

FIITMEIONSFODUCTION

Definition
Gequence thenanges by which cell undergoes growth, replication of DNA and cell dvision is called cell cycle.

There are two phases of cell cycle i.e.

1) Interphase (Period of non apparent division)
2) Mitotic phase (Period of division)

21.1 INTERPHASE

Definition
The period of cell cycle between two consecutive divisions is called interphase.
It is misleadingly called resting phase. It is the period of great biochemical activity and further be divided into G_{1}-phase, S-phase and G_{2}-phase. Chromosomes are not visible during this stage even with electron microscopy. They can be seen as fine network of threads by histological stains for DNA. This network is called chromatin.

Phases of Interphase

It is subdivided into three phases.

\mathbf{G}_{1}-Phase

It is first growth phase (Gap 1). It starts after cell division, so may be called post-mitotic phase. During this phase, following events occur;
i) There is extensive metabolic activity.
ii) Cell grows in size.
iii) Specific enzymes are synthesized.
iv) DNA base units are accumulated for DNA synthesis.

Post-mitotic cell can exit the cell cycle during G_{1} enering a phase callei G and iconim for days, weeks or in some cases life time of organism withoikprofifyrating further 6 . nerve cells, cells of eye lens).
S-Phase
It is called synthesis phase. Vrous er ent orcuring duriag this phase are as follows:
i) DNA is sy athesized.
ii) Chromosome a im ber s do upled.

\mathbf{G}_{2}-Phase

It in. sfegud growth phase and also called as pre-mitotic phase. It prepares the cell for division. Various events occurring during this phase are as follows
Cell prepares energy stores for chromosomes.
ii) Mitosis specific proteins are synthesized.
iii) RNA and microtubule subunits for spindle fibers are also synthesized.

After this phase cell enters into phase of cell division.

Check Points \& Duration of Cell Cycle

During cell cycle, there are specific check points, which determine the fate of new ph2se according to cell's internal make up.
Length of each phase is variable. e.g.
(i) In human cell average time period ff.

- Cell cycle is 24 hours
- Mitosis is 30 minutes
- G1 is 9 in) 1 re
- $\quad \mathrm{S}$ is 10 hours
- $\quad \mathrm{G} 2$ is 4.51 c urs
(ii) In yeast cell full ceycle occurs in 90 minutes.

Fig 21.1 The fate of a single parental chromosome throughout the eukaryotic cell cycle
QUESTIONS RELATED TO ABOVE ARTICLE
Describe about the interphase of cell cycle.

21.2 MITOSIS

Definition

Such type of cell division in which number of chromosomes in daughter cells remains same as in parental cell is called mitosis.

Features

i) Major steps of mitosis in plants and animal cells are same with slight differences.
ii) It takes place in haploid as well as diploid cells.
iii) It occurs in nearly all parts of the body if and when required.

Cell division described here explains division in animal cell.
Difference between Mitosis in Plant \& Animal Cell

Difference	Animal cell	
Centrioles	Present	Abs
Mitotic apparatus	It is made by centoles, asters and spindles.	made only by spindle
Spindle formation	Spindle: cent iole.s. ary frnea from	They have region analogous to centriole from which spindles radiate.
	It occurs by contractile ring.	It occurs by phragmoplast which develops from vesicles of Golgi bodies. It is also responsible for cell wall formation.
Shape of cell	Shape of cell does not remain same.	Shape of cell remains same due to rigid cell wall.

Phases

Mitosis is a continuous process but conventionally it is divided into two pheses.

1) Karyokinesis
2) Cytokinesis
21.2.1 Karyokinesis

Definition

In an animal cell follor ing in itlal steps occur:
i) Fertioles, wh ch have been duplicated during interphase and are in same centrosome,

Divisio Events
 Initial Events 4ac parcitioned.

i) Early in the mitosis the two pairs of centrioles separate and migrate to opposite sides of the nucleus, establishing bipolarity of dividing cells.
iii) Three sets of microtubules (fibers) originating from each pair of centrioles. These microtubules are formed by protein tubulin and traces of RNA. Mitotic apparatus is larger than nucleus and is designed to attach, capture chromosomes, align and finally separating them.
iv) Three sets of microtubules are:

- Astral microtubules, which radiate outward and form asters.
- Kinetochore microtubules will be attached to chromosomes at kinetochore.
- Polar microtubules do not interact the chromosomes but instead interdigitate with polar microtubules from the opposite pole.
Both kinetochore and polar microtubules constitute spindles.

