EXERCISE 5.3

Q. 1 Maximize $f(x, y)=2 x+5 y$

Subject to the constraints

$2 y-x \leq 8 ; x-y \leq 4 ; x \geq 0 ; y \geq 0$.

Solution:

The asoriated enaations ot the above inequal toes are.

$x-y=4$...(ii)
When $x=0$, then (ii) become $y=-4$
$\therefore(0,-4)$ is a point on the line (ii).
When $y=0$, then (ii) becomes $x=4$
$\therefore(4,0)$ is a point on the line (ii).
Take $(0,0)$ as a test point. Put it in
$x-y \leq 4$
$0-0 \leq 4$
$0 \leq 4$ (True)
$2(0)-0 \leq 8$
$0 \leq 8$ (True)
Because $(0,0)$ satisfies all the given inequalities, so their solution is towards origin. The common solution of the given system of inequalities is shown by the shaded region as shown in the figure. As $x \geq 0, y \geq 0$, solution region will be in first quadrant

Now we find the corner points of the feasible region.
Solving $2 y-x=8$ and $x-y=4$ we get $(16,12)$.
The corner points of the feasible region for the given system of linear inequalities are $(0,0),(4,0),(0,4)$ and $(16,12)$.
Now we evaluate the objective function $f(x, y)=2 x+y$ ot these cor 18 r bints

Corner foint	$f(0,0)$
$(0,0)$	$f(0,4)=2(0)+5(4)=20$
$(0,4)$	$f(0,0)+5(0)=2$
$(16,12)$	$f(16,12)=2(16)+5(12)=92$

Hence f is maximum at the corner point $(16,12)$.
Q. 2 Maximize $f(x, y)=x+3 y$

Subject to the constraints

$2 x+5 y \leq 30 ; 5 x+4 y \leq 20 ; x \geq 0 ; y \geq 0$.
Solution:
The associated equations of the atove ine uatitics are:

$5 x+4 y=20$...(ii)
When $x=0$, then (ii) become $y=5$
$\therefore(0,5)$ is a point on the line (ii).
When $y=0$, then (ii) become $x=4$
$\therefore(4,0)$ is a point on the line (ii).
Take $(0,0)$ as a test point. Put it in
$5 x+4 y \leq 20$
$5(0)+4(0) \leq 20$
$0 \leq 20$ (True)
$0 \leq 30$ (True)
Because $(0,0)$ satisfies all the given inequalities, so their solution is towards origin. So, the common solution of the given system of inequalities is shown by the shaded region as shown in the figure. As $x \geq 0, y \geq 0$ so, solution region will be in first quadrant
Now we find the corner points of the feasible region.
The corner points of the feasible region for the given system of linear inequalities are $(0,0),(4,0)$ and $(0,5)$.
Now we evaluate the objective function $f(x, f, x=x-3 y$, an these corner points.

\checkmark	Corner	
$(0,0)$	$f(4,0)=(4)+3(0)=4$	
$(0,5)$	$f(0,5)=(0)+3(5)=15$	

Hence f is maximum at the corner point $(0,5)$.
Q. 3 Maximize $z=2 x+3 y$

Subject to the constraints

$3 x+4 y \leq 12 ; 2 x+y \leq 4 ; 4 x-y \leq 4 ; x \geq 0 ; y \geq 0$.
Solution:
The associated equations (T) the abo in equalities are:

$$
3 x+4 y=12
$$

When $x=0$, then (i) becomes $y=3$
$\therefore(0,3)$ is a point on the line (i).
When $y=0$, then (i) becomes $x=4$
$\therefore(4,0)$ is a point on the line (i).
Take $(0,0)$ as a test point. Put it in
$3 x+4 y \leq 12$
$3(0)+4(0) \leq 12$
$0 \leq 12$ (True)
$2 x+y=4$
When $x=0$, then (ii) becomes $y=4$
$\therefore(0,4)$ is a point on the line (ii).
When $y=0$, then (ii)
becomes $x=2$
$\therefore(2,0)$ is a point on the line (ii).
Take $(0,0)$ as a test point. Put it in
$2 x+y \leq 4$
$2(0)+0 \leq 4$
$0 \leq 4$ (True)
$4 x-y=4$
(iii)

When $x=0$, then (iii) becomes

$$
y=-4
$$

$\therefore(0,-4)$ is a point on the line (iii). When $y=0$, then
(iii) becomes $x=1$
$\therefore(1,0)$ is a point on the line (iii).
Take $(0,0)$ as a
test point. Put it in
$4 x-y \leq 4$
$4(0)-0 \leq 4$
$0 \leq 4$ (True)

