Introduction.
The word geonetry is delived from two Greek words Geo (earth) and Metron (mea; urement it means knowledge of measurement of earth. Geometry is branch of IV. 11 erpatics that deals the shape and size of things. Briefly speaking, geometry is a mathematical study of properties, relations and measurements of points, lines, angles, curves, surfaces and solids.
Around 300.B.C.Euclid was very first Greek mathematician who wrote $\mathbf{1 3}$ books on geometry. He was founder of geometry. Geometry introduced by Euclid is known as Euclidean geometry. In his books, he wrote a number of definitions on basic concepts of point, line etc. He gave assumptions, which were actually axioms.

Note:

Euclidean geometry is divided into two parts
(i) Plane geometry
(ii) Solid geometry

In 1637 A.D a French philosopher and mathematician Rene-Descartes introduced algebraic methods in geometry, named as coordinates geometry or analytic geometry. In analytic geometry, points could be represented by numbers. Lines and curves represented by equations.

Coordinate Plane:

The plane made by two mutually perpendicular lines is called coordinate plane. Let we draw two mutually perpendicular lines $X X^{\prime}$ and $Y Y^{\prime}$ such as O be their point of intersection. Then lines $X X^{\prime}$ and $Y Y^{\prime}$ are together called coordinates axes. The common point O is called origin or initial point. The horizontal line $X^{\prime} O X$ is called x-axis, while the vertical line $Y^{\prime} O Y$ is called y-axis. The plane determined by both x-axis and y-axis is called $x y$-plane or Cartesian plane or Coordinate plane.
Let $P(x, y)$ be a point is coordinate plan hen finst nember of arre ecpai-(1).e. x) is called x-coordinate or abs rissa of mint Pand se cond neenter of ordered pair (i.e. y) is called y-crandinate or owdir ate $\mathrm{ff} / \mathrm{po}$ in \boldsymbol{D}
The coordipate axer dide the coordindt piane into four equal parts, called quadrants.
Quadrant $1 \quad\{(x, y): c \leq 2, y>0\}$ (i.e. x is positive and y is positive)
Dud hontil $\{(x, y): x<0, y>0\}$ (i.e. x is negative and y is positive)
Quadrant III $\{(x, y): x<0, y<0\}$ (i.e. x is negative and y is negative)
Quadrant IV $\{(x, y): x>0, y<0\}$ (i.e. x is positive and y is negative)

Note:

On x-axis ordinate is zero i.e. $y=0$, also on y-axis abscissa is zero i.e. $x=0$

The Distance Formula:

Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be twopoints in the plant. The dis tance between two points is given by $\left.d=|A B|=\sqrt{\left(x_{2}\right.}-\overline{\left.x_{1}\right)^{2}}\right) \cdot y_{2}-\left(-y()^{2}\right)$

Proof:
Iet $A\left(x_{1}, \gamma_{1}\right)$ and $\bar{B}\left(x_{2}, y_{2}\right)$ be two points in the plane. We can find the distance $d=|\bar{A} \bar{B}|$ from the right angle triangle $A B C$,

By using Pythagorean Theorem.
We have

$$
\begin{equation*}
d^{2}=|A B|^{2}=|A C|^{2}+|B C|^{2} \tag{i}
\end{equation*}
$$

Now $\quad|A C|=|D E|$

$$
\begin{aligned}
& =|O E-O D| \\
& =\left|x_{2}-x_{1}\right|
\end{aligned}
$$

And $\quad|B C|=|B E-C E|$

$$
\begin{aligned}
& =|B E-A D| \\
& =\left|y_{2}-y_{1}\right|
\end{aligned}
$$

Therefore, (i) takes the form
$d^{2}=|A B|^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
$d=|A B|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Which is the formula for the distance ' d ' the distance is always taken to be positive and it not a directed distance from A and B when
A and B do not lie on the same horizontal and vertical line. If A and B lie on a line pan to one of the coordinate axes, then by the formula the distanee $A B$ is alsspiute value of he directed distance $\overrightarrow{A B}$.

Point dividing the join of two pons iongy natic: (Katio Eormoia)

Let $A\left(x_{1}, y_{1}\right)$ and $x_{2}\left(y_{2}\right.$, be twe points in n ane.
The corrdil athe of the poin dividing the line segnent $A R$ in the atio $k_{1}: k_{2}$ are given by $\left(\frac{k_{1} x_{2}+k_{2} x_{1}}{k_{1}+k_{2}}, \frac{k_{1} y_{2}+k_{2} y_{1}}{k_{1}+k_{2}}\right)$

Proof:

Let $P(x, y)$ be the point that divides
$A B$ in the ratio $k_{1}: k_{2}$.
From A, B and P draw perpendicalars to
x-axis as shown in the figure.
Also day $A D \perp R G$
Since P Spratiel to $B L$, ir ruiande
$A D R$, ye have
$\hat{k}_{2}=\frac{A P}{F B}=\frac{A D}{C D}=\frac{C F}{F G}=\frac{O F-O E}{O G-O F}=\frac{x-x_{1}}{x_{2}-x}$
$\Rightarrow \frac{k_{1}}{k_{2}}=\frac{x-x_{1}}{x_{2}-x}$
$k_{1}\left(x_{2}-x\right)=k_{2}\left(x-x_{1}\right)$
$k_{1} x_{2}-k_{1} x=k_{2} x-k_{2} x_{1}$
$k_{1} x_{2}+k_{2} x_{1}=k_{2} x+k_{1} x$
$k_{1} x+k_{2} x=k_{1} x_{2}+k_{2} x_{1}$
$x\left(k_{1}+k_{2}\right)=k_{1} x_{2}+k_{2} x_{1}$
$\Rightarrow x=\frac{k_{1} x_{2}+k_{2} x_{1}}{k_{1}+k_{2}}$
Similarly we can show that
$y=\frac{k_{1} y_{2}+k_{2} y_{1}}{k_{1}+k_{2}}$

Note:

(i) If the directed distances $A P$ and $P B$ have the same sign, then their ratio is positive and P is said to divide $A B$ internally. The coordinates of $P(x, y)$ in this case will be

$$
x=\frac{k_{1} x_{2}+k_{2} x_{1}}{k_{1}+k_{2}} \text { and } y=\frac{k_{1} y_{2}+k_{2} y_{1}}{k_{1}+k_{2}}
$$

(ii) If the directed distance $A P$ and $P B$ have opposite signs (directions) i. L_{i} beyond $A B$, then their ratio is negat ve and F is saic th divide $A E$ esern. The coordinates of $\mathcal{F}(x, y)$ in this case vil. be
(iii) The mg point funta:

If . Dodita $P(x, y)$ lies exactly in the middle of two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ i.e. $k_{1}: k_{2}=1: 1$, then $x=\frac{x_{1}+x_{2}}{2}$ and $y=\frac{y_{1}+y_{2}}{2}$
(iv) The above theorem is valid in which ever quadrant A and B lie.

Theorem:

The centroid of a $\triangle A B C$ is a point that divides each median in the ratio 2:1. Using this show that medians of a triangle are concurrent.

Proof:

Let the vertices of a $\triangle A B C$ have coerdinatiss is shown in figure.
Since D is the midpoint of $4 A$ there Fore it:
coordibate $a \cdot \in\left[=\left[\frac{x_{1}+x}{2}-\frac{y_{1}-y_{2}}{2}\right)\right.$
Let $\mathcal{P}(x, y)$ be the cenirciu of the triangle $A B C$.
Theor Codiv des the median $C D$ in the ratio 2:1.
Thecefore of O are

$$
\left(\frac{(1)\left(x_{3}\right)+2\left(\frac{x_{1}+x_{2}}{2}\right)}{1+2}, \frac{(1)\left(y_{3}\right)+2\left(\frac{y_{1}+y_{2}}{2}\right)}{1+2}\right)=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

Similarly we can prove the same result for other two medians. Hence the medians of triangle are concurrent.