Phases of Karyokinesis

Karyokinesis can further be divided into four phases:
I) Prophase
II) Metaphase
III) Anaphase
IV) Telophase

I) Prophase

Various steps occurring during this phase are:
i) Chromatin material gets condensed by folding and chromosomes apfear as thin threads ($0.25 \mu \mathrm{~m}-50 \mu \mathrm{~m}$ in length) at the beginning $\sqrt{\mathrm{f}}$ pronhase
ii) Chromosomes start thickeaing, become visibie having wh sister chomatids attached at centromere.
iii) Nuclecli ahd nuslear memp ane are disappeared.
iv) Nuclearmaten ic 1 is telea ed in yyopiasm.
v) Cytoola mbecones vidcous.

1) Wrab-igrpuatus is organized.

ivetaphase

Each metaphase chromosome is a duplicated structure, which consists of two sister chromatids, attached at a point called centromere or primary constriction.
Various steps occurring during this phase are:
i) The kinetochore fibers of spindle attach to the kinetochore region. Kinetochore is a special area of centromere with specific base arrangement and special proteins. Each kinetochore gets two fibers each from opposite poles.
ii) These fibers align chromosomes at the equator of the spindle forming equatorial plate or metaphase plate.
III) Anaphase

It is the most critical phase of mitosis which ensures equal distribution of chromatids in the daughter cells. Various steps occurring during this phase are;
i) The kinetochore fibers of spindle contract towards their respective poles, at the same time polar microtubules elongates exert force and sister chromatids are separated from centromere.
ii) As a result, half sister chromatids travel towards each pole.

IV) Telophase

Various steps occurring during this phase are
i) Chromosomes reach at opposite poles terminate anaphase and start telophase.
ii) These chromosomes decondense due to unfolding and ultimately disappear as chromatin.
iii) Mitotic apparatus is disorganized.
iv) Nuclear membrane and nucleoli are reorganized.
v) At the end two nuclei appear at two poles of cell.
21.2.2 Cytokinesis

Definition
Division fyoleceris ca, leu cytokires is.

Events in Animal Cel

Cytprincsi starls du-ing late telophase. Various events occurring during this phase are as

1) During late telophase astral microtubules send signals to equatorial region of the cell.
ii) Actin and myosin at equatorial region are activated and form contractile ring, followed by cleavage furrow.
iii) This cleavage furrow deepens towards the centre of the cell dividing the parent cell into two daughter cells.

MITOSIS IN PLANT CELLS

Mitotic events in plant cells are generally similar to the events observed in animal ceris but there are some major differences.
i) Most higher plants lack visible centrioles instead the have is alao ous ryine fom which the spindle microtubules rariale.
ii) Moreover, shape of the plant cell oocs nethe ge great y compared with an animal cell because it is surroundeu' by rigid sel wall.
iii) At cytokinsir, in pace of confacticr ng a membrane structure, phragmoplast is formed from vasitie which originate from Golgi complex. These vesicles originate actually daring metaphate line up in the centre of the dividing cell, where they fuse to form invarinopiust at the end of telophase.
y) The membrane of vesicle becomes the plasma membrane of daughter cells. These vesicles also contain materials for future cell wall such as precursors of cellulose and pectin.

21.2.3 Importance of Mitosis

Following is the importance of mitosis.

1) Unchanged Genetic Information

In mitosis the hereditary material is equally distributed in the daughter cell. As there is no crossing over or recombination, the genetic information remains unchangea generation fer generation, thus continuity of similar information is ensured fremparert to daush er cell
2) Asexual Reproduction

Some organisms, both plazes and animal undergo asex al rer roduetion by mitosis.
3) Regeneration

Regen rat on is also due to nitosis.
4) Healing of Wound:

Healing of wounds and ripracement of older cells etc. are by mitosis.
5) Develop nent and Growth
be velopment and growth of multicellular organism depends upon orderly controlled mitosis.
For all this an organism requires managed, controlled and properly organized process of mitosis. If mitosis is uncontrolled then malfunction, unwanted tumors and lethal diseases like cancer may result.
6) Tissue Culture and Cloning

Tissue culture and cloning is carried out through mitosis.

