ELigCiRSSETAT

Topic 121

Coulomb's Law

(1.) SI unit of permittivity of free space is
(a) $\mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
(b) $\mathrm{N} \mathrm{m}^{2} \mathrm{C}^{-1}$
(c) $\mathrm{N} \mathrm{m}^{2} \mathrm{C}^{-1}$
(d) NmC^{-2}
(2) The value of $4 \pi \epsilon_{0}$ is
(a) $9 \times 10^{9} \mathrm{NmC}^{-2}$
(b) $\frac{1}{9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}}$
(c) $1 \mathrm{NmC}^{-2}$
(d) $8.85 \times 10^{-12} \mathrm{NmC}^{-2}$
(3) The relative permittivity of air is
(a) 1
(b) 3.7
(c) 7.8
(d) 1.0006
(4) Coulomb's force is represented by
(a) $F=\frac{k q_{1} q_{2}}{r^{2}}$
(b) $F=4 \pi \varepsilon_{o} \frac{q_{1} q_{2}}{r^{2}}$
(c) $F=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1} q_{2}}{r^{2}}$
(d) $F=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1} q_{2}}{r}$
(5) Like charges
(a) attract each other
(b) repel each other
(c) both a and b
(d) none of these
(6) The value of $\hat{I}{ }_{0}$ is
(a) $8.85 \times 10^{-12} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \mathrm{C}^{2}$
(b) $8.85 \times 10^{-10} \mathrm{~N} \mathrm{~m}^{-2} \mathrm{C}^{2}$
(c) $8.85 \times 10^{-12} \mathrm{~N}^{-1} \mathrm{~m}^{2} \mathrm{C}^{-2}$
(d) $8.85 \times 10^{-12} \mathrm{Nait}^{2} \mathrm{C}$
(7) The unit of relative Permittivity 8 for water is,
(a) $\mathrm{N} \mathrm{m}^{-1} \mathrm{C}^{2}$
(c) $\mathrm{Nm}^{-1} \mathrm{C}^{-2}$
(b) $\mathrm{N} \mathrm{m}^{2} \mathrm{c}^{-2}$
(8) The relaion for the force in omed un ef elative permittivity e_{r} is given by
(a) $F \in=F$
(b) $\mathrm{F}=\frac{\mathrm{F} \phi}{e_{r}}$
(c) $\mathrm{F}=e_{r} \mathrm{~F}$
(d) $\mathrm{F} \phi=\frac{\mathrm{F}}{\hat{\mathrm{I}}_{o}}$
(9) If the distance between two charges becomes double then the force between them become.
(a) one half
(b) $\frac{1}{4}$ times
(c) double half
(d) none of these
(10) The value of relative permittivity for vacinif
(a) 78.5
(c) 1
(b) 2
(d) 1.9000
(11) The vares of depends ubon
(a) quar tity of charges
(b) nature of medium between the charges
(c) With haple
(d) none of these

The ifst measurement of the force between electric charges was made in 1874 by
(a) Charles coulomb
(b) Ampere
(c) Albert Einstein
(d) Thomson

PAST PAPER MCQS

(13) The electrostatic force between two charges is 42 N . If we place a dielectric of $\varepsilon_{r}=$

2.1 between the charges then the force become equal to:

LHR-2019 (G-II)
(a) 42 N
(b) 84 N
(c) 20 N
(d) 2 N

LHR-2019 (G-II)
(a) $1.6 \times 10^{-12} \mathrm{C}$
(b) $1.6 \times 10^{11} \mathrm{C}$
(c) $1.6 \times 10^{-19} \mathrm{C}$
(d) $1.6 \times 10^{19} \mathrm{C}$
(15) Value of ε_{r} for air is;

MIRPUR (AJK) 2017
(a) 1.6
(b) 1.96
(c) 1.986
(d) 1.0006
(16) In SI units, the value of permittivity of free space $\left(\varepsilon_{0}\right)$ is

SGD-2017 (G-I)
(a) $9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
(b) $9 \times 10^{-9} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
(c) $8.85 \times 10^{12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
(d) $8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
(17) If the charges are doubled and the distance between them is also doubled, then

Coulomb's force will be:
RWP-2019 (G-I)
(a) double
(b) halved
(c) remains same
(d) four times
(18) The minimum value of charge on free particle is:
(a) $2 / 3 \mathrm{e}$
(b) $1 / 3 \mathrm{e}$
(c) $-2 / 3 \mathrm{e}$
(d) e
(19) Value of ε_{0} in Coulomb's law is
(a) $9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(c) $9 \times 10^{9} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \mathrm{C}$

SGD-2020 (G-I)

Presence of dielectuic betven éwo cl arges always
DGK-2017 (G-II)
(a) reduces the electric force
(b) enhances the electric force
(a) anes not effect lactric force
(d) doubles the electric force

Whare (otween two similar unit charges placed one meter a part in air is:
BWP-2017 (G-I)
(a) one newton
(b) $9 \times 10^{9} \mathrm{~N}$
(c) $9 \times 10^{-9} \mathrm{~N}$
(d) zero newton
(22) The study of electric charges at rest under the action of electric forces is known as:
(a) Electromagnetism
(b) Electrostatics
(c) Magnetic Induction
(d) Electric field
(23) The number of electrons is one coulomb chargd is equal to.
(24) The fred between twe cherges is 36 N and if the dielectric constant 3.6 value is inserter, ther or reduces to \qquad .

RWP-2022 (G-I)
(a) 7 ra
(b) 72 N
(a) 2.5 N
(d) 10 N
2.5: Wh the distance between two charges is halved and each charge is also doubled, then the force between two changes becomes \qquad times.

RWP-2022 (G-I)
(a) two
(b) sixteen
(c) eight
(d) four

ENTRY TEST MCQS
(26) If a body A is charged with charge q, and is touched with neutral body B and then with neutral body C. What will be the charge on C after the contact?
(a) q
(b) $q / 2$
(c) $q / 3$
(d) $q / 4$
(27) The figure below shows three-point charges, all positive. If the net electric force on the center charge is zero, what is the value of $\frac{\mathrm{y}}{\mathrm{x}}$?

(a) $\frac{4}{9}$
(b) $\sqrt{\frac{2}{3}}$
(c) $\sqrt{\frac{3}{2}}$
(d) $\frac{3}{2}$

Topic 12.2:

Field of Forces

(28) The electric field intensity at infinite distance from point charge is
(a) infinite
(b) zero
(c) positive
(d) negativp
(29) The direction of field lins around charge $\cdot q$ is
(a) radialy inward
(b) acialvoliward
(c) parelle:
(d) anti parallel
(30) The unth electic intens ty is
(a) C
(b) NsC
(c) $\mathrm{C}_{\mathrm{O}}^{-2}$
(d) NC^{-1}

Electric field intensity is a
(a) scalar quantity
(b) vector quantity
(c) linear quantity
(d) none of these
(32) The force per unit charge is called
(a) Electric force
(b) Electric potential
(c) Electric Intensity
(d) Electric dipole
(33) The direction of electric field Intensity is
(a) along the direction of charge
(b) perpendicular to tio difer tion of force
(c) along the direction of force
(d) nored these
(34) If the distance of the pont fromitepoint cha gecomes $\frac{1}{2}$, the Electric field in intens ty lecones
(a) half
(b) double
(c) $\sqrt[1]{1}$ times
(d) none of these
3.3 Static charges creates
(a) electric field
(b) magnetic field
(c) both a and b
(d) gravitational field

PAST PAPER MCQS

(36) The force on an electron in a field of $1 \times 10^{8} \mathrm{NC}^{-1}$ will be:

FSD-2019 (G-I)
(a) $1.6 \times 10^{-8} \mathrm{~N}$
(b) $1.6 \times 10^{-11} \mathrm{~N}$
(c) $1.6 \times 10^{-19} \mathrm{~N}$
(d) $1.6 \times 10^{-27} \mathrm{~N}$
(37) A charge of $4 \mathbf{C}$ is in the field of intensity $4 \mathrm{~N} / \mathrm{C}$. the force on charge is

DGK-2022 (G-II)
(a) 1 N
(b) 4 N
(c) 8 N
(d) 16 N
(38) Unit of electric intensity is same as:

LHR-2022 (G-II)
(a) Force
(b) Potential gradient
(c) Viscosity
(d) Magnetic field