Theorem:

Bisectors of angles of a triangle are concurrent.
Proof: Let the coordinates of the vertices of a triangle $A B C$ be as shown in the figure.
Suppose $|B C|=a,|C A|=b$ and $|A B|=c$.
Let the bisector of $\angle A$ meets $B C$ at D. Then D divides $B C$ in the ratio $c: b$.
Therefore coordinates of D are $\left(\frac{b x_{2}+c x_{3}}{b+c}, \frac{b y_{2}+c y_{3}}{b+c}\right)$.
The bisector of $\angle B$ meets $A D$ at I and I divides $A D$ in the ratio $c:|B D|$
Now $\quad\left|\frac{B D}{D C}\right|=\frac{c}{b} \quad$ or $\quad\left|\frac{D C}{B D}\right|=\frac{b}{c}$
or $\quad \frac{|D C|+|B D|}{|B D|}=\frac{b+c}{c}$
or $\quad \frac{a}{|B D|}=\frac{b+c}{c} \quad$ or $\quad|B D|=\frac{a c}{b+c}$
Thus I divides $A D$ in the ratio $c: \frac{a c}{b+c}$ or in the ratio $b+c: a$
So, coordinates of I are

1.2. $\frac{a x}{a+b+c}, \frac{10 x_{2}+c x_{3}}{a+b y_{2}+c y_{3}}\left(\frac{a y_{1}}{a+b+c}\right)$

The symmetry of these co-ordinates shows that the bisector of $\angle C$ will also pass through this point. Thus the angle bisectors of a triangle are concurrent.

EXERCISE 4.1

Q. 1 Describe the location in the plane of the point $P(x, y)$ for which
(i) $x>0$

Ans: The right half plane
(ii) $\quad x>0$ aind $y>0$

Ans: First quaur nt
(iii) $\quad x=0$

Ans: $\sqrt{2}=1$
Ans: x-axis
(v) $\quad x<0$ and $y \geq 0$

Ans: Second quadrant and negative x-axis.
(vi) $x=y$

Ans: The set of points in the
$1^{\text {st }}$ and $3^{\text {rd }}$ quadrants having equal abscissa and ordinates.
(vii) $\quad|x|=|y|$

Ans: The set of points in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants having both the coordinates equal and the set of points in $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants having both the coordinates equal but opposite in signs.
(viii) $|x| \geq 3$

Ans: Points on the x-axis having abscissa less than or equal to ' -3 ' or greater than or equal to ' 3 '.
(ix) $x>2$ and $y=2$

Ans: Points in the $1^{\text {st }}$ quadrant with ordinate 2 and abscissa greater than 2.
(x) $\quad x$ and y have opposite signs.

Ans: Set of points in $2^{\text {nd }}$ and $4^{\text {th }}$ guadrarts.
Q. 2 Find in each of the follow inz:
(i) The distance between the two given pints

(ii) Midpoint of the line segmé joirilig the two point
Sovanion

$$
A(3,1) ; B(-2,-4)
$$

$$
|\overline{A B}|=\sqrt{(-2-3)^{2}+(-4-1)^{2}}
$$

$$
\begin{aligned}
& =\sqrt{200} \\
& =\sqrt{100 \times 2}
\end{aligned}
$$

$$
\sqrt{10}<\pi=10 \sqrt{2} \neq 15
$$

$$
\left.\begin{array}{rl}
& =\sqrt{\frac{436}{9}} \\
& =\sqrt{\frac{4 \times 109}{9}} \\
|\overrightarrow{A B}| & =\frac{2}{-\sqrt{109}} \tag{1,15}\\
\text { Mid-pomin of }
\end{array}\right)
$$

15 units from origin.
(c)

Solution:
Let $A(1,15), O(0,0)$
Q. 3 Which of the following points are at a distance of 15 units from the origin?
(a) $(\sqrt{176}, 7)$

Solution:

Let $A(\sqrt{176}, 7), O(0,0)$
$|O A|=\sqrt{(\sqrt{176}-0)^{2}+(7-0)^{2}}$

$$
=\sqrt{176+49}
$$

$$
=\sqrt{225}
$$

$|O A|=15$ units
$\operatorname{Point}(\sqrt{176}, 7)$ is at distance of 15 units from or gin.
(b)

Solution:
$1, \operatorname{Ac} A(10,-10), O(0,0)$

$$
\begin{aligned}
|O A| & =\sqrt{(10-0)^{2}+(-10-0)^{2}} \\
& =\sqrt{100+100}
\end{aligned}
$$

$$
\begin{aligned}
|O A| & =\sqrt{(1-0)^{2}+(15-0)^{2}} \\
& =\sqrt{1+225} \\
|O A| & =\sqrt{226} \neq 15
\end{aligned}
$$

Point $(1,15)$ is not at distance of 15 units from origin.
(d) $\left(\frac{15}{2}, \frac{15}{2}\right)$

Solution:

Let $A\left(\frac{15}{2}, \frac{15}{2}\right), O(0,0)$

$$
\begin{aligned}
|O A| & =\sqrt{\left(\frac{15}{2}-0\right)^{2}+\left(\frac{15}{2}-0\right)^{2}} \\
& =\sqrt{\frac{225}{4}+\frac{225}{4}}
\end{aligned}
$$

$|O A|=\frac{15}{\sqrt{2}} \neq 15$
Point $\left(\frac{15}{2}, \frac{15}{2}\right)$ is not at distance of
15 units from origin.

Q. 4 Show that

(i) The point $A(0,2), B(\sqrt{3},-1)$ and $C(0,-2)$ are vertices of a right triangle.

Solution:

$$
|\overrightarrow{A B}|=\frac{18}{1 / \sqrt{3}-P^{2}+(-1-2)^{2}}
$$

$$
\sqrt{121}=\sqrt{12}
$$

$$
\begin{aligned}
|\overline{B C}| & =\sqrt{(0-\sqrt{3})^{2}+(-2+1)^{2}} \\
& =\sqrt{3+1} \\
& =\sqrt{4} \\
|\overline{B C}| & =2 \\
|\overline{A C}| & =\sqrt{(0-0)^{2}+(-2-2)^{2}} \\
& =\sqrt{0+(-4)^{2}} \\
& =\sqrt{16} \\
|\overline{A C}| & =4
\end{aligned}
$$

Using Pythagoras theorem

$$
|\overline{A C}|^{2}=|\overline{A B}|^{2}+|\overline{B C}|^{2}
$$

$$
(4)^{2}=(\sqrt{12})^{2}+(2)^{2}
$$

$$
16=12+4
$$

$$
16=16
$$

Which is true
So, given points form a right triangle.
(ii) The points $A(3,1), B(-2,-3)$ ara $C(2,2$ (or veries ofmi ospeltes
triangle.
Solvition

$$
\begin{aligned}
\end{aligned}
$$

$$
=\sqrt{25+16}
$$

$$
|\overline{A B}|=\sqrt{41} \ldots
$$

$$
|\overline{A C}|=\sqrt{2} . .
$$

$$
|\overline{B C}|=\sqrt{(2+2)^{2}+(2+3)^{2}}
$$

$$
=\sqrt{(4)^{2}+(5)^{2}}
$$

$$
=\sqrt{16+25}
$$

$$
|\overline{B C}|=\sqrt{41} \ldots(\mathrm{iii})
$$

By comparing (i) and (iii)
$|\overline{A B}|=|\overline{B C}|$
Since two sides of triangle are equal so, the triangle is isosceles.
(iii) The points
$A(5,2), B(-2,3), C(-3,-4)$ and
$D(4,-5)$ are vertices of a
parallelogram. Is the
parallelogram a square?