Because $(0,0)$ satisfies all the given inequalities, so their solution is towards origin. So, the common solution of the given system of inequalities is shown by the shaded region 5 shown in the figure. As $x \geq 0, y \geq 0$ so, solution region will be in finst q ranent
Now we find the corner points of the feasit re region-
Solving $2 x+y=4$ and $3 x+4 y-1 / 4 \mathrm{me}$ ge $\frac{4}{5},=2$
Solving $2 \cdot+y=4$ and $4 x-y=f$ weset $\left(\frac{1}{3}, \frac{4}{3}\right)$.
te -orr er points of the feasible region for the given system of linear inequalities are
$(0,0),(1,0),(0,3),\left(\frac{4}{3}, \frac{4}{3}\right)$ and $\left(\frac{4}{5}, \frac{12}{5}\right)$.
Now we evaluate the objective function $z=f(x, y)=2 x+3 y$ at these corner points.

Hence z is maximum at the corner point $(0,3)$.
Q. 4 Minimize $z=2 x+y$

Subject to the constraints

$x+y \geq 3 ; 7 x+5 y \leq 35 ; x \geq 0 ; y \geq 0$.

Solution:

The associated equations of the above inequalities are:

$x+y=3 \ldots$ (i)
When $x=0$, then (i) becomes $y=3$
$\therefore(0,3)$ is a point on the line (i).
When $y=0$, then (i) becomes
$x=3$
$\therefore(3,0)$ is a point on the line (i).
Take $(0,0)$ as a test point. Put it in
$x+y \geq 3$
$0+0 \geq 3$
$0 \geq 3$ Folse)
$7 x+5 y=35$...(ii)
When $x=0$, then (ii) becomes $y=7$
$\therefore(0,7)$ is a point on the line (ii).
When $y=0$, then (ii) becomes $x=5$
$\therefore(5,0)$ is a point-on the iife (ii).
Tanc 0, or as a test o nt Pul itin

$7(0)-5(0) \leq 35$
$0 \leq 35$ (True)

Pecalse (0,0) the not satisfy the inequality (i), so its solution is away from the origin, while (0,0) sats lunon region will be in first quadrant
Now we find the corner points of the feasible region.

The corner points of the feasible region for the given system of linear inequalities are $(0,3),(3,0),(5,0)$ and (0,7).
Now we evaluate the objective function $z=f(x, y)=2 x+y$ at aness chmep pcint.

Heare(2) is ininimum at the corner point $(0,3)$.
Ilaximize the function defined as; $f(x, y)=2 x+3 y$

Subject to the constraints:

$2 x+y \leq 8 ; x+2 y \leq 14 ; x \geq 0 ; y \geq 0$.

Solution:

The associated equations of the above inequalities are:

$$
x+2 y=14 \ldots \text { (ii) }
$$

When $x=0$, then (ii) becomes

$$
y=7
$$

$\therefore(0,7)$ is a point on the line (ii).
When $y=0$, then (ii) becomes $x=14$
$\therefore(14,0)$ is a point on the line (ii).
Take $(0,0)$ as a test point. Put it in $x+2 y \leq 14$
$0+2(0) \leq 14$
$0 \leq 14$ (True)

Because $(0,0)$ satisfies all the given inequel lit is, sc their so ut on is towads origin. So, the common solution of the givens rien fincualive s hown ty he shaded region as shown in the figure $A 5 x \geq 0, y_{y} \geq 0$,o, solution region will be in first quadrant Now wesid dre roner points of the feasibie region.
Solving $2 x+y=8$ arda $x+2 y=14$ we get $\left(\frac{2}{3}, \frac{20}{3}\right)$.
The corner points of the feasible region for the given system of linear inequalities are $(0,0),(4,0),\left(\frac{2}{3}, \frac{20}{3}\right) \operatorname{and}(0,7)$.

Now we evaluate the objective function $f(x, y)=2 x+3 y$ at these corner points.

Solution:

Hence \oplus is maximum at the corner point $\left(\frac{2}{3}, \frac{20}{3}\right)$.
Q. 6 Minimize $z=3 x+y$;

Subject to the constraints:

$3 x+5 y \geq 15 ; x+6 y \geq 9 ; x \geq 0 ; y \geq 0$.
The associated equations of the above inequalities are:

$3 x+5 y=15 \ldots$ (i)
When $x=0$, then (i) becomes

$$
y=3
$$

$\therefore(0,3)$ is a point on the line (i).
When $y=0$, then (i) becomes $x=5$
$\therefore(5,0)$ is a point on the line (i).
Take $(0,0)$ as a test point. Put it in
$3 x+5 y \geq 15$
$3(0)+5(0) \geq 15$
$0 \geq 15$ (False)
$x+6 y=9$...(ii)
When $x=0$, then (ii) becomes
$y=\frac{3}{2}$
$\therefore\left(0, \frac{3}{2}\right)$ is a point on the line (ii).
When $y=0$, then (ii) becomes
$x=9$
$\therefore(9,0)$ is a point on the line (ii).
Take $(0,0)$ as a test point. Put it in
$x+6 y \geq 9$
$0+6(0) \geq 9$
$0 \geq 9$ (False)
Because $(0,0)$ does not satisfies all the given inequali ies, SQ their so u ion is lavay from origin. So, the common ofution of the given s. sten of in ec ities is shown by the
 quadratit
Now wetind the orner points fot the reasible region.
$\sqrt[2]{2} \cdot \operatorname{ling} 3 x+5,=\frac{1}{1} 5$ and $x+6 y=9$ we get $\left(\frac{45}{13}, \frac{12}{13}\right)$
Ine corner points of the feasible region for the given system of linear inequalities are $(0,3),\left(\frac{45}{13}, \frac{12}{13}\right) \operatorname{and}(9,0)$.

Now we evaluate the objective function $z=f(x, y)=3 x+y$ at these corner points.

Corner point	$z=f(x, y)=3 x+y$
$(0,3)$	$z=f(0,3)=3(0)+(3)=3$
$\left(\frac{45}{13}, \frac{12}{13}\right)$	2
$(0,0)$	

Hence -2 is minimum at the corner point $(0,3)$.
Each unit of food X costs Rs. 25 and contains 2 units of protein and 4 units of iron while each unit of food Y costs Rs. 30 and contains 3 units of protein and 2 units of iron. Each animal must receive at least 12 units of protein and 16 units of iron each day. How many units of each food should be fed to each animal at the smallest possible cost?

Solution:

Let x units of food X and y units of food Y be fed to each animal. Then the cost function is $f(x, y)=25 x+30 y$ under the constraints
$2 x+3 y \geq 12,4 x+2 y \geq 16, x \geq 0, y \geq 0$.
We have to minimize the cost function $f(x, y)=25 x+30 y$.

The associated equations of the above inequalities
are:
$2 x+3 y=12 \ldots$ (i)
When $x=0$, then (i) becomes
$y=4$
$\therefore(0,4)$ is a point on the line (i).
When $y=0$, then (i) becomes $x=6$
$\therefore(60)$ is a point ar the line (i). Take $(0) 0$) as it est point Put in $(2 x+3 y \geq 12$
(2) $+3(0) \geq 12$
$0 \geq 12$ (False)

$$
4 x+2 y=16 \ldots(\text { ii) }
$$

When $x=0$, then (ii) becomes $y=8$
$\therefore(0,8)$ is a noizten the sine (i).
$\left[\begin{array}{l}\text { Whet } \\ =4\end{array}=y=0\right.$, then (jj) becomes
$(4,0)$ is a point on the line (ii).
Take $(0,0)$ as a test point. Put it in
$4 x+2 y \geq 16$
$4(0)+2(0) \geq 16$
$0 \geq 16$ (False)

Because $(0,0)$ does not satisfies all the given inequalities, so their solution is away from origin. So, the common solution of the given system of inequalities is siown the shaded region as shown in the figure. Ac $x \geq 0, y \geq 0_{5} 6$, soution region il be in irst quadrant
Now we find the corner po nt of he feasiple resion.
Solvin $2 x+3 y=12$ and $4 x+2 y=16 v$ e $2-1(3,2)$.
The corner po ints oi the Reasible region for the given system of linear inequalities are $(0,0),(3,2)$ and $(6,0)$.

Now we evaluate the objective function $f(x, y)=25 x+30 y$ at these corner points.

Corner point	$f(x, y)=25 x+30 y$
$(0,8)$	$f(0,8)=25(0)+30(8)=240$
$(3,2)$	$f(3,2)=25(3)+30(2)=135$
$(6,0)$	$f(6,0)=25(6)+30(0)=150$

Minimum cost is at the corner point (3,2), that is, cost is minimum if 3 units of food X and 2 units of food Y are fed to each animal.
Q. 8 A dealer wishes to purchase a number of fans and sewing machines. He had only Rs. 5760 to invest and has space at most for 20 items. A fan costs him Rs. 360 and a sewing machine costs Rs. 240. His expectation is that he can sell a fan at a profit of Rs. 22 and a sewing machine at a profit of Rs. 18. Assuming that he can sell all the items that he can buy, how should he invest his money in order to maximize his profit?

