Ellipse:

An ellipse is the locus of a point which moves in a plane such that the ratio of its distare from fixed point (focus) and a fixed lines (Directrix) is a constant whirn is ess than 1 . This ratio is called eccentricity and is deno by e $0<e<1$

An ellips is the locus of a point hat move in suctia way that the sum of its distance from thof fixelf pomts Foci) is consedait i.e. $|P F|+\left|P F^{\prime}\right|=2 a$

Equation of Elipa in St ndaríorm:

Lec,$(-c, 0)$ be the focus and the line $x=\frac{-c}{e^{2}}$ be the Directrix of an ellipse with eccentricity $e,(o<e<1)$. Then equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Proof:
Let $P(x, y)$ be any point on the ellipse and suppose $|P M|$ be the perpendicular distance of P from the Directrix. Then $|P M|=x+\frac{c}{e^{2}}$
By definition of ellipse

$$
\begin{array}{cl}
|P F|=e|P M| & \text { where } 0<e<1 \\
\sqrt{(x+c)^{2}+(y-0)^{2}}=e\left(x+\frac{c}{e^{2}}\right) &
\end{array}
$$

Taking square on both sides

$$
\begin{aligned}
& x^{2}+c^{2}+2 c x+y^{2}=e^{2}\left(x+\frac{c}{e^{2}}\right)^{2} \\
& x^{2}+c^{2}+2 c x+y^{2}=e^{2}\left(x^{2}+\frac{c^{2}}{e^{4}}+\frac{2 c x}{e^{2}}\right) \\
& x^{2}+c^{2}+2 c x+y^{2}=e^{2} x^{2}+\frac{c^{2}}{e^{2}}+2 c x \\
& x^{2}+2 c x-2 c x+y^{2}-e^{2} x^{2}=\frac{c^{2}}{e^{2}}-c^{2} \\
& x^{2}\left(1-e^{2}\right)+y^{2}=\frac{c^{2}}{e^{2}}\left(1-e^{2}\right)
\end{aligned}
$$

$$
x^{2}\left(1-\left(e^{2}\right),-y^{2}=a^{2}\left(1-e^{2}\right)\right.
$$

$\Rightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ where $\quad b^{2}=a^{2}\left(1-e^{2}\right)$ and $a>b$

Graph:

Tvo Standi(1)Lquations of Ellipse:

Standard Equation	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$	$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1, a>b$
Shape of the Ellipse		
Centre	$(0,0)$	(0, 0)
Equation of Major axis	$y=0$	$x=0$
Equation of Minor axis	$x=0$	$y=0$
Length of major axis	$2 a$	$2 a$
Length of minor axis	$2 b$	$2 b$
Foci	$(\pm c, 0)$	$(0, \pm c)$
Vertices	$(\pm a, 0)$	$(0, \pm a)$
Equation of DTX	$x= \pm \frac{c}{e^{2}}$	$y= \pm \frac{c}{e^{2}}$
Eccentricity	$e=\sqrt{\frac{a^{2}-b^{2}}{2}}$	$e=\sqrt{a}=\frac{a^{2}}{a^{2}}=\frac{b^{2}}{0}$
Length of Latas Reptum		$\frac{2 b^{2}}{a}$
ParameTiv Equations	$(a \cos \theta, b \sin \theta)$	$(b \cos \theta, a \sin \theta)$
syumery	About both the axis and center	About both the axis and center

EXERCISE 6.5

Q. 1 Find an equation of the ellipse with given data and sketch its graph.
(i) Foci $(\pm 3,0)$ and minor $a \dot{\sim} \dot{s}$ of length 19
Solution:
Foci: $F(3,0)$ and $A^{\prime}(-3,0)$ The 1 nid porto $1 F^{\circ}$
Cent $e=C(h, k)=C(0,0)$
length of minor axis

$$
\begin{aligned}
& 2 b=10 \Rightarrow b=5 \\
& 2 c=\left|F F^{\prime}\right|=6 \\
& \Rightarrow c=3 \\
& \text { As } \\
& c^{2}=a^{2}-b^{2} \\
& 3^{2}=a^{2}-5^{2} \\
& 9+25=a^{2} \Rightarrow a=\sqrt{34}
\end{aligned}
$$

Vertices are $A(\sqrt{34}, 0)$ and
$A^{\prime}(-\sqrt{34}, 0)$
\because foci lies on x-axis
$\therefore \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
$\Rightarrow \frac{x^{2}}{34}+\frac{y^{2}}{25}=1$

(i) Goci $(0,-1)$ and $(0,-5)$ and major axis of length 6 .