ENTRY TEST MCQS

(39) A gold nucleus (radius r) is represented by the symbol ${ }_{79}^{197} \mathrm{Au}$. Taking e as the elementary charge and ε_{o} as the permittivity of free space, what is the electric field strength at the surface of an isolated gold nucleus?
(a) Zero
(b) $\frac{197 e}{4 \pi \varepsilon_{o} r^{2}}$
(c) $\frac{79 e}{4 \pi \varepsilon_{o} r^{2}}$
(d) $\frac{79 e^{2}}{4 \pi \varepsilon_{o} r^{2}}$

Topic 12.3:

(42) The electric lines are farther apart where field is
(a) strong
(b) zero
(c) weak
(d) none of these
(43) As electric field lines provide information about the clectric force excled on a charge, the lines commor Ty caller,
(a) lines of strength
(b) ines ef field
(c) lines of for
(d) lines of flux
(44) In cent al region of a relle plate capacitor the electric field lines are
(a) p erpencicula:
(b) parallel
(6) etiPgonal
(d) curved

A visual representation of electric field can be obtained in terms of
(a) electric flux
(b) electric lines of force
(c) electric field lines
(d) both b and c
(46) A unit positive charge $+q_{o}$ placed any where in the vicinity of a positive point charge, experiences a repulsive force directed.
(a) radially inward
(b) radially out ward
(c) radially zero
(d) none of these
(47) The electric lines of force
(a) start from positive charge and end to the negative charge
(b) start from negative charge and end to the positive charge
(c) both a and b
(d) none of these
(48) Usually test charge is taken as
(a) negative charge
(b) positive charge
(c) both a and b
(d) none of these
(49) An imaginary path along which a unit positive charge moves in an electric field is called
(a) Magnetic line of force
(b) An electric line of force
(c) direction of the charge
(d) trajectory of charge
(50) The directions of the resultant electric intensities is given by
(a) circle drawn to the field lines
(b) Parabola drawnte the fieplin es
(c) Tangent drawn to the field lines
(d) ellipse Prawn to the field \%ips
(51) The tangent to field line any puint rives the
(a) force of alectric field (b) direction or electri- field
(c) mamitude sielectrig fie d
(d) none of these
(52) The electic field has
(a) 万re dimensidn
(b) two dimension
(d) itre uimension
(d) dimension less

If the line of force cross, then E could have
(a) no direction
(b) one direction
(c) more than one direction
(d) none of these

PAST PAPER MCQS

A rubber ball of radius 2 cm has a charge of $5 \mu \mathrm{c}$ on its surface, which is uniformly distributed, the value of \vec{E} at its centre is:
(a) $10 \mathrm{NC}^{-1}$
(b) Zero
(c) $2.5 \mathrm{NC}^{-1}$
(d) $5 x 0^{6} \mathrm{NC}^{-1}$
(55) The idea for electric field ines waspreposed by

KWP-2019Tr(1)
(a) Henry
(b) Michael Eanaday
(c) An pere
(a) Ohm

DGK-2017 (G-I)

ENTRY TEST MCQS
(56) The inge re help v hows two-point charges, $+Q$ and $+Q$. If the right-hand charge
 the right-hand charge in place, what is the strength of the total electric field at P, which lies at the midpoint of the line segment joining the charges?
(a) 0
(b) $\frac{E}{4}$
(c) $\frac{\mathrm{E}}{2}$
(d) 2 E

Topic 12.4:

Application of Electrostatics

(57) The drum in a photocopier is coated with a layer of
(a) copper
(b) silver
(c) selenium
(d) aluminum
(58) Selenium becomes conductor in light, so it is called
(a) super conductor
(b) semi-conductor
(c) photo conductor
(d) insulator
(59) Photocopier and inkjet printer are the application of
(a) magnetism
(b) electromagnetism
(c) electrostatics
(d) electricity
(60) The charged droplets are deflected into a
(a) electrodes
(b) toner
(c) gutter
(d) nozzle of pint head
(61) Aluminium is an excellent
(a) conductor
(c) semi-csinductor

(l) in u atp d diode
(62) The special diypowder use in xerography called
(a) toner
(b) drum
(a) Parsing electrodes
(d) gutter
in ukect printers, the droplets are passed through
(a) gutter
(b) charging electrodes
(c) deflecting plates
(d) both b and c
(64) Inkjet printer head ejects a
(a) turbulent flow of ink droplets
(b) steady flow of ink droplets
(c) irregular flow of ink droplets
(d) none of these

PAST PAPER MCQS

(65)

Selenium is a
(a) conductor
(b) insulator
(c) photoconductor
(d) semi-andactor
(66) The word "Xerography" means
(b) dr UNriting
(a) take photograph
(d) painic something
(c) writing by machine
(67) Photo anier and inject p int anct tre application of.

SḠD-2017 (G-II)

SGD-2020 (G-II)
(a) magnei m
(b) electricity
(c) © ${ }^{2}$ ection ingeticm
(d) electrostatics
(68) Pholoopier and inkjet printers are the application of.

BWP-2022 (G-I)
(a) Electricity
(b) Magnetism
(c) Electrostatics
(d) Electromagnetism

ENTRY TEST MCQS

(69) Which of the following is not the application of electrostatics?
(a) Photocopier
(b) Inkject printer
(c) Laser printer
(d) Transformer

Topic 12.5:

Electric Flux

(70) The flux through any closed surface will be maximum, if its surface makes angle with the electric field of
(a) 0°
(b) 90°
(c) 180°
(d) 45°
(71) If surface is parallel to the electric field, then its electric flux will be
(a) minimum
(b) maximum
(c) zero
(d) constant
(72) When vector area is parallel to electric intensity, the electric flux is
(a) maximum
(b) minimum
(c) zero
(d) constant
(73) The unit of electric flux is
(a) $\mathrm{Nm}^{2} \mathrm{C}^{-1}$
(b) $\mathrm{Nm}^{-1} \mathrm{C}^{-1}$
(c) NmC^{-1}
(d) NmC^{-2}
(74) Electric flux would be negative when
(a) \vec{A} is perpendicular to
(c) both a and b
(b) \vec{A} is anong $\overrightarrow{\mathrm{E}}$
(d) \vec{A} is ant parallel lo \vec{E}
(75) The electric flas through ay closed urfacedepends upon the
(a) mediun ouly
(b) firare only
(a) redil man charge enclosed by the closed surface
(d) snape of surface
(9) Electric flux is defined mathematically as
(a) $f=E A$
(b) $\frac{\mathrm{E}}{f}=\mathrm{A}$
(c) $\frac{\mathrm{E}}{\mathrm{A}}=f$
(d) $\frac{\mathrm{A}}{\mathrm{E}}=f$
(77)
SAST PAPER Mnit of electric flux i
(a) $\mathrm{NmC} \mathrm{C}^{-1}$
(c) Nm -
(78) Electri Thx is n x min , hem angle detween E and surface area is: FSD-2019 (G-I)
(a) 0°
(b) 90°
(c) 130°
(d) 45°
S. conit of electric flux is

DGK-2022 (G-I), RWP-2022 (G-II)
(a) NC^{-1}
(b) $\mathrm{N} . \mathrm{m}^{2} \cdot \mathrm{C}^{-1}$
(c) N.m.C C^{-1}
(d) $\mathrm{N} \cdot \mathrm{C}^{-1} \cdot \mathrm{~m}^{2}$
(80) Electric flux through a closed surface enclosing a charge depends on:LHR-2022 (G-II)
(a) Medium
(b) Size
(c) Shape
(d) Location of charge

ENTRY TEST MCQS

(81) Electric flux linked with a surface will be minimum when angle between electric intensity and vector area is
(a) 60°
(b) 90°
(c) 30°
(d) 0°
(82) Flux passing through an area does not depend upon:
(a) Charge enclosed
(b) Shape of hypothetical surface
(c) Medium
(d) Both a and b

Topic 12.6, 12.7 \& 12.8:

Electric Flux through A Surface Enclosing A Charge

Gauss's Law and Application of Gauss's law

(83) An imaginary closed surface which passes through the point at which electric intensity is to be calculated is called
(a) Newtonian's surface
(b) coulombs surface
(c) Gaussian's surface
(d) Millikan's surface
(84) Surface density of charge is
(a) charge x area
(c) area / charge
(b) chafg arge arer

