GEOMETRICAL INTERPRETATION OF A DERIVATIVE:

Let $P(x, y)$ and $Q(x+\delta x, y+\delta y)$ be two neighboring points on the graph of the function defined by the equation $y=f(x)$. The line $P Q$ is a secant to the curve. Its inclination is θ. TP is the tangent to the curve at point P . Its inclination is ψ In $\triangle P Q R$
$\tan \theta=\frac{Q R}{P R}=\frac{\delta y}{\delta x}$
Applying limit $\delta x \rightarrow 0$, the secant will become the tangent at P and θ will tend to ψ.
$\lim _{\delta x \rightarrow 0} \tan \theta=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}$
$\tan \theta=\frac{d y}{d x}$
The derivative w.r.t ' x ' of the function defined by the equation $y=f(x)$ is equal to the slope of the tangent to the graph of the function at point $P(x, y)$.

INCREASING AND DECREASING FUNCTIONS:

Let f be defined on interval (a, b) and let $x_{1}, x_{2} \in(a, b)$ then
(i) $\quad f$ is increasing on the interval (a, b) if $f\left(x_{2}\right)>f(\cdots)$ where er $x_{2}>x_{1}$
(ii) $\quad f$ is decreasing on the intervgl $(a, d) f f\left(x_{2}\right)=f\left(x_{1}\right)$ whent ver $x_{2}>x_{1}$

Note:

(i) A differentiablefurcticat is ncracison on (a, b) if tangent lines to its graph at all poins $\left\{, f(x)\right.$ bave positive slopes i.e. $f^{\prime}(x)>0, \forall x \in(a, b)$.
ii) A aifferentiable function f is decreasing on (a, b) if tangent lines to its graph at all points $(x, f(x))$ have negative slopes i.e. $f^{\prime}(x)<0, \forall x \in(a, b)$.
$f^{\prime}(x)<0 \forall x$ such that $a<x<b$

Stationary Point:

A point where f is neither increasing nor decreasing is called a station y noint, phaded that $f^{\prime}(x)=0$ at that point.

RELATIVE EXTREMA:

Let $\left(c-\delta(x, c+\delta x)=E_{f}\right.$ dordai, of a iunction where δx is small positive number If $f(c) \geq \lambda(x) \forall \& \in \in(-\delta x, c-\delta x)$ then the function f is said to have a relative maxima $\sqrt{1} \cdot \sqrt{ }:=c$
If $f(c) \leq f(x) \forall x \in(c-\delta x, c+\delta x)$ then the function f has relative minima at $x=c$.
Both relative maximum and minimum are called relative extrema (in general).
The graph of a function is shown in the adjoining figure. It has relative maxima at $x=b$ and $x=d$. But at $x=a$ and $x=c$ it has relative minima.

Critical Values and Critical Points:

If $c \in D_{f}$ and $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist then the number $f(-)$ 1s c.aned value of f while the point $(c, f(c)$) on the Friph of $f f \dot{T}$ is naned as a cricical ont. There are functions which inave extematinat or nin ma) at ho points where their derivatives do not exist.

First derivative rule:

Let $f($. $)$ be difere thable in neighourhood of c where $f^{\prime}(c)=0$
(i) If $f(\lambda)$ changes sign from positive to negative as x increases through c then $f(c)$ is the relative maxima of $f(x)$.
(ii) If $f^{\prime}(x)$ changes sign from negative to positive as x increases through c then $f(c)$ is the relative minima of $f(x)$.

Second Derivative Rule:

Let $f(x)$ be a differentiable function in neighborhood of c where $f^{\prime}\left(c{ }^{\prime}=0\right.$ then
(i) $\quad f(x)$ has relative maxima at c if $f^{\prime \prime \prime}(c)<0$
(ii) $\quad f(x)$ has relative rinima c if $s(c)>0$.

Note:
(i) (A)stationarypint callec a tuming point if it is either a maximum point or a miniman ocin.
(ii) If $f^{\prime}(x) \geq 0$ betore the point $O_{x}=a, \quad f^{\prime}(x)=0$ at $x=a$ and $f^{\prime}(x)>0$ after $x=a$ then f does not has a relative maxima. Such a point of the function is called the point of inflection.