Solution:

Foci: $F(0,-1)$ and $\mathrm{F}^{\prime}(0,-5)$

The mid-point of $F F^{\prime}$
Centre $-C(h k)==(\sqrt{0}-3)$
Per 2 thor major a is
$2 a=6 \rightarrow a=3$

$$
\begin{aligned}
2 c & =\left|F F^{\prime}\right|=\sqrt{(0-0)^{2}+(-1+5)^{2}} \\
& =\sqrt{0+16}=4 \\
\Rightarrow & c=2
\end{aligned}
$$

As
$c^{2}=a^{2}-b^{2}$
$2^{2}=3^{2}-b^{2}$
$9-4=b^{2}$
$\Rightarrow b=\sqrt{5}$
Vertices are $(0,0)$ and $(0,-6)$
\because foci lies on y-axis

$$
\begin{aligned}
& \therefore \frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1 \\
& \Rightarrow \frac{(y+3)^{2}}{9}+\frac{x^{2}}{5}=1
\end{aligned}
$$

(iii) Foci $(-3 \sqrt{3,0})$ and vertices $(\pm 6,0)$

Solution:
Foci: $F(3 \sqrt{3}, 0)$ and $F^{\prime}(-3 \sqrt{3}, 0)$
The mid-point of $F F^{\prime}$
Centre $=C(f, k)=C(0,0)$
Vertices, $1(6,0)$ and $A^{\prime}(-5,0)$
合証
$\Rightarrow c=3 \sqrt{3}$
$b^{2}=a^{2}-c^{2}=36-27=9$
$\Rightarrow b=3$
\because foci lies on x-axis
$\therefore \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
$\Rightarrow \frac{x^{2}}{36}+\frac{y^{2}}{9}=1$

(iv) Vertices $(-1,1),(5,1)$; Foci $(4,1)$ and $(0,1)$
Solution:
Foci: $E(4,1)$ ara $F^{\prime}(0,0)$
The mic-ppint of Fit
Anatre $C(h, k)=C\left(\frac{-1+5}{2}, \frac{1+1}{2}\right)$

$$
=C(2,1)
$$

Vertices: $A(-1,1)$ and $A^{\prime}(5,1)$
$2 a=\left|A A^{\prime}\right|=\sqrt{(5+1)^{2}+(1-1)^{2}}=6$
$\Rightarrow a=3$
$2 c|=|F| F|=\sqrt{(0-4)^{2}+(1-1)^{2}}=4$
$\rightarrow-c=2$
$b^{2}=a^{2}-c^{2}=9-4=5$
$\Rightarrow b=\sqrt{5}$
\because foci lies on x-axis
$\therefore \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
$\Rightarrow \frac{(x-2)^{2}}{9}+\frac{(y-1)^{2}}{5}=1$

