EXERCISE 2.10

Q. 1 Find two positive integers whose sum is 30 and their product will he maximum.

Solution:

Let x anc $30-x$ be tyo por itive integer. Thei. Prod le. is $x(30$-x) $\sqrt{\mathrm{I}} \mathrm{t} \mathrm{V}^{\circ}(x)=-(30-.5)$
Differentiate w.r.t " x ".
$f^{\prime}(x)=30-2 x$ and $f^{\prime \prime}(x)=-2$
put $f^{\prime}(x)=0$
$30-2 x=0 \Rightarrow x=15$
At $x=15 \quad f^{\prime \prime}(x)=-2<0$
so f will be maximum
So the required two positive integers are 15 and 15.
Q. 2 Divide 20 into two parts so that the sum of their squares will be minimum.

Solution:

Let the required two parts are x and $20-x$ then the sum of their squares will be $x^{2}+(20-x)^{2}$
Let $f(x)=x^{2}+(20-x)^{2}$
Differentiate w.r.t " x ".
$f^{\prime}(x)=2 x+2(20-x)(-1)$
Put $\quad f^{\prime}(x)=0$

$$
\begin{aligned}
& 2 x-2(20-x)=0 \\
& \not Z x=\not 2(20-x)
\end{aligned}
$$

at x

so $f(x)$ will be min mur
gare gl the incegers is 10
and other one is $20-10=10$.
So the required two integers are 10 \& 10 .

Q. 3 Find twn positive integers uhos

 sun is 12 and the preduct or one with the square of the other will be nax mun.
So ution:

Let two integers are x and $12-x$ then the product of $12-x$ and the square of x is $x^{2}(12-x)$
Let $f(x)=x^{2}(12-x)$
$f(x)=12 x^{2}-x^{3}$
Differentiate w.r.t. ' x '
$f^{\prime}(x)=24 x-3 x^{2}$ and $f^{\prime \prime}(x)=24-6 x$
Put $f^{\prime}(x)=0$
$x(24-3 x)=0$
$x=0, x=8$
at $x=0, f^{\prime \prime}(0)=24>0$
So f will be minimum so we discard this possibility
At $x=8, f^{\prime \prime}(8)=24-48=-24<0$
So f will be maximum
Hence the required integers are
$x=8$
$12-x=12-8=4$
Q. 4 The perimeter of a triangle is 16 cm . If one side is of length 6 cm , what are lengths of the other sides for maximum area of the triangle?
Solution:
Sum of leighs or ungown sde
10. $6=10 \mathrm{~cm}$

Fe the lingths of unknown sides be x alcio $-x$.
If A is the area of triangle, then
$s=\frac{6+x+10-x}{2} \Rightarrow s=8$
$A=\sqrt{(8)(8-6)(8-x)(8-10+x)}$
By Hero's formula
$A=\sqrt{(8)(2)(8-x)(-2+x)}$
$A=4 \sqrt{10 x-x^{2}-16}$

The maximum value of A depends on the function
$f(x)=10 x-x^{2}-16$
Differentiate w.r.t " x "

$2 \cdot \frac{1 A}{d x}=0$ gives,
$\frac{20-4 x}{\sqrt{10 x-x^{2}-16}}=0 \Rightarrow x=5$
Now
$\frac{d^{2} A}{d x^{2}}=4 \frac{\sqrt{10 x-x^{2}-16}(-1)-(5-x) \frac{10-2 x}{2 \sqrt{10 x-x^{2}-16}}}{10 x-x^{2}-16}$
at $x=5$,
$\left.\frac{d^{2} A}{d x^{2}}\right|_{x=5}=\frac{-36}{(50-25-16)^{3 / 2}}=-\frac{4}{3}<0$
Since $\left.\frac{d^{2} A}{d x^{2}}\right|_{x=5}<0$
So A is maximum
So the lengths of unknown sides are 5 and $10-5=5$

Q. 5 Find the dimensions of a rectangle

 of largest area having perimeter 120 cm .
Solution:

Let x be the length of rectangle and y be breadth of rectangle
then perimeter $2 x+2 y=120$
or $x+y=60$
or $y=60-x$
Let A be the area of rectanyle
then $A \fallingdotseq \sqrt{y}$
or

$A=50 . c-x^{2}$

1) itiereatiate w.r.t. x

$$
\frac{d A}{d x}=60-2 x
$$

Put $\frac{d A}{d x}=0 \quad \Rightarrow \quad 60-2 x=0$
$x=30$
And $\frac{d^{2} A}{d x^{2}}=2$
$A t=30 \cdot \frac{t^{2} x}{u x^{2}}=-2<0$,
so A is maximum
So length of rectangle is $x=30$ and breadth $60-x=30$

