

N

	(a) one half	(b) $\frac{1}{4}$ times	
	(c) double half	(d) none of these	
(10)	The value of relative permittivity a		VI(0J0)
(10)			
	(a) 78.5		D
(4.4)	(\mathbf{c}) 1	(d) 1.0006	
(11)	The value of k depends upon		
	(a) quartity of charges	(b) nature of medium b	etween the charges
-0	(c) both a and b	(d) none of these	
NR	The first measurement of the force l	0	as made in 1874 by
100	(a) Charles coulomb	(b) Ampere	
	(c) Albert Einstein	(d) Thomson	
		APER MCQS	
(13)	The electrostatic force between two	charges is 42 N. If we pla	ce a dielectric of $\varepsilon_r =$
	2.1 between the charges then the for	-	LHR-2019 (G-II)
	(a) 42 N	(b) 84 N	
	(c) 20 N	(d) 2 N	
(14)	The value of charge on 1.0×10^7 electro		LHR-2019 (G-II)
	(a) 1.6×10^{-12} C	(b) 1.6×10^{11} C	
	(c) 1.6×10^{-19} C	(d) 1.6×10^{19} C	
(15)	Value of ε_r for air is;	$(\mathbf{h}) 1 0 \mathbf{\epsilon}$	MIRPUR (AJK) 2017
	(a) 1.6 (c) 1.986	(b) 1.96 (d) 1.0006	
(16)	In SI units, the value of permittivity	· · /	SGD-2017 (G-I)
(10)	(a) $9 \times 10^9 \text{Nm}^2 \text{C}^{-2}$	(b) $9 \times 10^{-9} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$	5GD-2017 (G-1)
	(c) $8.85 \times 10^{12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$	(d) $8.85 \times 10^{-12} \text{ C}^2 \text{N}^{-12}$	m^{-2}
(17)	If the charges are doubled and the d		
(1)	Coulomb's force will be:		RWP-2019 (G-I)
	(a) double	(b) halved	× ,
	(c) remains same	(d) four times	
(18)	The minimum value of charge on fr	-	SGD-2020 (G-I)
	(a) 2/3e	(b) 1/3e	
	(c) -2/3e	(d) e	
(19)	Value of ε_0 in Coulomb's law is	[1-10-10-10-12]	DGK-2617-G-I)
	(a) $9 \times 10^9 \text{ Nm}^2 \text{C}^{-1}$	(b) $8.83 \times 10^{-12} \text{ C}^2 \text{ N}^{-12}$	m ⁻²
	(c) $9 \times 10^9 \text{ N}^{-1} \text{m}^{-2} \text{C}$	(d) $8.85 \times 10^{-12} \text{ C}^{-2}$ N	n
(20)	Presence of dielectric between two c	harges always	DGK-2017 (G-II)
	(a) reduces the electric force	(b) enhances the elec	etric force
	(c) does not effect electric force	(d) doubles the elect	ric force
~ (21)	Whice between two similar unit char	ges placed one meter a pa	rt in air is:
NN		8 F	BWP-2017 (G-I)
100	(\mathbf{a}) one newton	(b) $9 \times 10^9 \mathrm{N}$	$D \rightarrow 1 - 2 \vee 1 / (U - 1)$
	(a) one newton (c) 0×10^{-9} N		
	(c) 9×10^{-9} N	(d) zero newton	
(22)	The study of electric charges at rest	under the action of electric	c forces is known as:

Electrostatics

(33)	(c) Electric Intensity The direction of electric field Intensity is	(d) Electric dipole						
(33)	(a) along the direction of charge	(b) perpendicular to the direction of force						
	(c) along the direction of force	(d) nore of these						
(34)	If the distance of the point from the point							
	intensity becomes							
	(a) half (c) $\frac{1}{4}$ times	(b) double						
MAR	ic filmes	(d) none of these						
(35)	Static charges creates							
]	(a) electric field	(b) magnetic field						
	(c) both a and b	(d) gravitational field						
	PAST PAPE							
(36)	The force on an electron in a field of 1×1							
	(a) 1.6×10^{-8} N	(b) 1.6×10^{-11} N						
	(c) 1.6×10^{-19} N	(d) 1.6×10^{-27} N						
(37)	A charge of 4 C is in the field of intensity	⁷ 4 N/C. the force on charge is DGK-2022 (G-II)						
	(a) 1 N	DGR-2022 (G-II) (b) 4 N						
	(c) 8 N	(d) 16 N						
(38)	Unit of electric intensity is same as:	LHR-2022 (G-II)						
(00)	(a) Force	(b) Potential gradient						
	(c) Viscosity	(d) Magnetic field						
	ENTRY TES	T MCQS						
(39)	A gold nucleus (radius r) is represented b							
		ivity of free space, what is the electric field						
	strength at the surface of an isolated gold	l nucleus?						
	(a) Zero	(b) $\frac{197e}{2}$						
		$4\pi\varepsilon_o r^2$						
	(c) $\frac{79e}{4}$	(d) $\frac{79e^2}{12}$						
	$4\pi\varepsilon_{o}r^{2}$	$4\pi\varepsilon_{o}r^{2}$						
Торіс	12.3:							
(40)	The electric field lines are	_ in case of two identical point charges by						
(10)	certain distance							
o Th	(a) curved	(b) straight						
NNI	(d) ercular	(d) none of these						
] \41)	Electric field lines are originated from							
	(a) negative charges	(b) positive charges						
	(c) both of a & b	(d) none of these						

