greater than c, the value of $f(x)$ can be made as close as we please to M.

Criterion for Existence of Limit of a Function:

$\operatorname{Lim}_{x \rightarrow c} f(x)=L$ iff $\operatorname{Lim}_{x \rightarrow c^{-}} f(x)=\operatorname{Lim}_{x \rightarrow c^{+}} f(x)=L$

Continuous Function:

A function f is said to be continuous at a number " c " iff the following three conditions are satisfied:
(i) $\quad f(c)$ is defined.
(ii) $\operatorname{Lim}_{x \rightarrow c} f(x)$ exists.
(iii) $\operatorname{Lim}_{x \rightarrow c} f(x)=f(c)$

Discontinuous Finction:

If one or no ef these the condit ors fan whold at c then the function f is said to be discontin pu at $\%$.
Example: Discuss the continity or the function $f(x)$ and $g(x)$ at $x=3$.
(a) $f(x)=\left\{\begin{array}{ccc}\frac{x^{2}-9}{x-3} & \text { if } & x \neq 3 \\ 6 & \text { if } & x=3\end{array}\right.$
(b) $g(x)=\frac{x^{2}-9}{x-3}$ if $x \neq 3$.

Solution:

(a) Given $f(3)=6$
\therefore The function f is defined at $x=3$.
Now

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 3} f(x)=\operatorname{Lim}_{x \rightarrow 3} \frac{x^{2}-9}{x-3} \\
& =\operatorname{Lim}_{x \rightarrow 3} \frac{(x+3)(x-3)}{x}-3 \\
& =\operatorname{Lim}_{x}(x+3)-6
\end{aligned}
$$

$$
\left.\operatorname{Lim}_{x \rightarrow 1} f(x)=6\right)=f(3)
$$

. $f(x)$ s ontinuous at $x=3$
Ot is noted that there is no break in the graph.
(See figure (i))
(b) $\quad g(x)=\frac{x^{2}-9}{x-3}$ if $x \neq 3$

As $g(x)$ is not defined at $x=3$
$g(x)$ is discontinuous at $x=3$

It is noted that there is a break in the graph at $x=3$. (See figure (ii))

EXERCISE 1.4

Q. 1 Determine the left hand limit and the right hand limit and then, find the limit of the following functions when $x \rightarrow c$.
(i)

$$
f(x)=2 x^{2}+x-5, c=1
$$

Solution:

$$
f(x)=2 x^{2}+x-5
$$

Left hand limit:

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 1^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow 1^{-}}\left(2 x^{2}+x-5\right) \\
& =2(1)^{2}+1-5 \\
& =2+1-5
\end{aligned}
$$

Hence $\operatorname{Lim}_{x \rightarrow 1} f(x)$ exists and

$$
\operatorname{Lim}_{x \rightarrow 1} f(x)=\operatorname{Lim}_{x \rightarrow 1}\left(2 x^{2}+x-5\right)=-2
$$

(ii) $\quad f(x)=\frac{x^{2}-9}{x-3}, \quad c=-3$

Solution:

$$
f(x)=\frac{x^{2}-9}{x-3}, \quad c=-3
$$

Left hand limit:

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow-3^{-}} f(x) & =\operatorname{Lin}_{x} x^{2}-\frac{x}{-3}-\frac{1}{-3} \\
& =\frac{9-9}{-6} \\
& =\frac{0}{-6} \\
& =0
\end{aligned}
$$

Right hand limit:

$$
\operatorname{Lim}_{x \rightarrow-3^{+}} f(x)=\operatorname{Lim}_{x \rightarrow-3^{+}} \frac{x^{2}-9}{x-3}
$$

$$
\begin{aligned}
& =\frac{(-3)^{2}-9}{-3-3} \\
& =\frac{9-9}{-6}
\end{aligned}
$$

As
Herne $\lim _{x \rightarrow c} f^{\prime}(x)$ exists
and $\operatorname{Lim}_{x \rightarrow-3} f(x)=\operatorname{Lim}_{x \rightarrow-3} \frac{x^{2}-9}{x-3}=0$
(iii) $\quad f(x)=|x-5|, \quad c=5$