EXERCISE 2.9

Q. 1 Determine the intervals in which f is increasing or decreasing for the domain mentioned in each case.
(i) $\quad f(x)=\sin x, x \in(-\pi, \pi)$

Solution:

$$
f(x)=\sin x
$$

Differentiate w.r.t. " x "
$f^{\prime}(x)=\cos x$
Put $f^{\prime}(x)=0$
$\cos x=0$
$\Rightarrow x=-\frac{\pi}{2}, \frac{\pi}{2}$
Intervarale

$\min \left(\begin{array}{c}\pi \\ -2 \\ 2\end{array}\right)$
For $\left(-\pi,-\frac{\pi}{2}\right) ; \quad f^{\prime}(x)=\cos x<0$

So f is decreasing
For $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ; \quad f^{\prime}(x)=\cos x>0$
So f is increasing.
For $\left(\frac{\pi}{2}, \pi\right) ; \quad f^{\prime}(x)=\cos x<0$
So f is decreasing
(ii) $\quad f(x)=\cos x, x \in\left(\frac{-\pi}{2} \frac{\pi}{2}\right)$

Solution:
$f(x)=\cos x$
Difierniate
$f^{\prime}(x)=-\sin x$
Put $f^{\prime}(x)=0$
$-\sin x=0$
$\Rightarrow x=0$

Difiernniate y.r. "."'

Intervals are $\left(-\frac{\pi}{2}, 0\right)$ and $\left(0, \frac{\pi}{2}\right)$
For $\left(-\frac{\pi}{2}, 0\right) ; f^{\prime}(x)=-\sin x>0$

So f is increasing
For $\left(0, \frac{\pi}{2}\right) ; \quad f^{\prime}(x)=-\sin x<0$
So f is decreasing
(iii)

$$
f(x)=4-x^{2}, x \in(-22)
$$

Solution:

$f(x)=4-$

Dityrestiate w.r.t. " x "
$f^{\prime}(x)=-2 x$
Put $f^{\prime}(x)=0$

$$
\begin{aligned}
& -2 x=0 \\
& x=0
\end{aligned}
$$

Intervals are $(-2,0)$ and $(0,2)$
For $(-2,0) ; \quad f^{\prime}(x)=-2 x>0$
So f is increasing
For $(0,2) ; \quad f^{\prime}(x)=-2 x<0$
So f is decreasing
(iv) $\quad f(x)=x^{2}+3 x+2, x \in(-4,1)$

Solution:

$f(x)=x^{2}+3 x+2$
Differentiate w.r.t. " x "
$f^{\prime}(x)=2 x+3$
Put $f^{\prime}(x)=0$
$2 x+3=0$
$x=-\frac{3}{2}$
Intervals are $\left(-4, \frac{-3}{2}\right)$ and $\left(\left[\frac{-3}{2}, \frac{1}{2}\right)\right.$
For $\left(-\sqrt{2},-\frac{3}{2}\right) \quad f^{\prime \prime}(x)=2$
Sb) is decreasing
For $\left(-\frac{3}{2}, 1\right) ; \quad f^{\prime}(x)=2 x+3>0$
So f is increasing

Q. 2 Find the extreme values for the

 following functions üefined 5 \%.(i)

Scinion:
$f(x)=1-x^{3}$
Differentiate w.r.t. " x "
$f^{\prime}(x)=-3 x^{2}$
Put $f^{\prime}(x)=0$
$-3 x^{2}=0 \Rightarrow x=0$
Now $f^{\prime \prime}(x)=-6 x$
Putting $x=0$,
$f^{\prime \prime}(0)=0$
So the second derivative is not helpful in determining the extreme values.
Now we use first derivative test.
Let $x=0-\varepsilon$
and $f^{\prime}(0-\varepsilon)=-3(0-\varepsilon)^{2}$

$$
=-3 \varepsilon^{2}<0
$$

and $f^{\prime}(0+\varepsilon)=-3(0+\varepsilon)^{2}$

$$
=-3 \varepsilon^{2}<0
$$

So the first derivative does not
change sign at $x=0$ and $f(x)=1$,
$\therefore(0,1)$ is the point of inflexion.
(ii) $\quad f(x)=x^{2}-x-2$