QUESTIONS RELATED TO ABOVE ARTICLE

Write an essay on Mitosis.

How cytokinesis occurs in animal cells? In which way does it differ trem that piat cell? (Fx rele Question i) Why and how do the chromosones get caparated during an phas: of intosis?
(E)xercise Question ii)

What is rhe of centriot ia annan cell. Eowis this function carried out in plant cell?
(Exercise Question iii)

21.2.4 Cancer Uhohroll Chtrision)
 Definition

Lnconeoiled division of cells is called cancer.
Belation of Cancer with Normal Mechanism

- Normally multiplication of cells is carefully regulated and responsive to specific needs of body. Due to this control, process of cell death and birth are balanced to produce a steady state.
- In cancer, sometime the control regulates the cell multiplication breaks down and cell begins to grow and divide in unregulated fashion without body's need. This continuous division leads to unwanted clone of cells.

Tumor

Unwanted clone of cells produced by proliferation of cells due to uncontrolled multiplication is called tumor.

Types of Tumors

Tumors are of two basic types.

1) Benign tumors
2) Malignant tumors
3) Benign Tumors

- These are of small size and localized (not transferred to other parts) called benign.
- Benign cells usually behave like normal cells and have little deleterious effects.
- They only interfere with functioning of normal cells or produce hormone like secretions.

2) Malignant Tumors

They are also called cancer.

- They divide more rapidly and mostly invade surrounding tissues.
- They get into body circulatory system and set up areas of proliferation away from their site of original appearance.
The spread of tumor cells and establishment of secondary areas of yrevth is celle metistasis.

Identification of Cancer Cells

Presence of invading cells in normutisse is andication of maignancy. Cancer cells can be distinguished from rorral cells lue ty pesence diollowing leatures;
i) They are ess difierentiated han nerma dells.
ii) They er hib tharder stics of apiuly growing cells.
iii) They ha e higl nu lens to cytoplasm ratio.
iv) Noly bareprominent nucleoli.
in They show many mitosis.

Causes of Cancer

i) Cancers frequently develop in old persons with age.
ii) Major cause is mutation in somatic cells.
iii) It may be due to accumulation of 3-20 mutations in genes regulating cell division.

Mechanism of Metastasis

Two basic changes are caused by mutations to produce cancer cells and tiveir metastais These are following;
i) Metastatic cells break their contact with othe cells arla overcome ve restiction on cell movement provided by bisis lamina ana ther taryier. Af er this netastatic cells can invade other parts of the body
ii) Their roliferation becomes unlimitcd against the normal programming of body without any corfitcol or che $: \mathrm{k}$

7 FiSTIONS RELATED TO ABOVE ARTICLE

M/riee(2) nute on cancer.

21.3 MEIOSIS

Definition

It is a type of cell division by which chromosome number in daughter cells is reduced to half as compared to parent cell.

Features

i) It takes place in diploid cells only.
ii) It takes place in animals during gamete formation and in plants during spore formation.
iii) It results in formation of four haploid daughter cells.

Divisions

Meiosis is divided into two divisions.

1) Meiosis I
2) Meiosis II
3) MEIOSIS I

It is also called reduction division. It is further divided into four phases.
(A) Prophase I (B) Metaphase I
(C) Anaphase I
(D) Telophase I

Fig 21.4 Result of meiosis, four haploid cells, each with half as many chromosomes as the original cells
(A) Prophase I

It is very lengthy phase. It is different from prophase of mitosis due to homologous pair of chromosomes. Interphase of meiosis lacks G_{2} stage. So, there is 10 aupioation inst d tireder similar chromosomes called holopous, hromoscrne: join to form h mologous pair of chromosomes.
Prophase I is further smriti led into five stages.
a) Leptotnt

Various events occurring during this stage are following.
Ch:onfsomes become visible, shorten and thick.
ii) Size of nucleus increases.
iii) Homologous chromosomes start getting closer to each other.