	(42)	2) The electric lines are farther apart where field is								
		(a) strong	(b) zero							
		(c) weak	(d) none of these							
((43)	As electric field lines provide information about the electric force exerted on a charge, the lines commonly called								
		(a) lines of strength (b) lines of field (c) lines of force (a) lines of flux								
((44)	In central region of a parallel plate capacitor the electric field lines are								
	NR	(a) perpendicular	(b) parallel							
ann	N	(c) othegonal	(d) curved							
AN A	45)	A visual representation of electric field ca								
5		(a) electric flux	(b) electric lines of force							
		(c) electric field lines	(d) both b and c							
((46)		where in the vicinity of a positive point							
		charge, experiences a repulsive force dire								
		(a) radially inward	(b) radially out ward							
		(c) radially zero	(d) none of these							
((47)	The electric lines of force								
		(a) start from positive charge and end to the	• •							
		(b) start from negative charge and end to the	e positive charge							
		(c) both a and b								
		(d) none of these								
((48)	Usually test charge is taken as								
		(a) negative charge	(b) positive charge							
		(c) both a and b	(d) none of these							
((49)	An imaginary path along which a unit positive charge moves in an electric field is								
		called								
		(a) Magnetic line of force	(b) An electric line of force							
		(c) direction of the charge	(d) trajectory of charge							
((50)	The directions of the resultant electric int	ensities is given by							
		(a) circle drawn to the field lines	(b) Parabola drawa to the field lines							
		(c) Tangent drawn to the field lines	(d) ellipse trawn to the field lines							
((51)	The tangent to field line at any point gives the								
		(a) force of electric field	(b) direction of electric field							
		(c) magnitude of electric field (d) none of these								
((52)	The electric field has								
	0	(a) pie cin ension	(b) two dimension							
- OT	NN	(c) if ree dimension	(d) dimension less							
NNN V	(53)	If the line of force cross, then E could hav	7e							
00		(a) no direction	(b) one direction							
		(c) more than one direction	(d) none of these							
		PAST PAPER	R MCQS							

N.

	(c) $\frac{\mathrm{E}}{\mathrm{A}} = f$	(d) $\frac{A}{F} = f$
	A	
	PAST	PAPER MCQ
(77)	S.I Unit of electric flux is	MTN-2022 (G-I)
()	(a) NmC^{-1}	(\mathbf{b}) Nn: $^{-1}$ C ⁻¹
	(c) $\operatorname{Nm}^2 \operatorname{C}^{-1}$	(d) Nm^2C^{-1}
(78)	Electric nux is maximun, when an	gre between E and surface area is: FSD-2019 (G-I)
	$(a) 0^{\circ}$	(b) 90°
o lí	(c) 180°	(d) 45°
1611	SI unit of electric flux is	DGK-2022 (G-I), RWP-2022 (G-II)
90	(a) NC^{-1}	(b) $N.m^2.C^{-1}$
	(c) N.m. C^{-1}	(d) N.C ⁻¹ .m ²
(80)	Electric flux through a closed sur	face enclosing a charge depends on:LHR-2022 (G-II)
	(a) Medium	(b) Size
	(c) Shape	(d) Location of charge
	ENTR	RY TEST MCQS
(81)		e will be minimum when angle between electric
()	intensity and vector area is	······································
	(a) 60°	(b) 90°
	(c) 30°	$(\mathbf{d}) 0^{\circ}$
(82)	Flux passing through an area doe	s not depend upon:
	(a) Charge enclosed	(b) Shape of hypothetical surface
	(c) Medium	(d) Both a and b
Tonic	c 12.6, 12.7 & 12.8:	
торк		A Surface Enclosing A Charge
		Application of Gauss's law
(83)		hich passes through the point at which electric
(00)	intensity is to be calculated is call	
	(a) Newtonian's surface	(b) coulombs surface
	(c) Gaussian's surface	(d) Millikan's surface
(84)	Surface density of charge is	
(04)	(a) charge x area	(b) charge (area
	(c) area / charge	(c) charge/volt
(85)	The flux through any closed such	
(00)	closed surface	ice is the total charge chelosed by the
	(a) $\frac{1}{2}$	(b) $\frac{2}{\varepsilon_o}$
0.00		
AN	(0) & 0	(d) \mathcal{E}_r
(36)	The mathematical expression of C	Gauss's law is
	1	
	(a) $\Phi_e = \frac{1}{Q\varepsilon_o}$	(b) $\Phi_e = \frac{\varepsilon_o}{O}$
	\sim $^{-}0$	~

U

(c)
$$\Phi_{x} = Qc_{x}$$
 (d) $\Phi_{x} = \frac{Q}{c_{x}}$
(87) Electric flux is a
(a) scalar quantity
(c) linear quantity
(c) $\frac{k_{q}}{c_{a}}$
(d) $\frac{k_{q}}{m_{1}}$
(e) Gaussian surface is a
(a) imaginary surface
(b) an open surface
(c) curved surface
(c) curved surface
(d) plane surface
(e) linear surface is a
(a) $\frac{k_{q}}{c_{a}} - \frac{k_{q}}{c_{a}}$
(c) $\frac{k_{q}}{c_{a}} - \frac{k_{q}}{c_{a}}$
(d) $\frac{k_{q}}{m_{1}} - \frac{k_{q}}{c_{a}}$
(e) $\frac{k_{q}}{c_{a}} - \frac{k_{q}}{c_{a}}$
(f) $\frac{k_{q}}{m_{1}} - \frac{k_{q}}{c_{a}}$
(g) $\frac{k_{q}}{c_{a}} - \frac{k_{q}}{c_{a}}$
(h) $\frac{k_{q}}{m_{1}} - \frac{k_{q}}{c_{a}}$
(g) $\frac{k_{q}}{c_{a}} - \frac{k_{q}}{c_{a}}$
(h) $\frac{k_{q}}{m_{1}} - \frac{k_{q}}{c_{a}}$
(h) $\frac{k_$

