Ellipse:

An ellipse is the locus of a point which moves in a plane such that the ratio of its distance from fixed point (focus) and a fixed lines (Directrix) is a constant which is less than 1. This ratio is called eccentricity and is denoted by e0 < e < 1

CR An ellipse is the locus of a point that moves in such a way that the sum of its distance from two fixed points (Foc) is constant i.e. |PF| + |PF'| = 2a

Equation of Ellipse in Standard Form:

Let r(-c,0) be the focus and the line $x = \frac{-c}{e^2}$ be the Directrix of an ellipse with eccentricity e, (o < e < 1). Then equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Proof:

Let P(x, y) be any point on the ellipse and suppose |PM| be the perpendicular distance

of *P* from the Directrix. Then $|PM| = x + \frac{c}{e^2}$

By definition of ellipse

$$|PF| = e|PM| \quad \text{where } 0 < e < 1$$

$$\sqrt{(x+c)^{2} + (y-0)^{2}} = e\left(x + \frac{c}{e^{2}}\right)$$
Taking square on both sides
$$x^{2} + c^{2} + 2cx + y^{2} = e^{2}\left(x + \frac{c}{e^{2}}\right)^{2}$$

$$x^{2} + c^{2} + 2cx + y^{2} = e^{2}\left(x^{2} + \frac{c^{2}}{e^{4}} + \frac{2cx}{e^{2}}\right)$$

$$x^{2} + c^{2} + 2cx + y^{2} = e^{2}\left(x^{2} + \frac{c^{2}}{e^{4}} + \frac{2cx}{e^{2}}\right)$$

$$x^{2} + c^{2} + 2cx + y^{2} = e^{2}x^{2} + \frac{c^{2}}{e^{2}} + 2cx$$

$$x^{2} + 2cx - 2cx + y^{2} - e^{2}x^{2} = \frac{c^{2}}{e^{2}} - c^{2}$$

$$x^{2}(1 - e^{2}) + y^{2} = \frac{c^{2}}{e^{2}}(1 - e^{2})$$

$$x^{2}(1 - e^{2}) + y^{2} = a^{2}(1 - e^{2})$$

$$x^{2}(1 - e^{2}) + y^{2} = a^{2}(1 - e^{2})$$

$$x^{2}(1 - e^{2}) + \frac{y^{2}}{a^{2}(1 - e^{2})} = 1$$

$$\Rightarrow \boxed{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1} \quad \text{where } b^{2} = a^{2}(1 - e^{2}) \text{ and } a > b$$

Graph: $x = -\frac{a}{e}$ $M_{ajor axis}$ $B(0,b)$ $P(x,y)$ Y $Vertex$ $Vertex$ $A'(-a, 0)$ $C(0,0)$ $F(c,0)$ $A'(a, 0)$ $F(c,0)$ $A'(a, 0)$ $Directrix$ Typ Stapps r P Equations of Ellipse:				
AG ,	Standard Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ a > b$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1, a > b$	
	Shape of the Ellipse	$\begin{array}{c c} & Y \\ B(0,b) \\ \hline & F'(-c,0) \\ \hline & F(c,0) \\ C(0,0) \\ A'(-a,0) \\ \hline & B'(0,-b) \end{array}$	$\begin{array}{c c} & Y \\ & A(0,a) \\ & F(0,c) \\ & F'(0,-c) \\ & F'(0,-a) \\ & &$	
	Centre	(0, 0)	(0, 0)	
	Equation of Major axis	y = 0	x = 0	
	Equation of Minor axis	x = 0	y = 0	
	Length of major axis	2 <i>a</i>	2 <i>a</i>	
	Length of minor axis	2b	2b	
	Foci	$(\pm c, 0)$	$(0,\pm c)$	
	Vertices	$(\pm a, 0)$	$(0,\pm a)$	
	Equation of DTX	$x = \pm \frac{c}{e^2}$	$y = \pm \frac{c}{e^2}$	DAU
	Eccentricity	$e = \sqrt{\frac{a^2 - b^2}{c^2}}$	$e = \sqrt{\frac{a^2 - b^2}{a^2}}$	
	Length of Latas Rectum		$\frac{2b^2}{a}$	
	Paramentic Equations	$(a\cos\theta,b\sin\theta)$	$(b\cos\theta, a\sin\theta)$	
M	Syrimetry	About both the axis and center	About both the axis and center	