Leptotene can last only for few hours.
b) Zygotene

Various events occurring during this stage are following.
i) Pairing of homologous chromosomes called synapsis starts.
ii) Synapsis is highly specific and exactly pointed but there is no definite starting point.
iii) Each paired but not fused complex structure is called as bivalent or tetrad.

Zygotene can last only for few hours.
c) Pachytene

Various events occurring during this stage are following.
i) Pairing of homologous chromosomes is completed.
ii) Chromosomes become more and more thick and each bivalent has for chromatids.
iii) Chromatids wrap around each other.
iv) Non-sister chromatids of homologous chromosomes exchange their segments due to chiasmata formation. This exchange is called crossing over.
v) Due to crossing over, reshuffling of genetic material occurs, which produces recombination.
Pachytene may last for days, weeks or even years.
d) Diplotene

Various events occurring during this stage are following
i) Paired chromosomes repel each ot er and neg in to sep irate.

ii) Separation is not complete hecate hrompg as clog nosonaes rena ain united by their point of infer change (entasthal).
iii) At the em, each bivalent int an least one such point, and the chromatids otherwise are separated.
o) Diakinesis
various events occurring during this stage are following.
Condensation of chromosomes reaches to its maximum.
ii) Separation of homologous chromosomes is completed but still they are united at one point, more often at ends.
iii) Nucleoli disappear.

Fig 21.5 Chiasmata formation
(B) Metaphase I

Various events occurring during this phase are as follows.
i) Nuclear membrane disorganizes at the beginning of this phase.
ii) Spindle fibers originate.
iii) Kinetochore fibers are attached to the kinetochore of homologous chromosome from each pole.
iv) Bivalents are arranged at the equator. Sister chromatids of individual chromosome in bivalent behave as a unit.
(C) Anaphase I

Various events occurring during this phase are following.
i) Kinetochore fibers contract and the spindle or pole fibers elongate.
ii) Contraction of fibers pulls the individual chromosome towards their respective poles.
iii) In contrast to mitosis anaphase, sister chromatids are not separated.

This is in actual reduction phase because each pole receives half of the total number of chromosomes.
(D) Telophase I

Various events occurring during this phase are following.
i) Nuclear membrane reorganizes around each set of chromosomes at two pcles.
ii) Nucleoli reappear.
iii) Two nuclei each with half number of chronionomes are formed Cytoplasm then divides cell into (tw), terınir ating firs nitpti- divi ioh. Chromosomes may decondense during th state.
2) MEIOSIS \mathbb{Z}

After elophaserion two daghter calls experience small interphase but in contrast to mitosis there is no repichation of chomosome. Meiosis II is fur her divided into
(A) Prophase II
idetuphase II
Anaphase II
(D) Telophase II

These phases are just like the phases of mitosis. Meiosis II receives two daughter cells from meiosis I and ends in production of four daughter cells with half number of chromosomes.

21.3.1 Importance of Meiosis

Crossing over and random assortment of chromosomes are two significant happeringe ois meiosis. Following is the importance of meions.
(i)

Greater Recombinations

During crossing over parental/ chromoones exchange segments with each other which results int large ruinber of iecmbriations.
(ii) WiIT V rie y Danetes

Lusing anaphase, the separation of homologous chromosomes is random which gives very wide range of variety of gametes.
(iii) Evolution and Uniqueness

These variations are not only the bases of evolution, but also make every individual specific, particular and unique in his characteristics. Even the progeny of very same parents, i.e., brothers and sisters are not identical to each other.
(iv) Constancy in Chromosome number

Meiosis usually takes place at the time of sexual cells formation i.e. gamete formation in animals and spores' formation in plants. In this way chromosome number is halved (n number). However, the 2 n number is restored after fertilization. Thus, the constant chromosome number is maintained generation after generation.

QUESTIONS RELATED TO ABOVE ARTICLE

What is meiosis? Elaborate the events of prophase-I.

Compare mitosis and meiosis and describe their importance. (Exercise Question v)
Describe meiosis and explain significance.