(v) Foci $(\pm \sqrt{5}, 0)$ and passing
through the point $\left(\frac{3}{2}, \sqrt{3}\right)$
Solution:
Foci $F(\sqrt{5}, 0)$ and $\left.F^{\prime \prime} \sqrt{5}, 0\right)$
The miu-poin of $F F^{\prime}$
Certre $=C(h, k)=E(n, 0)$
$\Rightarrow c=\sqrt{5}$
Using $c^{2}=a^{2}-b^{2}$
$(\sqrt{5})^{2}=a^{2}-b^{2}$
$5=a^{2}-b^{2}$ or $b^{2}=a^{2}-5$
\because foci lies on x-axis
$\therefore \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-5}=1 \ldots$ (i)
$a^{2} \quad a^{2}-5$
But it passes through $p\left(\frac{3}{2}, \sqrt{3}\right)$
$\left(\frac{(3}{-\frac{2}{a}}\right)^{2}-\frac{\sqrt{3}}{a^{2}-5}+\frac{\sqrt{3})^{2}}{2}=1$
$\frac{9}{4 a^{2}}+\frac{3}{a^{2}-5}=1$
$9\left(a^{2}-5\right)+3\left(4 a^{2}\right)=4 a^{2}\left(a^{2}-5\right)$
$4 a^{4}-41 a^{2}+45=0$
It is quadratic in a^{2}
$a^{2}=\frac{41 \pm \sqrt{1681-720}}{8}$
$a^{2}=\frac{41 \pm \sqrt{981}}{8}$
$a^{2}=\frac{41 \pm 31}{8}$
$a^{2}=\frac{41+31}{8} \quad$ and $\quad a^{2}=\frac{41-31}{8}$
$a^{2}=9 \quad$ and $\quad a^{2}=\frac{10}{8}$
$a=3, a=\frac{\sqrt{5}}{2}$ (not possible) $\because a>c$
$\frac{x^{2}}{3^{2}}+\frac{y^{2}}{3^{2}-5}=1$
$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

(vi) Vertices $(0, \pm 5)$, eccentricity $\frac{3}{5}$

Solution:

Vertices $A(0,5)$ and $A^{\prime}(n,-5)$
$2 a=\left|A A^{\prime}\right|-10$
$\Rightarrow a=5$
Eccentricity: $e=\frac{3}{5}$

$$
\begin{aligned}
& c=a e=5\left(\frac{3}{5}\right) \\
& \Rightarrow c=3
\end{aligned}
$$

The mid-point of
$A A^{\prime}=C(h, k)=C(0,0)$
$b^{2}=a^{2}-c^{2}=25-9=16$
$\Rightarrow b=4$
\because foci lies on y-axis
$\therefore \frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1$
$\Rightarrow \frac{y^{2}}{25}+\frac{x^{2}}{16}=1$

Centre (0,0), Focus (0,3) and Vertex $(0,4)$
Solution:

$$
C(h, k)=C(0,0)
$$

Focus $F^{\prime}(0,-c)=F^{\prime}(0,-3)$
$c=3$

Vertex $A(0, a)=A(0,4)$
$a=4$
Using $c^{2}=a^{2}-b^{2}$
$3^{2}=4^{2}-b^{2}$
$b^{2}=7$
\because foc (lit) on p゙axis
$\therefore \frac{(y-k)^{2}}{a^{2}}+\left(y-\frac{(2,}{b^{2}}, 2^{2}-1\right.$
$\Rightarrow \frac{y^{2}}{16}+\frac{x^{2}}{7}=1$

(viii) Centre (2, 2), major axis
parallel to y-axis and of length 8 units, minor axis parallel to x-axis of length 6 units.

Solution:

Centre $C(h, k)=C(2,2)$
Major axis is parallel to x-axis
$2 a=8 \Rightarrow a=4$
Minor axis is parallel to x-ax s
$2 b=6 \Rightarrow \quad \begin{aligned} & 0 \\ & 0\end{aligned}$
$c=\sqrt{a^{2}-b}=\sqrt{1 \beta-9}=\sqrt{7}$
Vertices
$\sqrt{4}\left(, k+\frac{a}{}\right)=\Lambda(2,2+4)=A(2,6)$
$A^{\prime}(h, k-a)=A^{\prime}(2,2-4)=A^{\prime}(2,-2)$
Co-vertices
$B(h+b, k)=B(2+3,2)=B(5,2)$

$$
B^{\prime}(h-b, k)=B^{\prime}(2-3,2)=B^{\prime}(-1,2)
$$

The major axis ram all $\&$ to y-a

(ix) Centre (0, 0), symmetric with respect to both the axes and passing through the points $(2,3)$ and $(6,1)$

Solution:

Centre $C(h, k)=C(0,0)$
The general equation of the ellipse (having centre at-arigin) is

