Chapter Growth and Development TOPIC WISE MULTIPLE CHOICE QUESTIONS Growth & Development In Plants KIPS MOOS The open growth is found in plants due to growing point: (a) Shoot Apical Meristem (b) Root Apical Meristem (c) Vascular cambium (d) All of the above Which of the following meristem is of a temporary nature? (2)(a) Lateral Meristem (b) Apical Meristem (c) Intercalary Meristem (d) Short Meristem In lower plant (3) takes part in growth. (a) Only apical meristem (b) Entire plant body (c) Only growing points (d) None of these meristem plays important role in primary growth. (4) (a) Lateral Meristem (b) Apical Meristem (d) Cambium (c) Intercalary Meristem Lateral root emerges from: (5) (a) Pericycle (b) Root Apical Meristem (c) Endodermis (d) Upper layer of cortex. (6) The progressive changes which are undergone before an organism acquires its adult form constitute: (a) Growth (b) Embryonic Development (d) Post embryonic development (c) Pro-Embryonic PAST PAPER MCQs (7) Secondary growth leads to an increase in the diameter of the: (DGK 2018) (b) Root (a) Stem (c) Leaf (d) Stem and Root The sclerenchyma has thick secondary walls usually impregnated with: (1.HR 20 (8) (a) Chitin (b) Pectin (d) Lignin (c) Silica The angular thickening in primary wall of cell is present in: (9) (MLT 2019) (b) Collenchyma (a) Parenchylna (d) Sieve tubes (c) Sclerench vma An increase in the plant girth due to the activity of Vascular Cambium is called: (10)(BWL-2019) (2) Primary Growth (b) Secondary Growth (c) Sap Wood (d) Heart Wood (11) Which of the following cells lack of secondary walls? (MLT-2021) (a) Sclerenchyma (b) Collenchyma (c) Mesophyll (d) Vessels

Growth and Development

	(12)	Angular thickenings in the primary walls	are present in:	(MLT-2021)
		(a) Parenchyma cells	(b) Sclerenchyma cells	
		(c) Collenchyma cells	(d) Trachieds	1 (QUUU
	(13)	Primary growth in plants is caused by:		(GR W-2021)
		(a) Lateral meristem	(b). Intercalary meristem	
		(c) Apical meristem	(d) Secondary meristen	
	(14)	A little distance from apex of root and sh	cot lies the zone of	(SWL-2021)
		(a) Celi diffrentiation	(b) Cell divission	
		(c) Muturation	(D Elongation	
	(15)	A plant has a growth pattern called:	(GRW-201	8, LHR-2022)
- 01	AN.	(E) Closed growth	(b) Open growth	
NNI	UU	(c) Primary growth	(d) Secondary growth	
00	-	CONDITIONS C	F GROWTH	
		MCQs		
	(16)	How much volume of each cell is increased in	e i	ake of water?
		(a) 50 fold	(b) 100 fold	
		(c) 150 fold	(d) 200 fold	
	(17)	At what stage the cell wall of tracheids be	-	sions?
		(a) Cell Division	(b) Cell elongation	
		(c) Cell Maturation	(d) Cellular differentiation	
	(18)	Of all environmental factors controlling		es are:
		(a) Light and CO ₂	(b) Vitamins and water	
		(c) Temperature and Light	(d) Oxygen and CO ₂	
	(19)	Formation of cambium is stage of o		
		(a) 1 st	(b) 2 nd	
		(c) 3 rd	(d) 4 th	
	(20)	Which type of light can enhance the cell e	e i	
		(a) Blue Light	(b) Red Light	
		(c) Green Light	(d) Ultraviolet rays	
	(21)	For maximum growth of plants, the optim	-	
		(a) $0-35^{0}$ C	(b) $5 \cdot 10^{0}$ C	
		(c) 25-30 ^o C	(d) $35-40^{\circ}$ C	
	(22)	Which one is not the feature of Zone of co		
		(a) Non vacuolated cells	(b) Synthesis of cytoplasm	
	$(\mathbf{a}\mathbf{a})$	(c) Formation of root hairs	(d) Synthesis of cell wall mare	rial of the second se
	(23)	Point out one of the following pairs which		
		(a) Cork Cambium & Barl	(b) Vuscula: Carub um & Xyle	em
		(c) Root Apical Meristem & Tap Root	(d) None of these	
	(24)	Which is the condition that will inhibit th	-	its?
		(a) Light	(b) Dark	
	(05)	(c) Shor age of Wate:	(d) Both a & b	
- 0	(2 5)	What is the alternative name of root cam		
NNN	UN	(s) Endodermis	(b) Pericycle	
UU	00	(c) Pith Which turned of homeoned and responsible	(d) Cortex	L_9
	(26)	Which types of hormones are responsible		15:
		(a) Cytokinins	(b) Gibberellins (d) None of these	
		(c) Auxins	(d) None of these	