Solution:

$$
\begin{aligned}
|\overline{A B}| & =\sqrt{(-2-5)^{2}+(3-2)^{2}} \\
& =\sqrt{49+1} \\
|\overline{A B}| & =\sqrt{50} \ldots(\mathrm{i}) \\
|\overline{B C}| & =\sqrt{(-3+2)^{2}+(-4-3)^{2}} \\
& =\sqrt{1+49} \\
|\overline{E C}| & =\sqrt{50} \cdot \ldots(\text { (ii) } \\
\overline{C D} \mid & \left.=\sqrt{(4+3)^{2}}\right) \\
& =\sqrt{49+1} \\
|\overline{C D}| & =\sqrt{50} \ldots(\mathrm{iii}) \\
|\overline{A D}| & =\sqrt{(4-5)^{2}+(-5+2)^{2}} \\
& =\sqrt{1+49}
\end{aligned}
$$

$|\overline{A D}|=\sqrt{50} \ldots$ (iv)
By comparing (i), (ii), (iii) and (iv)
$|\overline{A B}|=|\overline{B C}|=|\overline{C D}|=|\overline{A D}|$
Since all four sides are eqıali so A, B, C and D are vertices of paralleiosian

$$
\sqrt{4} d=0
$$

$$
=\sqrt{64+36}
$$

$$
=\sqrt{100}
$$

$$
|\overline{A C}|=10 \ldots(\mathrm{v})
$$

$$
|\overline{B D}|=\sqrt{(4+2)^{2}+(-5-3)^{2}}
$$

$$
=\sqrt{36+64}
$$

$$
=\sqrt{100}
$$

$$
|\overrightarrow{B D}|=10 \ldots(\mathrm{vi})
$$

By comparing (v) and (vi)
$|\overline{A C}|=|\overline{B D}|$
As diagonals are also equal so the parallelogram is a square.

Q. 5 The midpoints of the sides of a

 triangle are $(1,-1),(-4,-3)$ and $(-1,1)$ Find coordinates of the vertices of the triangle.Solution:

FRA $\left(x, y_{1}\right), D\left(x_{2}, y_{2}\right)$ and
$\mathcal{C}\left(x_{3}, y_{3}\right)$ be the vertices of triangle.
Let $D(1,-1), E(-1,1)$ and
$F(-4,-3)$ be the mid-points of sides
$|\overline{A B}|,|\overline{B C}|$ and $\overrightarrow{A R \mid}$ nespectir
$A B D(\hat{1},-1)$ is ha 1 (ie- ool A or $\overrightarrow{A B}$,
$1=\frac{x_{1}+x_{2}}{2} \quad-1=\frac{y_{1}+y_{2}}{2}$
$2=x_{1}+x_{2} \quad-2=y_{1}+y_{2}$
$x_{1}+x_{2}=2 \ldots$ (i) $\quad y_{1}+y_{2}=-2$...
As $E(-4,-3)$ is the mid-point of
$\overline{B C}$, So
$-4=\frac{x_{2}+x_{3}}{2} \quad-3=\frac{y_{2}+y_{3}}{2}$
$-8=x_{2}+x_{3} \quad-6=y_{2}+y_{3}$
$x_{2}+x_{3}=-8 \ldots$ (iii) $y_{2}+y_{3}=-6 \ldots$
Now, as $F(-1,1)$ is the mid-point of
$\overline{C A}$, So
$-1=\frac{x_{3}+x_{1}}{2} \quad 1=\frac{y_{3}+y_{1}}{2}$
$-2=x_{3}+x_{1} \quad 2=y_{3}+y_{1}$
$x_{3}+x_{1}=-2 \ldots$ (v) $\quad y_{3}+y_{1}=2 \ldots$ (vi)
Adding (i), (iii) and (v)
$2 x_{1}+2 x_{2}+2 x_{3}=-8$
$x_{1}+x_{2}+x_{3}=-4 \ldots$
Adding (ii), (iv) and (vi)
$2 y_{1}+2 y_{2}+2 y_{3}=-6$
$y_{1}+y_{2}+y_{3}=-3 \ldots$...viii)
Putting $x_{2}+\cdots=-8$ inequat (n) (vi)

ves set
$A_{1}-8=-4$
$y_{1}-6=-3$
$x_{1}=-4+8$
$y_{1}=-3+6$
$x_{1}=4$
$y_{1}=3$
$\Rightarrow A\left(x_{1}, y_{1}\right)=A(4,3)$

Now putting $x_{3}+x_{1}=-2$ in equation (vii) and $y_{3}+y_{1}=2$ in equation (viii), we get
$x_{2}-2=-4$
$x_{2}=-4+2$
$x_{2}=-2$
$\Rightarrow B\left(x_{2}, y_{2}\right)=13(-2-5)$
Siniarly puting $x_{1}+x_{2}=2$ in equation (vii) and $y_{1}+y_{2}=-2$ in equation (viii), we get

$$
\begin{array}{lr}
x_{3}+2=-4 & y_{3}-2=-3 \\
x_{3}=-4-2 & y_{3}=-3+2 \\
x_{3}=-6 & y_{3}=-1 \\
\Rightarrow C\left(x_{3}, y_{3}\right)=C(-6,-1)
\end{array}
$$

Q. 6 Find ' \boldsymbol{h} ' such that the points

$$
A(\sqrt{3},-1), B(0,2) \text { and } C(h,-2) \text { are }
$$

vertices of a right triangle with right angle at vertex A.
Solution:
$|\overline{A B}|=\sqrt{(\sqrt{3}-0)^{2}+(-1-2)^{2}}$
$=\sqrt{3+9}$
$|\overline{A B}|=\sqrt{12}$

$$
\mathrm{A}=\sqrt{h^{2}}+3-2 h \sqrt{3}+1
$$

$\sqrt{1-2}=\sqrt{h^{2}-2 \sqrt{3} h+4}$

$$
|\overline{B C}|=\sqrt{(h-0)^{2}+(-2-2)^{2}}
$$

$|\overline{B C}|=\sqrt{h^{2}+16}$
Using Pythagorfan Thaolem

$$
\begin{aligned}
& 1 A^{2} C A B^{2}+A=12 \\
& h^{2}+16=12+l^{2}-2 \sqrt{3} h+4 \\
& 2 \sqrt{3} h=16-16 \\
& 2 \sqrt{3} h=0 \Rightarrow h=0
\end{aligned}
$$

Q. 7 Find ' \boldsymbol{h} ' such that $A(-1, h), B(3,2)$
and $C(7,3)$ are collinear.
Solution:
Since the points are collinear so
$\left|\begin{array}{ccc}-1 & h & 1 \\ 3 & 2 & 1 \\ 7 & 3 & 1\end{array}\right|=0$
Expanding by ' R_{1},

$$
\begin{gathered}
-1\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right|-h\left|\begin{array}{ll}
3 & 1 \\
7 & 1
\end{array}\right|+1\left|\begin{array}{ll}
3 & 2 \\
7 & 3
\end{array}\right|=0 \\
-1(2-3)-h(3-7)+1(9-14)=0 \\
-1(-1)-h(-4)+1(-5)=0 \\
1+4 h-5=0 \\
4 h-4=0 \\
4 h=4 \\
h=1
\end{gathered}
$$

Q. 8 The points $A(-5,-2)$ and $B(5,-4)$ are ends of a diameter of a circle. Find the centre and radius of the circle.
Solution:
As centre O of circle is the mid-poin cet end points of fismeter so 1 pplying micpoint formua and on $_{2} A(-(-5,-2)$

Centre $=O\left(\frac{5+(-5)}{2}, \frac{-4+(-2)}{2}\right)$

$$
=O\left(0, \frac{-6}{2}\right)
$$

Centre $=O(0,-3)$

Radius of circle is the distance from centre to any of the end point
Radius $=|\overline{O A}|=\sqrt{(0+5)^{2}+(-3+2)^{2}}$

$$
\begin{aligned}
& =\sqrt{25+(-1)^{2}} \\
\text { Radiap } & =\sqrt{26}
\end{aligned}
$$