(85) The flux through any clo ed suatace is chesed surface
closetarge enclosed by the
(a) $\frac{1}{\varepsilon_{0}}$
(b) $\frac{2}{\varepsilon_{o}}$
(d) ε_{r}
(s6) The mathematical expression of Gauss's law is
(a) $\Phi_{e}=\frac{1}{Q \varepsilon_{o}}$
(b) $\Phi_{e}=\frac{\varepsilon_{o}}{Q}$
(c) $\Phi_{e}=Q \varepsilon_{0}$
(d) $\Phi_{e}=\frac{Q}{\varepsilon_{o}}$
(87) Electric flux is a
(a) scalar quantity
(b) peectir quartity
(c) linear quantity
(88) Flux through the closed striace depend upon
(a) shape of the sartac
(行) geometry of the surface
(c) indepentent of shape and gromeny
(d) all of these
(89) The interior of hollow ciarged metal surface has
(20) ravinun: enarge
(b) small charge
(d) ho charge
(d) negligible charge
(10) Gauss's law is applied to calculate the
(a) electric intensity due to different charge configuration
(b) electric intensity due to negative charges only
(c) electric intensity due to positive charges only
(d) none of these
(91) The total flux f through a closed surface having charge \mathbf{q} at its center is
(a) $\phi_{e}=\frac{q}{\varepsilon_{o}}$
(b) $\phi_{e}=\frac{q}{r^{2}}$
(c) $\phi_{e}=\frac{\mathrm{k} q}{\varepsilon_{o}}$
(d) $\phi_{e}=\frac{\varepsilon_{o}}{q}$
(92) Unit of surface charge density is
(a) $\frac{\mathrm{C}}{\mathrm{kg}}$
(b) $\frac{\mathrm{C}}{\mathrm{m}}$
(c) $\frac{\mathrm{C}}{\mathrm{m}^{2}}$
(d) $\frac{\mathrm{C}}{\mathrm{m}^{3}}$
(93) Gaussian surface is a
(a) imaginary surface
(b) an open surface
(c) curved surface
(d) plane surface
(94) Electric intensity inside the hollow charged sphere is
(a) minimum
(b) maximum
(c) zero
(d) none of these
(95) Electric intensity due to an infinite sheet of charge is given oy
(a) $\stackrel{\text { II }}{\mathrm{E}}=\frac{s}{2 \hat{\mathrm{I}}}{ }_{r}^{\dot{U}}$

(96) Electri Lhers ity auc to oppositity charge plates is given by
(a) $\sqrt{x}=\frac{s}{2} \frac{s}{2} \prime$
(b) $\stackrel{\mathbb{U}}{\mathrm{E}}=\frac{s}{\hat{\mathrm{I}}_{o}} r$
(2) $\mathrm{E}=\frac{2 q}{\hat{\mathrm{I}}_{o}} r$

(97) The f_{e} through the surface of sphere of radius \mathbf{r} due to a point charge placed at its center depends upon
(a) radius of sphere
(b) quantity of charge outside the sphere
(c) quantity of charge inside the sphere
(d) surface area of sphere
PAST PAPER MCQS

(a) $\frac{2 \sigma}{\varepsilon_{o}}$
(c)

(b)
(i) $\frac{\varepsilon_{o}}{2 \sigma}$
(99) A rubber ball of radies 2 cm has a charge of $5 \mu \mathrm{C}$ on its surface, which is uniformly dis ribued. The value of E at its center is

SGD-2020 (G-I)
(d) $10 \mathrm{VC}^{-1}$
(b) 0
(c) $2.5 \mathrm{NC}^{-1}$
(d) $5 \times 10^{-6} \mathrm{NC}^{-1}$

ENTRY TEST MCQS

(100) A point particle with charge q is at the center of a Gaussian surface in the form of a cube. The electric flux through any one face of the cube is
(a) $\frac{q}{\varepsilon_{o}}$
(b) $\frac{q}{6 \varepsilon_{o}}$
(c) $\frac{q}{4 \varepsilon_{o}}$
(d) $\frac{q}{4 \varepsilon_{o}}$
(101) What will be the new surface density if electric intensity is increased to 3 times?
(a) 9σ
(b) $\sigma / 3$
(c) 3σ
(d) $\sigma / 27$

Topic 12.9:

Electric Potential

(102) Electric potential energy and electric potential difference are related as
(a) $\Delta U=\frac{q_{o}}{q}$
(b) $\Delta U=\mathrm{q}_{0} \Delta V$
(c) $\Delta U=\frac{\Delta \mathrm{V}}{\mathrm{q}_{\mathrm{o}}}$
(d) $\mathrm{U}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{r}}$
(103) Two charge -10 C and +10 C are placed 10 cm apart potential at the centre of ling joining two charges is
(a) 2 V
(b) -2 V
(c) zero
(104) The difference of potentim nerg. per unit charge is cal ed
(a) electric potential
(b) Dotertial uifferenc
(c) absollty potentiai
(i) all of these
(105) The relation $-\frac{V}{1}$ is caled
(a) poterial difference
(b) potential energy
(c) potential gradient
(d) absolute potential
(106) The amount of work done to move a unit positive charge from one point to another against the E is measure of
(a) Electric potential difference between two points
(b) capacitance
(c) Intensity of E
(d) Resistance between two points
(107) 1 volt =
(a) JC^{-1}
(c) CJ^{1}

0

An ECerecords \qquad between points on human skin
(a) volt: ge
(b) current
(c) electric flux
(d) all of these
(140) S 1 unit of potential difference
(a) ampere
(b) Pascal
(c) Henry
(d) volt
(110) ERG is used to diagnose
(a) skin cancer
(b) abnormal behavior of brain
(c) diseases of eye
(d) Lungs cancer
(111) In relation $E=-\frac{V V}{V r}$ then negative sign indicate that the direction of E is along the
(a) increasing potential
(b) decreasing potential
(c) zero potential
(d) none of these
(112) The general expression for electric potential V_{r} at a distance r from q is
(a) $\mathrm{V}_{\mathrm{r}}=4 p \hat{\mathrm{I}} \frac{q}{r}$
(b) $\mathrm{V}_{\mathrm{r}}=\frac{1}{\mathrm{k}} \frac{\mathrm{q}}{r}$
(c) $\mathrm{V}_{\mathrm{r}}=k \frac{q}{r}$
(d) $\mathrm{V}_{r}=\frac{1}{4 p \hat{\mathrm{I}}_{\mathrm{o}}} \frac{r}{q}$
(113) ERG stands for
(a) electro graphy
(b) electro retinography
(c) electro radiography
(d) none of these
(114) The magnitude of electric field between two separated charged plates can be calculated by using
(a) $E=\mathrm{D} V d$
(c) $E=\frac{\mathrm{D} V}{c^{2}}$
(b) $E=\frac{\mathrm{D} V}{d}$ potelitia dire en ce between the plates.
(8) 1 os not change
(b) Increase
(c) Decrease
(d) None of these
(115) When a dielectric anateris is inserted between the plates of a capacitor, the

GRW-2022 (G-I)
(116) Th potential difference between two plates is 100 volts and separation of the plates 5 cm than potential gradient is

GRW-2022 (G-II)
(a) $2000 \mathrm{NC}^{-1}$
(b) $20 \mathrm{NC}^{-1}$
(c) $5000 \mathrm{NC}^{-1}$
(d) $2 \mathrm{NC}^{-1}$
(117) Negative of potential gradient is equal to:

MTN-2019 (G-II)
(a) Magnetic intensity
(b) Electric flux
(c) Magnetic flux
(d) Electric intensity
(118) Electro-Encepalo-Graphy (EEG) is the crapnostic terion the wring ser 2017 (a) eye
(c) brain
(b) healt
(d) luegs
(119) Electroret nograpiny sused for the lis gnosisor abnormality in the: BWP-2019 (G-II)
(a) Eyes
(b) Ears
(c) Throat
(d) Heart

BWP-2022 (G-II)
(a) Magnetic Field intensity
(b) Electric field intensity
(c) Electric force
(d) Gravitational force
(121) The absolute potential at a point distant 20 cm form a charge of $2 \mu \mathrm{C}$ is:BWP-2022 (G-II)
(a) $9 \times 10^{2} \mathrm{~V}$
(b) $9 \times 10^{3} \mathrm{~V}$
(c) $9 \times 10^{4} \mathrm{~V}$
(d) $9 \times 10^{5} \mathrm{~V}$
(122) The difference of potential energy between two points per unit charge is:LHR-2022 (G-I)
(a) Electrical potential
(b) Potential difference
(c) Absolute potential
(d) All of these

ENTRY TEST MCQS

(123) A and B are two points in an electric field. If the work done in carrying 4.0 coulomb of electric charge from A to B is $\mathbf{1 6 . 0}$ joule, the potential difference between A and B is
(a) Zero
(b) 2.0 V
(c) 4.0 V
(d) 16.0 V
(124) The large horizontal metal plates are separated by $4 \mathbf{m m}$. The lower plate is at a potential of -6 V .