Chapter-6

$$\therefore \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
(v) Vertices $(0,\pm 5)$, eccentricity $\frac{3}{2}$
Solution:
$$\frac{x^2}{a^2} + \frac{y^2}{a^2-5} = 1$$
(i)
But it passes through $p(\frac{3}{2}, \sqrt{5})$

$$\frac{\binom{3}{2}}{4a^2 + \frac{3}{a^2-5}} = 1$$
(j)
$$\frac{\binom{3}{2}}{a^2 + \frac{41+31}{8}}$$
(j)
$$\frac{\binom{3}{2}}{a^2 = \frac{3}{8}}$$
(j)
$$\frac{\binom{3}{2}}{a^2 = \frac$$

$$c = 2\sqrt{3}$$
Centre $C(h,k) = C(0,0)$
Foci are $F(tx,0) = F(t2\sqrt{3},0)$
Eccentricity
$$e = \frac{c}{a} = \sqrt{\sqrt{3}}$$
Vertres
$$e = \frac{c}{a} = \sqrt{\sqrt{3}}$$
Vertres
$$e = \frac{c}{a} = \sqrt{\sqrt{3}}$$
Vertres
$$x = \pm \frac{c}{e^2} \Rightarrow x = \pm \frac{2\sqrt{3}}{\frac{3}{4}}$$

$$\Rightarrow x = \pm \frac{c}{e^2} \Rightarrow x = \pm \frac{2\sqrt{3}}{\frac{3}{4}}$$

$$\Rightarrow x = \pm \frac{2}{\sqrt{3}}$$
(ii) $9x^2 + y^2 = 18$
Solution:
$$\frac{9x^2}{18} + \frac{y^2}{18} = 1 \Rightarrow \frac{x^2}{2} + \frac{y^2}{18} = 1$$

$$a^2 = 18 \Rightarrow a = 3\sqrt{2}$$
(ii) $9x^2 + y^2 = 18$
Solution:
$$\frac{9x^2}{18} + \frac{y^2}{18} = 1 \Rightarrow \frac{x^2}{2} + \frac{y^2}{18} = 1$$

$$a^2 = 18 \Rightarrow a = 3\sqrt{2}$$
b² = 2 \Rightarrow b = \sqrt{2}
c² = a² - b² = 18 - 2
\Rightarrow c² = 16 \Rightarrow c = 4
Centre $C(h,k) = C(0,0)$
Foci are $F(0,\pm c) = F(0,\pm d)$
Eccentricity $e = \frac{c}{a} \Rightarrow \frac{d}{4} < 1$
Vertices $A(0,4a) = A(0,\pm 5)$
Directrices $y = \pm \frac{a}{e}$
Solution:
$$\frac{(2x-1)^2}{4} + \frac{(y+2)^2}{16} = 1$$
Solution:
$$\frac{(x+1)^2}{16} = 1$$

$$c^{2} = a^{2} - b^{2} = 16 - 1 = 15 \Rightarrow c = \sqrt{15}$$
Centre of (ii) $C(h,k) = C(0,0)$

$$X = 0 \text{ and } Y = 0$$

$$x - \frac{1}{2} = 0 \text{ and } Y + 2 = 0$$

$$x - \frac{1}{2} = 0 \text{ and } Y + 2 = 0$$

$$x - \frac{1}{2} = 0 \text{ and } Y + 2 = 0$$

$$x - \frac{1}{2} = 0 \text{ and } Y + 2 = 0$$

$$x^{2} + \frac{1}{2} \tan y + 2 = 2$$
Foci of (ii) are
$$F(0, \pm c) \Rightarrow F(0, \pm \sqrt{15})$$

$$X = 0 \text{ and } Y = \pm \sqrt{15}$$

$$x - \frac{1}{2} = 0 \text{ and } Y + 2 \pm \sqrt{15}$$

$$x - \frac{1}{2} = 0 \text{ and } Y + 2 \pm \sqrt{15}$$

$$x - \frac{1}{2} = 0 \text{ and } Y + 2 \pm \sqrt{15}$$
Foci of (i) are
$$F(\frac{1}{2}, -2 \pm \sqrt{15})$$
Eccentricity of (i) is $e - \frac{c}{a} = \frac{\sqrt{15}}{4} < 1$
Vertices of (ii) are
$$A(0, \pm a) = A(0, \pm 4)$$