Solution:

$$
f(x)=|x-5|, \quad c=5
$$

Left hand limit:

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 5^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow 5^{-}}|x-5| \\
& =\operatorname{Lim}_{x \rightarrow 5^{-}}[-(x-5)] \\
& =-(5-5) \\
& =0
\end{aligned}
$$

Right hand limit:

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 5^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow 5^{+}}|x-5| \\
& =\operatorname{Lim}_{x \rightarrow 5^{+}}(x-5) \\
& =5-5 \\
& =0
\end{aligned}
$$

As $\quad \operatorname{Lim}_{x \rightarrow 5^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 5^{+}} f(x)$
Hence $\operatorname{Lim}_{x \rightarrow 5} f(x)$ exists and $\operatorname{Lim}_{x \rightarrow 5} f(x)=\operatorname{Lim}_{x \rightarrow 5}|x-5|=0$
Q. 2 Discuss the continuity of $f(x)$ at $x=c$:
(i) $\left.\quad f(x)=\left\{\begin{array}{lll}2 x \\ 1\end{array}\right] \begin{array}{lll}0 & \text { if } & x \leq 2 \\ 1 & \text { if } & \leadsto>2\end{array}\right]=2$

Solution:

$$
\begin{aligned}
& A_{f} x=2 \\
& f(x)=2 x+5 \\
& f(2)=2(2)+5=9 \\
& f(2)=9 \\
& \operatorname{Lim}_{x \rightarrow 2^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 2^{-}}(2 x+5)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \operatorname{Lim}_{x \rightarrow 1^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 1^{-}}(3 x-1) \\
&=3(1)-1=2 \\
& \begin{aligned}
\operatorname{Lim}_{x \rightarrow 1^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow 1^{+}}(2 x) \\
& =2 \operatorname{Lim}_{x \rightarrow 1^{+}}(x)=2
\end{aligned} \\
& \text { As } \operatorname{Lim}_{x \rightarrow 2^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 2^{+}} f(x), \\
& \text { so } \operatorname{Lim}_{x \rightarrow 2} f(x) \text { exists. }
\end{aligned} \\
& \text { As, } f(1)
\end{aligned}=\operatorname{Lim}_{x \rightarrow 1} f(x) .
$$

Hence function $f(x)$ is discontinuous at
\cup^{\top}
At $x=1$
$f(x)=4$
$f(1)=4$
Hence, $f(x)$ is continuous at $x=2$.
(ii)

$$
f(x)=\left\{\begin{array}{cll}
3 x-1 & \text { if } & x<1 \\
4 & \text { if } & x=1, \quad c=1 \\
2 x & \text { if } & x>1
\end{array}\right.
$$

Solution:

Discuss continuity at $x=2$ and $x=-2$.
Solution:
Continuity at $x=2$
At $x=2$
$f(2)=3$

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 2^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow 2^{-}}\left(x^{2}-1\right) \\
& =2^{2}-1=4-1
\end{aligned}
$$

$$
\begin{aligned}
& =3 \\
\operatorname{Lim}_{x \rightarrow 2^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow 2^{+}}(3) \\
& =3
\end{aligned}
$$

As $\operatorname{Lim}_{x \rightarrow 2^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 2^{+}} f(x)$, so $\operatorname{Lim}_{x \rightarrow 2} f(x)$ exists

As $f(2)=\lim _{\rightarrow 2} . f(x)$
Here $f(x)$ is continuous at $x=2$.
continuity at $x=-2$
at $x=-2$
$f(x)=3 x$
$f(-2)=3(-2)=-6$

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow-2^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow 2^{-}}(3 x) \\
& =3(-2) \\
& =-6 \\
\operatorname{Lim}_{x \rightarrow-2^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow-2^{+}}\left(x^{2}-1\right) \\
& =(-2)^{2}-1 \\
& =4-1 \\
& =3
\end{aligned}
$$

As $\operatorname{Lim}_{x \rightarrow 2^{-}} f(x) \neq \operatorname{Lim}_{x \rightarrow 2^{+}} f(x)$,
so $\operatorname{Lim}_{x \rightarrow 2} f(x)$ does not exists.
Hence, $f(x)$ is discontinuous at $x=-2$.
Q. 4 If $f(x)= \begin{cases}x+2, & x \leq-1 \\ c+2, & x>-1\end{cases}$

Find " c " so that $\operatorname{Lim}_{x \rightarrow-1} f(x)$ exists.