What potential should be applied to the upper plate to create an electric field of strength $4000 \mathbf{~ V m}^{-1}$ Upwards in the space between the plates?
(a) +22 V
(c) +10 V

Topic 12.10:

(125)
1.6×10^{-2} is chueIto
Elecing Vold
(a) ${ }^{2} \mathrm{~F}$
(b) 1 volt
(c) 1.5
(d) $1 \mathrm{~N}-\mathrm{m}$
(120) Clectron volt is the unit of
(a) energy
(b) potential gradient
(c) rate of change of potential with distance
(d) both b and c
(127) A particle carrying a charge of 2 e falls through a potential difference of 3 V . The energy required by it.
(a) $9.6 \times 10^{-19} \mathrm{~J}$
(b) $9.6 \times 10^{-16} \mathrm{~J}$
(c) $1.6 \times 10^{19} \mathrm{~J}$
(d) $6.25 \times 10^{18} \mathrm{~J}$

PAST PAPER MCQS

(128) The electron volt (eV) is the unit of
(a) electric current
(c) electric potential
(b) electric en rey

The pouct of change and potential difterence is
SGD-2017 (G-II)
(a) flux
(b) current
(c) enersy
(d) power
(130) fan election ascelerated through a potential difference of 10 V , then energy gunea ${ }^{\text {on }}$ electron is:

FSD-2019 (G-I)
(a) $1.6 \times 10^{-20} \mathrm{~J}$
(b) 1.6 eV
(c) 10 eV
(d) $1.6 \times 10^{-19} \mathrm{eV}$
(131) Which one of the following relation is correct?

RWP-2019 (G-I)
(a) joule $=$ volt \times ampere
(b) joule $=$ coulomb $/$ volt
(c) joule $=$ volt $/$ ampere
(d) joule $=$ coulomb \times volt
(132) One coulomb charge contains the number of electrons

SWL-2017
(a) 6.25×10^{18}
(b) 1.6×10^{-19}
(c) 9×10^{9}
(d) 1.6×10^{19}
(133) A particle carrying a charge 2 e falls through a potential difference of 3 V . The energy acquired by it is :

MTN-2019 (G-I)
(a) $9.6 \times 10^{-18} \mathrm{~J}$
(b) $9.6 \times 10^{-19} \mathrm{~J}$
(c) $1.6 \times 10^{-19} \mathrm{~J}$
(d) $9.6 \times 10^{-17} \mathrm{~J}$
(134) A particle having a charge of 2 e falls through a potential difference of $\mathbf{3 . 0}$ volts.

BWP-2022 (G-I)
(a) 6.0 eV
(b) 5.0 eV
(c) 4.0 eV
(d) 8.0 eV

ENTRY TEST MCQS

(135) A charge of $\mathbf{0 . 1 0 \mathrm { C }}$ accelerated through a potential difference of 1000 V acquires kinetic energy of
(a) 200 J
(b) 10 J
(c) 100 J
(d) 100 eV

Topic 12.11:

(136) Electrestatic force as compaded to the grovitational torce is
(a) Ver vpar
(b) very strong
(c) equal
(d) half of the gravitational field

137 If the electic and gravitational force on an electron placed in a uniform electric iiend balance each other, then the electric intensity will be
(a) mg / q
(b) qg / m
(c) m / qg
(d) $q / m g$
(138) Gravitational force is an
(a) attractive force
(b) repulsive force
(c) nuclear force
(d) none of these
(139) Electrostatic force is a \qquad force
(a) attractive
(b) repulsive forct
(c) may be attractive or repulsive
(d) nore or these
(140) Gravitational force cannot be:

PASTBAFER MCOS
(a) mass dependont
(iv) distance dependent
(c) Shis Idec
(d) Stronger than electric force

TOE NAH:

Charge on an Electron by Millikan's Method

(141) The minimum charge on an oil droplet measured by Millikan's was equal to charge on
(a) proton
(b) neutron
(c) nucleus
(d) electron
(142) The charge on the droplet in Millikan's experiment was calculated by the formula
(a) $\mathrm{q}=\mathrm{mg} / \mathrm{dV}$
(b) $q=\frac{V}{m g d}$
(c) $q=m g d / V$
(d) $q=d / m g V$
(143) In Millikan's experiment, the oil drop can be suspended between two plates when gravitational force is equal to
(a) Magnetic force
(b) electric force
(c) Normal force
(d) all of these
(144) An electric field that balance the weight of an electron will act
(a) downward
(b) upward
(c) along the surface of sphere
(d) all of these
(145) The radius of droplet in Millikan's method can be given by
(a) $r^{2}=\frac{9 \eta v_{t}}{2 \rho g}$
(b) $r^{2}=\frac{3 \eta \nu_{t}}{2 \rho g}$
(c) $r^{2}=\frac{6 \pi \eta v_{t}}{2 \rho g}$
(d) $r^{2}=\frac{9 \pi \eta v_{t}}{2 \rho g}$
(146) According to Stoke's law
(a) $\mathrm{F}=\frac{4}{3} p \mathrm{r}^{3} f$
(c) $\mathrm{F}=6 \mathrm{ph} \mathrm{rv}$
(b) $\mathrm{F}=\mathrm{mgd}$
(147) The oitcpp inililian experiment, is suspended by
(a) nuciea force and g a vitationarorce
(b) gravitational force and coulomb force
(a) flectrostatic -orce and frictional force
(d) none of these

PAST PAPER MCQS

It is required to suspended a proton of charge ' q ' and mass ' m ' in an electric field the strength of the field must be:

LHR-2019 (G-II)
(a) $E=\frac{m g}{q v}$
(b) $E=\frac{m g}{q}$
(c) $E=\frac{q}{m g}$
(d) $E=\frac{q v}{B}$
(149) The mass of oil droplet in measuring charge in Millikar method is calcula ed by
(a) Stokes's law
(c) Newton's gravitational

(b) Cpulon'p: 1. W
(d) Faraday: 1 iaw

ENTPI IEST MCQS

(150) A priton (n a $\mathrm{s}=1.67 \times 10^{-27} \mathrm{~kg}$) on entering in a vertical electric field E is b) hancad. Then the electric field strength is
(a) $10^{-9} \mathrm{Vm}^{-1}$
(b) $10^{+7} \mathrm{Vm}^{-1}$
(c) $10^{-7} \mathrm{Vm}^{-1}$
(d) $10^{-8} \mathrm{Vm}^{-1}$

Topic 12.13, Topic 12.14:

Capacitor, Capacitance of a Parallel Plate Capacitor,

(151) The space between the plates of a capacitor is filled by
(a) Conductor
(b) insulator
(c) super conductor
(d) none of these
(152) If air is the dielectric between plates of a capacitor, by doubling the distance between the plates and reducing area to $\frac{1}{3}$ of the original value, its capacitance becomes
(a) 10 times
(b) 6 times
(c) $\frac{1}{6}$ times
(d) 90 times
(153) If air is replaced by a dielectric in parallel plate capacitor, then the potential difference
(a) decreases
(b) increases
(c) remain constant
(d) both a and b
(154) Equivalent capacitance is greater than individual capacitances in
(a) series combination
(b) Parallel combination
(c) both a and b
(d) none of these
(155) Capacitor stores energy in the form of
(a) electric field
(b) magnetic field
(c) both of these
(d) gravitationai field
(156) Capacitance of parallel plate capasitor dpe not ep ud updn

