GEOMETRICAL INTERPRETATION OF A DERIVATIVE:

Let P(x, y) and $Q(x+\delta x, y+\delta y)$ be two neighboring points on the graph of the function defined by the equation y = f(x). The line *PQ* is a secant to the curve. Its inclination is θ . TP is the tangent to the curve at point P. Its inclination is ψ In ΔPQR

$$\tan\theta = \frac{QR}{PR} = \frac{\delta y}{\delta x}$$

Applying limit $\delta x \to 0$, the secant will become the tangent at P and θ will tend to ψ .

$$\lim_{\delta x \to 0} \tan \theta = \lim_{\delta x \to 0} \frac{\delta y}{\delta x}$$
$$\tan \theta = \frac{dy}{dx}$$

The derivative w.r.t 'x' of the function defined by the equation y = f(x) is equal to the slope of the tangent to the graph of the function at point P(x, y).

INCREASING AND DECREASING FUNCTIONS:

Let f be defined on interval (a,b) and let $x_1, x_2 \in (a,b)$ then

- (i) f is increasing on the interval (a,b) if $f(x_2) > f(x_1)$ where ver $x_2 > x_2$
- (ii) f is decreasing on the interval (a, b) if $f(x_1) < f'(x_1)$ whenever $x_2 > x_1$

Note:

(i) A differentiable function f is increasing on (a,b) if tangent lines to its graph at all points (x, f(x)) have positive slopes i.e. f'(x) > 0, $\forall x \in (a,b)$.

A differentiable function f is decreasing on (a,b) if tangent lines to its graph at all points (x, f(x)) have negative slopes i.e. f'(x) < 0, $\forall x \in (a,b)$.

 $f'(x) < 0 \quad \forall x \text{ such that } a < x < b$

Stationary Point:

A point where f is neither increasing nor decreasing is called a stationary point, provided that f'(x) = 0 at that point.

RELATIVE EXTREMA:

Let $(c - \delta x, c + \delta x) \subset D_f$ (corvain of a function f) where δx is small positive number If $f(c) \ge f(x) \forall .c \in (\cdots + \delta x, c + \delta x)$ then the function f is said to have a relative maxima at x = c

 $f(c) \le f(x) \forall x \in (c - \delta x, c + \delta x)$ then the function f has relative minima at x = c.

Both relative maximum and minimum are called relative extrema (in general).

The graph of a function is shown in the adjoining figure. It has relative maxima at x = b and x = d. But at x = a and x = c it has relative minima.

Critical Values and Critical Points:

If $c \in D_f$ and f'(c) = 0 or f'(c) does not exist then the number f(c) is called a critical value of f while the point (c, f(c)) on the graph of f(c) is named us a critical point. There are functions which have extrema (maxima or minima) at the points where their derivatives do not exist.

First derivative rule:

(ii)

Let f(.) t be differentiable in neighbourhood of c where f'(c) = 0

If f'(x) changes sign from positive to negative as x increases through c then f(c) is the relative maxima of f(x).

If f'(x) changes sign from negative to positive as x increases through c then f(c) is the relative minima of f(x).

Second Derivative Rule:

- Let f(x) be a differentiable function in neighborhood of c where f'(c) = 0 then
- (i) f(x) has relative maxima at c if f''(c) < 0
- (ii) f(x) has relative minima at c if f'(c) > 0.

Note:

(i) A stationary point is called a turning point if it is either a maximum point or a minimum point.
(ii) If f'(x) > 0 before the point x = a and f'(x) > 0 after x = a then f does not has a relative maxima. Such a point of the function is called the point of inflection.

EXERCISE 2.9

So f is decreasing Q.1 Determine the intervals in which f is increasing or decreasing for For $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$; $f'(x) = \cos x > 0$ the domain mentioned in each case. So f is increasing. $f(x) = \sin x, x \in (-\pi, \pi)$ (i) For $\left(\frac{\pi}{2}, \pi\right)$; $f'(x) = \cos x < 0$ Solution: $f(x) = \sin x$ So f is decreasing Differentiate w.r.t. "x" $f(x) = \cos x, \quad x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ **(ii)** $f'(x) = \cos x$ Solution: Put f'(x) = 0 $f(x) = \cos x$ $\cos x = 0$ Differentiate w.r. $\Rightarrow x = -\frac{\pi}{2}, \frac{\pi}{2}$ $f'(x) = -\sin x$ Put f'(x) = 0Intervais are $-\pi$ $-\sin x = 0$ $\Rightarrow x = 0$ $\frac{\pi}{2}$ Intervals are $\left(-\frac{\pi}{2},0\right)$ and $\left(0,\frac{\pi}{2}\right)$ For $\left(-\pi, -\frac{\pi}{2}\right)$; $f'(x) = \cos x < 0$ For $\left(-\frac{\pi}{2},0\right)$; $f'(x) = -\sin x > 0$