Solution:

As $\operatorname{Lim}_{x \rightarrow-(0)} f(x)$ exists.
So $\operatorname{Lim}_{x \rightarrow 1^{-}}(x)=\lim _{x \rightarrow+} f(f)$
$\left.\operatorname{Lax}_{x \rightarrow 1^{-1}} x+2\right)=\operatorname{Lim}_{x \rightarrow 1^{+}}(x+2)$

$$
\begin{aligned}
-1+2 & =c+2 \\
-1 & =c \\
c & =-1
\end{aligned}
$$

Q. 5 Find the values m and n, so that given function f is continuous \boldsymbol{j}_{i}
$x=3$.
(i) $\int_{f}(x)=$

Solution:

As $f(x)$ is continuous at $x=3$
So $f(3)=\operatorname{Lim}_{x \rightarrow 3^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 3^{+}} f(x)$
At $x=3$
$f(3)=n$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 3^{-}} f(x)= \\
& =\operatorname{Lim}_{x \rightarrow 3^{-}}(m x) \\
& = \\
& =3(3) \\
& \begin{aligned}
\operatorname{Lim}_{x \rightarrow 3^{+}} f(x) & =\operatorname{Lim}_{x \rightarrow 3^{+}}(-2 x+9) \\
& =-2(3)+9 \\
& =-6+9 \\
& =3
\end{aligned}
\end{aligned}
$$

As $f(3)=\operatorname{Lim}_{x \rightarrow 3^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 3^{+}} f(x)$
$n=3 m=3$
$n=3, \quad 3 m=3$
$m=1$
(ii) $\quad f(x)=\left\{\begin{array}{lll}m x & \text { if } & x<3 \\ x^{2} & \text { if } & x \geq 3\end{array}\right.$

Solution:

As $f(x)$ is continuous at $x=3$
So $f(3)=\operatorname{Lim}_{x \rightarrow 3} f(x)-\lim _{x} f(x)$
At. $c=3$
$f(3)=3^{2}=9$

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow 3^{-}} f(x) & =\operatorname{Lim}_{x \rightarrow 3^{-}}(m x) \\
& =3 m
\end{aligned}
$$

$\operatorname{Lim}_{x \rightarrow 3^{+}} f(x)=\operatorname{Lim}_{x \rightarrow 3^{+}}\left(x^{2}\right)$
$=3^{2}$
$=9$
As $f(3)=\operatorname{Lim}_{x \rightarrow 3^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 3^{+}} f(x)$

$$
\begin{aligned}
& 9=3 m=9 \\
& 3 m=3 \\
& m=1
\end{aligned}
$$

Q. 6 If

If
find the valle of so hat f is
centinuous at $x=2$.

sulution.

As $f(x)$ is continuous at $x=2$
So $f(2)=\operatorname{Lim}_{x \rightarrow 2} f(x)$
At $x=2$
$f(2)=k$
Now,
$\operatorname{Lim}_{x \rightarrow 2} f(x)$
$=\operatorname{Lim}_{x \rightarrow 2} \frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2}$
By rationalization of numerator

$$
\begin{gathered}
=\operatorname{Lim}_{x \rightarrow 2} \frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2} \times \frac{\sqrt{2 x+5}+\sqrt{x+7}}{\sqrt{2 x+5}+\sqrt{x+7}} \\
=\operatorname{Lim}_{x \rightarrow 2} \frac{(\sqrt{2 x+5})^{2}-(\sqrt{x+7})^{2}}{(x-2)(\sqrt{2 x+5}+\sqrt{x+7})}
\end{gathered}
$$

$$
=\operatorname{Lim}_{x \rightarrow 2} \frac{2 x+5-(x+7)}{(x-2)(\sqrt{2-5}+\sqrt{x+1}}
$$