(a) separation of the plates
(b) ar ea of the plates
(c) medium between the plates
(d) hature of the materici of the plates
(157) The uit of capacitanse
(b) Farad
(6) Ω
(d) all of these
(158) Capacitance in the presence of medium is given by:
(a) $\frac{A \varepsilon_{r} \varepsilon_{o}}{r^{2}}$
(b) $\frac{A \varepsilon_{r}}{r^{2}}$
(c) $\frac{A \varepsilon_{r} \varepsilon_{o}}{d}$
(d) $\frac{A \varepsilon_{r}}{d}$
(159) The expression for dielectric constant is given by
(a) $\varepsilon_{r}=\frac{C_{\text {med }}}{C_{v a c}}$
(c) ε
 $C_{\text {mad }}$

(160) The abilit of a copactit ro store charges is called
(a. 1 ductaince
(b) capacitance
(6) ersistance
(d) conductance
1.1) 1 Pico-farad =
(a) $10^{-6} \mathrm{~F}$
(b) $10^{-12} \mathrm{~F}$
(c) $10^{-9} \mathrm{~F}$
(d) $10^{-15} \mathrm{~F}$
(162) If dielectric medium is placed between the plates of capacitor, its capacitance
(a) increases
(b) decreases
(c) remain same
(d) none of these
(163) When capacitors are connected in series then the effective capacitance
(a) decreases
(b) increases
(c) become zero
(d) none of these
(164) If the distance between the plates increases the capacitance
(a) increases
(b) decreases
(c) remain same
(d) none of these

PAST PAPER MCQS

(165) Coulomb per volt is called:

LHR-2021 (G-II)
(a) Ampere
(b) Joule
(c) Henry
(d) Farad
(166) Capacitance of parallel plate capacitor can be increased by.

MTN-2022 (G-II)
(a) decreasing area of plates
(b) increasing separation between plates
(c) increasing potential
(d) increasing dielectric material

ENTRY TEST MCQS

(167) The capacitance of a parallel plate capacitor is independent of
(a) Area of plates
(b) Nature of metal of plates
(c) Separation of plates
(d) Dielectric loctreen plite

(168) The graph shows the growth of charge with pot oit aiditernce beivee 1 lates. The area under the graph shows

(6) Capacitance
(b) Separation of plates
(c) Energy stored
(d) Electric intensity

Topic 12.15:

Electric Polarization of Dielectric

(169) The increase in the capacitance can be done due to
(a) parallel combination
(b) series combination
(c) polarization
(d) both a and c
(170) The dielectric consists of atoms and molecules which
(a) have electrically positive charge on the average
(b) have electrically negative chare on the average
(c) are electrically neutral on tho ary frige
(d) noro of these
(171) Two ectal ant oposite charges senarated by a small distance are said to be
(a) tripcle
(b) polaroid
(c) ronctpole
(d) dipole

172 hen molecules of the dielectric under the action of electric field become dipoles, then the dielectric is said to be
(a) unpolarized
(b) polarized
(c) charged
(d) none of these
(173) Due to polarization of the dielectric the capacitance of the capacitor.
(a) increases
(b) decreases
(c) zero
(d) no charge

PAST PAPER MCQS

(174) Due to polarization, electric field E in a capacitor:

GRW-2019 (G-I)
(a) increase
(b) decreases
(c) first increases then decreases
(d) remains same
(175) The space between the plates of the capacitor is filled by a dielectric of dielectric constant ' k '. The capacitance of the capacitor:

LHR-2022 (G-I)
(a) Increased by a factor ' k '
(b) Increased by a factor ' k ',
(c) Decreased by factor ' k '
(d) Remains unchanged

ENTRY TEST MCQS

(176) A capacitor of capacitance C is connected to battery of emf V_{0}. Without removing the battery, a dielectric of strength ε_{r} is inserted between the parallel plates of the capacitor C, then the charge on the capacitor is
(a) $C V_{0}$
(b) $\varepsilon_{\mathrm{r}} \mathrm{CV}_{0}$
(c) $\frac{C V_{0}}{\varepsilon_{r}}$
(d) None of these
(177) Due to polarization \qquad between the plates of capacitor \qquad
(a) E, decreases
(b) V, decrease
(c) σ, decrease
(d) All of these

Topic 12.16:

(178) In a che rged apscitor, the energy is stored in the form of
(a) r agneti) fiela
(b) electric field
(6) nuclear field
(d) gravitational field
(179) For a capacitor the charge per unit volume is called
(a) surface charge density
(b) volume charge density
(c) energy stored in the capacitor
(d) energy density
(180) When potential in a capacitor rises from 0 to V, then average potental aifference is
(a) V
(c) $\frac{V+V}{2}$
(b) -V
(d) $\frac{1}{2}$
(181) The express on for energy densty is
(a) $\frac{1}{2} \epsilon_{o}$
$=r \cdot-4 t^{-2}-x^{2}-1$
(b) $\in_{r} \in_{o} \frac{E^{2} A d}{2}$
(d) $\frac{1}{2} \frac{\Theta_{O} E_{r} E^{2}}{A d}$
(d) $\frac{1}{2} \epsilon_{\mathrm{o}} \epsilon_{\mathrm{r}} \mathrm{E}^{2}$
(182) \quad 1Farad $=$
(a) Cs^{-1}
(b) Cm^{-1}
(c) CV^{-1}
(d) VC^{-1}
(183) The energy stored in the capacitor given by
(a) $\frac{1}{2} \mathrm{CV}$
(b) $\frac{1}{2} \mathrm{CV}^{2}$
(c) $2 \mathrm{CV}^{2}$
(d) $\frac{1}{2} \mathrm{C}^{2} \mathrm{~V}$

PAST PAPER MCQS

(184) If the potential difference across two plates of capacitor is doubled, the energy in it will be:

LHR-2021 (G-I)
(a) Two times
(b) Eight times
(c) Four times
(d) Remains same
(185) A one farad capacitor is charged to 100 V and then discharge through $1 \mathrm{~K} \Omega$ resistance the total energy dissipated through resistor is

GRW-2022 (G-II)
(a) 5 kJ
(b) 10 kJ
(c) 2 kJ
(d) 100 kJ

ENTRY TEST MCQS

(186) A capacitor is fully charged and disconnected from cell. A dielectrir is maced between the plates of capacitor, such that polarization recuis. What happondum capacitance, voltage and energy fored in chrat it respeti ely?

Acaptitar is charged with a battery and energy stored is \mathbf{U}. After disconnecting battery another capacitor of same capacity is connected in parallel to the first capacitor. Then energy stored in each capacitor is
(a) U/2
(b) $U / 4$
(c) 4 U
(d) 2 U
(188) A capacitor having a capacity 2.0 micro farad is charged to 200 volts and then the plates of the capacitor are connected to a resistance wire. The heat prouzced injoules will be
(a) $4 \times 10^{4} \mathrm{~J}$
(c) $4 \times 10^{-2} \mathrm{~J}$

Topic 12.17

(b) $4 \times \frac{10}{10} 5$
(d) $2 \times 10^{-} \mathrm{J}$

Charging and riscnarging of a Capacitor

(189) If $R A$ is srall the n cepacitor will be charged and discharged
(a) $0 \times 1 y$
(b) with medium speed
(c) quickly
(d) a and c
(190) The product RC is called
(a) decay constant
(b) constant
(c) time constant
(d) resistance of capacitor
(191) The unit of RC is
(a) Ohm farad
(b) Coulomb
(c) Second
(d) both a and c

PAST PAPER MCQS

(192) If time constant in RC circuit is small, then capacitor is charged or discharged:

GRW-2019 (G-I)
(a) slowly
(b) rapidly
(c) at constant rate
(d) intermittently
(193) Second/ohm is equal to

DGK-2022 (G-I, II)
(a) Coulomb
(b) Farad
(c) Joule
(d) Ampere

ENTRY TEST MCQS
(194) When an RC circuit is connected across a battery amount of charge deposited on plates is \qquad .times the equilibrium charge after one time constant.
(a) 0.63
(b) 0.67
(c) 0.75
(d) 0.86
(195) A capacitor charges and discharges
(a) Rapidly
(b) Linearly
(c) Exponentially
(d) Logarithmically

ANSWER KEYS
(Topical Multiple Choice Questions)