21.3.2 Meiotic Errors (Non-Disjunction)

Meiosis is an orderly occurring phenomenon, which ensurese ary pase with pheon ate finish, but sometimes, at any poin the result ray b e unexpectcd, calsing abnormalities. One of such abnormalities is chron oscme ron-disjuactions, in winch chromosomes fail to segrefate draing ar aphese ind telor hase and do not finish with equal distribution of chronosorne a norg all the daughter nuclei. This result either increase or decrease in the hinale oi chromosomes, causing serious physical, social and mental disorders.

This non-disjunction may occur at

- Autosomes level.
- \quad Sex chromosomes level.

Example

Fig 24.6 Non-disjunction of autosomes (a) Non disjunction occurring during meiosis I and meiosis II, gametes (asterisks mark points of non-disjunction).

Syndrome	Sex	Chromosomes	Frequency of Abortions	Frequency of births
Down	M or F	Trisomy 21	$1 / 40$	$1 / 700$
Patau	M or F	Trisomy 13	$1 / 33$	$1 / 15,000$
Edward	M or F	Trisomy 18	$1 / 200$	$1 / 6,000$
Turner	F	XO	$1 / 18$	$1 / 6,000$
Metafemale	F	XXX or XXXX	0	$1 / 1,500$
Klinefelter	M	XXY or XXXY	0	$1 / 1,500$
Jacobs	M	XYY	$?$	$1 / 1,000$

Fig 21.6 (b) Frequency of syndromes

A) Down's Syndrome (Mongolism)

Features

i) It is result of autosomal non-disjunctions in man during which $21^{\text {st }}$ pair of chromosomes fail to segregate.
ii) Resulting in gametes with 24 chromosomes
iii) Individual resulting from fusion of this ganet whor nor nal garnete his $17 .(2 \mathrm{n}+1)$ instead of normal 46 chromosome.
iv) Non-disjerction wually occurs in formation fova.

Autosonal ner-disjuriction my oecur in other than $21^{\text {st }}$ chromosome, which usually resuls il aportjon ordeath in very early age.

It is related with age of mother.

- Frequency by teenage mother having down's syndrome child is one in many thousands.
- Frequency by forty-year-old mother is one in hundred chances.
- Frequency by forty five year old mother is three times greater than forty.

Abnormalities

The affected individuals have flat, broad face, squint eyes with skin frivec in theinner corner, protruding tongue, mental retardation and defective dey elopment of ceanui nervous system.

B) Turner's Svndrome

Features

i) These affected indin iduals have one missing X chromosome with only 45 chromosomes (4.2 auto ornes:- 8).
i) They have 45 chromosomes ($2 \mathrm{n}-1$) instead normal 46.
iii) There are 44 autosomes with one X chromosome.

Abnormalities

Individuals with this condition often do not survive pregnancy and are aborted. Those who survive have female appearance with short stature, webbed neck, without ovaries and complete absence of germ cells.

C) Klinefelter's Syndrome

Features

i) These individuals have additional sex chromosomes i.e. 47 chromosomes.
ii) Extra chromosomes may be X or Y .
iii) Individuals with 47 chromosomes (44 Autosomes + XXY) are phenotypically male but have enlarged breasts, tendency to tallness, obesity, small testes with no sperm ejaculation and under development of secondary sex characters.
iv) Male with 47 chromosomes i.e. 44 autosomes and XYY are also observed.
v) Male with 48 chromosomes have 44 autosomes with XXXY chromosomes.
vi) Male with 49 chromosomes have 44 autosomes with XXXXY chromosomes.

QUESTIONS RELATED TO ABOVE ARTICLE

Write note on Klinefelter 's syndrome.
Write note on Turner 's syndrome.
Define non-disjunction int disction i offers vith one example

P1.4 NILCRSTS AND APOPTOSIS

All fle activities of cell. i.e. cell division, pattern formation, differentiation, morphogenesis finarandity ace controlled and depend upon extracellular and intracellular signals.
Death of a cell is also programmed and predestined.