Q. 9 Find ' \because 'such trac the peints
$A(h, 1), B(2,7)$ and $E(-(5,-7)$ are
variceg df: ignt triangle with right angle at the vertex A.
Solution:

$$
\left.\begin{array}{l}
\text { (} \\
|\overline{A B}|=\sqrt{(2-h)^{2}+(7-1)^{2}} \\
\\
=\sqrt{4+h^{2}-4 h+36} \\
|\overline{A B}|=\sqrt{h^{2}-4 h+40} \\
|\overline{A C}|
\end{array}=\sqrt{(-6-h)^{2}+(-7-1)^{2}}\right)=\sqrt{36+h^{2}+12 h+64}
$$

Using Pythagorean Theore n

$2 \sigma \sigma()=h-4 h+0-h^{2}+12 h+100$
$2 h^{2}-9+140-260=0$
$2 h^{2}+8 h-120=0$
$h^{2}+4 h-60=0$ (Dividing by 2)
$h^{2}+10 h-6 h-60=0$
$h(h+10)-6(h+10)=0$

Q. 10 A quadrilateral has the points $A(9,3), B(-7,7), C(-3,-7)$ and $D(5,-5)$ as its vertices. Find the mid-points of its sides. Show that the figure formed by joining the midpoints consecutively is a parallelogram.
Solution:

Let E, F, G and H be the mid-points of the sides $\overline{A B}, \overline{B C}, \overline{C D}$ and $\overline{A D}$ respectively.
So by using mid-point formula

$$
E\left(\frac{9+(-7)}{2}, \frac{7+3}{2}\right)=E\left(\frac{2}{2}, \frac{10}{2}\right)
$$

$$
\begin{aligned}
G\left(\frac{-3+5}{2}, \frac{-7+(-5)}{2}\right) & =G\left(\frac{2}{2},-\frac{12}{2}\right) \\
& =G(1,-6) \\
H\left(\frac{9+5}{2}, \frac{3+(-5)}{2}\right)= & H\left(\frac{14}{2},-\frac{2}{2}\right)
\end{aligned}
$$

$$
=H(7,-1)
$$

Now by distance formula

$$
\begin{align*}
|\overline{E F}| & =\sqrt{(-5-1)^{2}+(0-5)^{2}} \\
& =\sqrt{36+25} \\
|\overline{E F}| & =\sqrt{6} \cdot \cdots \text { (i) } \\
|\overline{F G}| & =\sqrt{(1+5)+(-6-0)^{2}} \\
& =\sqrt{36}+5 \\
& =\sqrt{2 \times 36} \\
|\overline{F G}| & =6 \sqrt{2} \ldots \text { (ii) } \tag{ii}\\
|\overline{G H}| & =\sqrt{(7-1)^{2}+(-1+6)^{2}} \\
& =\sqrt{36+25} \\
|\overline{G H}| & =\sqrt{61} \ldots \text { (iii) } \\
|\overline{E H}| & =\sqrt{(7-1)^{2}+(-1-5)^{2}} \\
& =\sqrt{36+36} \\
& =\sqrt{2 \times 36} \\
|\overline{E H}| & =6 \sqrt{2} \ldots \text { (iv) } \tag{iv}
\end{align*}
$$

By comparing (i) and (iii)
$|\overline{E F}|=|\overline{G H}|$
By comparing (ii) and (iv)
$|\overline{F G}|=|\overline{E H}|$
As the figure formed by joining the mid-points consecutively have opposite sides equal so it is a parallelogram.

Q. 11 Find ' h ' such that the

 quadrilateral with vertics $A(-3,0), R(1,-2), C(5.0) \cdot a n d$ $D(1, h)$ a arablosian. Isita square.
Solation:

Solution:

Q. 12 If two vertices of an equilateral
 Q. 12 If wo vertices of an equilat

 triangle are $A(-3,0)$ and $B(3,0)$, findthe third vertex. How many of these triangles are possible?
Hence $h=2$
Now we find diagonals
$|\overline{A C}|$ and $|\overline{B D}|$
$|\overline{A C}|=\sqrt{(5+3)^{2}+(0-0)^{2}}=\sqrt{64}=8$
$|\overline{B D}|=\sqrt{(1-1)^{2}+(2+2)^{2}}=\sqrt{16}=4$
As $|\overline{A C}| \neq|\overline{B D}|$
so $A B C D$ is not a square.

Lat thici virex be E(a, v)
As $A B C$ is an equilateral triangle so,

$$
|\overrightarrow{A B}|=|\overrightarrow{B C}|=|\overline{C A}|
$$

$$
\Rightarrow|\overline{A B}|=|\overline{B C}|
$$

$$
\begin{align*}
& \sqrt{(3+3)^{2}+(0-0)^{2}}=\sqrt{(x-3)^{2}+(y-0)^{2}} \\
& \sqrt{36+0}=\sqrt{x^{2}-6 x+9+y} \\
& 3(6)=x^{2}+y^{2}-0 x+9 \\
& \left.x^{2}-y^{2}-\epsilon x=2\right\} \ldots \text { (i) } \\
& \int|\bar{B}|=-\frac{1}{C A} \\
& \sqrt{(3+3)^{2}+(0-0)^{2}}=\sqrt{(x+3)^{2}+(y-0)^{2}} \\
& \sqrt{36+0}=\sqrt{x^{2}+6 x+9+y^{2}} \\
& 36=x^{2}+y^{2}+6 x+9 \\
& x^{2}+y^{2}+6 x=27 \ldots \tag{ii}
\end{align*}
$$

Subtracting (i) and (ii)

$$
\begin{aligned}
x^{2}+y^{2}-6 x & =27 \\
\pm x^{2} \pm y^{2} \pm 6 x & = \pm 27 \\
\hline 12 x & =0 \\
x & =0
\end{aligned}
$$

Putting $x=0$ in equation (i)
$0+y^{2}-0=27$

$$
\begin{aligned}
y^{2} & =27 \\
y & = \pm 3 \sqrt{3}
\end{aligned}
$$

So, vertex C can be $(0,3 \sqrt{3})$ or $(0,-3 \sqrt{3})$ and hence two triangles are
possible.
Q. 13 Find the points trisecting the join of $A(-1,4)$ and $B(6,2)$.

Solution:

Let $P(f, y)$ ard $Q\left(x^{\prime}, y^{\prime}\right)$ be the
points which trysect the join of $A(-1,4)$ and $B(6,2)$.

As $P(x, y)$ divides the join of
$A(-1,4)$ and $B^{\prime}(0,2)$ in the ratio

By using ratio o mula

$$
\begin{aligned}
x & =\frac{k_{1} x_{2}+k_{2} x_{1}}{k_{1}+k_{2}}, & & y=\frac{k_{1} y_{2}+k_{2} y_{1}}{k_{1}+k_{2}} \\
& =\frac{1.6+2(-1)}{1+2}, & & =\frac{1.2+2.4}{1+2}
\end{aligned}
$$

$$
x=\frac{4}{3} \quad, \quad y=\frac{10}{3}
$$

So $P(x, y)=P\left(\frac{4}{3}, \frac{10}{3}\right)$
As $Q\left(x^{\prime}, y^{\prime}\right)$ is the mid-point of $P(x, y)$ and $B(6,2)$ so,
$x^{\prime}=\frac{x+x_{2}}{2} \quad, \quad y^{\prime}=\frac{y+y_{2}}{2}$
$=\frac{\frac{4}{3}+6}{2},=\frac{\frac{10}{3}+2}{2}$
$=\frac{\frac{4+18}{3}}{2} \quad, \quad=\frac{\frac{10+6}{3}}{2}$
$=\frac{22}{6} \quad, \quad=\frac{16}{6}$
$x^{\prime}=\frac{11}{3} \quad, y^{\prime}=\frac{8}{3}$
So $Q(x, y)=Q\left(\frac{11}{3}, \frac{8}{3}\right)$
Q. 14 Find the point mee sifth of the way ang the line segnention
$A(-5,8)$ to $B(5,3)$

Sol ation:

Let $P(x, y)$ be the required point the point $P(x, y)$ divides the line segment from $A(-5,8)$ to $B(5,3)$ in ratio 3:2.
So, by using ratio formula

$$
\begin{array}{rlrl}
x & =\frac{k_{1} x_{2}+k_{2} x_{1}}{k_{1}+k_{2}}, y=\frac{k_{1} y_{2}+k_{2} y_{1}}{k_{1}+k_{2}} \\
& =\frac{3.5+2(-5)}{3+2},=\frac{3.3+2.8}{3+2} \\
& =\frac{15-10}{5}, & =\frac{2+16-3.1}{2-3}
\end{array},=\frac{2.6-3.4}{2-3}
$$

$\mathfrak{s o} \sqrt{P}(x, y)=r(1,5)$
Q. 15 Fina the point P on the join of $A(1,4)$ and $B(5,6)$ that is twice as
far from A as B is from A and lies
(i) On the same side of A as B does

Solution:

Let $P(x, y)$ be the required point

As P is twice as far from A as B is from A so ' B ' is mid-point of A and P.

$$
\begin{array}{rlrlrl}
\frac{1+x}{2} & =5 & & , & \frac{4+y}{2} & =6 \\
1+x & =10 & , & 4+y & =12 \\
x & =9 & , & y & =8
\end{array}
$$

So, $\quad P(x, y)=P(9,8)$
(ii) On the opposite side of A as B does.

Solution:
As point $P(x, y)$ is twice as far from
A as B is from A so $\overline{A P}$ is d puble $\hat{\text { pit }}$ $\overline{A B}$, sc-axternally
P divi衣: $A B$ externally in the rateo
$A P . P B=2: 3$
(3) a,iig raio formula
$x=\frac{k_{1} x_{2}-k_{2} x_{1}}{k_{1}-k_{2}} \quad, \quad y=\frac{k_{1} y_{2}-k_{2} y_{1}}{k_{1}-k_{2}}$

So, $\quad P(x, y)=P(-7,0)$
Q. 16 Find the point which is equidistant from the points $A(5,3), B(-2,2)$ and $C(4,2)$. What is the radius of the circum-circle of $\triangle A B C$?
Solution:

Let $P(x, y)$ be the point which is equidistant from $A(5,3), B(-2,2)$ and $C(4,2)$, then

$$
\begin{aligned}
& |\overline{P A}|=|\overline{P B}|=|\overline{P C}| \\
& \Rightarrow|\overline{P A}|=|\overline{P B}|
\end{aligned}
$$

$$
\sqrt{(x-5)^{2}+(y-3)^{2}}=\sqrt{(x+2)^{2}+(y-2)^{2}}
$$

$$
\begin{gathered}
\sqrt{x^{2}-10 x+25-y}-5 y+9 \\
\sqrt{x^{2}+y^{2}+4 x-4 y+8} \\
x^{2}+y^{2}-10 x-6 y+34=x^{2}+y^{2}+4 x-4 y+8 \\
-10 x-4 x-6 y+4 y=8-34 \\
-14 x-2 y=-26 \\
14 x+2 y=26 \\
7 x+y=13 \ldots \text { (i) }
\end{gathered}
$$

$$
\begin{gathered}
\Rightarrow|\overline{P A}|=|\overline{P C}| \\
\sqrt{(x-5)^{2}+(y-3)^{2}}=\sqrt{(x-4)^{2}+(y-2)^{2}} \\
\sqrt{x^{2}-10 x+25+y^{2}-6 y+9}= \\
\sqrt{x^{2}-8 x+16+v^{2}}-4 \cdot \sqrt{-4} \\
\sqrt{x^{2}+2}-10 x-6 y+34 \\
\sqrt{x}=\sqrt{2}-8 x-4 y+20
\end{gathered}
$$

$x+y^{2}-10 x-6 y+34=x^{2}+y^{2}-8 x-4 y+20$

$$
\begin{align*}
-10 x+8 x-6 y+4 y & =20-34 \\
-2 x-2 y & =-14 \\
x+y & =7 \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

Subtracting (i) and (ii)
$7 x+y-x-y=13-7$

$$
\begin{aligned}
6 x & =6 \\
x & =1
\end{aligned}
$$

Putting in equation (ii)
$7(1)+y=13$
$y=13-7$
$y=6$
So, $P(x, y)=P(1,6)$
Radius of circum-circle is
$|\overline{P A}|=|\overline{P B}|=|\overline{P C}|$
So,
Radius $=|\overline{P A}|=\sqrt{(1-5)^{2}+(6-3)^{2}}$
S. radius of cilcon-circle is ' 5 '.

The points $(4,-2),(-2,4)$ and $(5,5)$
are vertices of a triangle. Find incentre of the triangle.

Solution:

Consider $\triangle A B C$ with

$$
A(4,-2), B(-2,4) \text { and } C(5,5) \text { as its }
$$

$$
\text { vertices, and ' } O \text { ' its in-centre. }
$$

We find $|\overline{A B}|=c,|\overline{B C}|=a,|\overline{A C}|=b$
by using distance formula.

$$
\begin{aligned}
a=|\overline{B C}| & =\sqrt{(5+2)^{2}+(5-4)^{2}} \\
& =\sqrt{49+1} \\
& =\sqrt{50} \\
a & =5 \sqrt{2} \\
b=|\overline{A C}| & =\sqrt{(5-4)^{2}+(5+2)^{2}} \\
& =\sqrt{1+49} \\
& =\sqrt{50} \\
b & =5 \sqrt{2} \\
c=|\overline{A B}| & =\sqrt{(-2-4)^{2}+(4+2)^{2}} \\
& =\sqrt{36+36}=\sqrt{2 \times 36} \\
c & =6 \sqrt{2}
\end{aligned}
$$

Using in-centre formula

$x=\frac{\sqrt{2}(20-10+30)}{\sqrt{2}(16)}=\frac{40}{16}=\frac{5}{2}$

$$
y=\frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}
$$

$$
\begin{aligned}
& =\frac{5 \sqrt{2}(-2)+5 \sqrt{2}(4)+6 \sqrt{2}(5)}{5 \sqrt{2}+5 \sqrt{2}+6 \sqrt{2}} \\
y & =\frac{\sqrt{2}(-10+20+30)}{\sqrt{2}(16)}=\frac{40}{16}=\frac{5}{2}
\end{aligned}
$$

Q. 18 Find the roints that divid the line segments joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ into four equal pant:

Solution.

Let $P\left(x^{\prime}, y^{\prime}\right), Q(x, y)$ and $R\left(x^{\prime \prime}, y^{\prime \prime}\right) \quad$ be the points which divide line segment joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ into four equal parts.

As $Q(x, y)$ is the mid-point of $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ so

$$
Q(x, y)=Q\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

From the figure, $P\left(x^{\prime}, y^{\prime}\right)$ is the mid-point of $A\left(x_{1}, y_{1}\right)$ and $Q\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
\begin{aligned}
x^{\prime} & =\frac{x_{1}+\frac{x_{1}+x_{2}}{2}}{2}, y^{\prime}=\frac{y_{1}+\frac{y_{1}+y_{2}}{2}}{2} \\
& =\frac{\frac{2 x_{1}+x_{1}+x_{2}}{2}}{2},=\frac{\frac{2 y_{1}+y_{1}+y_{2}}{2}}{2} \\
& =\frac{3 x_{1}+x_{2}}{4},=\frac{3 y_{1}+y_{2}}{4}
\end{aligned}
$$

So $P\left(x^{\prime}, y^{\prime}\right)=P\left(\frac{3 x_{1}+x_{2}}{4}, \frac{3 y_{1}+y_{2}}{4}\right)$
From the figure $R\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is the mid R iirt of $Q\left(\frac{x_{1}}{2}+x_{2}, y_{1}+y_{2}\right.$ and $\left.1 x_{2}, y_{2}\right)$

$$
=\frac{x_{1}+3 x_{2}}{4} \quad, \quad=\frac{y_{1}+3 y_{2}}{4}
$$

So $R\left(x^{\prime \prime}, y^{\prime \prime}\right)=R\left(\frac{x_{1}+3 x_{2}}{4}, \frac{y_{1}+3 y_{2}}{4}\right)$

Translation of axes:

In translation thes, orisin ishifted to anoter point in the plane but the axes remain parallel to he old dxes. Let y be the point with co-ordinates (x, y) referred to $x y$ onorinaes vystem and the axes be translated through the point $O^{\prime}(h, k)$ and $O^{\prime} X$ and $\mathcal{O}^{\prime} Y$ be the new axes. If P has coordinates (X, Y) referred to the new axes, then we need to find X and Y in terms of x and y. Draw $P M$ and $O^{\prime} N$ perpendiculars to $O x$.