1	A	21	A	41	B	61	A	81	B	101	C	121	C		D	16	B		
2	B	22	B	42	C	62	A	82	B	104	B	12	B		C				C
3	D	23	C	43	C	63	I	83			©	23	C	143	B	163	A	183	B
4	C	24	D	. 4	B	64	B		3	0	E		I)	14	I	164	B	184	C
5	B	25	B	45	D		C			105	C	175	C	145	A	165	D	185	A
6	A	26	\%		B		B			106	A	126	A	146	C	166	D	186	D
7	D	27	c	7	4	67	D	87	A	107	A	127	A	147	B	167	B	187	B
			B	B	B	68	C	88	C	108	A	128	B	148	B	168	C	188	C
	E	20	B	49	B	69	D	89	C	109	D	129	C	149	A	169	C	189	C
10	C	30	D	50	C	70	B	90	A	110	C	130	C	150	C	170	C	190	C
11	B	31	B	51	B	71	C	91	A	111	B	131	D	151	B	171	D	191	C
12	A	32	C	52	C	72	A	92	C	112	C	132	A	152	C	172	B	192	B
13	C	33	C	53	C	73	A	93	A	113	B	133	B	153	A	173	A	193	A
14	A	34	D	54	B	74	D	94	C	114	B	134	A	154	B	174	B	194	A
15	D	35	A	55	B	75	C	95	A	115	C	135	C	155	A	175	A	195	C
16	D	36	B	56	A	76	A	96	B	116	B	136	B	156	D	176	B		
17	C	37	D	57	C	77	D	97	C	117	D	137	A	157	D	177	D		
18	D	38	B	58	C	78	B	98	B	118	C	138	A	158	C	178	B		
19	B	39	C	59	C	79	D	99	B	119	A	139	C	159	A	179	B		
20	A	40	A	60	C	80	A	100	B	120	B	140	C	160	B	180	D		

KIPS TOPICAL SHORT QUESTIONS

12.1 COLOUMB'S LAW

(1) What is Inverse Square Law?

Ans: Inverse square law states tria a physical quantit i inversely propo tional to the square of the distance from the source of hat ohysical qu aticy.
i. Coulom, s 10 w $a \frac{-1}{r}$
ii. Gravitational law $\mathrm{F}_{\mathrm{G}} \propto \frac{1}{\mathrm{r}^{2}}$
(2) How the ornit of planets will be modified, if the planets were electrically charged?

An. A plarst wit maximum charge has central position and all other planets will start eibiting about it with different radii.
(3) Prove that Coulomb's force is a mutual force.

Ans: Coulomb's force is a mutual force, it means that force $\stackrel{u n v}{F}_{21}$, exerted on q_{2} by q_{1} would be equal and opposite to force $\stackrel{\vee}{F}_{12}$ exerted on q_{1} by q_{2} Let \hat{r}_{21} is the unit vector directed from q_{1} to q_{2} then
$\mathrm{F}_{21}^{\mathrm{uv}}=\mathrm{k} \frac{q_{1} q_{2}}{r^{2}} \$_{21}$
Let r_{12} is unit vector form q_{2} to q_{1} then $\frac{\mathrm{Luv}}{\mathrm{F}_{12}}=\frac{\mathrm{k} q_{1} q_{2}}{r^{2}} \$_{12}$
from the figure $\hat{r}_{12}=-\hat{r}_{21}$ put it in eq.
(2)
$\mathrm{F}_{\mathrm{F} 2}^{\mathrm{ulv}}=-\mathrm{k} \frac{q_{1} q_{2}}{r^{2}} \hat{r}_{21}$

comparing equations (1) and (3)
$\mathrm{F}_{21}=-\stackrel{\mathrm{F}}{12}^{\text {und }}$ thus proved.
(4) If the distance between two-point charges is halved, what will be the new value of force?
Ans: By Coloumb's law

$$
\begin{align*}
& \mathrm{F}=\mathrm{k} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{r^{2}} \tag{i}\\
& \text { If } \mathrm{r} \mathrm{~d}=\mathrm{r} / 2
\end{align*}
$$

So equation (i) becomes
$\mathrm{F} \phi=\mathrm{k} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{(r / 2)^{2}}$

$176:=41$
Hence ciew furce is four times the original force.
Define Coulomb's law.
Ans: Coulombs law is stated as "The force between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them."

If q_{1} and q_{2} are points charges and are separated by distance r , then according to coulomb's law.
F $\propto \mathrm{q}_{1} \mathrm{q}_{2}-----------------(i)$
$\mathrm{F} \propto \frac{1}{r^{2}}$ \qquad
From eq. (i) and (ii)
$\mathrm{F} \propto \frac{q_{1} q_{2}}{r^{2}}-$
$\mathrm{E}=\mathrm{K} \frac{\mathrm{M}_{2}}{r^{2}}$
Where K is constant of proportionality. Its value depends upon nature of medium between the charges and the system of units in which F,q and r are measured.
(6) What is the effect of medium between the charges on electrostatic force?

Ans: If the medium between charges is insulator, it is usually referred as dielectric. It has been found that the presence of dielectric always reduces the electrostatic force by a factor which is a constant for a given dielectric, this constant is known as relative permittivity and is represented by ε_{r}.
and

$$
F^{\prime}=\frac{1}{\epsilon_{r}} \frac{1}{4 \pi \epsilon_{\mathrm{o}}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}
$$

$$
F^{\prime}=\frac{1}{\epsilon_{r}} \mathrm{~F}
$$

(7) What is the coulomb's force between two similar charges if the distance between the charges is doubled?
Ans: Let q_{1} and q_{2} are two similar charges separated by a distance r, then force of repulsion \vec{F} between them is

$$
\overrightarrow{\mathrm{F}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}^{2}}{\mathrm{r}^{2}} \hat{\mathrm{r}}
$$

When distance between the charges is doubled then new force is

It is The forch be ween iwo similar charges, when distance between them is doubled.

$$
\overrightarrow{\mathrm{F}}^{\prime}=\frac{1}{4} \overrightarrow{\mathrm{~F}}
$$

This shows that "magnitude of force reduces by a factor of 4 and no change in the direction of force occur."

PAST PAPER SHORT QUESTION

(8) What is Coulomb's law and effect of dielectric on Coulomb's law?
(9) Describe the force or forces on a positive point charge when paced betwe paralal plates. (a) With similar and equal charges (b) Witi pposites and equal charges
(10) Define cledtictield

Ans. It is snace or region around an electric charge within Which its effect can be felt by placing a unit positive charge.
Dots surrounding the Positive charge indicates the presence of electric Field. The density of the dots is proportional to the Strength of the electric field at different
 points.
(11) What is electric intensity?

Ans: The electric field intensity at a point is defined as the force experienced by a unit positive test charge placed at that point.
Let \vec{F} be the force experienced by a positive test charge q_{o} placed at point P, then the electric intensity at P is given by

$$
\overrightarrow{\mathrm{E}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{q}_{o}}=\frac{\mathrm{N}}{\mathrm{C}}
$$

It is a vector quantity.

PAST PAPER SHORT QUESTION

(12) Show that $\mathrm{N} / \mathrm{C}=\mathrm{V} / \mathrm{m}$ OR Show that $\frac{1 \text { Volt }}{1 \text { meter }}=\frac{1 \text { Newton }}{1 \text { Coulomb }}$

LHR-2019 (G-I), RWP-2022 (G-II), BWP-2022 (G-II)
(13) What is electric intensity? What is its SI units?

LHR-2019 (G-II)
Define electric force and write its formula. Also give SI units.
MTN-2019 (G-ID)
Distinguish between electric field and electric field intensity.

12.3 ELECTRICHILD KHLS

(16) Definf einetic ficianmes What information do these lines provide?

Ans: Imagincty ines davn to in dicate the path of test charge when it is placed in the field of a sourge cha-ge de called clectric field lines.
Thingent iold line at a point gives the direction of electric field at that point and number of elecuic field lines passing through unit area gives the magnitude of field intensity.
(17) Write any two characteristics of electric field lines.

Ans: The characteristics of electric field lines are given below.
(i) Electric field lines originate from positive charges and end on negative charges.
(ii) The tangent to a field line at any point gives the direction of the electric field at that point.
(18) Comment on the uni-direction of electric line of force.

CGK-2017CM
Ans: The direction of electric field lines at ar y ngircan befound daving tagent on the field lines and as we kigw tangent at any ooint ha re onl. ©ne di ection whether line is curved or straight.
(19) Write five poperties of eiectric lines on torce.