Cell Death in Multicellular Organisms

Cell death in multicellular organisms is controlled by two fundamentally different ways;

1) Cell commits suicide in absence of survival signals (Trophic factors)
2) Murder of cells by killing signals from other cells (necrosis)
3) Apoptosis

It is Greek word meaning dropping off or falling off.
It can be defined as follows "Internal program of events and Qequerue of morphological changes by wher fell commits suicide 15 col'ectively callic as apop tosis,"
Changes in Cofilduring Apoptosis
Various event occurrng during apoptosis are described below
i) Celi shrinks.
ii) Chromatin material first becomes compact and then segregates.
iii) Cytoplasm is condensed.
iv) Nuclear fragmentation occurs.
v) Blebbing of cell membrane occurs with its loss later on.
vi) Ultimately cell fragmentation occurs, and membrane bounded apoptotic bodies are released and phagocytosed by other cells.

vii) Intracellular constituents are not released freely in extracellular atmosphere which otherwise might have deleterious effects.

Importance

i) Programmed cell dearth helps in proper control of multicellular development.
ii) It may lead to deletion of entire structure e.g. tail of developing human embryo or part of structure e.g. tissue between developing digits.
iii) Cell death even controls the number of neurons because most of neurons in the human body die during development.
2) Necrosis

Cell death due to tissue damage is called necrosis.
Changes in Cell During Necrosis
i) Typical cell swells and bursts.
ii) Intracellular contents are released in extracell lar enivininent.
iii) These contents damage neighbourng cella and sat se inflanm at on.

QUESTONGKEIT DPRDEOVAFTME

Write about nearosis and apoptesis.
In wha rect cell death is regaded beneficial?

KEY POINTS

Genetic recombination

The reshuffling of genetic material (DNA) and formation of rew ondiationcis called genetic recombination.

Equatorial plat

The chompsorne. n metaphase are arranged in the middle of spindle fibers in such a ray hat the. form equatorial plates.
Random assortment of chromosomes
The phenomenon in which homologous chromosome has a chance to form combination with any other non - homologous chromosome. Humans have 46 chromosome, except its non-homologous chromosome.

Edward's Syndrome

Genetic disorder caused by the presence of all or part of an extra $18^{\text {th }}$ chromosome. The majority of people with the syndrome die during the fetal stage; in fact who survive experience serious defects and commonly live for short time period.

Jacob's Syndrome

Genetic condition in which a male has an extra Y-chromosome. Symptoms include being taller than average, acne and an increased risk of learning problems.

Patau Syndrome

In this syndrome all cells of the body contain extra genetic material from chromosome-13.
This disrupts normal development causing multiple and complex organ defects.

Synaptonemal Complex

A protein structure that forms between homologous chromosomes during meiosis. It med chromosome pairing, synapsis and recombination.

EXERCISE

Q 1 Fill in the blanks.
Q 3 Write whether the statement is
i) Mongolism is also known as true or false and wee the coriect
ii) During
\qquad _.
\qquad mes get giops
iii)

phase.
iv) Polia milertlibules \qquad dinitg 2 naphase.
Mitotic apparatus is formed during
\qquad of cell division.
vi) The chromosome number $(44+1)$ denotes \qquad syndrome.
vii) Intracellular contents are released during the type of cell death called

Ans i) Down's syndrome
ii) Leptotene
iii) S
iv) Elongate
v) Prophase
vi) Turner's syndrome vii) Necrosis

Q 2 Encircle the correct answer from the multiple choices.
i) In Klinefelter's syndrome:
(a) One X chromosome is missing
(b) Additional sex chromosome present
(c) Sex chromosome fail to segregate
(d) None of these
ii) Mitosis is divided into:
(a) Karyokinesis (b) Cytokinesis
(c) Interphase (d) Both a and b
iii) Separation of homologous chromosomes occur during;
(a) Prophase (b) Metaphase (c) Telop

iv) $\quad \mathrm{G}_{0}$ stands for no gap.
(True)
v) Full life cycle of yeast cells requires 90 seconds to be completed. (False)
Full cell cycle of yeast cells requires 90 minutes to be completed.
vi) Crossing over takes place during metaphase I.
(False)
Crossing over takes place during prophase I.
vii) Autosomal non-disjunction may occur in other than $21^{\text {st }}$ chromosome.
(True)
viii) Benign tumors are always nonlocalized.
(False)
Benign tumors are always localized.
ix) Cancer is caused mainly mutations in geranells. Cancer sar se namind by mations in som tit celas. Genctil \triangle in or mation remains unchanged duting mitosis. (True) Homologous chromosomes are necessarily identical. (True)
xii) The cells are kept alive due to trophic factors.
xiii) Cytokinesis involves the division of cytochromes.
(False)
Cytokinesis involves the division of whole cell.
xiv) Phragmoplast is a type of fragmentation (True)