Suls situting $(2,3)$ and $(6,1)$ in (i), we get respectively
$\frac{4}{\lambda^{2}}+\frac{9}{\mu^{2}}=1$
$\frac{36}{\lambda^{2}}+\frac{1}{\mu^{2}}=1$
Multiply (ii) $\times 9$ and subtract from
(iii) we get
$\frac{80}{\mu^{2}}=8 \Rightarrow \mu^{2}=10$ putting in (ii),
we get
$\frac{4}{\lambda^{2}}+\frac{9}{10}=1$
$\Rightarrow \frac{4}{\lambda^{2}}=10, \lambda^{2}-40$
Since $\lambda^{2}=\lambda \cdot \nu^{2}$
$\cdots \alpha r^{2}=\lambda^{2}=\Omega n$ and $b^{2}=\mu^{2}=10$
So (i) becomes $\frac{x^{2}}{40}+\frac{y^{2}}{10}=1$
Vertices

$$
\begin{aligned}
& A(a, 0)=A(2 \sqrt{10}, 0) \\
& A^{\prime}(-a, 0)=A^{\prime}(-2 \sqrt{10}, 0)
\end{aligned}
$$

Co-vertices
$B(0, b)=B(0, \sqrt{10})$
$B^{\prime}(0,-b)=B^{\prime}(0,-\sqrt{10})$

(x) Centre (0,0), major axis
horizontal, the points $(3,1)(4,0)$
lies on the graph.
Solution:
Centre $Z(n, k)=C(0, \rho)$
Major axis is he izontal
Tha ecyation ollipse is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Put $(3,1)$ in (i), we get
$\frac{9}{a^{2}}+\frac{1}{b^{2}}=1$
Putting $(4, ~ 2)$ iv, ($)$. We get
$\sqrt{\frac{1}{a^{2}}}=1 \Rightarrow a=6 \Rightarrow a=4$
Putting in (ii), we get
$\frac{9}{16}+\frac{1}{b^{2}}=1$
$\Rightarrow \frac{1}{b^{2}}=\frac{7}{16} \Rightarrow b^{2}=\frac{16}{7} \Rightarrow b=\frac{4}{\sqrt{7}}$
Equation (i) becomes
$\frac{x^{2}}{16}+\frac{y^{2}}{\frac{16}{7}}=1$
$\Rightarrow \frac{x^{2}}{16}+\frac{7 y^{2}}{16}=1$

Q. 2 Find the center, fi, eccent Ren r. vertiees and dire:trices of he elip se whose equation is given.
(i) $x^{2}+1-y^{2}=16$

Solution:

$$
\begin{aligned}
& \frac{x^{2}}{16}+\frac{4 y^{2}}{16}=1 \Rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{4}=1 \\
& a^{2}=16 \Rightarrow a=4 \\
& b^{2}=4 \Rightarrow b=2 \\
& \text { so } c^{2}=a^{2}-b^{2}=16-4=12
\end{aligned}
$$

$c=2 \sqrt{3}$
Centre $C(h, k)=C(0,0)$
Foci are $F(\pm c, 0)=F(\pm 2 \sqrt{3}, 0)$
Eccentricity
$e=\frac{c}{a}=\sqrt{3}-\frac{\sqrt{3}}{2}-1$
Verite
A $(\pm a, 0)=A(\pm 4,0)$
Directrices
$x= \pm \frac{c}{e^{2}} \Rightarrow x= \pm \frac{2 \sqrt{3}}{\frac{3}{4}}$
$\Rightarrow x= \pm 2 \sqrt{3} \times \frac{4}{3}$
$\Rightarrow x= \pm \frac{8}{\sqrt{3}}$
(ii) $\quad 9 x^{2}+y^{2}=18$

Solution:

$\frac{9 x^{2}}{18}+\frac{y^{2}}{18}=1 \Rightarrow \frac{x^{2}}{2}+\frac{y^{2}}{18}=1$
$a^{2}=18 \Rightarrow a=3 \sqrt{2}$
$b^{2}=2 \Rightarrow b=\sqrt{2}$
$c^{2}=a^{2}-b^{2}=18-2$
$\Rightarrow c^{2}=16 \Rightarrow c=4$
Centre $C(h, k)=C(0,0)$
Foci are $F(0, \pm c)=F(0, \pm 4)$
Eccentricity $e=\frac{c}{a}=\frac{4}{3 \sqrt{2}}<1$
Vertices
$A(0, \pm \Omega)=A(0, \pm 3 \sqrt{2})$
Firestrices $= \pm-\frac{c}{e}$

$$
y= \pm \frac{\frac{3 \sqrt{2}}{4}}{\frac{3 \sqrt{2}}{2}} \Rightarrow y= \pm \frac{18}{4} \Rightarrow y= \pm \frac{9}{2}
$$