(27)	The removal of apex releases the late	ral buds from apical dominance	e. It is called:
	(a) Inhibitory Effects	(b) Compensatory Effects	
	(c) Temporary Effect	(d) Enzymatic Effect	
(28)	Which phenomenon is involved in pl		0.1000
(_0)	(a) Photosynthesis	(b) Photot opism	
	(c) Photoperiodism	(d) Photonusty	
(29)	At what range of temperature, the ra		may die?
(2))	(a) 0-35°°C	(b) $5-10^{\circ}$ C	i may u.e.
	(c) $25-30^{\circ}$ C	(d) $35-40^{\circ}$ C	
(20)		(u) 33-40 C	
(30)	Growth rate is influenced by:	(b) Watar	
UU	(1) Hormones	(b) Water	
	(c) Vitamins	(d) All of the above	
(31)	The growth of plant is least at:		
	(a) $0-35^{\circ}C$	(b) $5-10^{\circ}$ C	
	(c) $25-30^{\circ}$ C	(d) $35-40^{\circ}$ C	
(32)	The walls of cells become pitted in		
	(a) Cell Division	(b) Cell elongation	
	(c) Cell Maturation	(d) Cellular differentiation	1
PAST	TPAPER MCQs		
(33)	Vitamins are the organic compoun	ds synthesized within the plan	it bodies in the
	presence of:	-	(LHR 2017)
	(a) Water	(b) Nutrients	
	(c) Light	(d) Oxygen	
(34)	In the zone of elongation, the volume of		(SGD 2017)
	(a) 100 folds	(b) 150 folds	
	(c) 200 folds	(d) 250 folds	
(35)	In plants which light enhances cell di		(DGK 2018)
(00)	(a) Infrared	(b) Blue	
	(c) Red	(d) Ultra violet	
(36)	Meristems are young tissue or group		to
(30)	Wensteins are young ussue of group	of cens that retain the potential	(RWP-2022)
	(a) Penetrate	(b) Regenerate	(KWI-2022)
		(d) Survive	= C(0) U U
	(c) Divide		ZIGO
		ORRELATIONS	
KIPS	MCQs	GUUUUU	_
(37)	Which types of hormones are respon		ants?
	(a) Cyokinins	(b) Gibberellins	
	(c) Auxin;	(d) None of these	
PAST	PAPER MCOs		
(38)	Apical dominance is caused by:		(SWL 2017)
1MI.	(a) Auxin	(b) Methene	× /
00	(c) Cytokinin	(d) Gibberellins	
(39)	Apical Dominance is caused by:	(,	
	(a) Gibberellins	(b) Cytokinins	
	(c) Ethene	(d) Auxin	
		(u) / Ju/MI	

(40)	6	compounds synthesized within the plant bodies in the
	presence of:	(LHR-2917)
	(a) Water	(b) Nutrients
	(c) Light	
KIPS		
(41)		sponsible for the development of germinal layers in the
(41)	developing emoryo?	sponsible for the development of germinal layers in the
	(2) Cametogenesis	(b) Cleavage Formation
NI	(c) Gastrulation	(d) Organogenesis
(42)	Name the embryonic stage	that is the result of cleavages to form a rounded closely
0 -	packed mass of Blastomere	:
	(a) Gastrula	(b) Blastula
	(c) Morula	(d) Neurula
(43)	Discoidal cap of cells above	the blastocoel is called:
. ,	(a) Blastoderm	(b) Blastomere
	(c) Blastula	(d) Epiblast
(44)		le to split blastoderm into epiblast and hypoblast?
	(a) Gastrulation	(b) Blastulation
	(c) Cleavage Formation	(d) None of these
(45)	e e e e e e e e e e e e e e e e e e e	reak, the Hensen's node will appear?
(10)	(a) Caudal End	(b) Cephalic End
	(c) Intercalary	(d) Both terminals.
(46)	•	of blastoderm that transmits light is:
(10)	(a) Area opaca	(b) Area pellucida
	(c) Blastomere	(d) None of these
(47)	The incubation temperatur	
(47)	(a) $30-35^{\circ}C$	(b) $40-41^{\circ}C$
	(c) $25-30^{\circ}$ C	(d) $36-38^{\circ}C$
(48)		en's egg are vertical and 3 rd one is:
(40)	(a) Also vertical	(b) At vegetal pole
	(c) Parallel to the surface	(d) Diagonal to first one
(49)	From Hensen's node	mesoderm is formed and organized into somites. (0)
(47)	(a) Dorsal	(b) Lateral
	(c) Ventral	(d) Both b and c
(50)		that is the result of cleavages to form a rounded closely
(50)	packed mass of Blastomere	
	(a) Gasterla	(b) Blastula (d) Neurula
(51)	(c) Moruka	(d) Neurula
(51)	Discoidal cap of cells above	
1/1/	(a) Flastoderm	(b) Blastomere
	(c) Blastula	(d) Epiblast
(52)		not invaginate but migrate medially and caudally from
	both sides and create a mid	
	(a) Hensen's node	(b) Primitive Streak
	(c) Epiblast	(d) Hypoblast