SWL-2019, GRW-2019 (G-I), LHR-2022 (G-I), DGK-2022 (G-II)
$20 \sqrt{2} \mathrm{lectri} \mathrm{lic} \mathrm{l}^{2}$ lines provide information about the strength of the electric field. Describe electric field intensity in terms of field lines.

LHR-2021 (G-I)
(21) How a sensitive electric apparatus is shielded from electric fields?.

LHR-2021 (G-II)
(22) If a point charge ' q ' of mass m is released in a non-uniform electric field lines pointing in the same direction, will it make a rectilinear motion?

SGD-2017 (G-I), DGK-2017 (G-II), LHR-2022 (G-II)
(23) Electric lines of force never cross. Why?

SGD-2017 (G-I), BWP-2017 (G-I), DGK-2017, DGK-2022 (G-I), RWP-2022 (G-I)
Comment on the uni-direction of electric line of force.
DGK-2017 (G-II)

12.4 APPLICATIONS OF ELECTROSTATICS

(25) Write a short note on inkjet printer.

Ans: Tiny droplets of ink ejecting from nozzle of inkjet printer passes through 'charging electrodes' and 'deflecting plates. Whenever ink is not to be placed on the paper, computer turn on the charging electrodes, giving ink droplets a net charge. The deflecting plates divert them into gutter and whenever ink is to be placed on paper, computer turn off the charging electrodes, now neutral drops move straight to paper.
(26) What do you mean by Xerography?

MIRPUR (AJK) 2015
Ans: It is composed of two words 'xeros' and "graphos" meaning "dry writing". Therefore , ${ }^{12}$ copying process is called xerography.
In xerography, we use a dry black powde tooner) whin is given reative (idige and selenium coated cylinder when ex 00 ed to light get positive charge thentoner stick with the page and heating rollers are essor perinaten inperssion
(27) Write the mimes of main parts of relegraphy and Araw its diagram. MTN-2019 (G-II)

Ans: Photocorier consists of foil cowing pats.
i) Lamf
ii) Prum
(iii) Selenium surface
iv) Toner
v) Paper
vi) Rollers

PAST PAPER SHORT QUESTION

12.5 ELECTRIC FLUX

(30) Define electric flux and give its unit.

Ans: "The number of field lines passing through a certain element of area held perpendicular to the direction of electric field is known as electric flux through that area."

Or

The dot product of electric intensity and vector area.
It is denoted by ϕ. It is defined by the following relation:
$\phi=\vec{E} \cdot \vec{A}=\mathrm{EA} \cos \theta$. Its S.I unit is $\mathrm{Nm}^{2} \mathrm{C}^{-1}$.It is a scalar quantity.
(31) What are factors upon which electric flux depend?

Ans: It depends upon.
(1) Electric intensity
(2) Area of surface
(3) Orientation of surface relative to field. (The orientation is determined by angle between outward normal to surface and direction of electric field).
It is defined by the relation
$\Phi=\vec{E} . \vec{A}$.
(32) Mention two situations of vector area in electric flux.

Ans:
(i) When area is perpendicular to electric field:If an area is held perpendicular to electric field, then $\theta=0^{\circ}$
$\Phi_{e}=\mathrm{EA} \cos \theta$
$\Phi_{e}=\mathrm{EA} \cos 0^{\circ}$
$\Phi_{e}=\mathrm{CA}$
In this rithetich the numbe of lines passing through area is maxirhum.
(i:) When gea is parallel to electric field:-
If area is held parallel to electric field then number of lines passing through it is zero so we can write as
$\Phi_{e}=\mathrm{EA} \cos \theta$
as $\theta=90^{\circ}$
$=E A \cos 90^{\circ}$

$$
\Phi_{e}=0
$$

PAST PAPER SHORT QUESTION

What are factors upon which electric flux depends?

LHP 2077 (G-I), MTN 20 46M Mention two situations of vector area in electic firux. Define electric force and e ectric fin. Define eleftic flux also wr te down its sI ont.

DGK-2022 (G-II)
12.6 ELECTRACHLLY 12.7 GAUSS'S LAW

Docs eiectric flux through a closed surface enclosing a charge depend upon shape of the surface?
Ans: NO, Electric flux through the closed surface enclosing charge depend upon magnitude of charge and medium only.
(38) Find flux through a closed surface having no charge?

Ans: By Gauss's Law
$f_{e}=\frac{1}{e_{\mathrm{o}}} \mathrm{Q}$
$\mathrm{Q}=0$
Hence, Flux is also zero.
State Gauss's law.
Ans: "The flux through any closed surface is $\frac{1}{\epsilon_{o}}$ times the total charge enclosed in it."
i.e.

$$
\phi_{\mathrm{e}}=\frac{1}{\epsilon_{o}} \times \mathrm{Q}
$$

If $\phi_{1}, \phi_{2}, \phi_{3}, \ldots \ldots, \phi_{\mathrm{n}}$ denote the fluxes due to charges $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \ldots \ldots \ldots \mathrm{q}_{\mathrm{n}}$ respectively then total flux through this closed surface is calculated as

$\phi_{\mathrm{e}}=\phi_{1}+\phi_{2}+\ldots \ldots . .+\phi_{\mathrm{n}}$
$=\frac{q_{1}}{\epsilon_{0}}+\frac{q_{2}}{\epsilon_{0}}+\ldots \ldots \ldots . .+\frac{q_{n}}{\epsilon_{0}}$
$=\frac{1}{\epsilon_{0}}\left(\mathrm{q}_{1}+\mathrm{q}_{2}+\ldots \ldots .+\mathrm{q}_{\mathrm{n}}\right)$
$=\frac{1}{\epsilon_{0}} \sum^{\mathrm{n}} \mathrm{q}$
$=\frac{1}{\sqrt{n}} \mathrm{x}$ total chatge enciosed by surface.
12.8 APPLICATIONS OF GAUSS'S LAW
(40) Find electric intensity of field inside a hollow charge sphere.

Ans: $\Phi_{e}=\frac{q}{\varepsilon_{0}}$

$$
=\frac{0}{\varepsilon_{0}}(\text { Since } \mathrm{q}=0)
$$

Since (D) $=0$

$\vec{F} \cdot \overrightarrow{1}=0$

$$
\vec{E}=0
$$

Thus, interior of a hollow charged metal surface is a field free region. It means any apparatus placed within a metal enclosure is shielded from electric fields.
(41) What is the effect on electric field intensity if surface charge density of infinite sheet of charge is increased?
Ans: Electric field intensity near an infinite sheet of charge depends upon surface charge density by formula

$$
\mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}
$$

i.e $\quad E \propto \sigma$

Hence, electric field will increase by increasing the surface charge density.

PAST PAPER SHORT QUESTION

(42) Is $\overrightarrow{\mathrm{E}}$ necessarily zero inside a charged rubber balloon if balloon is spherical? Assume that charge is distributed uniformly over the surface.

LHR-2017(G-I), LHR-2021 (G-II), RWP-2022 (G-II)
(43) Find electric intensity of field inside a hollow charge sphere.

GRW-2019 (G-II), DGK-2022 (G-I), LHR-2022 (G-II)
(44) State Gauss's law of electric flux. Write down it mathematical form.

12.9ELECTRIGRTMENIAL

(45) What is meant by equipo en tiafriace 1 o the intelsect cach oner?

Ans: If the potential arovery point on the surrace is same, then it is called equipotential surface. It is in poss ib fo two surfaces to intersect each other because there would be taro Palues of poten tiat at a single point, which is not possible.
If (u): Isolute potential at a point is zero, can Electric Intensity be zero or not?
If we consider a point midway between two equal and opposite charges, then electric potential at that point is zero, but electric intensity has specific value.
But, If the point lies at infinite distance from a charged body, then both potential and Electric Intensity would be zero.
(47) What do EEG and ERG stand for? Between which two quantities these graphs are obtained.

Ans: EEG stands for electro encephalography and ERG stands for electro rano grap For both of these graph is drawn between potential difference zau *ind
(48) Prove that $1 \frac{\text { Volt }}{\text { meter }}=1 \frac{\text { newton }}{\text { coulomb }}$

Ans:
L.H.S. $=\frac{\text { Joule/coulomb }}{\text { meter }}$

$\frac{\text { newton }}{\text { coulomb }}=$ R.H.S
Thus, $\frac{\text { Volt }}{\text { meter }}=\frac{\text { newton }}{\text { coulomb }}$
(49) Define electric potential energy.