(iii) $25 x^{2}+9 y^{2}=225$

Solution:

$25 x^{2}+9 y=2-5$

$\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$
$a^{2}=25 \Rightarrow a=5$
$b^{2}=9 \Rightarrow b=3$
$c^{2}=a^{2}-b^{2}$
$\Rightarrow c^{2}=25-9 \Rightarrow c^{2}=16 \Rightarrow c=4$
Centre $C(h, k)=C(0,0)$
Foci are $F(0, \pm c)=F(0, \pm 4)$
Eccentricity $e=\frac{c}{a} \Rightarrow e=\frac{4}{5}<1$
Vertices $A(0, \pm a)=A(0, \pm 5)$
Directrices $y= \pm \frac{a}{e}$
$\Rightarrow y= \pm \frac{5}{\frac{4}{5}} \Rightarrow y= \pm \frac{25}{4}$
(iv) $\frac{(2 x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=1$

Solution:

$$
\frac{(2 x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=1
$$

$\Rightarrow 4 \frac{\left(x-\frac{1}{2}\right)^{2}}{4}+\sqrt[(x 2)^{2}]{15}=1$

Let $x-\frac{1}{2}=X$ and $y+2=Y$
So (i) becomes $\frac{X^{2}}{1}+\frac{Y^{2}}{16}=1$
$a^{2}=16 \Rightarrow a=4$
$b^{2}=1 \Rightarrow b=1$
$c^{2}=a^{2}-b^{2}=16-1=15 \Rightarrow c=\sqrt{15}$
Centre of (ii) $C(h, k)=C(0,0)$
$X=0$ and $Y=0$
$x-\frac{1}{2}=0$ and $y+2=0$
$x=\frac{1}{2} 2 \pi 1 \quad y=-2$
Q.nt eo (i) $2(h, k)=C\left(\frac{1}{2},-2\right)$

Foci of (ii) are
$F(0, \pm c) \Rightarrow F(0, \pm \sqrt{15})$
$X=0$ and $Y= \pm \sqrt{15}$
$x-\frac{1}{2}=0$ and $y+2= \pm \sqrt{15}$
$x=\frac{1}{2}$ and $y=-2 \pm \sqrt{15}$
Foci of (i) are $F\left(\frac{1}{2},-2 \pm \sqrt{15}\right)$
Eccentricity of (i) is $e=\frac{c}{a}=\frac{\sqrt{15}}{4}<1$ Vertices of (ii) are
$A(0, \pm a)=A(0, \pm 4)$
$X=0$ and $Y= \pm 4$

$$
\begin{array}{l|l}
\Rightarrow x-\frac{1}{2}=0 & \begin{array}{l}
\Rightarrow y+2= \pm 4 \\
y=-2 \pm 4 \\
\Rightarrow x=\frac{1}{2}
\end{array} \\
y=-6,2
\end{array}
$$

vertices of (i) are $A\left(\frac{1}{2},-6\right)$ and $A^{\prime}\left(\frac{1}{2}, 2\right)$
Equation ot Directrices of (ji) ate

$$
Y= \pm \frac{4}{\frac{\sqrt{15}}{4}} \Rightarrow Y= \pm \frac{16}{\sqrt{15}}
$$

$y+2= \pm \frac{16}{\sqrt{15}} \Rightarrow y=-2 \pm \frac{16}{\sqrt{15}}$ are
the equation of lir ectriges of (i,

Sulition:

$x^{2}+16 x+4 y^{2}-16 y+76=0$
$\left(x^{2}+16 x\right)+4\left(y^{2}-4 y\right)+76=0$
$\left(x^{2}+16 x+64-64\right)+4\left(y^{2}-4 y+4-4\right)$
$+76=0$
$(x+8)^{2}-64+4\left((y-2)^{2}-4\right)+76=0$
$(x+8)^{2}+4(y-2)^{2}-16+76-64=0$
$(x+8)^{2}+4(y-2)^{2}=4$
$\frac{(x+8)^{2}}{4}+\frac{(y-2)^{2}}{1}=1$
Let $x+8=X$ and $y-2=Y$ then (i) will become;
$\frac{X^{2}}{4}+\frac{Y^{2}}{1}=1 \ldots$
$a^{2}=4 \Rightarrow a=2$
$b^{2}=1 \Rightarrow b=1$
$c^{2}=a^{2}-b^{2}=4-1=3 \Rightarrow c=\sqrt{3}$
Centre of (ii) $C(h, k)=C(0,0)$
$X=0$ and $Y=0$
$x+8=0$ and $y-2=0$
$x=-8$ and $y=2$
centre of (i) is $(-8,2)$
Foci of (ii)-wie

$x+8= \pm \sqrt{3}$ and $y-2=0$
$x=-8 \pm \sqrt{3}$ and $y=2$
foci of (i) are $(-8 \pm \sqrt{3}, 2)$
Vertices of (ii) are
$A(\pm a, 0)=A(\pm 2,0)$
$X= \pm 2$ and $Y=0$
$\Rightarrow x+8= \pm 2$ and $y-2=0$
$x=-8 \pm 2 \quad$ and $\quad y=2$
$x=-10,-6$
vertices of (i) are
$A(-10,2), A^{\prime}(-6,2)$.
Eccentigit of (i) $\therefore e=\frac{c}{a}=\frac{\sqrt{3}}{2}<1$
Direstrices of (ii) arel

$$
O_{X}= \pm \frac{a}{e}
$$

$\Rightarrow X= \pm \frac{2}{\frac{\sqrt{3}}{2}} \Rightarrow X= \pm \frac{4}{\sqrt{3}}$
$x+8= \pm \frac{4}{\sqrt{3}}$
$\Rightarrow x=-8 \pm \frac{4}{\sqrt{3}}$ are the equation of directrices of (i)
(vi) $25 x^{2}+4 y^{2}-250 x-16 y+541=0$

Solution:

$$
\begin{aligned}
& 25 x^{2}+4 y^{2}-250 x-16 y+541=0 \\
& \left(25 x^{2}-250 x\right)+\left(4 y^{2}-16 y\right)+541=0 \\
& 25\left(x^{2}-10 x\right)+4\left(y^{2}-4 y\right)+541=0 \\
& 25\left(x^{2}-10 x+25-25\right)+4\left(y^{2}-4 y+4-4\right)+541=0 \\
& 25\left((x-5)^{2}-25\right)+4\left((y-2)^{2}-4\right)+541=0 \\
& 25(x-5)^{2}-625+4(y-2)^{2}-16+541=0 \\
& 25(x-5)^{2}+4(y-2)^{2}-641+541=0 \\
& 25(x-5)^{2}+4(y-2)^{2}=100 \\
& \frac{(x-5)^{2}}{4}+\frac{(y-2)^{2}}{25}=1 \ldots(i) \\
& \text { put } x-5)
\end{aligned}
$$

$$
\sqrt{i \lambda} v 11 \mathrm{becp} \operatorname{ne} \frac{x^{2}}{4}+\frac{y^{2}}{25}=1 \ldots \text { (ii) }
$$

$$
2^{2}=25 \Rightarrow a=5
$$

$$
b^{2}=4 \Rightarrow b=2
$$

$$
c^{2}=a^{2}-b^{2}=25-4 \Rightarrow c=\sqrt{21}
$$

Centre of (ii) $C(h, k)=C(0,0)$
$X=0$ and $V=\sigma$
$x-5=0$ and $:-2=0$
$x=5$ and $y=2$
centre of (i) is $(5,2)$
Vertices of (ii) are
$A(0, \pm a)=A(0, \pm 5)$
$X=0$ and $Y= \pm 5$
$x-5=0$ and $y-2= \pm 5$
$x=5$ and $y=2 \pm 5$