Electrostatics

	(a) 9.6 x 10 ⁻¹⁹ J	(b) 9.6 x 10 ⁻¹⁶ J	_
	(c) $1.6 \times 10^{19} \text{J}$	(d) 6.25×10^{18} J	m
		T PAPER MCQS	U
(190)			
(128)	The electron volt (eV) is the unit of (a) electric current		
	(c) electric potential	(b) electric energy (d) electric flux.	
(129)	The product of charge and potent		
(129)	(a) flux	(b) current	
	(c) energy	(d) power	
(130)		igh a potential difference of 10 V, then energy	
		FSD-2019 (G-I)	
1NJ	gunea by electron is: (a) 1.6×10^{-20} J	(b) 1.6 eV	
0	(c) 10 eV	(d) 1.6×10^{-19} eV	
(131)	Which one of the following relation		
(101)	(a) joule = volt \times ampere	(b) joule = coulomb / volt	
	(c) joule = volt / ampere	(d) joule = coulomb \times volt	
(132)	One coulomb charge contains the		
	(a) 6.25×10^{18}	(b) 1.6×10^{-19}	
	(c) 9×10^9	(d) 1.6×10^{19}	
(122)		alls through a potential difference of 3V. The	
(133)	• • • •	MTN-2019 (G-I)	
	energy acquired by it is : (a) 9.6×10^{-18} J	(b) $9.6 \times 10^{-19} \text{ J}$	
	(c) 1.6×10^{-19} J	(d) 9.6×10^{-17} J	
(1 - 0)			
(134)	A particle having a charge of 2e f	Calls through a potential difference of 3.0 volts.	
	$(-) \in O $ $ \mathbf{V}$	BWP-2022 (G-I)	
	(a) 6.0 eV	(b) 5.0 eV	
	(c) 4.0 eV	(d) 8.0 eV	
	ENTI	RY TEST MCQS	
(135)		rough a potential difference of 1000V acquires	
(100)	kinetic energy of	and a potential anterence of 1000 v acquires	
	(a) 200 J	(b) 10 J	~
	(c) 100 J	(d) 100 eV \sim	11
	(-,		U
Tonic	12.11:	$\sim \Pi_{\alpha} \Pi_$	
Topic		a Gravitational Forces	
(126)	Electrostatic force as compared to		
(136)			
	(a) Vere weak	(b) very strong	
(4.5=)	(c) equal	(d) half of the gravitational field	
(137)		force on an electron placed in a uniform electric	
11/1	tierd balance each other, then the	-	
00	(a) mg/q	(b) qg/m	
	(c) m/qg	(d) q/mg	
(138)	Gravitational force is an		
	(a) attractive force	(b) repulsive force	
		· · · •	

		(c) $E = \frac{q}{mg}$	(d) $E = \frac{qv}{B}$										
	(149)	The mass of oil droplet in measuring cha	rge in Millikan method is calculated by										
		(a) Stokes's law (b) Coulomb's law (c) Newton's gravitational law ENTRY TEST MCQS A proton (mass = 1.67 × 10 ⁻²⁷ kg) on entering in a vertical electric field E is											
	(150)	baranced. Then the electric field strength											
ant	NNĽ	(1) 10^{-5} Vm ⁻¹	(b) 10^{+7} Vm ⁻¹										
VN	00	(c) 10^{-7} Vm^{-1}	(b) 10^{+7} Vm ⁻¹ (d) 10^{-8} Vm ⁻¹										
V	_												
	Topic	12.13, Topic 12.14:											
	(151)	<u>Capacitor, Capacitance of a </u>											
	(151)	The space between the plates of a capacitation (a) Conductor	(b) insulator										
		(c) super conductor	(d) none of these										
	(152)		pacitor, by doubling the distance between the										
		1											
		plates and reducing area to $\frac{1}{3}$ of the original	ii value, its capacitance becomes										
		(a) 10 times	(b) 6 times										
		(c) $\frac{1}{6}$ times	(d) 90 times										
	(153)		arallel plate capacitor, then the potential										
		(a) decreases	(b) increases										
		(c) remain constant	(d) both a and b										
	(154)	Equivalent capacitance is greater than in	-										
		(a) series combination	(b) Parallel combination										
	(155)	(c) both a and b	(d) none of these										
	(155)	Capacitor stores energy in the form of (a) electric field	(b) magnetic field										
		(c) both of these	(d) gravitational field										
	(156)	Capacitance of parallel plate capacitor d											
		(a) separation of the plates	(b) area of the plates										
		(c) medium between the plates	(d) nature of the material of the plates										
	(157)	The unit of capacitance											
		(a) $\frac{C}{rr}$	(b) Farad										
	- 5												
- nr	1NV		(d) all of these										
/VV		Capacitance in the presence of medium is	griven hv.										
0 -	(130)	-											
		(a) $\frac{A\varepsilon_r\varepsilon_o}{r^2}$	(b) $\frac{A\varepsilon_r}{r^2}$										
		,											

(169) The increase in the capacitance can be done due to

N

		(a) parallel combination	(b) series combination
		(c) polarization	(d) both a and c
	(170)	The dielectric consists of atoms and	
	(1,0)	(a) have electrically positive charge on	
		(b) have electrically negative charge on (b) have electrically negative charge on	
		(c) are electrically neutral on the average	
		(d) none of these	
	(171)	Two equal and ormovity charpes says	rated by a small distance are said to be
	(1/1)	(a) tripcle	(b) polaroid
		(c) moncpcle	(d) dipole
~	Arra D		ric under the action of electric field become
AN	NM C		
' UNK	00	dipoles, then the dielectric is said to b	
0-		(a) unpolarized	(b) polarized
	(177)	(c) charged	(d) none of these
	(173)	Due to polarization of the dielectric t	
		(a) increases	(b) decreases
		(c) zero	(d) no charge
	<i></i>		APER MCQS
	(174)	Due to polarization, electric field E in a	
		(a) increase	(b) decreases
		(c) first increases then decreases	(d) remains same
	(175)		apacitor is filled by a dielectric of dielectric
		constant 'k'. The capacitance of the	
		(a) Increased by a factor 'k'	(b) Increased by a factor 'k ² '
		(c) Decreased by factor 'k'	(d) Remains unchanged
		ENTRY	TEST MCQS
	(176)	A capacitor of capacitance C is conn	ected to battery of emf V ₀ . Without removing
		the battery, a dielectric of strength ε	is inserted between the parallel plates of the
		capacitor C, then the charge on the c	
		(a) CV_0	(b) $\varepsilon_{\rm r}$ CV ₀
		(c) $\frac{CV_0}{CV_0}$	
			(d) None of these
	(177)	\mathcal{E}_r	the plates of conseitor
	(177)	Due to polarization between (a) E, decreases	(b) V, decrease
		(a) E, decreases (c) σ , decrease	(d) All of these
		(c) 0, decrease	
			G
	Tonio	1216	
	Topic		
		Energy Stdr	ed in a Capacitor
	(178)	In a charged capacitor, the energy is	stored in the form of
	o th	(a) ragnetic field	(b) electric field
nR	JNP	(2) nuclear field	(d) gravitational field
1MV	UV.		
00	(179)	For a capacitor the charge per unit v	olume is called
		(a) surface charge density	
		(b) volume charge density	
		(c) energy stored in the capacitor	