	(53)	The incubation temperature for chick dev	-	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		(a) $30-35^{\circ}C$	(b) $40-41^{\circ}$ C	$\sim comu$
		(c) $25-30^{\circ}$ C	(d) 36-38 ⁰ C	
	(54)	The influence of notochordal cells on the	ectodermal cells to becor	ne nervous system
		is called:		<u> </u>
		(a) Development	(b) Embryonic induction	
		(c) Differentiation	(d) Abnormal developme	nt
		PAPER MCQs		
	(55)	The shell over chick egg is secreted as it p		(MTN 2017)
0	AN	(a) Overy	(b) Oviduct	
	NN.	(e) Cloaca	(d) Uterus	
J	(56)	The cavity formed between Somatic and S	-	(BWP 2017)
		(a) Primitive Gut	(b) Blastocoel	
		(c) Seminiferous	(d) Coelom	
	(57)	The neurula is the stage in which embryo		(RWP 2017)
		(a) Blastocoel	(b) The germ layers	
		(c) Neural tube	(d) Archenteron	
	(58)	Gray vegetal cytoplasm gives rise to		(GRW-2017)
		(a) Larval epidermis	(b) Notochord	
		(c) Muscle cells	(d) Gut	
	(59)	The discoidal cap of cells above the blasto		(SWL, MTN 2018)
		(a) Blastoderm	(b) Ectoderm	
		(c) Mesoderm	(d) Endoderm	
	(60)	The formation of rounded closely packed		alled: (SWL-2021)
		(a) Cleavage	(b) Morula	
		(b) Blastula	(d) Gastrula	
	(61)	Notochord is one of the few prominent str		yo of:(ML1-2021)
		(a) 24 hours	(b) 22 hours	
	$(\mathbf{\Omega})$	(c) 20 hours	(d) 18 hours	(DUIL 2021)
	(62)	Cleavage in fertilized egg results in the for		(BWL-2021)
		(a) Gastrula	(b) Blastula(d) Neurula	
	(63)	(c) Morulla The peripheral part of the blastoderm wh		$\mathcal{C}(\mathcal{O}) \cup \mathcal{O} \cup \mathcal{O}$
	(03)	is called:	iere the cens ne dasepara	CISD-2021)
		(a) Hypoblast	(b) Epiblast	(19 (3D-2021)
		(c) Area pellucida	(d) Area on ica	
	(64)	In which developmental stage, gerins lave		(RWP-2021)
		(a) Morul a	(b) Blastulation	
		(c) Gastrulation	(d) Neurolation	
	(65)	The discoidal cap of cells above the blasto		(D.G.K-2022)
T	NN	(a) Ectoderm	(b) Endoderm	(20011 2022)
IJ.,	00	(c) Mesoderm	(d) Blastoderm	
	(66)	Notochord is seen in the chick embryo of:		(SWL-2022)
	< - /	(a) 24 hrs.	(b) 22 hrs.	× - /
		(c) 20 hrs.	(d) 18 hrs.	

	KIPS	ROLE OF CYTOPLASM & NUC	CLEUS IN DEVELOPMR			
	(67)					
	(07)	(a) Notochord (b) Neural tube				
		(c) Muscles cells	(d) Gut)		
	(68)	Acetabularia is alga.				
	(00)	(a) Unicellular	(b) Multicellular			
		(c) Colonia'	(d) Filamentous			
	(69)	Most gene con tro/led substances are prese				
	(0,1)	(2) Nucleus	(b) Cytoplasm			
~ Th		(c) \mathbb{P} or of these	(d) None of these			
1NL	007	In Acetabularia, the cap development is co				
UU	ų ()	(a) Nucleus	(b) Cytoplasm			
		(c) Both of these	(d) None of these			
	(71)	In ascidian egg clear cytoplasm give rise t				
	()	(a) Larval epidermis	(b) Gut			
		(c) Muscles	(d) Notochord			
	(72)	Spemann designated the area, th				
	()	(a) Lateral lip	(b) Dorsal lip			
		(c) Ventral lip	(d) All of the above			
	(73)	The influence of notochordal cells on the ectode		tem is called:		
	()	(a) Development	(b) Embryonic induction			
		(c) Differentiation	(d) Abnormal development			
	(74)	Salamander belongs to class:				
	()	(a) Amphibia	(b) Reptilia			
		(c) Pisces	(d) Aves			
	(75)	The gray vegetal cytoplasm of ascidian fe				
		(a) Notochord	(b) Neural tube			
		(c) Muscles cells	(d) Gut			
	(76)	Salamander belongs to class:				
		(a) Amphibia	(b) Reptilia			
		(c) Pisces	(d) Aves			
	PAST	PAPER MCQs		-ran		
	(77)	Gray vegetal cytoplasm gives rise to	- 06	(GRW 2(17))		
		(a) Larval epidermis	(b) Notocherd			
		(c) Muscle cells		200		
	(78)	Clear cytoplasm produces		(SGD 2018)		
	. ,	(a) Larval epidermis	(b) Muscle ceil			
		(c) Gu	(d) Neural tube			
	(79)	Clear Cytoplasm in an ascidian zygote pr	roduces:	(LHR 2019)		
		(a) Muscle	(b) Gut			
_	NR	(c)Larval epidermis	(d)Notochord			
NI	16081/	Gray equatorial cytoplasm gives rise to:		(MLT 2019)		
N	00	(a) Neural tube	(b) Gut			
		(c) Muscle cells	(d) Larval epidermis			
	(81)	Pigment free area that appear at the time of	fertilization in amphibians is	(SRG 2019)		
		(a) Animal pole	(b) Vegetal pole			
		(c) Yolk	(d)Grey crescent			