Solution:

$$
f(x)=x^{2}-x-2
$$

Differentiate w. x

take $f^{\prime}(x)=2 x-1$
Differentiate again w.r.t. " x "
$f^{\prime \prime}(x)=2$
at $x=\frac{1}{2}$
$f^{\prime \prime}(x)=2>0$
so f has relative minima at $x=\frac{1}{2}$ and $f\left(\frac{1}{2}\right)=\frac{-9}{4}$
(iii) $\quad f(x)=5 x^{2}-6 x+2$

Solution:

$$
f(x)=5 \cdot-5 x+2
$$

Differentiate w.1.t. "x"

$f^{\prime}(x)=10-6$
Put $f^{\prime}(x)=0 \Rightarrow 10 x-6=0$
we get $x=\frac{3}{5}$
take $f^{\prime}(x)=10 x-6$
Differentiate again w.r.t. " x "
$f^{\prime \prime}(x)=10$
at $x=\frac{3}{5}$

$$
f^{\prime \prime}(x)=10>0
$$

So f has relative minima at $x=\frac{3}{5}$
$f\left(\frac{3}{5}\right)=5\left(\frac{3}{5}\right)^{2}-6\left(\frac{3}{5}\right)+2$
$=\frac{9}{5}-\frac{18}{5}+2$
$=\frac{9-18+10}{5}$
$f\left(\frac{3}{5}\right)=\frac{1}{5}$
(iv) $\quad f(x)=3 x^{2}$

Solution:

Differe tiale vr.t x^{\prime}
$f^{\prime}(x)=6$
PD $+f^{\prime}(0 x)=0 \Rightarrow 6 x=0$
We get $x=0$
take $f^{\prime}(x)=6 x$
Differentiate again w.r.t. " x "

$f^{\prime \prime}(x)=6$
and $f(0)=0$
(v) $\quad f(x)=2 x^{3}-2 x^{2}-36 x+3$

Solution:

$$
f(x)=2 x^{3}-2 x^{2}-36 x+3
$$

Differentiate w.r.t. " x "
$f^{\prime}(x)=6 x^{2}-4 x-36$
Put $f^{\prime}(x)=0$

$$
\begin{aligned}
& 6 x^{2}-4 x-36=0 \\
& \Rightarrow \quad x=\frac{1 \pm \sqrt{55}}{3}
\end{aligned}
$$

Take $f^{\prime}(x)=6 x^{2}-4 x-36$
Differentiate again w.r.t. " x "
Now $f^{\prime \prime}(x)=12 x-4$
At $x=\frac{1+\sqrt{55}}{3}$
$f^{\prime \prime}\left(\frac{1+\sqrt{55}}{3}\right)=12\left(\frac{1+\sqrt{55}}{3}\right)-4$
$=4+4 \sqrt{55}-4=4 \sqrt{55}>0$
Thus f has relative raimima
$f\left(\frac{1-\sqrt{55}}{3}\right)=2\left(\frac{1-\sqrt{55}}{3}\right)^{3}-2\left(\frac{1-\sqrt{55}}{3}\right)^{2}-36\left(\frac{1-\sqrt{55}}{3}\right)+3$

$$
f\left(\frac{1-\sqrt{55}}{3}\right)=\frac{-1}{27}(247-220 \sqrt{55})
$$

(vi)

$$
f(x)=x^{4}-4 x^{2}
$$

Solution:

$$
f(x)=x^{4}-4 x^{2}
$$

Difirrestiate w.r.t. " x "
$f^{\prime}(x)=4 x^{3}-8 x$
Put $f^{\prime}(x)=0$
$4 x^{3}-8 x=0$
$x=0, \quad x=\sqrt{2}, \quad x=-\sqrt{2}$
Take $f^{\prime}(x)=4 x^{3}-8 x$
Differentiate again w.r.t. " x "
$f^{\prime \prime}(x)=12 x^{2}-8$
at $x=-\sqrt{2}$
$f^{\prime \prime}(-\sqrt{2})=12(-\sqrt{2})^{2}-8$
$f^{\prime \prime}(-\sqrt{2})=24-8$
$f^{\prime \prime}(-\sqrt{2})=16>0$
So f has relative minima
at $x=0, f^{\prime \prime}(0)=-8<0$
so f has relative maxima at $x=0$
at $x=\sqrt{2}, f^{\prime \prime}(\sqrt{2})=11>0$
so f has relative minima at $x=\sqrt{2}$
and $f(\sqrt{2})=f(-\sqrt{2})=-4$
also $f(0)=0$
(vii)

$$
f(x)=(x-2)^{2}(x-2)
$$

Sola

$$
\begin{aligned}
& f(x)=(x-2)^{2}(x-1) \\
& f(x)=\left(x^{2}-4 x+4\right)(x-1) \\
& f(x)=x^{3}-5 x^{2}+8 x-4
\end{aligned}
$$

Differentiate w.r.t. " x "
$f^{\prime}(x)=3 x^{2}-10 x+8$

Take $f^{\prime}(x)=3 x^{2}-10 x+8$
Differentiate again w.r.t. " x "
$f^{\prime \prime}(x)=6 x-10$
at $x=2$,

$$
f^{\prime \prime}(2)=2>0
$$

So f has relative minima
and $f(2)=0$
at $x=\frac{4}{3}$

$$
f^{\prime \prime}\left(\frac{4}{3}\right)=-2<0
$$

So f has relative minima
And
$f\left(\frac{4}{3}\right)=\left(\frac{4}{3}\right)^{3}-5\left(\frac{4}{3}\right)^{2}+8\left(\frac{4}{3}\right)-4$
$=\frac{64}{27}-\frac{80}{9}+\frac{32}{3}-4$
$f\left(\frac{4}{3}\right)=\frac{4}{27}$
(viii) $f(x)=5+3 x-x^{3}$

Solution:

$$
f(x)=5+3 x-a^{3}
$$

$$
\begin{aligned}
& 3-3 x^{2}=0 \\
& \Rightarrow \quad x= \pm 1
\end{aligned}
$$

Take $f^{\prime}(x)=3-3 x^{2}$
Differentiate again w.r.t. " x "
$f^{\prime \prime}(x)=-6 x$
at $x=-1, f^{\prime \prime}(-1)=6>0$

So f has relative minima
And $\quad f(-1)=3$
At $x=1, f^{\prime \prime}(1)=-6<0$
So f has relative maxima
And $f(1)-7$

Q. 3 Find the 1 naxmmp and nirimun

values of the unction defined by The fillowid? dration occurring iv. Le interval $[0,2 \pi]$
$f(x)=\sin x+\cos x$

Solution:

$$
f(x)=\sin x+\cos x
$$

Differentiate w.r.t. " x "
$f^{\prime}(x)=\cos x-\sin x$
Put $f^{\prime}(x)=0$
$\cos x-\sin x=0$
$\sin x=\cos x \quad \Rightarrow \tan x=1$
$x=\frac{\pi}{4} \quad \& \quad x=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}$
Take $f^{\prime}(x)=\cos x-\sin x$
Differentiate again w.r.t. " x "
$f^{\prime \prime}(x)=-\sin x-\cos x$
At $x=\frac{\pi}{4}$
$f^{\prime \prime}\left(\frac{\pi}{4}\right)=-\sin \frac{\pi}{4}-\cos \frac{\pi}{4}$
$=\frac{-1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\frac{2}{\sqrt{2}}$
$=-\sqrt{2}<0$
So f has maximum value
And
$f\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}-\cos , \frac{\lambda}{4}=-\frac{1}{\sqrt{2}}+-\sqrt{2}==\frac{\pi}{\sqrt{2}}$
(1) $\binom{2}{4}=\sqrt{2}$