(d) energy density (180) When potential in a capacitor rises from 0 to V, then average potential difference is (a) V (**b**) –V (c) $\frac{V+V}{2}$ (d) (181) The expression for energy density is **(b)** $\in_r \in_o \frac{E^2 A d}{2}$ $(\mathbf{a})\frac{1}{2}\in_{o}$ (**d**) $\frac{1}{2} \in_{o} \in_{r} E^{2}$ Ad 1Farad = (182)**(b)** Cm^{-1} $(a)Cs^{-1}$ (**d**) V C⁻¹ (c) $C V^{-1}$ (183) The energy stored in the capacitor given by (a) $\frac{1}{2}$ CV **(b)** $\frac{1}{2}$ CV² (**d**) $\frac{1}{2}C^2V$ (c) $2CV^2$ PAST PAPER MCOS (184) If the potential difference across two plates of capacitor is doubled, the energy in it will be: LHR-2021 (G-I) (b) Eight times (a) Two times (d) Remains same (c) Four times (185) A one farad capacitor is charged to 100 V and then discharge through 1 K Ω resistance the total energy dissipated through resistor is **GRW-2022 (G-II)** (**b**) 10 kJ (a) 5 kJ (c) 2 kJ (d) 100 kJ **ENTRY TEST MCQS** A capacitor is fully charged and disconnected from cell. A dielectric is placed (186) between the plates of capacitor, such that polarization occurs. What happened with capacitance, voltage and energy stored in capacitor respectively? Energy Capacitance voltage Increase Increase increase **(a)** Increase Gecrease (b)Increase (c) Decrease decrease Decrease In crease (**d**) decrease Decrease A capacitor is charged with a battery and energy stored is U. After disconnecting battery another capacitor of same capacity is connected in parallel to the first

capacitor. Then energy stored in each capacitor is

(a) U/2

(**b**) U/4 (**d**) 2U

	(188)	plates of the capacitor are connected to a resistance wire. The heat produced in						
		joules will be (a) 4×10^4 J	(b) 4×10^{10}					
		(a) 4×10^{5} (c) 4×10^{-2} J	(b) $4 \times 10^{10} \text{J}$ (d) $2 \times 10^{-1} \text{J}$					
	Торіс	12.17 Charging and Dischar	ging of a Capacitor					
	(189)	If RC is small, then capacitor will be cha	arged and discharged					
-	NIN	(a) slowl	(b) with medium speed					
AN	INI	(e) quickly	(d) a and c					
MA.	(190)	The product RC is called						
		(a) decay constant	(b) constant					
		(c) time constant	(d) resistance of capacitor					
	(191)	The unit of RC is						
		(a) Ohm farad	(b) Coulomb					
		(c) Second	(d) both a and c					
		PAST PAPE						
	(192)	If time constant in RC circuit is small, then	-					
		,	GRW-2019 (G-I)					
		(a) slowly	(b) rapidly					
		(c) at constant rate	(d) intermittently					
	(193)	Second/ohm is equal to	DGK-2022 (G-I, II)					
		(a) Coulomb	(b) Farad					
		(c) Joule	(d) Ampere					
	(194)	ENTRY TES When an RC circuit is connected across	-					
	(174)	plates istimes the equilibrium	•					
		(a) 0.63	(b) 0.67					
		(c) 0.75	(d) 0.86					
	(195)	A capacitor charges and discharges	- 50					
		(a) Rapidly	(b) Linearly					
		(c) Exponentially	(d) Logarithmically					
		Πρη						
			U Cur E					
		SILLOULASU						
	o rk	MULUUU						
ant	1NI,	0000						
/NN)	00							
0 -								

	ANSWER KEYS (Topical Multiple Choice Questions)																				
	1	•	01		11	р				-		oice	- T		S)	50	16		166	<u>(</u> 0)
	1 2	A B	21 22	A B	41 42	B C	61 62	A A	81 82	B B	101 102	B	121	C B		X		1	181		/
	23	D	22 23	D C	42 43	C	62 63	A D	02 1 83	Ĝ	102	-Fr	123	C C	143	B	163	A	183	B	
	4	C	23 24	D	44	B	64	B	84	B		В	64	16	144	F	163 164	B	183	C	
	5	B	25	B	4	D	-65	21	85	L <u>A</u>	105	d	175	C	145	A	165	D	185	A	
	6	A	26	F	46	B	66	B	186		106	Α	126	A	146	C	166	D	186	D	
	7	D	27	¢	1471	A	<u>k7</u>	চি	87	Α	107	Α	127	Α	147	B	167	B	187	В	
	ഷ്	A	28	B	ys.	5	68	С	88	С	108	Α	128	B	148	B	168	С	188	С	
N	R.	B	1 20	B	49	B	69	D	89	С	109	D	129	С	149	A	169	С	189	С	
N	10	C	30	D	50	С	70	B	90	Α	110	С	130	С	150	С	170	С	190	С	
	11	B	31	B	51	B	71	С	91	Α	111	B	131	D	151	B	171	D	191	С	
	12	A	32	C	52	C	72	Α	92	C	112	C	132	A	152	C	172	B	192	B	
	13	C	33	C	53	C	73	A	93	A	113	B	133	B	153	A	173	A	193	A	
	14	A	34 25	D	54	B	74 75	D	94 05	C	114	B	134	A	154 155	B	174 175	B	194 105	A	
	15 16	D D	35 36	A B	55 56	B	75 76	C A	95 06	A B	115 116	C B	135 136	C B	155 156	A D	175 176	A B	195	C	
	10 17	D C	30 37	D D	50 57	A C	70 77	A D	96 97	D C	110 117	D	130	А	150 157	D	170 177	D D			
	17 18	D	37 38	B	57 58	C	78	B	97 98	B	117 118	C	137	A	157	D C	177 178	B			
	10 19	B	39	D C	59	C	79	D	99	B	110 119	A	130	л С	150 159	A	170 179	B			
	20	A	40	A	60	C	80	A	100	B	120	B	140	C	160	B	180	D			