Q 4 Short Questions.
i) Differentiate between "Necrosis" and "Apoptosis".
Ans:

Necrosis	Anontosis
Cell death due to dama	It is prograrambed cell ueath.
Also rnc, an as morifer of the cell	it is called as seicide of the cells.
Cell bursts after swelling	Cell shrinks, cytoplasm condenses
Intracellular contents are released outside.	Intracellular contents are not released instead apoptotic bodies are formed.
May causes inflammation.	Does not cause inflammation.
$\begin{aligned} & \text { Harmful for } \\ & \text { tissues. } \end{aligned}$	It is beneficial, as some unwanted cells during development or metamorphosis are removed.

ii) What are the functions of mitotic apparatus?
Ans: It is designed to attach and capture chromosomes, align them and finally separating them so that equal distribution of chromosomes is ensured.
iii) How can you identify the cancer cells?
Ans: Cancer cells can be indicated by;

- Higher nucleus to cyto plasm
- Prominen ruclei
- Mary ritesis
- Less differf ntiated han normal
\sqrt{N} call.
Kapidly growing cells
iv) Give importance and significance of meiosis.
Ans:
- crossirg over ressits in a argo nu mier of recornbination. It results in w ide range of variety of gametes.
- These variations provide raw material for evolution.
- Constancy in chromosome number.
v) Define chromosomal nondisjunction.
Ans: Inability of chromosomes to segregate during anaphase and telophase is called non-disjunction and do not finish equal distribution of chromosomes among all the daughter nuclei.
vi) What are symptoms of Turner's syndrome?
Ans: These affected individuals have one missing X chromosome with only 45 chromosomes (44 autosomes +X).
Individuals with condition often do not survive pregnancy and are aborted.

Those who survive have female appearance with;

- Short stature,
- Webbed neck,
- Without ovaries
- And complete absence of germ cells.
vii) Define cell cycle. Highlight its importance and significance
Ans: Sequence of changes, which involve period of growth, replication DNA, followed te esll division is called cel cyse. At gach stase of cell c.cle, there are specitic check points, which determine the fate of neu phase according to cell's internal make up.
Is interphase resting phase? Why?
Ans: No, interphase is the period of life cycle of cell between two consecutive divisions is termed as the interphase or misleadingly called resting phase. It is the period of great biochemical activity and can further be divided into G_{1}-phase, S -phase and G_{2}-phase
ix) In what respect mitosis in plant cells differ from that of in animal cells?
Ans:

Animal Mitosis	Plant Mitos, i $1 \rightarrow 7$
Spindle fobers originate ron centricles.	As untrides are absent so pipinalle libers briginate from analogous region of centriole.
Mitotic apparatus is formed.	Only spindle is present.
During cytokinesis cell shape is changed.	Cell shape does not change during cytokinesis.
Cytokinesis occurs by means of contractile ring.	Cytokinesis occurs by means of phragmoplast.
Centrioles are present	Centrioles are absent

Q 5 Extensive Questions.

i) How cytokinesis occurs in animal cells? In which way does it differ from that in plant cell?
Ans (see article 21.2)
ii) Why and how do the chromosomes get separated during anaphase of mitosis?
Ans (see article 21.2)
iii) What is role of centriole in an animal cell? How this function is carried $\square \mathrm{m}$ in plant cell?
Ans (serarticle 21.Q) In what re spect cais. Cell death be legalded beheficjal?
Ars (see article 21.4)
v) Compare mitosis and meiosis and describe their importance.
Ans (see article 21.2 \& 21.2.3 \& 21.3.1)
vi) Define non-disjunction and discuss its effect.
Ans (see article 21.3.2)
vii) Describe meiosis and explain significance.
Ans (see article 21.3)