$$
=\sqrt{\lim _{x \rightarrow 2}-\frac{2 x+2}{(x-2)(\sqrt{2}-7}=\operatorname{Lim}_{x \rightarrow 2} \frac{x-\sqrt{x+7})}{(x-2)(\sqrt{2 x+5}+\sqrt{x+7})}}
$$

$$
=\operatorname{Lim}_{x \rightarrow 2} \frac{1}{\sqrt{2 x+5}+\sqrt{x+7}}
$$

$$
=\frac{1}{\sqrt{2(2)+5}+\sqrt{2+7}}
$$

$$
=\frac{1}{\sqrt{9}+\sqrt{9}}
$$

$$
=\frac{1}{3+3}
$$

$$
\operatorname{Lim}_{x \rightarrow 2} f(x)=\frac{1}{6}
$$

$$
\text { As } f(2)=\operatorname{Lim}_{x \rightarrow 2} f(x)
$$

$$
k=\frac{1}{6}
$$

Graph of the Exponential Function $f(x)=a^{x}$:

Let us draw the graph of $y=2^{x}$, here $a=2$.
We prepare the following table for different values of x and $f(x)$ nest origin:

x	-4	-3	-2	-1	0	1
y	0.0625	0	125	0	25	n

Plotting the points (x, y) and joining them with smooth curve as shown in the figure, we get the graph of $y=2^{x}$
From the graph of 2^{x}, the characteristics o the graph y $=a$ re obsfred a. (illows: If $a>1$,
(i) a^{x} in always positive or red velues of x.
(ii) (a) increases as iiccreases.
(iii)

$$
a^{2}=1 \text { bhen } x=0
$$

(iv) $\quad c^{x}-0 \cdot \mathrm{~s} x \longrightarrow-\infty$

G(qu) 0 C naton Logarithmic Function $f(x)=\log x$:

if $x=10^{y}$, then $y=\log x$
Now for all real values of $y, 10^{y}>0 \Rightarrow x>0$
This means $\log x$ exists only when $x>0$
\Rightarrow Domain of the $\log x$ is positive real numbers. It is undefined at $x=0$.
For graph of $f(x)=\log x$, we find the values of $\lg x$ from the common logarithmic table for various values of $x>0$.
Table of some of the corresponding values of x and $f(x)$ is as under.

x	$\rightarrow 0$	0.1	1	2	4	6	8	10	$\rightarrow+\infty$
$y=f(x)=\log x$	$\rightarrow-\infty$	-1	0	0.30	0.60	0.77	0.90	1	$\rightarrow+\infty$

Plotting the points (x, y) and joining them th a smootarne we the the graphots shown in the figure.

Note:
(i) whe replace (x, y) vith $\left(x,-\frac{y}{y}\right)$ and there is no change in the equation then the graph i: yrneeric with respect to x-axis.
Gf we replace (x, y) with $(-x, y)$ and there is no change in the equation then the graph is symmetric with respect to y-axis.
(iii) If we replace (x, y) with $(-x,-y)$ and there is no change in the equation then the graph is symmetric with respect to origin.

EXERCISE 1.5

Q. 1 Draw the graphs of the following equations
(i) $x^{2}+y^{2}=9$
(ii) $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$
(i) $x^{2}+y^{2}=9$
Solution:

Here domain $=[-3,3]$

(ii) $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$

Solution:

Given $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$

$$
\frac{y^{2}}{4}=1-\frac{x^{2}}{16}
$$

$$
y= \pm \frac{\sqrt{16-x^{2}}}{2}
$$

Here domain $=[-4,4]$

x	-4	-3	-2	-1	0	1	2	3	4
y	0	± 1.3	± 1.7	± 1.9	± 2	± 1.9	± 1.7	± 1.3	0

Solution:

Given $y=e^{2 x}$

(iv) $y=3^{x}$

Solution:
$y=3^{x}$
$\sqrt[N \sim N]{\sim N}$

Q. 2 Graph the curves that has the parametric equations given below
(i) $x=t, y=t^{2},-3 \leq t \leq 3$

Solution:

$$
x=t, y=t^{2},-3 \leq t \leq 3
$$

(i) $\quad x=t-1, y=2 t-1,-1<t<5$
where " t ' is a parameter
Solution:

$$
x=t-1, y=2 t-1,-1<t<5
$$

t	-1	0	1	2	3	4	5
$x=t-1$	-2	-1	0	1	2	3	4
$y=2 t-1$	-3	-1	1	3	5	7	9

where " θ " is a parameter

Solution:

$$
\begin{aligned}
& x=\sec \theta, y=\tan \theta \\
& \Rightarrow x^{2}-y^{2}=\sec ^{2} \theta-\tan ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-y^{2} & =1 \\
x^{2}-1 & =y^{2} \\
y & = \pm \sqrt{x^{2}-1}
\end{aligned}
$$

Here domain $=(-\infty,-1] \cup[1, \infty)$

Q. 3 Draw the graphs of the functions defined below and find whether they are continuous.
(i) $y=\left\{\begin{array}{lll}x-1 & \text { if } & x<3 \\ 2 x+1 & \text { if } & x \geq 3\end{array}\right.$

Solution:

$$
y=\left\{\begin{array}{lll}
x-1 & \text { if } & x<3 \\
2 x+1 & \text { if } & x \geq 3
\end{array}\right.
$$

Table for $y=x-1, x<3$

x	-1	0	1	2	3
y	-2	-1	0	1	2

Table for $y=2 x+1, x \geq 3$

(ii) $y=\frac{x^{2}-4}{x-2}, x \neq 2$

Solution:

$$
\begin{aligned}
& y=\frac{x^{2}-4}{x-2}, x \neq 2 \\
& y=
\end{aligned}
$$

x	-2	-1	0	1	2	
y	0	1	2	3	Undefined	

(iii) $y=\left\{\begin{array}{lll}x+3 & \text { if } & x \neq 3 \\ 2 & \text { if } & x=3\end{array}\right.$

Solution:

$$
y=\left\{\begin{array}{lll}
x+3 & \text { if } & x \neq 3 \\
2 & \text { if } & x=3
\end{array}\right.
$$

x	-1	0	1	2	3	4
y	2	3	4	5	2	7

(iv) $y=\frac{x^{2}-16}{x-4}, x \neq 4$

Solution:

$$
\begin{aligned}
& y=\frac{x^{2}-16}{x-4}, x \neq 4 \\
& y=\frac{(x+4)}{(x-4)}, 4, x \neq 4
\end{aligned}
$$

x	-1	0	1	2	3	4	5
y	3	4	5	6	7	Undefined	9

Q. 4 Find the graphical solution of the following equations:
(i) $x=\sin 2 x$

Solution:

Let $\quad y=x=\sin 2 x$

Also $y=\sin 2 x$													
$\sqrt{ }{ }^{2}$	-90°	-75 ${ }^{\circ}$	-60°	-45°	-30°	-15°	0°	15°	30°	45°	60°	75°	90°
$y=\sin 2 x$	0	-0.5	-0.6	-1	-0.9	-0.5	0	0.5	0.9	1	0.9	0.5	0

From two graphs, solutions are
$x=-55^{\circ}, 0^{\circ}, 55^{\circ}$
Solution set $=\left\{-55^{\circ}, 0^{\circ}, 55^{\circ}\right\}$

(ii) $\frac{x}{2}=\cos x$

Solution:

Let $y=\frac{x}{2}=\cos x$
So $\quad y=\frac{x}{2}$

x	0°	60°
$y=\frac{x}{2}$ (radian)	0	0.5

Also $y=\cos x$

x	-90°	-60°	-30°	0°	30°	60°	90°
$y=\cos x$	0	0.5	0.9	1	0.9	0.5	0

From two graphs, solution is

$$
x=60^{\circ}
$$

(iii) $2 x=\tan x$

Solution:
Lets $y=2 x=\tan x$

From two graphs, solution is
$x=0^{\circ}$
Solution set $=\left\{0^{\circ}\right\}$