WWW. MANAKICIUN VE. COM

(2)

Ans:

KIPS TOPICAL SHORT QUESTIONS 12.1 COLOUMB'S LAW

(1) What is Inverse Square Law?

Ans: Inverse square law states that a physical quantity is inversely proportional to the square of the distance from the source of that physical quantity.

i. Coulomb's $\iota W F_e \propto \frac{1}{r}$

How the orbit of planets will be modified, if the planets were electrically charged?

A planet with maximum charge has central position and all other planets will start obung about it with different radii.

ii. Gravitational law $F_G \propto \frac{1}{r^2}$

(3) **Prove that Coulomb's force is a mutual force.**

Ans: Coulomb's force is a mutual force, it means that force F_{21}^{uv} , exerted on q_2 by q_1 would be

equal and opposite to force F_{12} exerted on q_1 by q_2 Let \hat{r}_{21} is the unit vector directed from q_1 to q_2 then

 $\underset{F_{21}}{\overset{uv}{\mathbf{w}}} = k \frac{q_1 q_2}{r^2} \$_{21}$

Let r_{12} is unit vector form q_2 to q_1 then $\underset{F_{12}}{\overset{\text{uv}}{\text{H}}} = \frac{k q_1 q_2}{r^2} \$_{12}$

from the figure $\hat{r}_{12} = -\hat{r}_{21}$ put it in eq.

comparing equations (1) and (3) $F_{21} = -F_{12}$ thus proved.

2].COM

(4) If the distance between two-point charges is halved, what will be the new value of force?

Ans: By Coloumb's law

$$F = k \frac{q_1 q_2}{r^2} \qquad \dots \dots (i)$$

If $r \not = \frac{r}{2}$

So equation (i) becomes

 $F \not = k \frac{\mathbf{q}_1 \, \mathbf{q}_2}{(r/2)^2}$ Fé:- 4

Hence new force is four times the original force.

Define Coulomb's law.

Coulombs law is stated as "The force between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them."

If q_1 and q_2 are points charges and are separated by distance r, then according to coulomb's law.

Where K is constant of proportionality. Its value depends upon nature of medium between the charges and the system of units in which F,q and r are measured.

(6) What is the effect of medium between the charges on electrostatic force?

Ans: If the medium between charges is insulator, it is usually referred as dielectric. It has been found that the presence of dielectric always reduces the electrostatic force by a factor which is a constant for a given dielectric, this constant is known as relative permittivity and is represented by ε_{r} .

$$F' = \frac{1}{\epsilon_r} \frac{1}{4\pi \epsilon_o} \frac{q_1 q_2}{r^2}$$
$$F' = \frac{1}{\epsilon_r} F$$

and

- (7) What is the coulomb's force between two similar charges if the distance between the charges is doubled?
- Ans: Let q_1 and q_2 are two similar charges separated by a distance r, then force of repulsion \vec{F} between them is

$$\vec{F} = \frac{1}{4\pi\epsilon_{\star}} \frac{q^2}{r^2} \vec{h}$$

 $\vec{F}' = \frac{1}{\Delta}\vec{F}$

When distance between the charges is doubled then new force is

It is the force be ween two similar charges, when distance between them is doubled.

This shows that "magnitude of force reduces by a factor of 4 and no change in the direction of force occur."

Electrostatics

PAST PAPER SHORT QUESTION

Ans: The characteristics of electric field lines are given below.

(i) Electric field lines originate from positive charges and end on negative charges.

(20)

DGK-2017 (G-II)

- (ii) The tangent to a field line at any point gives the direction of the electric field at that point.
- **bCK-201**/(GJP (18) Comment on the uni-direction of electric line of force. Ans: The direction of electric field lines at any point can be found by drawing tangent on the field lines and as we know tangent at any point have only one direction whether line is curved or straight.

PAST PAPER SHORT QUESTION

Write five properties of electric lines of force. (19)

SwL-2019, GRW-2019 (G-I), LHR-2022 (G-I), DGK-2022 (G-II)

Exertic field lines provide information about the strength of the electric field. Describe electric field intensity in terms of field lines. LHR-2021 (G-I)

- How a sensitive electric apparatus is shielded from electric fields? . (21)LHR-2021 (G-II)
- (22)If a point charge 'q' of mass m is released in a non-uniform electric field lines pointing in the same direction, will it make a rectilinear motion?

SGD-2017 (G-I), DGK-2017 (G-II), LHR-2022 (G-II)

(23)Electric lines of force never cross. Why?

SGD-2017 (G-I), BWP-2017 (G-I), DGK-2017, DGK-2022 (G-I), RWP-2022 (G-I)

(24)Comment on the uni-direction of electric line of force.