At $x=\frac{5 \pi}{4}$
$f^{\prime \prime}\left(\frac{5 \pi}{4}\right)=-\sin \frac{5 \pi}{4}-\cos \frac{5 \pi}{4}$
$\square \bar{S}^{\sqrt{2}}>0$
Sc for higimam ratue
$\left.\operatorname{and} \frac{5 \pi}{4}\right)=\sin \frac{5 \pi}{4}+\cos \frac{5 \pi}{4}$
$f\left(\frac{5 \pi}{4}\right)=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}$
$f\left(\frac{5 \pi}{4}\right)=\frac{-1-1}{\sqrt{2}}=\frac{-2}{\sqrt{2}}$
$f\left(\frac{5 \pi}{4}\right)=-\sqrt{2}$
So maximum and minimum values of $f(x)$ are $\sqrt{2}$ and $-\sqrt{2}$ respectively.
Q. 4 Show that $y=\frac{\ln x}{x}$ has maximum value at $x=e$
Solution:

$$
y=\frac{\ln x}{x}
$$

Differentiate w.r.t " x "
$\frac{d y}{d x}=\frac{x\left(\frac{1}{x}\right)-\ln x(1)}{x^{2}}$
$\frac{d y}{d x}=\frac{1-\ln x}{x^{2}}$
Put $\frac{d y}{d x}=0$

$\Rightarrow x=e$
Take $\frac{d y}{d x}=\frac{1-\ln x}{x^{2}}$
Differentiate again w.r.t. " x "
$\frac{d^{2} y}{d x^{2}}=\frac{x^{2}\left(-\frac{1}{x}\right)-(1-\ln x)(2 x)}{x^{4}}$
$\frac{d^{2} y}{d x^{2}}=\frac{-x-2 x(1-\ln x)}{x^{4}}$
$\frac{d^{2} y}{d x^{2}}=\frac{-3 x+2 x \ln x}{x^{4}}$
$\frac{d^{2} y}{d x^{2}}=-3-\frac{2}{x^{3}} \frac{\ln x}{}$
at $x=\epsilon$

$$
\left.\frac{d^{2}-\sqrt{2}}{d x^{2}}\right|_{x=e}=\frac{-3+2 \ln e}{e^{3}}
$$

$$
=\frac{-1}{e^{3}}<0
$$

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=e}<0
$$

so f has maximum value at $x=e$.
Q. 5 Show that $y=x^{x}$ has minimum
value at $x=\frac{1}{e}$
Solution:
$y=x^{x}$
Taking natural \log on both sides
$\ln y=\ln x^{x}$
$\ln y=x \ln x$
Differentiate w.r.t. " x "
$\frac{1}{y} \frac{d y}{d x}=x \cdot \frac{1}{x}+\ln x(1)$
$\frac{1}{y} \frac{d y}{d x}=1+\ln x$
$\left.\frac{d y}{d x}=y \cdot(1)-\ln x\right) \Rightarrow d y=-1,(1-1, x)$,
Put $\sqrt[d y]{d x}=0$
$\Rightarrow x^{x}(1+\ln x)=0$
$\Rightarrow 1+\ln x=\quad \therefore x^{x} \neq 0$
$\ln x=-1$

Take $\frac{d y}{d x}=x^{x}(1+\ln x)$
Differentiate again w.r.t. " x "
$\frac{d^{2} y}{d x^{2}}=x^{x}\left(\frac{1}{x}\right)+(1+\ln x) x^{x}(1+\ln x)$
$\frac{d^{2} y}{d x^{2}}=\frac{x^{x}}{x}+x^{x}(1+\ln x)^{2}$
$\frac{d^{2} y}{d x^{2}}=x^{x}\left(\frac{1}{x}+(1+\ln x)^{2}\right)$
at $x=\frac{1}{e}$
$\left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{1}{e}}=\left(\frac{1}{e}\right)^{\frac{1}{e}}\left[\frac{1}{1 / e}+\left(1+\ln \frac{1}{e}\right)^{2}\right]$
$\left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{1}{e}}=\left(\frac{1}{e}\right)^{\frac{1}{e}}\left[e+(1+\ln 1-\ln e)^{2}\right]$