	(82)	Pigment free area that appear at the time of	fertilization in amphibians is	(SRG 2021)
		(a) Animal pole	(b) Vegetal pole	
		(c) Yolk	(d)Grey crescent	
	(83)	Multicellular alga, Acetabularia is attacke	d to the ground by	GF W 2021)
		(a) Roots	(b) Hold fast	
		(c) Rhizoid	(d) $B_{\epsilon}s\epsilon$	
	(84)	Which colour cytoplasm of an ascidian fer		MLT 2021)
		(A) Yellow choplasm	(b) Grey equatorial cytoplasm	- /
		(c) Grey v zgeta' c rtoplasm	(d) Yellow cytoplasm	
	(85)	Acetibularia is unicchular:		(LHR 2022)
_			(b) Aiga	(1111(2022)
N	NNL)	(c) Yeast	(d) Protozoab	
	(86)	Yellow cytoplasm gives rise to:		(BWL 2022)
	(00)	• • •	(b) Larval epidermis	
		(c) Gut	(d) Notochord and neural tube	
			TION & AGING	
		MCQs		
	(87)	The branch of Biology that deals with the		
			(b) Embryology	
		(c) Gerontology	(d) Phycology	
	(88)	Which one is not the sign of aging?		
			(b) Poor vision	
		(c) Degeneration of cartilage	(d) Loss of pigmented area on	skin
	(89)	The negative physiological changes in our	body are called:	
		(a) Degeneration	(b) Abnormalities	
		(c) Aging	(d) Regeneration	
	PAST	PAPER MCQs		
	(90)	The negative physiological changes in our	body are called:	(DGK 2017)
			(b) Childhood	``´´
		(c) Aging	(d) Displacement	
	(91)	Anything which interferes with the norm		the factor
		causing.		(LHR 2017)
		8	(b) Regeneration	
			(d) Abnormalities	- Chini
	(92)	Anything which interferes with the norr		the factor
		causing.		(1.HX 291 7)
		(a) Aging	(b) Regeneration	
		(c) Normalities	(c) Abnornalities	
	(93)	Rapid aging and low resistance to enviro		limitations
	()	for:		(DGK 2018)
		(a) Fragmentation	(b) Budding	(_ 0)
			(d) Regeneration	
-	(94)	The ngative physiological changes in our		(FSD 2018)
N	NN		(b) Degeneration	(102 2010)
	00	(c) Aging	(d) Abnormalities	
-	(95)	The human life span is judged to be maxim		(MTN 2018)
	(20)		(b) 70-100 years	
		(c) 120-125 years	(d) 130-135 years	
	(96)	The negative physiological changes in our		RW 2019)

(110)	Which of the following chromosomal ab	normalities lead to tallness ag	gressiveness
	mental defect and anti-social behaviour.		(LHR 2018)
	(a) XXY	(b) XO	1 (CON
	(c) XXXY		1000
(111)	The individuals who born with abnormal	organs or body parts is called:	(LHR 2018)
	(a) Malformed	(b) Malignaat	
	(c) Faligrant	(d) Malfunction	
(112)	Immediately after fertilization, the egg of	inder goes some series of mito	otic divisions
	called:		(LHR-2021)
0	(a) Morulla	(b) Blastula	
AM	(c) Castulation	(d) Cleavage	
(113)	In the development of chick the 24 hour e	embryo is called:	(LHR-2021)
	(a) Morulla	(b) Gastrula	
	(c) Blastula	(d) Neurula	
(114)	The branch of biology which deals with the	study of abnormal development :	is:
			(RWP-2019)
	(a) Morphology	(b) Embryology	
	(c) Teratology	(d) Peratology	
(115)	Environment factors causing abnormal de	evelopment are called:	(FSD-2021)
	(a) Toxins	(b) Carcinogens	
	(c) Teratogens	(d) Mutagens	