12.4 APPLICATIONS OF ELECTROSTATICS

(25)Write a short note on inkjet printer.

- Ans: Tiny droplets of ink ejecting from nozzle of inkiet printer passes through 'charging electrodes' and 'deflecting plates. Whenever ink is not to be placed on the paper, computer turn on the charging electrodes, giving ink droplets a net charge. The deflecting plates divert them into gutter and whenever ink is to be placed on paper, computer turn off the charging electrodes, now neutral drops move straight to paper.
- What do you mean by Xerography? (26)

MIRPUR (AJK) 2015 It is composed of two words 'xeros' and "graphos" meaning "dry writing". Therefore, the Ans: copying process is called xerography. In xerography, we use a dry black powder (toner) which is given a regative charge and selenium coated cylinder when exposed to light get positive charge then toner stick with the page and heating rollers are used for permanent impression

Write the names of main parts of kerography and draw its diagram. MTN-2019 (G-II) (27)Photocopier consists of following parts. Ans:

ii) Drum iii) Selenium surface iv) Toner i) Lamp v) Paper vi) Rollers MMM

(30) Define electric flux and give its unit.

Ans: "The number of field lines passing through a certain element of area held perpendicular to the direction of electric field is known as electric flux through that area."

Or

The dot product of electric intensity and vector area. It is denoted by ϕ . It is defined by the following relation:

 $\phi = \vec{E} \cdot \vec{A} = EA \cos\theta$. Its S.I unit is Nm²C⁻¹. It is a scalar quantity.

- (31) What are factors upon which electric flux depend?
- Ans: It depends upon.
 - (1) Electric intensity
 - (2) Area of surface
 - (3) Orientation of surface relative to field. (The orientation is determined by angle between outward normal to surface and direction of electric field).

It is defined by the relation

 $\Phi = \vec{E}. \vec{A}.$

- (32) Mention two situations of vector area in electric flux.
- Ans:

(i) When area is perpendicular to electric field:-

If an area is held perpendicular to electric field, then $\theta = 0^{\circ}$

```
\Phi_{a} = EA \cos \theta
```

 $\Phi_a = EA \cos 0^\circ$

$$\Phi = EA \int$$

In this situation the number of lines passing through area is maximum.

Wren area is parallel to electric field:-

If area is held parallel to electric field then number of lines passing through it is zero so we can write as

 $\Phi_e = EA \cos \theta$

as $\theta = 90^{\circ}$

 $= EA\cos 90^\circ$

DGK 2017 (G-I)

BWP-2019 (G-II)

DGK-2022 (G-II)

 $\Phi_{\rho} = 0$

PAST PAPER SHORT QUESTION

- (33) What are factors upon which electric flux depends? LHR 2017 (G-I), MTN-2019 (C
- (34) Mention two situations of vector area in electric flux
- (35) Define electric force and electric f_{11x} .
- (36) Define electric flux also write down its SI unit.

12.6 ELECTRIC HUX THROUGH A SURFACE ENCLOSING A CHARGE 12.7 GAUSS'S LAW

- Does electric flux through a closed surface enclosing a charge depend upon shape of the surface?
- **Ans:** NO, Electric flux through the closed surface enclosing charge depend upon magnitude of charge and medium only.
- (38) Find flux through a closed surface having no charge?
- Ans: By Gauss's Law

132

$$f_e = \frac{1}{e_o} \mathbf{Q}$$

$$Q = 0$$

Hence, Flux is also zero.

(39) State Gauss's law.

Ans: "The flux through any closed surface is $\frac{1}{\epsilon_o}$ times the total

charge enclosed in it."

i.e.

$$\phi_{\rm e} = \frac{1}{\epsilon_o} \times {\rm Q}$$

If ϕ_1 , ϕ_2 , ϕ_3 ,...., ϕ_n denote the fluxes due to charges $q_1,q_2,...,q_n$ respectively then total flux through this closed surface is calculated as

$$\begin{split} \varphi_{e} &= \varphi_{1} + \varphi_{2} + \dots + \varphi_{n} \\ &= \frac{q_{1}}{\varepsilon_{0}} + \frac{q_{2}}{\varepsilon_{0}} + \dots + \frac{q_{n}}{\varepsilon_{0}} \\ &= \frac{1}{\varepsilon_{0}} \left(q_{1} + q_{2} + \dots + q_{n} \right) \\ &= \frac{1}{\varepsilon_{0}} \sum_{i=1}^{n} q_{i} \\ &= \frac{1}{\varepsilon_{0}} x \text{ total charge enclosed by surface.} \end{split}$$

12.8 APPLICATIONS OF GAUSS'S LAW

Thus, interior of a hollow charged metal surface is a field free region. It means any apparatus placed within a metal enclosure is shielded from electric fields.

- (41) What is the effect on electric field intensity if surface charge density of infinite sheet of charge is increased?
- **Ans:** Electric field intensity near an infinite sheet of charge depends upon surface charge density by formula

$$\mathbf{E} = \frac{\sigma}{2\varepsilon_0}$$

i.e $E \propto \sigma$

46) A ns: Hence, electric field will increase by increasing the surface charge density.

PAST PAPER SHORT QUESTION

(42) Is E necessarily zero inside a charged rubber balloon if balloon is spherical? Assume that charge is distributed uniformly over the surface.

LHR-2017(G-I), LHR-2021 (G-II), RWP-2022 (G-II)

(43) Find electric intensity of field inside a hollow charge sphere.

GRW-2019 (G-II), DGK-2022 (G-I), LHR-2022 (G-II)

RWP-2019 (G-I), J.HR-202

(44) State Gauss's law of electric flux. Write down it mathematical form.

12.9 ELECTRIC POTENTIAL

- (45) What is meant by equipoter tial surface? Do they intersect each other?
- Ans: If the potential at every point on the surface is same, then it is called equipotential surface. It is in possible for two surfaces to intersect each other because there would be two values of potential at a single point, which is not possible.
 - If the Posoiute potential at a point is zero, can Electric Intensity be zero or not?