Q. 6 Find the lengths of the sides of a

 variable rectangle having area $36 \mathrm{~cm}^{2}$ when its perimeter is minimum.Solution:
Let x and y be the lengths of sides of rectangle, then
Area $=x y=36 \Rightarrow y=\frac{36}{x}$
If p denotes the perimeter of rectangle then
$p=2 x+2 y$
$p=2\left(x+\frac{36}{x}\right) \quad\left(\because y=\frac{36}{x}\right)$
Differentiate w.r.t " x "

$$
\frac{d p}{d x}=2\left(1-\frac{36}{x^{2}}\right)
$$

put $\frac{d p}{d x}=0$ gives
$x=6$ (neglecting negative value)
now $\quad \frac{d^{2} P}{d x^{2}}=2\left[-\frac{(-2) 36}{x^{3}}\right]$
at $x=\rho, \quad x^{2} p=-2=2$
Which shows that perimeter is minimum,
For $x=6$, we get $y=\frac{36}{6} \Rightarrow y=6$
So the rectangle having area $36 \mathrm{~cm}^{2}$ will have minimum perimeter if length and breadth are 6 cm and 6 cm .
Q. 7 A box with a square base and open top is to have a volume of 4 cubic dm. Find the dimensions of the box which will require the least material.
Solution:
Let h be the height of the bux und x be the sien of is square mase then
$\mathrm{v}($ volume $)=x^{2} \cdot 2$
$\operatorname{or}^{-2} \quad h=\frac{4}{x^{2}}$
if s is the surface area, then
$s=x^{2}+4 x h$
$s=x^{2}+\frac{16}{x} \quad\left(\because h=\frac{4}{x^{2}}\right)$
Differentiate w.r.t " x ",
$\frac{d s}{d x}=2 x-\frac{16}{x^{2}}$
Put $\frac{d s}{d x}=0$ gives,
$2 x-\frac{16}{x^{2}}=0$
$2 x^{3}-16=0$
$x^{3}-8=0$
$\Rightarrow \quad x=2$ (real value only)
Now $\frac{d^{2} s}{d x^{2}}=2+\frac{2(16)}{x^{3}}$
at $x=2$
$\left.\frac{d^{2} s}{d x^{2}}\right|_{x=2}=2+\frac{2(16)}{2^{3}}>0$
So the required surface area is minimum at $x=2$.
So the required dimensions , re $2 t^{3} \pi$, $2 d m$ and height $1 d m$.
Q. 8 Find the dimensions of a rectangula garden havins,
permeter 80 , t it area is to be natinum.
solution:
Let x, y be the length and breadth of that rectangular garden,
Then its perimeter $P=2 x+2 y=80$

$$
\begin{aligned}
& \Rightarrow \quad x+y=40 \\
& y=40-x
\end{aligned}
$$

Now if A be the area Oy re tangular garder then $A=x$,
or $\int A=x(20-x)$
Difierentiate w.r.t " x ",
$\frac{d A}{d x}=40-2 x$ and $\frac{d^{2} A}{d x^{2}}=-2$
Put $\frac{d A}{d x}=0$
$40-2 x=0$
$\Rightarrow x=20$
at $x=20 \frac{d^{2} A}{d x^{2}}=-2<0$
so area will be maximum
So the dimensions are 20 cm and 20 cm .

Q. 9 An open tank of square base of

 side x and vertical side is to be constructed to contain a given quantity of water. Find the depth in terms of x if the expense of lining the inside of the tank with lead will be least.Solution:
Let the given quantity of water be ' q ' cubic unit and ' h ' be the depth of the tank, having square base of length x. So the volume of the tank $=x^{2} h$
So $q=x^{2} h \Rightarrow h=\frac{q}{x^{2}}$
If S be the surfacerag inside,f

$$
s=x^{2}+\frac{4 q}{x}
$$

Differentiate w.r.t " x "
$\frac{d s}{d x}=2 x-\frac{4 q}{x^{2}}$ and $\frac{d^{2} s}{d x^{2}}=2+\frac{8 q}{x^{3}}$
Put $\frac{d s}{d x}=0$ gives $2 x-\frac{q}{x^{2}}=0$
$\Rightarrow q=\frac{x^{3}}{2}$
$x^{3}=2 q \Rightarrow x=\sqrt[3]{2 q}$
at $x=\sqrt[3]{2 q}$
$\frac{d^{2} s}{d x^{2}}=-\frac{3 q}{1}$
$a_{x}^{a^{2}}-\frac{8 q}{2 q}=2-\frac{q q}{2 q}>0 \quad\left(\because x^{3}=2 q\right)$
$\frac{d^{2} s}{d x^{2}}>0$
so s is minimum (as required)
thus for least expense $h=\frac{q}{x^{2}}=\frac{x}{2}$

Q. 10 Find the dimensions of the

 rectangle of maximum area which fit inside the semi-circle of radius 8 cm as shown in the figure.

