Differentiation

EXERCISE 2.10

Q.1 Find two positive integers whose sum is 30 and their product will be maximum.

Solution:

- Let x and 30 x be two positive integers. Their product is x(30 - x)
- Let f(x) = x(30 x)= $30x - x^2$
- Differentiate w.r.t "x".
- f'(x) = 30 2x and f''(x) = -2
- put f'(x) = 0
- $30-2x=0 \Rightarrow x=15$
- At x = 15 f''(x) = -2 < 0
- so *f* will be maximum
- So the required two positive integers are 15 and 15.
- Q.2 Divide 20 into two parts so that the sum of their squares will be minimum.

Solution:

Let the required two parts are x and 20-x then the sum of their squares will be $x^{2} + (20 - x)^{2}$ Let $f(x) = x^2 + (20 - x)^2$ Differentiate w.r.t "x". f'(x) = 2x + 2(20 - x)(-1)Put f'(x) = 02x-2(20-x)=0 $\mathcal{Z}x = \mathcal{Z}(20-x)$ at x = 10=4 > 0so f(x) will be minimum so one of the integers is 10 and other one is 20-10=10. So the required two integers are 10 & 10.

Find two positive integers whose Q.3 sum is 12 and the preduct of one with the square of the other will be max m im. Solution: Let two integers are x and 12 - xthen the product of 12 - x and the square of x is $x^2(12-x)$ Let $f(x) = x^2(12 - x)$ $f(x) = 12x^2 - x^3$ Differentiate w.r.t. 'x' $f'(x) = 24x - 3x^2$ and f''(x) = 24 - 6xPut f'(x) = 0x(24-3x)=0x = 0, x = 8at x = 0, f''(0) = 24 > 0So f will be minimum so we discard this possibility At x=8, f''(8)=24-48=-24<0So f will be maximum Hence the required integers are x = 812 - x = 12 - 8 = 4Q.4 The perimeter of a triangle is 16cm. If one side is of length 6cm, what are lengths of the other sides for maximum area of the triangle? Solution: Sum of lengths of unknown sides is 10 - 6 = 10 cmLet the lengths of unknown sides be x and 10-x. if A is the area of triangle, then $s = \frac{6+x+10-x}{2} \Longrightarrow s = 8$ $A = \sqrt{(8)(8-6)(8-x)(8-10+x)}$ By Hero's formula $A = \sqrt{(8)(2)(8-x)(-2+x)}$ $A = 4\sqrt{10x - x^2 - 16}$

The maximum value of A depends
on the function
$$f(x) = (0x - x^{2} - 16)$$

Differentiate w.r.t: "x"
$$f'(x) = 4 \frac{1}{\sqrt{n(0x - x^{2} - 16)}} (0 - 2x)$$

$$\frac{dx}{dx} = \frac{20 - 4x}{\sqrt{n(0x - x^{2} - 16)}} (0 - 2x)$$

$$\frac{dx}{dx} = \frac{20 - 4x}{\sqrt{n(0x - x^{2} - 16)}} (0 - 2x)$$

$$\frac{20 - 4x}{\sqrt{n(0x - x^{2} - 16)}} (- 0 - 5 - x)$$

Now
$$\frac{dx}{dx} = \frac{40x - x^{2} - 16}{(0x - x^{2} - 16)} (- 0 - 5 - x)} \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (0 - 2x)$$

$$\frac{dx}{dx} = \frac{40x - x^{2} - 16}{(0x - x^{2} - 16)} (- 0 - 5 - x)} \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 16 - 16 - x) \frac{10 - 2x}{\sqrt{n(0x - x^{2} - 16)}} (- 17 - x) \frac{10 - x}{\sqrt$$

0

Q.7 A box with a square base and open
top is to have a volume of 4 cubic
dm. Find the dimensions of the box
material.
Solution:
Let *h* be the science there box and *x*
be the cise of this square base of the box
which will require the least
material.
Solution:
Let *h* be the science there box and *x*
be the cise of this square base of the box
work has
$$\frac{d^2A}{dx^2} = -2$$
.
Now $\frac{d^2A}{dx^2} = -2$.
Put $\frac{dA}{dx} = 0$
 $2x = 0$
 $2x = \frac{1}{x} = \frac{1}{x}$
($(\cdot h = \frac{4}{x^2})$
Differentiate w.r.t^{*}x^{*},
 $\frac{dA}{dx} = 2x - \frac{1}{x}$
Differentiate w.r.t^{*}x^{*},
 $\frac{dA}{dx} = 2x - \frac{1}{x^2} = 0$
 $2x - \frac{16}{x^2} = 2 + \frac{2(16)}{x^2}$
at $x = 2$
 $\frac{d^2s}{dx^2}|_{x=2} - \frac{2}{x} - \frac{2(16)}{2^2} > 0$
So the required surface area is
minimum at $x = 2$.
So the required surface area is
minimum at $x = 2$.
So the required surface area is
minimum at $x = 2$.
So the required surface area is minimum at $x = 2$.
So the required surface area is minimum at $x = 2$.
So the required surface area is to be
take many $x^2 + \frac{4g}{x^2}$
Let x, y be the length and breadth of
that rectangular garden,
Then is perimeter $P = 2x + 2y = 80$

$$\begin{aligned} = 2\sqrt{64-x^2} - \frac{2x^2}{664-x^2} \\ = 2\sqrt{24x^2} \\ x^2 = 2q \Rightarrow x = \sqrt{2q} \\ at x = \sqrt{2q} \\ \frac{d^2x}{dx^2} = 2x + \frac{\sqrt{2q}}{4x} \\ \frac{d^2x}{dx^2} = \frac{\sqrt{2q}}{4x} \\ \frac{d^2x}{dx^2} \\ \frac{d^2x}{dx^2} = \frac{\sqrt{2q}}{4x} \\ \frac{d^2x}{dx^2} \\ \frac{d^2$$

 $l = \left(x - 3\right)^2 + x^4$

Differentiate w.r.t "x"

$$\frac{d}{dx} = 2(x-3) + 4x^{3} \text{ and } \frac{d^{2}t}{dx^{2}} = 12x^{2} + 2$$
Put $\frac{d}{dx} = 0$,
 $4x^{3} + 2x = 0 = 0$
 $2x^{3} + 2x + 3 = 3(x-1) = 0$
 $2x^{3} + 2x + 3 = 3(x-1) = 0$
 $2x^{3} + 2x + 3 = 3(x-1) = 0$
 $2x^{3} + 2x + 3 = 3(x-1) = 0$
At $x = 1 \frac{d^{2}t}{dx^{2}} = 12(1)^{2} + 2 = 14$
 $\frac{d^{2}t}{dx^{2}} = 0$
So t has minimum value at $x = 1$
Put $x = 1$ in $y = x^{2} - 1$
 $y = 0$
Hence the required point on the
curve is $(1,0)$
0.12 Find the point on the curve
 $y = x^{3} + 1$ that is closest to the
point (18,1)
Solution:
let t be the distance between the
point (18,1) and a point (x, y)
on the curve $y = x^{2} + 1$ then.
 $t = \sqrt{(x-18)^{2} + (y-1)^{2}}$
Hence the required point on the
curve is $(2,5)$.
 $t = \sqrt{(x-18)^{2} + (y-1)^{2}}$
 $t = \sqrt{(x-18)^{2} + (y-1)^{2}}$