MAN MARAGUM 2. COM

ANSWER KEY										
	(Тор	ic Wise	-	le Choic	e Questi	ons)	- 26	$ \geq $	201	<u>I</u> III
	d 26	c	51	d	76	20		a	Sov	5
	e 27	b	2	b	1711	<u>(a)</u>	N102	\sim		
	b 28	C	2	<u>d </u>	1 1811	10	103	a		
	29	<u></u>	<u>[</u> <u>4</u>]	10	الروس		L-104	d		
		140	<u>(1</u>		80	0	105	a		
			-56	d	81	0	106	d		
	لمسكظها 🗋	d	57	C	82	0	107	d		
	1 33	c	58	0	83	C	108	d		
	c <u>34</u>	b	59	a	84	0	109	a		
	b <u>35</u>	b	60	b	85	b	110	d		
	c 36	c	61	d	86	0	111	a		
	e <u>37</u>	c	62	С	87	С	112	d		
	c <u>38</u>	a	63	0	88	d	113	0		
	d 39	d	64	0	89	c	114	c		
	b <u>40</u>	c	65	d	90	С	115	C		
	c 41	c	66	d	91	a	141			
	d 42	c	67	d	92	d	142			
	e <u>43</u>	a	68	a	93	c	143			
	e 44	a	69	b	94	c	144			
	b <u>45</u>	b	70	a	95	c	145			
	e 46	<u>a</u>	71	a	96	<u>c</u>	146			
	c 47	d	72	b	97	b	147			
	d 48	c	73	b	<u>98</u>	b	148			
	b <u>49</u>	a	74	a	<u>99</u>	b	149			
25	5 0	c	75	d	100	a	150			
ere of the second secon										\sim
							~		ചെ	NN
				_		\sim	$\sqrt{12}$		LON	10-
			\bigcirc	[]-	171	n h	NC	20		
		Π.	701	611	1111	IL				
05	1	$\langle V \rangle$	$\left[\right] \left[\right]$	11 U			\cup			
21	Iran	110	JU.	\mathcal{I}						
		UU								
	UUU									
a TWAIN OF	r									
MM OU -										
0 -										

GROWTH & DEVELOPMENT IN PLANTS

KIPS QUESTIONS

- Q: 1 What is meant by open growth pattern in plants?
- Ans: Plant has a growth pattern called as open growth. Throughout life plant and s new organs such as branches, leaves and roots enlarging from tips of roots and shoot.
- Q: 2 Name the groups of Plant that have Lateral meristeris.
- Ans: Vascular and cork carabium are the examples of lateral meristems. They are found in dicots and gymnosperms
- Q: 3 Differentiate between the growth pattern in lower and higher plants.

IN ODE	
Lower Plants	Higher Plants
Entire plant body is capable of growing.	Growth is limited to certain regions only.
Meristem is not present.	Growing points of meristem are present.

Q: 4 Differentiate between determinate and indeterminate growth.

Ans:

Determinate Growth	Indeterminate Growth		
They grow to certain size and then stop.	They grow by meristems that continually replenish themselves.		
Leaves, flower and fruits show it.	Vegetative root and stem show it.		
Make the list of different growth zones in apex growth.			

- Q: 5 Make the list of different gro Ans: (i) Zone of cell division
- (ii) Zone of cell elongation
- (iii) Zone of cell maturation
- (iv) Zone of cell differentiation
- Q: 6 Differentiate between primary and secondary growth.
- Ans:

Primary Growth	Secondary Growth			
Increase in plant length.	Increase in plant thickness.			
Primary tissue is added.	Secondary tissue is added.			
PAPER QUESTIONS				
Differentiate between Primary and Sec	ondary Growth.	(BWP 2018)		
What are meristems?		(RWP 2017)		
Define growth.		(LHR 2017)		
What do you mean by lateral meristem	?	(LHR 2017)		
Differentiate between apical meristems	and lateral meristems.	(LHR 2017)		
Define apical meristems.	00/2	(DGK 2017)		
Define growth. (LHR 2017)				
What do you mean by lateral meristen? (LHR 2017)				
Differentiate between apical meristems and lateral meristems. (LHR 2017)				
Differentiate between primary and second	ondary growth.	(LHR 2018)		
What are intercalary meristems? Give their role. (LHR 2018)				
Differentiate between Primary Growth and Secondary Growth. (SWL 2017, MTN 2018)				
What is the difference between primary and secondary growth? (LHR 2019)				
1	0	(SWL 2021)		
	Increase in plant length. Primary tissue is added. PAPER QUESTIONS Differentiate between Primary and Sec What are meristems? Define growth. What do you mean by lateral meristems Differentiate between apical meristems? Define apical meristems. What are Intercalary meristems? Give Define growth. What do you mean by lateral meristem Differentiate between apical meristems? Define growth. What do you mean by lateral meristem Differentiate between apical meristems? Differentiate between primary and sec What are intercalary meristems? Give Differentiate between primary and sec What are intercalary meristems? Give Differentiate between Primary Growth Differentiate maturation from different What is the difference between primary	Increase in plant length.Increase in plant thickness.Primary tissue is added.Secondary tissue is added. PAPER QUESTIONS Differentiate between Primary and Secondary Growth.What are meristems?Define growth.What do you mean by lateral meristem?Differentiate between apical meristems and lateral meristems.Define apical meristems.What are Intercalary meristems? Give its function.Define growth.What do you mean by lateral meristem?Differentiate between apical meristems and lateral meristems.Define growth.What are Intercalary meristems? Give its function.Define growth.What do you mean by lateral meristem?Differentiate between apical meristem??Differentiate between primary and secondary growth.What are intercalary meristems? Give their role.Differentiate between primary and secondary growth.What are intercalary meristems? Give their role.		

Q: 26 Differentiate between maturation and differentiation. (SWL 2021) Q: 27 What are Intercalary Meristems? (RWP 2021) **Q: 28** What are collenchyma cells? Discuss. (SRG 2021) Q: 29 Differentiate between apical and lateral meristems (RVP 2021) **Q: 30** Define apical meristem. (LHR 2021) **Q: 31** Differentiate between maturation and differentiation. (GRW 2021) Q: 32 Differentiate between primary and secondary growth. (GRW 2022) CONDITIONS OF GROWTH KIPS QUESTIONS O: 35 List he names of internal and external factors that affect the growth of plant. Ans: Internal Factors: (i) Hormones (ii) Water (iii) Nutrition (iv) Vitamins **External Factors:** (i) Temperature (ii) Light (iii) Oxygen (iv) Carbon dioxide Q: 34 How does light influence the growth of plants? **Ans:** Light influences growth in three ways: intensity, quality and duration. **Intensity of light:** The increase in intensity of light increases the number of cell divisions. **Quality of light:** The red light favours elongation of cells. The blue light enhances cell division but it retards cell enlargement. Similarly, ultraviolet rays also retard cell elongation. **Duration of light:** Duration of light affects the growth of vegetative and reproductive structures. It also plays a role in inducing or suppressing flowering. PAST PAPER OUESTIONS **O: 35** Write down the role of temperature as an external factor in plant growth. (RWP 2018) **Q: 36** How temperature plays its role in the growth of plants? (BWL 2022) GROWTH CORRELATIONS KIPS OUESTIONS **Q: 37** What is the contribution of Thimann and Skoog to understand the growth correlation? **Ans:** They performed experiments and showed that apical dominance was caused by auxins diffusing from the apical bud, which inhibited the growth of lateral shoots. Q: 38 Define apical dominance. Ans: Such plant growth correlation in which apical buds grow while growth is suppressed in lower axillary buds is called apical dominance. Q: 39 What are the practical applications of apicel dominance? Ans: It plays an important role in tap root development and the inhibition of sprouting of lateral buds (eyes) in potatees Q: 40 What is the difference between inhibitory effect and compensatory effect? Ans: - Inhibitory effect **Compensatory effect** The main of the terminal bud is The removal of apex releases the lateral buds from responsible for inhibiting the growth apical dominance. It is called compensatory effect. of lateral buds. The terminal bud produces auxin. Auxin diffuses from the apical bud to the lateral shoots and it produce inhibitory effect.

Q: 41 Define correlation. The reciprocal relationship of growth between different parts of the plants in which eng Ans: part affects the growth of the other part is called growth correlations. PAST PAPER OUESTIONS Q: 42 What is compensatory effect in plant growth? (SWL 2017) Q: 43 Write practical applications of Apreal dominance. (MTN 2018) Q: 44 Differentiate between innibitory and compensatory effect. (SWL 2018, GRW 2019) **Q: 45** Differentiale between growth and development. (MLT 2019) Q: 46 What is the difference between inhibitory effect and compensatory effect? (DGK 2017, MLT-2019) O: 47 Define growth correlations. (GRW 2017, LHR 2018, MTN 2018, SWL 2019, BWP 2019, GRW 2021) **Q: 48** What is inhibitory effect? (LHR 2021) Q: 49 How inhibitory effect and compensatory effect are caused? (LHR 2022) Q: 50 What is apical dominance as a growth relation. (MLT 2022) GROWTH & DEVELOPMENT IN ANIMALS

KIPS QUESTIONS

- **Q: 51** What is vegetal pole? What is its function?
- **Ans:** The region of hen's egg where large quantity of yolk is present is called vegetal pole. It serves as a source of food for developing embryo.
- Q: 52 What is the basic difference in development between chick embryo and amphibian embryo?