Solution:

Let x fans and y sewing machines be purchased.
Then the profit function is $f(x, y)=22 x+18 y$ under the constraints

$3 x+20-8, x+2 \leq 20, x=p, y \geq 0$.
We have t o mex in ize the prdfir function $f(x, y)=22 \cdot x+18 y$.
The associated equations of the above inequalities
 are:
$3 x+2 y=48 \ldots$ (i)
When $x=0$, then (i) becomes $y=24$
$\therefore(0,24)$ is a point on the rine (i). When $y=0$, then (i) beccnees $x=-16$
$\therefore(16 \mathrm{O}$) is a point on the line (1) Take $(0,0)$ a a test point. Put it in $3 x_{5} 2 y \leq 48$
$3(0)+2(0) \leq 48$
$0 \leq 48$ (True)
$x+y=20$...(ii)
When $x=0$, hen (ii) beconmes
$y=20$
$(0,20)$ is a poont on the line (ii). When $y=0$, then (ii) becomes $x=20$
$\therefore(20,0)$ is a point on the line (ii).
Take $(0,0)$ as a test point. Put it in
$x+y \leq 20$
$0+0 \leq 20$
$0 \leq 20$ (True)

Because $(0,0)$ satisfies all the given inequalities, so their solution is towards origin. So, the common solution of the given system of inequalities is shown by the shaded region as shown in the figure. As $x \geq 0, y \geq 0$ so, solution region will be in first quadrant
Now we find the corner points of the feasible region.
Solving $3 x+2 y=48$ and $x+y=20$ we get $(8,12)$.
The corner points of the feasible region for the given system of linear inequalities are $(0,0),(0,20),(8,12)$ and $(16,0)$.
Now we evaluate the objective function $f(x, y)=22 x+18 y$ at these corner points.

Corner point	$f(x, y)=22 x+18 y$
$(0,0)$	$f(0,0)=22(0)+18(0)=0$
$(0,20)$	$f(0,20)=22(0)+18(20)=360$
$(8,12)$	$f(8,12)=22(8)+18(12)=176+216=392$
$(16,0)$	$f(16,0)=22(16)+18(0)=352$

Which shows that f is maximum at the corner point $(8,12)$. Hence profit is maximum if the investor purchases 8 fans and 12 sewing machines.
Q. 9 A machine can produce product A by using 2 units of chemica and 1 undor f compound or can produce product B bv using 1 unit of chen ii al and 2 units ain the compound. Only 800 units of chenical snit 000 enits oi the comiend are available. The profits per unit and and 13 ars. 30 and R s. 20 respectively, maximize the profit funciion.
Solution:
Let x benc un ts of product A and ybe the units of product $\& \mathrm{~b}=$ prepared Them the profit function is $f(x, y)=30 .+2 y$ under the constraints $2 x+y$ QOU, $x+2 y \leq 1000, x \geq 0, y \geq 0$.
We have to maximize the profit function $f(x, y)=30 x+20 y$.
The associated equations of the above inequalities

are:
$2 x+y=800 \ldots$ (i)
When $x=0$, then (i) becomes
$y=800$
$\therefore(0,800)$ is a point on the $1 \mathrm{nn}(4)$
When $y==$, then (i) becomes
$r=400$
$(40), 0)$ is a point on the line (i).
Take $(0,0)$ as a test point. Put it in
$2 x+y \leq 800$
$2(0)+0 \leq 800$
$0 \leq 800$ (True)
$x+2 y=1000 \ldots$..(ii)
When $x=v$ then (ii) becomes

(, 50) $:$ a poinlon the line (ii).
When $y=0$, then (ii) becomes
$x=1000$
$\therefore(1000,0)$ is a point on the line (ii).
Take $(0,0)$ as a test point. Put it in
$x+2 y \leq 1000$
$0+2(0) \leq 1000$
$0 \leq 1000$ (True)

Because $(0,0)$ satisfies all the given inequalities, so their solution is towards origin. So, the common solution of the given system of inequalities is shown by the shaded region as shown in the figure. As $x \geq 0, y \geq 0$ so, solution region will be in first quadrant
Now we find the corner points of the feasible region.
Solving $2 x+y=800$ and $x+2 y=1000$ we $\operatorname{get}(200,400)$.
The corner points of the feasible region for the given system of linear inequalities are $(0,0),(0,500),(200,400)$ and (400,0).

Now we evaluate the objective function $f(x, y)=30 x+20 y$ at these corner points.

Corner point	$f(x, y)=30 x+20 y$
$(0,0)$	$f(0,0)=30(0)+20(0)=0$
$(0,500)$	$f(0,500)=30(0)+20(500)=10000$
$(200,400)$	$f(200,400)=30(200)+20(409)=1400$
$(400,0)$	$f(100), 0)=30(400)+20,0)=12000$

Which show that f is maxi nurh of the dorne point $(202,400)$. Hence profit is maximum if 200 unts of prodict A and 400 ungte product B are produced.