So f is increasing
For
$$\left(0, \frac{\pi}{2}\right)$$
: $f'(x) = -\sin x < 0$
So f is decreasing
(iii) $f(x) = 4 - x^2$. $x \in (-2, 2)$
Solution:
 $f(x) = 4 - x^2$.
 $f(x) = 4 - x^2$.
 $f(x) = 4 - x^2$.
Solution:
 $f(x) = -2x$
Put $f'(x) = 0$
 $-2x = 0$
 $x = 0$
Intervals are $(-2, 0)$ and $(0, 2)$
For $(-2, 0)$: $f'(x) = -2x > 0$
So f is increasing
For $(0, 2)$: $f'(x) = -2x < 0$
So f is increasing
For $(0, 2)$: $f'(x) = -2x < 0$
So f is increasing
(iv) $f(x) = x^2 + 3x + 2$.
Differentiate $w.r.t \cdot x^n$
 $f'(x) = -2x + 3$
Put $f'(x) = 0$
 $2x + 3 = 0$
 $x = -\frac{3}{2}$
Intervals are $\left(-4, -\frac{3}{2}\right)$ and $\left(-\frac{3}{2}, 7\right)$
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 < 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 < 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 < 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
So f is increasing
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
For $\left(-\frac{3}{2}, 1\right)$; $f'(x) = 2x + 3 > 0$
For $\left(-\frac{3}{2}, 1\right)$

so f has relative minima at
$$x = \frac{1}{2}$$

and $f\left(\frac{1}{2}\right) = \frac{-9}{4}$
(iii) $f(x) = 5x^2 - 6x + 2$
Solution:
 $f(x) = 5x^2 - 6x + 2$
Solution:
 $f(x) = 5x^2 - 6x + 2$
Differentiate with the probability of the proba

$$f\left(\frac{1-\sqrt{55}}{3}\right) - 2\left(\frac{1-\sqrt{55}}{3}\right)^{2} - 30\left(\frac{1-\sqrt{55}}{3}\right) + 3$$

$$f\left(\frac{1-\sqrt{55}}{3}\right) = -\frac{1}{27}\left(247 - 220\sqrt{55}\right)$$
(vi) $f(x) = x^{4} - 4x^{2}$
Solution:

$$f(x) = x^{4} - 4x^{2}$$
Solution:

$$f(x) = x^{4} - 4x^{2}$$
Solution:

$$f(x) = x^{4} - 4x^{4}$$
Vertex equive: x, x, x^{n}

$$f'(x) = 4x^{3} - 8x$$
Put $f'(x) = 0$

$$4x^{2} - 8x = 0$$

$$x = \sqrt{2}, x = -\sqrt{2}$$
Take $f'(x) = 4x^{3} - 8x$
Differentiate again w.r.t. "x"
$$f''(x) = 12x^{2} - 8$$
at $x = -\sqrt{2}$
Take $f'(x) = 12x^{2} - 8$
at $x = -\sqrt{2}$

$$f''(-\sqrt{2}) = 12(-\sqrt{2})^{2} - 8$$

$$f''(-\sqrt{2}) = 12(-\sqrt{2})^{2} - 11)$$

$$f(x) = (x - 2)^{2}(x - 1)$$

$$f(x) = (x - 2)^{2}(x -$$

Chapter-2

140

$$\frac{d^{2}y}{dx^{2}} = \frac{-x-2x(1-\ln x)}{x^{4}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-3x+2x\ln x}{x^{4}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-3x+2x\ln x}{x^{4}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-3x+2x\ln x}{x^{4}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-3x+2\ln e}{e^{3}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-3+2\ln e}{e^{3}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-3+2\ln e}{e^{3}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-3+2\ln e}{e^{3}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-3}{x^{4}} + 2\ln e}{e^{3}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-3}{x^{4}} + (1+\ln x)$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-3}{x^{4}} + (1+\ln x)^{2}$$

$$\frac{d^{2}y}{dx^{4}} = \frac{-3}{x^{4}} + (1+\ln x)$$