Amphibians	Chick
Complete zygote divides, i.e. discoidal	Division is confined only to small disc of
cleavage does not occur.	cytoplasm i.e. discoidal cleavage.
Mesodermal cells invaginate into the	Mesodermal cells do not invaginate but
blastocoel.	migrate medially and caudally from both sides.

Q: 53 Differentiate between somatic mesoderm and splanchnic mesoderm of a developing chick embryo.

Ans.

Ans.

Splanchnic mesoderm
It is the internal layer of the lateral
mesoderm below the coelom
It lines the endoderm.

Q: 54 What is Hensen's node? Give its location with respect to primitive streak.

- Ans: At the cephalic end of primitive streak, closely packed cells form a local thickening known as Hensen's node. It is site of a some what special type of invagination. Notochord develops from it
- Q: 55 Differentiate bet wer area pellucida and area opaca.

Ans

111.3.		
	Area pellucida	Area opaca
NN	It is the central area giving a translucent	It is the peripheral white area of the
50	appearance.	blastoderm.
	It becomes separated from the yolk.	It is still attached to the yolk.

Q: 56 How coelom forms in chick's embryo?

Ans: The lateral plate mesoderm splits into two sheet like layers, the somatic and splanchnic mesoderms. The space between these layers is coelom.

	Q: 57	What will happen to an embryo if its dorsal ectoderm is removed?			
	Ans:	The embryo from which the piece of ectoderm is removed, will be unable to form permat			
		nervous system but has a defective nervous system, while the isolated piece will not			
		develop into any structure.	0,000		
		Define discoidal cleavage.			
	Ans:	In bird's egg, the process of cell division is confined to the small disc of pro			
		the surface of the yolk at the animal pole. This type of cleavage is called discoi	idal cleavage.		
		What is primitive streak:			
	Ans:	During development of chick encodermal cells migrate medially and caudally from both			
		sides and create a ruidline thickening called primitive streak.			
R		AND QUESTIONS:			
		Describe morulla stage in the development of chick.	(DGK 2017)		
		How neural plate is formed?	(BWP -2017)		
		What is the difference between epiblast and hypoblast?	(LHR 2017)		
	-	Differentiate between growth and embryonic development.	(FSD 2017)		
		Define morula stage of development.	(SGD 2017)		
	-		(DGK 2017-18)		
	•	What is blastoderm?	(FSD 2018)		
	-	Give four names of key events in animal's development.	(SWL 2018)		
		Write about cleavage and discoidal cleavage.	(MTN 2018) (DWD 2017)		
	-	Define discoidal cleavage.	(RWP 2017)		
		What happened during the organogenesis? What is the difference between eniblest and hypoblast?	(RWP 2017) (LHP 2017)		
	-	What is the difference between epiblast and hypoblast? Define gray crescent. What role, it plays in development?	(LHR-2017) (GRW-2017)		
	-	Differentiate between area of pellucida and area of opaca.	(GRW-2017)		
	Q. 73	(GRW 2017, 2017, 20)18 DGK 2019)		
	0:74	Differentiate Epiblast from Hypoblast.	(BWL 2019)		
		Differentiate between growth and development.	(MLT 2021)		
		Compare epiblast and hypoblast in gastrulation stage of chick development			
		Differentiate between neurula and neurulation.	(MLT 2021)		
		What is "Discoidal Cleavage"?	()		
	C	(DGK 2018, LHR 2019, GRW 2019, MLT 20	21, RWP 2021)		
	Q: 79	What is blastoderm?	(FSD 2019)		
	Q: 80	What is morula?	(SRD 2019)	ĺ	
	Q: 81	What is Hansen's node?	(SRD 2(19))	7	
	Q: 82	Define growth and development.	(I.HR 202 1)		
	-	Compare morula and blastula.	(FSD 2021)		
	-	How dose coelom develop in chick embryo	(FSD 2021)		
		Differentiate between primary and secondary growin.	(FSD 2021)		
		Compare gas rulation and organogenesis.	(LHR 2022)		
		How are area pellucida and area developed?	(LHR 2022)		
		Write down the significant change that convert morula into blastula.	(DGK 2022)		
		How blactoderen is formed and what is zone of junction?	(MLT 2022)		
ſN		Define olastula stage of chick development.	(BWL 2022)		
9	Q:91	If all the cells contain same nuclear material, what cause the cells to differ			
	0.00		(RWL 2022)		
	-	Which type of cleavage is found in bird's egg? Discuss briefly.	(RWP 2022)		
	-	How neural is formed during chick development.	(SRD 2022)		
	Q: 94	Differentiate between growth and development.	(SRD 2022)		