From the figure
$O M=x, M P=y, O N=h, N O^{\prime}=k=M M^{\prime}$
Now $X=O^{\prime} M^{\prime}=N M=O M-O N=x-h$
$\Rightarrow X=x-h$
Similarly
$Y=M^{\prime} P=M P-M M^{\prime}=y-k$
$\Rightarrow Y=y-k$
Moreover $x=X+h, y=Y+k$

Rotation of axes:

Let a point P have coordinates (x, y) referred to the $x y$-system coordinete. (x, Y re erel to the ry-coordinate system.
Ver aye to frimu X, Y in terms si the given coordinates x, y.
Let α be measure of the angle that $O P$ makes with $O x$.

From P, draw $P M$ perpendicular
to $O x$ and $P M^{\prime}$
perpendicular to $O X$.
Let $|O P|=r$.
In $\triangle O P M$

(i),$\quad y=r \sin \alpha$
(ii)

In $\triangle O P N$
$\cos (\alpha-\theta)=\frac{X}{r}$
$\Rightarrow X=r \cos (\alpha-\theta)$
Also, $\sin (\alpha-\theta)=\frac{Y}{r}$
$\Rightarrow Y=r \sin (\alpha-\theta)$
$X=r[\cos \alpha \cos \theta+\sin \alpha \sin \theta]$
$Y=r[\sin \alpha \cos \theta-\cos \alpha \sin \theta]$
$=(r \cos \alpha) \cos \theta+(r \sin \alpha) \sin \theta$
$Y=(r \sin \alpha) \cos \theta-(r \cos \alpha) \sin \theta$
$\Rightarrow X=x \cos \theta+y \sin \theta \quad$ (Using (i) and (ii) $\quad Y=y \cos \theta-x \sin \theta$
$X=x \cos \theta+y \sin \theta$
$Y=y \cos \theta-x \sin \theta$

Multiplying equation (1) with $\cos \theta$ and (2) with $\sin \theta$ and subtracting
$X \cos \theta=x \cos ^{2} \theta+y \sin \theta \cos \theta$
$\frac{ \pm Y \sin \theta= \pm x \sin ^{2} \theta \pm y \sin \theta \cos \theta}{x\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=X \cos \theta-Y \sin \theta}$
$x=X \cos \theta-Y \sin \theta$
Multiplying equation (1) vitin sin 2 nd quat on (2) with $R 0$ and dding
$X \sin \theta=x \operatorname{in} \theta \cos \theta+y \sin \theta<$
$\pm Y \cos \theta= \pm x \operatorname{n} \cos \theta \pm y \cos ^{2} \theta$

1. $\left.\sin ^{2} \theta+\cos ^{2} \theta\right)=X \sin \theta+Y \cos \theta$
$y=X \sin \theta+Y \cos \theta$

So the transformation equations are

$$
\begin{array}{lr}
X=x \cos \theta+y \sin \theta & x=X \cos \theta-Y \sin \theta \\
Y=y \cos \theta-x \sin \theta & y=X \sin 2-Y \cos \theta
\end{array}
$$

Coordinates of P referred to the new axes are (X, Y) given by

$$
\begin{aligned}
& X=x-h \quad, \quad Y=y-k \\
& =-6-(-4), \quad=-8-(-6) \\
& X=-2 \quad, \quad Y=-2 \\
& \text { So, } \quad P(X, Y)=P(-2,-2)
\end{aligned}
$$

(iv) $P\left(\frac{3}{2}, \frac{5}{2}\right) ; O^{\prime}\left(-\frac{1}{2}, \frac{7}{2}\right)$

Solution:

$P(x, y)=P\left(\frac{3}{2}, \frac{5}{2}\right)$,
$O^{\prime}(h, k)=O^{\prime}\left(-\frac{1}{2}, \frac{7}{2}\right)$
$\Rightarrow x=\frac{3}{2}, y=\frac{5}{2}, \Rightarrow h=-\frac{1}{2}, k=\frac{7}{2}$
Coordinates of P referred to the new axes are (X, Y) given by

$$
\begin{aligned}
X & =x-h \quad, Y=y-k \\
& =\frac{3}{2}-\left(\frac{-1}{2}\right), \quad=\frac{5}{2}-\frac{7}{2} \\
& =\frac{3+1}{2}=\frac{4}{2}, \\
\text { So. } & \left.=2(x, y)=-2,-\frac{5}{2}=-1\right)
\end{aligned}
$$

So, $\quad P(X, Y)=P(1,4)$
(iii)

$$
P(-6,-8), O(-4,-6)
$$

Solution:

$$
\begin{aligned}
& P(v \cdot y)=B(-t,-0), \\
& y^{\prime}(h, k)=O^{\prime}(-4,-6) \\
& \Rightarrow x=-6, y=-8, \\
& \Rightarrow h=-4, k=-6
\end{aligned}
$$

Ine $x y$-coordinate axes are translated through the point O^{\prime} whose coordinates are given in $x y$ coordinate system. The coordinates of P are given in the $X Y$-coordinate system. Find the
coordinates of P in $x y$-coordinate system.
(i) $\quad P(8,10) ; O^{\prime}(3,4)$

Solution:

$P(X, Y)=P(8,10)$,
$O^{\prime}(h,()=O$ O,
$\Rightarrow X=8, Y=10, \Rightarrow, h=3, L=4$
$\sqrt{\mathrm{M}} \mathrm{F}$ ave

So, $\quad P(x, y)=P(11,14)$
(ii) $\quad P(-5,-3) ; O^{\prime}(-2,-6)$

Solution:

$$
\begin{aligned}
& P(X, Y)=P(-5,-3), \\
& O^{\prime}(h, k)=O^{\prime}(-2,-6) \\
& \Rightarrow X=-5, Y=-3, \\
& \Rightarrow h=-2, k=-6
\end{aligned}
$$

We have

$$
\begin{aligned}
x & =X+h, & y & =Y+k \\
& =-5+(-2), & & =-3+(-6) \\
x & =-7, & y & =-9
\end{aligned}
$$

So, $\quad P(x, y)=P(-7,-9)$
(iii) $\quad P\left(-\frac{3}{4},-\frac{7}{6}\right) ; O^{\prime}\left(\frac{1}{4},-\frac{1}{6}\right)$

Solution:

$$
\begin{gathered}
P(X, Y)=P\left(-\frac{3}{4},-\frac{7}{6}\right) \\
\Rightarrow X=-\frac{3}{4}, Y=-\frac{7}{6}
\end{gathered}
$$

And $C(b, k)=a\left(\frac{1}{k}, \frac{-1}{5}\right)$

$\vec{a} \sqrt{7}=\frac{1}{t}$

enave

$$
x=X+h \quad, \quad y=Y+k
$$

$$
=\frac{-3}{4}+\frac{1}{4}
$$

$$
=\frac{-7-1}{6}
$$

$$
x=\frac{-1}{2} \quad, \quad y=\frac{-8}{6}=-\frac{4}{3}
$$

So, $\quad P(x, y)=P\left(\frac{-1}{2}, \frac{-4}{3}\right)$
(iv) $\quad P(4,-3) ; O^{\prime}(-2,3)$