Solution:

Let P be the point on rectangle as shown in figure. Taking O as centre of semi-circle on the origin, the point P will be $\left(x, \sqrt{64-x^{2}}\right)$, if the length of rectang els taken to De $2 x$.
Let A rothe arei of reptangle, thest $\hat{1}^{2}=[3 x \sqrt{64}-x]^{2}$
Dintorghate w.r.t ' x ".
$\frac{d A}{d x}=2 x \frac{1(-\not 2 x)}{\not 2 \sqrt{64-x^{2}}}+\sqrt{64-x^{2}}$.

$$
\begin{aligned}
& =2 \sqrt{64-x^{2}}-\frac{2 x^{2}}{\sqrt{164}-x^{2}} \\
& \text { Put } \frac{d A}{d x}=0 \Rightarrow \frac{128-2 x^{2}-2 x^{2}}{\sqrt{64-x^{2}}}=0 \\
& 128-4 x^{2}=0 \\
& x^{2}=32 \\
& x=4 \sqrt{2}
\end{aligned}
$$

(neglecting negative value of x)
Now $\frac{d^{2} A}{d x^{2}}=\frac{4 x\left(x^{2}-96\right)}{\left(64-x^{2}\right)^{\frac{3}{2}}}$
(after simplification)
At $x=4 \sqrt{2}$
$\left.\frac{d^{2} A}{d x^{2}}\right|_{x=4 \sqrt{2}}=\frac{16 \sqrt{2}(-64)}{(32)^{\frac{3}{2}}}<0$
So the area of rectangle will be maximum if $x=4 \sqrt{2}$.
Q. 11 Find the point on the curve $y=x^{2}-1$ that is closest to the point $(3,-1)$
Solution:
Let ℓ be the distance between the point $(3,-1)$ and ooint x,

$=\sqrt{(x-3)^{2}+\left(x^{2}-1+1\right)^{2}}$
$l=\sqrt{(x-3)^{2}+x^{4}}$
The minimum value of l depends on the function

$$
l=(x-3)^{2}+x^{4}
$$

Differentiate w.r.t " x "
$\frac{d l}{d x}=2(x-3)+4 x^{3}$ and $\frac{d^{2} l}{d x^{2}}=12 x^{2}+2$
Put $\frac{d l}{d x}=0$,
$4 x^{3}+20-6=0$
$\left(2 x^{2}+2-3\right)(x-1)=0$
$2 x^{2}-2 x-3=0$ gi es no real roots
$\operatorname{Fi}(x-(1)=0) \Rightarrow x=1$
At $x=1 \quad \frac{d^{2} l}{d x^{2}}=12(1)^{2}+2=14$

$$
\frac{d^{2} l}{d x^{2}}>0
$$

So l has minimum value at $x=1$
Put $x=1$ in $y=x^{2}-1$

$$
y=0
$$

Hence the required point on the curve is $(1,0)$

Q. 12 Find the point on the curve

 $y=x^{2}+1$ that is closest to the point $(18,1)$Solution:
let l be the distance between the point $(18,1)$ and a point (x, y)
on the curve $y=x^{2}+1$ then.
$l=\sqrt{(x-18)^{2}+(y-1)^{2}}$

$$
=\sqrt{(x-18)^{2}+(y-1)^{2}}
$$

The minimum value of l depends on the function
$l=(x-18)^{2}+x^{4}$
Differentiate w.r.t " x "
$\frac{d l}{d x}=2(x-18)+4 x^{3}$ and $\frac{d^{2} l}{d x^{2}}=12 x^{2}+2$
Put $\frac{d l}{d x}=0$
$2 x^{3}+x-18=0$
$(x-2)\left(2 x^{2}+4 x+9\right)=0$
$2 x^{2}+4 x+9=0$ gives complex roots
so, we must have $x-2=0 \Rightarrow x=2$
At $x=2 \quad \frac{d^{2} l}{d x^{2}}=12(2)^{2}+2=50$
So l has minimum value at $x=2$
put $x=2$ in $y=x^{2}+1$ we get

$$
y=2^{2}+1=5
$$

Hence the required point on the curve is $(2,5)$.