$$
y=-3,7
$$

Hence vertices of (i) are $A(5,-3)$
and $A^{\prime}(5,7)$
Foci of (ii) are
$F(0, \pm c)=F(0, \pm \sqrt{21})$
$X=0$ and $Y= \pm \sqrt{21}$
$x-5=0$ and $y-2= \pm \sqrt{21}$
$x=5$ and $y=2 \pm \sqrt{21}$
foci of (i) are $F(5,2 \pm \sqrt{21})$
Eccentricity of (i) is $e=\frac{c}{a}=\frac{\sqrt{21}}{5}<1$
Directriees oi (i.) are
$Y y= \pm \frac{a}{e}= \pm \frac{\frac{5}{\sqrt{21}}}{5}$
$Y= \pm \frac{25}{\sqrt{21}}$
$y-2= \pm \frac{25}{\sqrt{21}} \Rightarrow y=2 \pm \frac{25}{\sqrt{21}}$ are the
equation of directrices of (i)

Q. 3 Let ' a ' be a positive number and

$0<c<a$. Let $F(-c, 0)$ and
$F^{\prime}(c, 0)$ be two given points. Proye that the locus of the points $P(x .7)$ such tor $P F^{\prime}+P F^{\prime}=2 d$ is an ellipe.
Pror: Merbantow that
$|P F|+\left|P F^{\prime}\right|=2 a$ is an equation of ellipse.

$$
\begin{gathered}
\text { As }|P F|+\left|P F^{\prime}\right|=2 a \\
\sqrt{(x+c)^{2}+(y-0)^{2}}+\sqrt{(x-c)^{2}+(y-0)^{2}}=2 a \\
\sqrt{(x+c)^{2}+(y-0)^{2}}=2 a-\sqrt{(x-c)^{2}+(y-0)^{2}}
\end{gathered}
$$

Squaring both sides

$$
\begin{gathered}
x^{2}+c^{2}+2 c x+y^{2}=4 a^{2}+x^{2}+c^{2}-2 c x+y^{2} \\
-4 a \sqrt{(x-c)^{2}+y^{2}} \\
4 c x-4 a^{2}=-4 a \sqrt{(x-c)^{2}+y^{2}} \\
c x-a^{2}=-a \sqrt{(x-c)^{2}+y^{2}}
\end{gathered}
$$

Again squaring

$$
c^{2} x^{2}+a^{4}-2 a^{2} c x=a^{2} x^{2}+a^{2} c^{2}-2 a^{2} c x+a^{2} y^{2}
$$

$$
\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right)
$$

Dividing both sides by $a^{2}\left(a^{2}-c^{2}\right)$

$$
\begin{aligned}
& \frac{\left(a^{2}-c^{2}\right) x^{2}}{a^{2}\left(a^{2}-c^{2}\right)}+\frac{a^{2} y^{2}}{a^{2}\left(a^{2}-c^{2}\right)}=\frac{a^{2}\left(a^{2}-g^{2}\right)}{\left.a^{2} \sqrt{a^{2}-c}-c^{2}\right)} \\
& \frac{x^{2}}{a^{2}}+\frac{c^{2}}{2}=1
\end{aligned}
$$

$$
\Rightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Q. 4 Use problem 3 to find equations of the ellipse as locus of the point $P(x, y)$ sich tha the sun of th.
distance fion P tu the point $(0,0)$ and (1,1) is 2.
Solution: Jsing problem (3) here

$$
|P F|+\left|P F^{\prime}\right|=2
$$

$\sqrt{x^{2}+y^{2}}+\sqrt{(x-1)^{2}+(y-1)^{2}}=2$
$\sqrt{x^{2}+y^{2}}=2-\sqrt{(x-1)^{2}+(y-1)^{2}}$
Squaring both sides
$x^{2}+y^{2}=4+x^{2}+1-2 x+y^{2}+1-2 y$

$$
-4 \sqrt{(x-1)^{2}+(y-1)^{2}}
$$

$2 x+2 y-6=4 \sqrt{(x-1)^{2}+(y-1)^{2}}$
$x+y-3=2 \sqrt{(x-1)^{2}+(y-1)^{2}}$
Again squaring
$x^{2}+y^{2}+9-6 x-6 y+2 x y=4 x^{2}-8 x+4+4 y^{2}-8 y+4$
$3 x^{2}+3 y^{2}-2 x y-2 x-2 y-1=0$