Solution:

$$
\begin{aligned}
& P(X, Y)=P(4,-3), O^{\prime}(h, k)=O^{\prime}(-2,3) \\
& \Rightarrow X=4, Y=-3, \Rightarrow h=-2, k=3
\end{aligned}
$$

We have

So, $P(x, y)=P(2,0)$

Q. 3 The $x y$-coordinate axes are rotated

 about the origin through the indicated angle. The new axes are $O X$ and $O Y$. Find the $X Y$ -coordinates of the point P with the given $x y$-coordinates.
(i) $\quad P(5,3) ; \theta=45^{\circ}$

Solution:

$$
\begin{aligned}
& x=X+h \quad, \quad y=Y+k \\
& =4+(-2), \quad=-3+3 \\
& x=2 \quad, \quad y=0
\end{aligned}
$$

$$
\begin{aligned}
& =5\left(\frac{1}{\sqrt{2}}\right)+3\left(\frac{1}{\sqrt{2}}\right) \\
& X=\frac{5+3}{\sqrt{2}}=\frac{8}{\sqrt{2}}=\frac{4 \times 2}{\sqrt{2}}=4 \sqrt{2} \\
& Y=-x \sin \theta+y \cos \theta \\
& =-5 \sin \left(45^{\circ}+3 \cos 4 \frac{15}{5}\right. \\
& =-5\left(-\frac{1}{2}=2\right)+3\left(-\frac{1}{-2}\right)
\end{aligned}
$$

$$
\frac{5+3}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}
$$

So, $\quad P(X, Y)=P(4 \sqrt{2},-\sqrt{2})$
(ii) $\quad P(3,-7), \theta=30^{\circ}$

Solution:
Let (X, Y) be the coordinates of P referred to the $X Y$-axes.
$P(x, y)=P(3,-7), \theta=30^{\circ}$
$\Rightarrow x=3, y=-7$
We have
$X=x \cos \theta+y \sin \theta$

$$
=3 \cos 30^{\circ}-7 \sin 30^{\circ}
$$

$X=3\left(\frac{\sqrt{3}}{2}\right)-7\left(\frac{1}{2}\right)=\frac{3 \sqrt{3}-7}{2}$
$Y=-x \sin \theta+y \cos \theta$
$=-3 \sin 30^{\circ}-7 \cos 30^{\circ}$
$Y=-3\left(\frac{1}{2}\right)-7\left(\frac{\sqrt{3}}{2}\right)=\frac{-3-7 \sqrt{3}}{2}$
So
$P(X, Y)=P\left(\frac{3 \sqrt{3}-7}{2}, \frac{-3-7 \sqrt{3}}{2}\right)$
(iii) $P(11,-15) ; \theta=60^{\circ}$

Solution:

Let $(X Q)$ be heopordinates wiP referred to the $X Y$ - axes.
$F\left(x . y^{\prime}\right)=1(11,-15), \theta=60^{\circ}$
$\Rightarrow x=11, y=-15$
We have
$X=x \cos \theta+y \sin \theta$

$$
=11 \cos 60^{\circ}+(-15) \sin 60^{\circ}
$$

$X=11\left(\frac{1}{2}\right)-15\left(\frac{5}{2}\right) 1-1-1$
$Y=-\lambda \sin \theta+\cos \theta$
$=-11 \sin 60^{\circ}+(-15) \cos 60^{\circ}$
$Y=-11\left(\frac{\sqrt{3}}{2}\right)-15\left(\frac{1}{2}\right)=\frac{-11 \sqrt{3}-15}{2}$
So
$P(X, Y)=P\left(\frac{11-15 \sqrt{3}}{2}, \frac{-11 \sqrt{3}-15}{2}\right)$
(iv) $\quad P(15,10) ; \theta=\arctan \frac{1}{3}$

Solution:
$P(x, y)=P(15,10), \theta=\arctan \frac{1}{3}$
$\Rightarrow x=15, y=10$
Also $\tan \theta=\frac{1}{3}$
By Pythagorean Theorem

$(h)^{2}=(1)^{2}+(3)^{2}$
$h^{2}=1+9$
$h^{2}=10$
$h=\sqrt{10}$
$\therefore \sin \theta=\frac{1}{\sqrt{10}}, \cos \theta=\frac{3}{\sqrt{10}}$
We have
$X=x \cos \theta+y \sin \theta$
$X_{0}=\frac{4-+10}{\sqrt{10}}=\frac{55}{\sqrt{10}}$

$$
Y=-x \sin \theta+y \cos \theta
$$

$$
=-15\left(\frac{1}{\sqrt{10}}\right)+10\left(\frac{3}{\sqrt{10}}\right)
$$

$$
Y=\frac{-15+30}{\sqrt{10}}=\frac{15}{\sqrt{10}}
$$

So, $P(X, Y)=P\left(\frac{55}{\sqrt{10}}, \frac{15}{\sqrt{10}}\right)$

Q. 4 The $x y$-coordinate axes are rotated

 about the origin through the indicated angle and the new axes are $O X$ and $O Y$. Find the x, coordinates of D Whth the siven $X I$. coorditates.$$
\begin{aligned}
& =\sqrt{5 c o s}\left(\frac{\sqrt{2}}{2}\right)-3\left(\frac{1}{2}\right)=\frac{-5 \sqrt{3}-3}{2} \\
y & =X \sin \theta+Y \cos \theta \\
& =-5 \sin 30^{\circ}+3 \cos 30^{\circ} \\
& =-5\left(\frac{1}{2}\right)+3\left(\frac{\sqrt{3}}{2}\right)=\frac{-5+3 \sqrt{3}}{2}
\end{aligned}
$$

So, $P(x, y)=P\left(\frac{-5 \sqrt{3}-3}{2}, \frac{3 \sqrt{3}-5}{2}\right)$
(ii) $\quad P(-7 \sqrt{2}, 5 \sqrt{2}) ; \theta=45^{\circ}$

Solution:

$$
\begin{aligned}
& P(X, Y)=P(-7 \sqrt{2}, 5 \sqrt{2}), \theta=45^{\circ} \\
& \Rightarrow X=-7 \sqrt{2}, Y=5 \sqrt{2}
\end{aligned}
$$

We have

$$
\begin{aligned}
& x=X \cos \theta-Y \sin \theta=-7 \sqrt{2} \cos 45^{\circ}-5 \sqrt{2} \sin 45^{\circ} \\
&=-7 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right)-5 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right) \\
&=-7-5=-12 \\
& y=X \sin \theta+Y \cos \theta \\
&=-7 \sqrt{2} \sin 45^{\circ}+5 \sqrt{2} \cos 45^{\circ} \\
&=-7 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right)+5 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right) \\
&=-7+5=-2 \\
& \text { So, } P(x, y)=P(-12,-2)
\end{aligned}
$$

Inclination of inine:

The ing e $a\left(0^{\circ}<6 x-180^{\circ}\right)$ measured anti-clockwise from positive x-axis to a
ind-n(rizontal straight line l is called inclination of l.

Note:
(i)
(ii) If x i. pallel y - xis then $\alpha=90^{\circ}$.

Slope or gizdient ofe ine.

$\sqrt{\text { Vhe lele }}$ gradient of a non-vertical line ℓ with α as its inclination is defined by $+m=\tan \alpha$

Note:

(i) If ℓ is horizontal then $m=0$.
(ii) If ℓ is vertical then m is undefined.
(iii) If $0<\alpha<90^{\circ}$ then m is positive.
(iv) If $90^{\circ}<\alpha<180^{\circ}$ then m is negative.