If we consider a point midway between two equal and opposite charges, then electric potential at that point is zero, but electric intensity has specific value.

But, If the point lies at infinite distance from a charged body, then both potential and Electric Intensity would be zero.

NNNA

- (47) What do EEG and ERG stand for? Between which two quantities these graphs are obtained.
- Ans: EEG stands for electro encephalography and ERG stands for electro raino graphy For both of these graph is drawn between potential difference and time

JLO)

(49) Define electric potential energy.

Ans: It is defined as the energy stored in the charge 'q' by virtue of its position in an electric field. Let V be the electric potential at a point in an electric field then the electrical potential energy will be given by

Electric P.E. =
$$U = qV$$

The unit of electric potential energy is joule.

(50) Define absolute potential. Give its unit.

Ans: Absolute Potential:

"The amount of work done in bringing a unit positive charge from infinity to a point against the electric field with constant velocity is called absolute electric potential at that point." **Unit:**

Absolute electric potential is expressed in unit of "volt" defined as "joule per coulomb." i.e

$$1V = 1\frac{J}{C}$$
.

(51) Define the term potential gradient?

Ans: It is defined as the change in potential w.r.t. distance

$$E = -\frac{\Delta V}{\Delta r}$$

The quantity $\frac{\Delta V}{\Delta r}$ gives maximum rate of change of potential with distance because

distance between two plates is minimum. It is called as potential gradient. C So electric intensity is equal to negative of gradient of potential.

Negative sign indicates that the direction of E is along decreasing potential.

- (52) Differentiate between electric potential and electric potential difference. GRW-2019 (G-I)
- **Ans:** "Absolute potential or electric potential at any point in an electric field is equal to the work done in bringing a unit -ve charge from infinity to that point keeping it in equilibrium" is called electric potential at that point.

Potent A difference between two points A and B is given as.

$$\mathbf{V}_{\mathrm{B}} - \mathbf{V}_{\mathrm{A}} = \frac{W_{AB}}{q_o}$$

If we take point A is at infinity, $V_A = 0$. So the electric potential at point B is

$$V_{B} - 0 = \frac{W_{a}}{q_{a}}$$

$$V_{B} = \frac{W_{a}}{q_{a}}$$
By dropping the subscript:
or simply:

$$V = \frac{W}{q_{a}}$$
Both potential and potential difference are scalar quantities because both W and q are scalars.

$$V = \frac{W}{q_{a}}$$
Both potential and potential difference are scalar quantities because both W and q are scalars.

$$V = \frac{W}{q_{a}}$$
Both potential and potential difference are scalar quantities because both W and q are scalars.

$$V = \frac{W}{q_{a}}$$
Both potential and potential difference are scalar quantities because both W and q are scalars.

$$V = \frac{W}{q_{a}}$$
Both potential and potential difference are scalar quantities because both W and q are scalars.

$$V = \frac{W}{q_{a}}$$
Both potential and potential difference are scalar quantities because both W and q are scalars.

$$V = \frac{W}{q_{a}}$$
Both potential and potential difference are scalar quantities because both W and q are scalars.

$$V = \frac{W}{q_{a}}$$
Both potential scalars that P must be applied opposite to quartities that P must be applied opposite to q.E. so that the charge remains in equilibrium.
Since F = E q.
So wan = q. Ed
By putting value of W_{AA} in eq (i) we get

$$V = -\frac{Q}{q_{a}}$$

$$V = -Ed$$

$$E = \frac{\Delta V}{Q}$$
If plates A and B are separated by infinitesimally small distance Δr , the eq above comes as.

$$E = \frac{\Delta V}{\Delta Q}$$
BY DETER SHORT QUESTION
(51) Differential is constant throughout a give negroin of space. Is the electric field zero vector (c) zero in this region? Explain.
LHR-2027(G-I), S(E) 2027(V, G-I), D(S-2022, G-I)
(52) Differentiate between electric potential and electric potential difference.
(53) Differentiate both source constant potential or of low potential?
LHR-2027(G-I), S(E) 2020(V, G-I), D(S-2022, (G-I))
(54) Do electron that D for the zero of Sign potential or of low potential?
(12) Min 2021 (G-LII), SWL-2017, D(G-L), D(S-2022, (G-I))
(54) Define potential and give its S.I unit.
(54) Define potential and give its S.I unit.
(54) Define potential gradient and show that $E = \frac{\Delta V}{\Delta r}$
(55) Difference for the source

(60) What is potential gradient? Give its units. **BWP-2016 (G-I), SWL-2016, 2017**

Electrostatics

- (68) A particle carrying a charge of 2e falls through a potential difference of 3.0 V. Calculate the energy acquired by it.
 SGD-2017 (C-11), SWL-2019
- (69) Define electron volt and prove that $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}.$

BWP-2017 (C-I), KWF-2022 (G-II)

12.11 Electrical and Gravitational Forces

(70) What is the Difference: between \mathbb{F}_{e} and \mathbb{F}_{g} ?

Ans:

4115:		
0	A VERANTATION FORCE	ELECTRIC FORCE
NN	Pais ony attractive.	F_e is attractive between opposite charges
10	~	while repulsive between similar charges.
	F_G is given by $F_G = \frac{Gm_1m_2}{r^2}$	F_e is given by $F_e = \frac{kq_1q_2}{r^2}$
	Constant G is very small i.e	Constant is very large i.e.
	Constant G is very small i.e $G = 6.67 \times 10^{-11} \text{ Nm}^2 / \text{ kg}^2$	$k = 9 \times 10^9 \mathrm{Nm^2/C^2}$
	F_{G} is very weak.	F _e is very strong.
	F_G can not be shielded.	F _e can be shielded.
	$F_{\rm G} = 10^{-36} F_{\rm e}$	$F_{e} = 10^{36} F_{G}$

(71) What is the similarities between F_e and F_g ?