		M AND NUCLEUS IN	DEVELOPMRNT
KIPS	QUESTIONS		20 20
Q: 95	What is the concluding resu	lt of experiments on embryo	by Han; Driesch in 1892
Ans:			ed that both the cells contained
			cells separately are capable to
	develop into normal larvae		
Q: 96		te lighture? for diving th	e zvgote
Ans:			minute ligature of human hair
AII5.			as present in one half, but the
05	other half had no pucleus. On		ucleus win undergo cleavage.
<u>R</u> PI	Nanche different parts of		
Ansi	• •	-	timeters. It has three parts i.e.
	-	ontaining nucleus in it, long c	cytoplasmic stalk and a cap on
	its top.		
Q: 98	Name different cytoplasmic	regions of ascidian zygote a	and the structures formed by
	each region.		
Ans:	Clear Cytoplasm:	It produces larval epidermis	
	Yellow Cytoplasm:	It gives rise to muscle cells.	
	Gray Vegetal Cytoplasm:	It gives rise to gut.	
	Grey Equatorial Cytoplasm		eural tube
PAST	PAPER QUESTIONS:	• It produces notoenora and n	
	Define gray crescent. What ro	le it plays in development?	(GRW 2017)
-			th their functions. (SGD 2017)
-		• •	
-	Discuss the role of cytoplasm	-	(MTN 2017) (DCK 2018)
-	2 Write the names of cytoplasm		(DGK 2018)
Q: 10.	3 What role is played by clear of	cytoplasm and yellow cytopla	-
0 10			(RWP 2018)
Q: 104	4 Write the name of four types of	of cytoplasm contain in the fe	
			(SWL 2019)
	EMBERYO	ONIC INDUCTION & A	GING
KIPS	QUESTIONS		
O: 10	5 How can we slow down the	process of aging?	
Ans:			proved living conditions e.g.,
			stinence from smoking and
	maintaining an ideal weight.	· 1 1	
0.10	6 Define gerontology and its b		
Ans:	Gerontology:		n IVI Cuo
Ans.	Study of aging is called geron	tology GUUUU	() () () ()
	Basic Ains:		
	The present goar of gerontole	by it not necessarily to inc	rease life span but to increase
	health span.		
	PAFER QUESTIONS		
15:51.0	What is aging? How will you	1 I	(LHR 2017)
	8 Differentiate between Geronte	ology and Teratology.	(MTN 2017)
-	9 Define embryonic induction.		(BWP 2017, DGK 2018)
Q: 11	0 What is primary organizer and	d primary induction?	(D.G.K-2019)
	1 Write any four causes of again		(LHR-2019)

- Q: 110 What is primary organizer and primary i
 Q: 111 Write any four causes of againg.
 Q: 112 Define aging. Give four signs of aging?
- **Q: 113** How aging can be slowed down?

(SWL-2019)

(RWP-2019)

REGENRATION

KIPS QUESTIONS

Chapter-19

Q: 114 What are neoblasts?

Ans: These are unspecialized cells present in *Planaria* and other flav orm that are involved in regonaration.

PAST PAPER QUESTIONS

Q: 115 Define Regeneration. Give one example.	(BWP 2018)
Q: 116 The number of older individuals are expected to rise in humans, discuss.	(LHR-2022)
Q: 117 What do you know about Neoblast cells?	(MTN 2017)
Q: 118 What are neoblasts? Give their role.	(GRW 2018)
Q: 1:9 What are needlasta and what is their role in development?	(LHR 2019)
Q: 120 How process of regeneration occurs in amphibians?	(DGI 2022)

ABNORMAL DEVELOPMENT

KIPS QUESTIONS

Q: 121 What do you mean by teratogens? Give examples.

MANN MANA ALANA

Ans: Teratogens:

Environmental factors causing or contributing to abnormal development are grouped together as teratogens.

Examples: Ionizing radiations, Nutritional deficiencies.

Q: 122 Define teratology.

Ans: Teratology is the branch of Biology, which deals with the abnormal developments and their causes.

Q: 123 What is microcephaly?

Ans: In microcephaly, the individuals are produced with small skull. It is a genetic defect.

PAST PAPER QUESTIONS

Q: 124 Define teratology and teratogens.	(LHR 2018)
Q: 125 What are teratogens? Give an example. (FSD 2018, SG	D 2018, FSD 2019)
Q: 126 What are metabolic defects? Give one example.	(RWP 2019)
Q: 127 Define teratology.	(FSD 2021)
Q: 128 Define teratogens. Give two examples.	(LHR 2021)
Q: 129 How development is affected by ionizing radiations and national deficience	y? (GRW 2021)

V/E].COK