Slope or Gradient of a straight line joining two points:
If a non-vertical line ℓ with inclination α passes through two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$, then slope m is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Proof:

Let m be the slope of the line ℓ. Draw perpendiculars $P M$ and $Q M^{\prime}$ on x-axis and a perpendicular $P R$ on $Q M^{\prime}$. Then $m \angle R P Q=\alpha$ $m \overline{P R}=m \overline{M M^{\prime}}=m \overline{O M^{\prime}}-m \overline{O M}=x_{2}-x_{1}$ and $m \overline{R Q}=m \overline{M^{\prime} Q}-m \overline{M^{\prime} R}=y_{2}-m \overline{M P}=y_{2}-y_{1}$
In $\triangle P Q R$
$\tan \alpha=\frac{Q R}{P R}$

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Parallel lines:

Two non-vertical lines ℓ_{1} and ℓ_{2} having siopes m_{1} an n_{2} respec ively are paralle! iff $m_{1}=m$
Perpendicular Ines
Two no 1 -vertich ines ℓ ances having slopes m_{1} and m_{2} will be
perpe ndicuatis $. m_{1} m_{2}=-1$
Ig etion or Straight Line Parallel to x-axis: (or perpendicular to y-axis)

All the poit to the like l pardle'to x -axis remain at a constant distance (say a) from x-ayis. Ther fcre, cach polnt on the line has its distance from x-axis equal to a. which is it y-cooldinate (ordinate). So, all the points on this line satisfy the equation: $y=a$
(i) If $a>0$, then the value l is above the x-axis.
(ii) If $a<0$, then then line l is below the x-axis.
(iii) If $a=0$, then the line l becomes the x-axis.

Thus the equation of x-axis is $y=0$

Equation of Straight Line Parallel to \boldsymbol{y}-axis: (or parallel to the \boldsymbol{x}-axis)

All points on the line l parallel to y-axis remain at a constant distance (say b) from the y-axis. Each point on the line has its distance from the y-axis equal to b which is its x-coordinate (abscissa). So, all the points on this line satisfy the equation: $x=b$ which is an equation of the line 1 parallel to the y-axis (or perpendicular to the x-axis).

Note:

(i) If $b>0$, then the line is on the right of the y-axis.
(ii) If $b<0$, then the line is on the left of the y-axis.
(iii) If $b=0$, then the line becomes the y-axis.

Thus the equation of y-axis is $x=0$.
Standard Forms of Equations of Straightines.
(i) Slope-intercept fon

Equation ofia non-vertioal linel vith sicpe n and y-incrcept c is $y=m x+c$
Proof:
Let $P^{2}(x, y)$ be ny point oit the straight line ℓ
$\sqrt{\text { riti }}$ sipe m and y-intercept c. As $C(0, c)$ and $P(x, y)$ lie on the line, so slope of the line is

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{y-c}{x-0}$
$y-c=m x$
$y=m x+c$
Note: $\mathrm{D} \boldsymbol{c}=0$ ther the equation borlones $y=m x$ and the line passes through origin.
(ii) Point-slope Form:

Fiatign of aton-vertical line ℓ with slope m and passing through a point $Q\left(x_{1}, y_{1}\right)$ is
$y-y_{1}=m\left(x-x_{1}\right)$

Proof:

Let $P(x, y)$ be any point of the straight line with slope m and passing through $Q\left(x_{1}, y_{1}\right)$. As $Q\left(x_{1}, y_{1}\right)$ and $P(x, y)$ lie on the line, so slope of the line is
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$m=\frac{y-y_{1}}{x-x_{1}}$
$y-y_{1}=m\left(x-x_{1}\right)$

(iii) Symmetric Form of Equation of a Straight Line

We have $m=\frac{y-y_{1}}{x-x_{1}}=\tan \alpha$, where α is the inclination of the line.
Or $\frac{x-x_{1}}{\cos \alpha}=\frac{y-y_{1}}{\sin \alpha}=r($ say $)$

Proof:

By points slope form
$y-y_{1}=m\left(x-x_{1}\right)$
$y-y_{1}=\tan \alpha\left(x-x_{1}\right)$
$y-y_{1}=\frac{\sin \alpha}{\cos \alpha}\left(x-x_{1}\right)$

Tho is called symmetric form of equation of the line.
(iv) Two Points Form

Equation of a non-vertical line ℓ passing through two points $Q\left(x_{1}, y_{1}\right)$ and $R\left(x_{2}, y_{2}\right)$ is
$y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$

Proof:

Let $P(x, y)$ be any point of the line, then
Slope of $P Q=\frac{y-y_{1}}{x-x_{2}}$
Slope of $Q_{1}=-y_{2}-y_{1}$

Sic: O Q

Slope of $P Q=$ slope of $Q R$

$$
\begin{aligned}
& \frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
\Rightarrow & y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
\end{aligned}
$$

(v) Intercept Form

Equation of line ℓ having non-zero x-intercept $=a$ and y-intercept $=b$ is $\frac{x}{a}+\frac{y}{b}=1$

Proof:

Let $P(x, y)$ be any point of the line. Clearly $A(a, 0)$ and $B(0, b)$ lie on the required line, So, by two points slope form
$y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$

$y-0=\frac{b-0}{0-a}(x-a)$
$y=\frac{-b}{a}(x-a)$
$a y=-b x+a b$
Dividing by $a b$
$\frac{y}{b}=\frac{-x}{a}+1$
$\Rightarrow \frac{x}{a}+\frac{1}{b}=1$

An equation of non-vertical straight line ℓ, such that length of perpendicular from origin to ℓ is p and α is

the inclination of this perpendicular, is $x \cos \alpha+y \sin \alpha=p$

Proof:

Let the line meet the x-axis and y-axis at the
points A and B respectively. I et $P(. \therefore y)$ be any
point of 4 e liaf and oc be pe pendeular to the line vin $|\overline{\partial c}|=0$.

In $\triangle A O C^{`}$
$\cos \alpha=\frac{p}{a}$
$a=\frac{p}{\cos \alpha}$
In $\triangle B O C$
$\sin \alpha=\frac{p}{b} \Rightarrow b=\frac{p}{\sin \alpha}$
By two intercepts form of equation of straight lines

$$
\begin{aligned}
& \frac{x}{a}+\frac{y}{b}=1 \\
& \frac{x}{\frac{p}{\cos \alpha}}+\frac{y}{\frac{p}{\sin \alpha}}=1 \\
& \frac{x \cos \alpha}{p}+\frac{y \sin \alpha}{p}=1 \\
& \Rightarrow x \cos \alpha+y \sin \alpha=p
\end{aligned}
$$

A Linear Equation in Two Variables Represents a Straight Line:

The linear equation in two variables represents a straight line. A linear equation in two variable x and y is $a x+b y+c=0$
Where a, b and c are constants and a and b are not simunanously $z e r b$.

To Transform the General Line Equation jañ tanda Fon:

To transform the equation $\langle x x+b y+c=0$ n tandaru forn.
(i) Sppentercer Fum:
iin Peint slope Form:

$$
y=-\frac{a}{b}\left(x+\frac{c}{a}\right)
$$

(iii) Symmetric Form:

$$
\left.\frac{x-\left(-\frac{c}{a}\right)}{\frac{b}{ \pm \sqrt{a^{2}+b^{2}}}}=\frac{y-0}{\frac{a}{ \pm \sqrt{a^{2}+b^{2}}}}=r \text { (say }\right)
$$

(iv) Two Points Slope Erm:
(v)

(vi) Normal Form:

$$
\frac{a x+b y}{ \pm \sqrt{a^{2}+b^{2}}}=\frac{-c}{ \pm \sqrt{a^{2}+b^{2}}}
$$

Position of a Point With Respect to a Line:

Let $P\left(x_{1}, y_{1}\right)$ be a point in the plane not lying on the line ℓ
$\ell: a x+b y+c=0$
with $b>0$ then P lies
(a) Above the line (i) if $a x_{1}+b y_{1}+c>0$
(b) Below the line (i) if $a x_{1}+b y_{1}+c<0$

Distance of a Point from a Line:

The distance d from a point $P\left(x_{1}, y_{1}\right)$ to the line of $l: a x+b y+c=0$ is
$d=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$

Area of triangle:

(i) If the points P, Q and R are collinear, then $\Delta=0$
(ii) In numerical problems, if sign of area is negative, then it is to be omitted.