Ans:

- Both Follow inverse square law
- Both are long range forces
- Both are basic forces of nature
- Both are conservative forces

PAST PAPER SHORT QUESTION

- (72) What are similarities between electrostatic force and gravitational force? LHR-2017 (G-I)
- (73) Give a comparison of electric and gravitational forces. . LHR-2021 (G-II), DGK-2022 (G-I)
- (74) What are the similarities and difference between electric and gravitational forces?
- (75) Write two differences between electrical and gravitational forces.

12.12 CHARGE ON AN ELECTRON BY MILLIKAN SMETHOD

- (76) Describe the principle of Millikan's oil area method.
- Ans: the basic principle of Millikun's on drop method is that the gravitational force 'F_g' acting on the croppet is equal to the electrical force

$$F_e = F_g$$

 $qE = mg$

12.13 CAPACITOR

- (77) Define Capacitance of a capacitor? Write down its units.
- Ans: Capacitance:

SGD-2017 (G-I)

SWL-2017, FSD-2619 (G-I)

"Ability of a capacitor to store charge is called capacitance of a capacitor." It is denoted by "C." In quantitative terms, it is defined as "magnitude of charge stored on one plate of capacitor per unit applied voltage."

 $C = \frac{Q}{V}$ Units: S.I unit of capacitance is firad (F) defined as "Charge of one coulombs, given to one of the plates of a parallel plate capacitor, produces a potential difference of one volt between them.'

Ans:

In tractical applications submultiples of farad like pF, nF, μ F & mF are used as unit of upacitance.

What is capacitor? Define unit of capacitance.

· .

SGD-2015

"A device which is used to store an electric charge and energy is called capacitor"

Unit of capacitance:

S.I unit of capacitance is farad (F) defined as one coulomb per volt.

$$1F = 1\frac{C}{V}$$

PAST PAPER SHORT QUESTION

- (79) Define capacitor and farad.
- (80) How can you identify that which plate of a capacitor is positively charged?

 $E = \frac{\Delta V}{V}$

BWP-2022 (G-II)

BWP-2019 (G-II), RWP-2022 (G-I)

12.14 CAPACITANCE OF A PARALLEL PLATE CAPACITOR

- (81) Why does capacitance of a capacitor increase when a dielectric material is inserted between its plates? **FSD-2012**
- Ans: When dielectric is introduced between plates of charged capacitor then it will be polarized and atoms become dipole which have electric field opposite to external electric field between plates so resultant electric field decreases

So Potential difference between plates decreases due to decease in electric field strength then by formula

Capacitance will increase

How will capacitance of parallel plate capacitors be affected if area of plates is doubled and separation between them is halved? **FSD-2013**

As we know that

$$C_{\text{vac}} = \frac{A\varepsilon_0}{d} \qquad \qquad \dots \dots (i)$$

As given

(82)

(86) What is Dipole?

Two encel but opposite charges separated by small distance are known as dipole

(87) What is polarization and how dipoles are formed in dielectric? RWP-2014

SGD-2013

88)

Ans: Dielectric consists of atoms and molecules which are electrically neutral. In the absence of electric field, the centre of positive and negative charge coincides. But when molecules of dielectric are placed in electric field between the plates of capaci or then there is some displacement occur in the center of negative and center of positive charge. Therefore, molecules become dipole and substance is said to be polarized and process is called electric polarization.
Dipole:

Two equal and opposite charges separated by small distance are said to form dipole.

PAST PAPER SHORT QUESTION

Define and write relation for dielectric constant in terms of capacitances of a capacitor.

LHR-2021 (G-I) LHR-2022 (G-II)

(89) What is meant by electric polarization?

12.16 ENERGY STORED IN A CAPACITOR

- (90) What will be effect on the energy stored by capacitor if potential difference between the plates of capacitor becomes double?
- **Ans:** As we know that

$$U = \frac{1}{2}CV^2$$

If V become double then energy stored becomes four times

(91) **Prove that U.**=
$$\frac{1}{2}CV^2$$

Ans: When Q=0 then potential difference = 0 and when charge = Q then let potential difference =V

Ans: As,

V=IR

$$V = \frac{q}{t} \cdot R$$
 $Qq = CV$

 $\frac{q}{V} = C$

$$t = \frac{q}{V}R$$

t = RC

(93) What is role of capacitor in working of wind shield wipers of cars? OR Why is principle behind the working of wind shield wipers of cars?

Ans: The charging λ discharging of a capacitor enables some wind shield wipers of cars to be used intermittently during a light drizzle. In this mode of operation the wipers remain off for a while and then turn on briefly. The timing of the on-off cycle is determined by the time constant of a resistor-capacitor combination.

(94) What depend on the slow or fast charging discharging of a capacitor?

- **Ans:** Slow or fast charging, discharging of a capacitor depends on value of resistance connected across it in R-C series combination. For slow charging, discharging, high resistance is connected, across R-C series combination and for fast charging, discharging, low resistance is connected in this combination.
- (95) Define time constant for RC circuit. Also draw (q-t) graph for charging capacitor in RC circuit.

- **Ans:** This time t=RC after which the charge on the capacitor grows to 0.63 times of its maximum value is called time constant of the capacitor.
- (96) The time constant of a series RC circuit is t=RC. Verify that an ohm times farad is equivalent to second. SWL-2013
- Ans: Oĥm's law in terms of potential difference V, current I and resistance R can be written as, V=IR

Putting $I = \frac{q}{t}$, this equation transforms into the equation,

 $V = \frac{q}{R}$ $R = \frac{V \times t}{q}$ or (i) According to equation q = CV(ii) Multiplying equation (i) and (ii) R Herce 1phr× larad=1 second Where chins is the unit of resistance R PAST PAPER SHORT QUESTION (97) Define time constant for RC circuit. Also draw (q-t) graph for charging capacitor in RC circuit. **BWP-2017 (G-I)**