Q. 5 Prove that the latusrectum of the

ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{2 b^{2}}{a}$
Proof:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Let $\left|L L^{\prime}\right|$ be length of latus rectum.
Since the point $\left(c, y_{1}\right)$ lies on the ellipse

$y_{1}^{2}=b^{2}\left(\frac{a^{2}-c^{2}}{a^{2}}\right)$
$y_{1}^{2}=\frac{b^{2}}{a^{2}} b^{2}$
$y_{1}=\frac{b^{2}}{a}$
$\left|L F^{\prime}\right|=\frac{b^{2}}{a}$
$\therefore\left|L L^{\prime}\right|=2\left|L F^{\prime}\right|=\frac{2 b^{2}}{a}$

Q. 6 The major axis of an ellipse in

 standard form lies along the x-axis has length $4 \sqrt{2}$ the distance between the foci equal the length of the minor axis. Write an equation of the ellipse
Solution:

Length of major axis $=4 \sqrt{2}$
$\Rightarrow 2 a=4 \sqrt{2} \Rightarrow a=2 \sqrt{2}$
It is given that distance between foci that is $2 c$ is equal to length of minor axis that is $2 b$.
$\Rightarrow 2 c=2 b \Rightarrow c=b$

$$
\begin{aligned}
c^{2}=a^{2}-b^{2} \Rightarrow & b^{2}=(2 \sqrt{2})^{2}-b^{2} \\
& \Rightarrow 2 b^{2}=8 \\
& \Rightarrow b^{2}=4
\end{aligned}
$$

Hence the rectuiredequation or ellipse \sqrt{s}

Q. 7 An astroid has elliptic orbit with

 the sun at one focus. Its distatur from the stim ringes finon 1 ? milionnilesto 183 milliofmiles. W-ite an equation of the orbit of the astioid.
Soution:

Consider the sun is at $F^{\prime}(c, 0)$ and let the astroid is first at $A(a, 0)$ and then at $A^{\prime}(-a, 0)$ then
$a-c=17 \ldots$ (i)
$a+c=183 \ldots$. (ii)
Adding (i) and (ii)
$2 a=200 \Rightarrow a=100$
Put $a=100$ in (i) we get;
$100-c=17 \Rightarrow c=100-17$
$\Rightarrow c=83$
$c^{2}=a^{2}-b^{2} \Rightarrow(83)^{2}=(100)^{2}-b^{2}$
$\Rightarrow b^{2}=10000-6889=3111$
Equation of the orbit of the astroid is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{x^{2}}{10000}+\frac{y^{2}}{3111}=1$

Q. 8 An arch in the shape of semi ellipse is 90 meter wide at the base and 30 meter high at the centre. At what distance from the centre is the arch $20 \sqrt{2}$ meter high?
Solution:
equation of the ellipse is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\frac{x^{2}}{(45)^{2}}+\frac{y^{2}}{(30)^{2}}=1$..
$\because\left(x_{1}, 20 \sqrt{2}\right)$ lies on the ellipse
$\therefore \frac{x_{1}^{2}}{(45)^{2}}+\frac{(20 \sqrt{2})^{2}}{(30)^{2}}=1$
$\frac{x_{1}^{2}}{(45)^{2}}+\frac{800}{900}=1$

$=\frac{1}{9} \Rightarrow x^{2}=\frac{2025}{9}$
$\Rightarrow x= \pm \frac{45}{3} \Rightarrow x= \pm 15$ meter
But distance should be positive so $x=15 \mathrm{~m}$.

Q. 9 The moon orbits the earth in an elliptic path with earth at one focus. The major and minor axis of the orbit are 768, 806 km and 767,
746 km respectively. Find the greatest and the least distance (in Astronomy called the apogee and perigee) of the moon from the earth.
Solution: Let $F(a, 0)$ shows earth as a focus
It is given that length of minior axis 768, 806 k프

$2 b=767,746 \Rightarrow b=383,873 \mathrm{~km}$
As