$$X = 0 \text{ and } Y = \pm 4$$

$$\Rightarrow x - \frac{1}{2} = 0$$

$$A' = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} =$$

$$\begin{array}{l} \Rightarrow x+8=\pm 2 \quad \text{and} \quad y-2=0 \\ x=-8\pm 2 \quad \text{and} \quad y=2 \\ x=-10,-6 \\ \text{vertices of (i) are} \\ A(-10,2),A'(-6,2). \\ \text{Eccentractly of (i) is, } e=\frac{c}{2}, \frac{\sqrt{2}}{2}, \\ \text{Directrices of (i) are} \\ A(-10,2),A'(-6,2). \\ \text{Eccentractly of (i) is, } e=\frac{c}{2}, \frac{\sqrt{2}}{2}, \\ \text{Directrices of (i) are} \\ A(-10,2),A'(-6,2). \\ \text{Eccentractly of (i) is, } e=\frac{c}{2}, \frac{\sqrt{2}}{2}, \\ \text{Directrices of (i) are} \\ A(-10,2),A'(-6,2). \\ \text{Eccentractly of (i) is, } e=\frac{c}{2}, \frac{\sqrt{2}}{2}, \\ \text{Directrices of (i) are} \\ A(-10,2),A'(-6,2). \\ \text{Eccentractly of (i) is, } e=\frac{c}{2}, \frac{\sqrt{2}}{2}, \\ \text{Directrices of (i) are} \\ A(-10,2),A'(-6,2). \\ \text{Eccentractly of (i) is, } e=\frac{c}{2}, \frac{\sqrt{2}}{2}, \\ \text{Directrices of (i) are} \\ A(-1),A'(-6,2). \\ A''=\frac{1}{2}, \frac{d}{2}, \\ A''=\frac{1}{2}, \\ A''=\frac{1}{2}, \frac{d}{2}, \\ A''=\frac{1}{2}, \\ A'$$

Q.3 Let 'a' be a positive number and

$$0 < c < a$$
. Let $F(-c, 0)$ and
 $F'(c, 0)$ be two given points. Proven
that the locus of the points $P(x, r)$
such that $|Pr| + |PF|^2 |= 2a$ is an
ellipse.
Preter Weltary to show that
 $|PF| + |PF|^2 |= 2a$
 $\sqrt{x + c^2 + (x - 0)^2 + (y - 0)^2} = 2a}$
 $\sqrt{x + c^2 + (y - 0)^2 + (x - c)^2 + (y - 0)^2} = 2a}$
 $\sqrt{x + c^2 + (y - 0)^2 + (x - c)^2 + (y - 0)^2} = 2a}$
 $\sqrt{x + c^2 + (y - 0)^2 + (x - c)^2 + (y - 0)^2} = 2a}$
 $\sqrt{x + c^2 + (x - 1)^2 + (y - 1)^2} = 2a - \sqrt{(x - c)^2 + (y - 0)^2} = 2a}$
 $\sqrt{x + c^2 + (x - 1)^2 + (y - 1)^2} = 2a - \sqrt{(x - c)^2 + (y - 0)^2} = 2a}$
 $\sqrt{x + c^2 + (x - 1)^2 + (y - 1)^2} = 2a - \sqrt{(x - c)^2 + (y - 0)^2} = 2a - \sqrt{(x - c)^2 + (y - 0)^2} = 2a - \sqrt{(x - c)^2 + (y - 0)^2}$
Squaring both sides
 $x^2 + c^2 + 2cx + y^2 = 4a^2 + x^2 + c^2 - 2cx + y^2$
 $-4a\sqrt{(x - c)^2 + y^2}$
 $4cx - 4a^2 = -4a\sqrt{(x - c)^2 + y^2}$
 $4cx - 4a^2 = -4a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -4a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 $Acx - 4a^2 = -a\sqrt{(x - c)^2 + y^2}$
 Ac

$$|LE'| = \frac{b^2}{a}$$

$$\therefore |LL'| = 2|LF'| = \frac{2b^2}{a}$$

$$\therefore |LT'| = 2|LF'| = \frac{2b^2}{a}$$

$$\therefore |LT'|$$

$$\frac{1}{(45)^{2}} + \frac{(20\sqrt{2})^{2}}{(30)^{2}} = 1$$

$$\frac{1}{(45)^{2}} + \frac{800}{900} = 1$$

$$\frac{1}{(45)^{2}} + \frac{1}{900} = 1$$

$$\frac{1}{(45)^{2}} = \frac{1}{9} = x^{2} = \frac{2025}{9}$$

$$\Rightarrow x = \pm \frac{45}{3} \Rightarrow x = \pm 15 \text{ meter}$$
But distance be positive so $x = 15 \text{ m}$.

$$\frac{1}{(1-1)^{2}} = 1 - \frac{1}{900} = 1$$

$$\frac{1}{(1-1)^{2}} = 1 - \frac{1}{9} = 1$$

$$\frac{1}{(1-1)^{2}} =$$