Ans: It is defined as the energy stored in the charge ' q ' by virtue of its position in an electric field. Let V be the electric potential at a point in an electric field then the electrical potential energy will be given by

$$
\text { Electric P.E. }=\mathrm{U}=\mathrm{qV}
$$

The unit of electric potential energy is joule.
(50) Define absolute potential. Give its unit.

Ans: Absolute Potential:
"The amount of work done in bringing a unit positive charge from infinity to a point against the electric field with constant velocity is called absolute electric potential at that point."
Unit:
Absolute electric potential is expressed in unit of "volt" defined as "joule per coulomb." i.e $1 \mathrm{~V}=1 \frac{\mathrm{~J}}{\mathrm{C}}$.
(51) Define the term potential gradient?

Ans: It is defined as the change in potential w.r.t. distance
$E=-\frac{\Delta V}{\Delta r}$
The quantity $\frac{\Delta V}{\Delta r}$ gives maximum rate of change of potential with aistance distance between two plates is minimum. I 15 called af potentig gradient. So electric intensity is equal to nesative of sradient of potential.
Negative sign indicates that the 前ect on of F is alens decre as ing potential.
(52) Differentiate between elect ic po ential and electic potential difference. GRW-2019 (G-I)

Ans: "Absoluteptertial melectric potintiai any point in an electric field is equal to the work done in bringing annit tre hage fom infinity to that point keeping it in equilibrium" is called rectric poten ia $2+$ that point.
P) ter itaifference between two points A and B is given as.
$\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=\frac{W_{A B}}{q_{o}}$
If we take point A is at infinity, $V_{A}=0$. So the electric potential at point B is

$$
\begin{aligned}
\mathrm{V}_{\mathrm{B}}-0 & =\frac{W_{B \infty}}{q_{o}} \\
\mathrm{~V}_{\mathrm{B}} & =\frac{W_{B \infty}}{q_{o}}
\end{aligned}
$$

By dropping the subscript or simply

$$
\mathrm{V}=\frac{V}{7}
$$

Both poten ial ard potentid diterence are scalar quantities because both W and q are scalars.
Howe (t).at $E=-\frac{\Delta V}{\Delta r}$
GRW-2019 (G-II)
Let us consider electric field between two oppositely charged parallel metal plates.
The P.D. b / w these plates is
$\Delta \mathrm{V}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}$
$\Delta \mathrm{V}=\frac{W_{A B}}{q_{o}}$.
$\mathrm{W}_{\mathrm{AB}}=\stackrel{q_{o}}{F} \cdot \vec{d}$
$=\mathrm{Fd} \cos \theta$
$=\mathrm{Fd} \cos 180^{\circ}\left(\right.$ since $\left.\theta=180^{\circ}\right)$

$\mathrm{W}=-\mathrm{Fd} \quad\left(\cos 180^{\circ}=-1\right)$
-ve sign indicates that F must be applied opposite to $\mathrm{q}_{0} \mathrm{E}$, so that the charge remains in equilibrium.
Since $F=E q_{0}$
So $W_{A B}=-q_{o} E d$
By putting value of W_{AB} in eq (i) we get
$\Delta \mathrm{V}=-\frac{q_{o} E d}{q_{o}}$
$\Delta \mathrm{V}=-\mathrm{Ed}$
$\mathrm{E}=-\frac{\Delta \mathrm{V}}{d}$
If plates A and B are separated by infinitesimally small distance Δr, the eq above comes as.

$$
\begin{equation*}
\mathrm{E}=-\frac{\Delta V}{\Delta r} . \tag{ii}
\end{equation*}
$$

PAST PAPER SHORT QUESTION

(54) The potential is constant throughout a given region of space. Is the electric iiela zero mzero in this region? Explain. LHR-2017(G-I), SCD-201R(C-II), DCK-2n22.8-I)
(55) Differentiate between electric poten (iai) and electrichoential dif er ence. cew-2019 (G-I)
(59) Define potential gradient and show that $E=-\frac{\Delta V}{\Delta r}$
(60) What is potential gradient? Give its units.

FSD-2019 (G-I), FSD-2022 (G-I)
BWP-2016 (G-I), SWL-2016, 2017
(61) Comment on electric field in region of constant potential.
(62) You follow an electric field line due to a positive point charge. Do clectric fision tia
(63) What is EEG and ERG?
(64) Electron volt a uni of energy or potential difference? Explain?

Ans: It is unit of er erg., which is used in atomic physics. It is the amount of energy lost or gaind b an election, when it is moved b / w two points having a P.D of one volt. $1-\mathbb{V}={ }^{1} .6 \quad 10^{-19} \mathrm{~J}$
6.5 A particle having a charge of 20 electrons on it, falls through a potential difference of 100 volts. Calculate its energy in joules.
Ans: The energy will be

$$
\mathrm{E}=\mathrm{q} \Delta \mathrm{~V}
$$

When $\mathrm{q}=20 \mathrm{e} \& \Delta \mathrm{~V}=100 \mathrm{~V}$
is $\quad \mathrm{E}=(20 \mathrm{e})(100 \mathrm{~V})$

$$
\mathrm{E}=2000 \mathrm{eV}
$$

But $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
is $\quad \mathrm{E}=2000 \times 1.6 \times 10^{-19} \mathrm{~J}$

$$
\begin{aligned}
& =3200 \times 10^{-16} \mathrm{~J} \\
\mathrm{E} & =3.2 \times 10^{-16} \mathrm{~J}
\end{aligned}
$$

(66) Define electron volt and prove that $1 \mathrm{eV}=1.6 \times \mathbf{1 0}^{-19} \mathrm{~J}$

Ans: "One electron volt is the amount of energy acquired or lost by an electron when it is displaced across two points having P.D one volt".
When a particle of charge q moves from point A with potential V_{A} to point B with potential V_{B} keeping it in equilibrium, the change in P.E of the particle is

$$
\begin{aligned}
& \Delta \mathrm{U}=\mathrm{q}\left(\mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right) \\
& \Delta \mathrm{U}=\mathrm{q} \Delta \mathrm{~V}
\end{aligned}
$$

If no external force acts on charge to maintain equilibrium, the change in P.E appears in the form of change in K.E i.e.

$$
\Delta \mathrm{K} . \mathrm{E}=\mathrm{q} \Delta \mathrm{~V}
$$

For an electron $\mathrm{q}=\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ and $\Delta \mathrm{V}=1$ volt

$$
\Delta \mathrm{K} \cdot \mathrm{E}=\mathrm{e} \Delta \mathrm{~V}
$$

$$
=\left(1.6 \times 10^{-19} \mathrm{C}\right)(1 \text { volt })
$$

$$
=1.6 \times 10^{-19} \mathrm{C} \times \frac{J}{C}
$$

$\Delta . \mathrm{K} . \mathrm{E}=1.6 \times 10^{-19} \bigcirc$
This energy is called 1 electren sc
(67) Conver Joute into elleron lont

GRW-2014
Ans: As we know

$$
\begin{aligned}
& \text { Iov }=1.6 \times 10^{-19} \mathrm{~J} \\
& \frac{1}{1.6 \times 10^{-19}} \mathrm{eV}=1 \mathrm{~J} \\
& 6.25 \times 10^{18} \mathrm{eV}=1 \mathrm{~J} \\
& \text { PAST PAPER SHORT QUESTION }
\end{aligned}
$$

(68) A particle carrying a charge of 2 e falls through a potential difference of 3.0 V . Calculate the energy acquired by it.

SGD-2017 (C-II), SWL
Define electron volt and prove that $1 \mathrm{eV}=16 \times 10^{-19} \mathrm{~J}$.

12.11 Elchtical traviationsporces

(70)

Ans:
R1 G TLATEATION FORCE
ELECTRIC FORCE

1. eis only attractive.
F_{e} is attractive between opposite charges while repulsive between similar charges.
F_{G} is given by $F_{G}=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} \quad \mathrm{~F}_{\mathrm{e}}$ is given by $\mathrm{F}_{\mathrm{e}}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}$

Constant G is very small i.e $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$	Constant is very large i.e. $\mathrm{k}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
$\mathrm{~F}_{\mathrm{G}}$ is very weak.	F_{e} is very strong.
F_{G} can not be shielded.	F_{e} can be shielded.
$\mathrm{F}_{\mathrm{G}}=10^{-36} \mathrm{~F}_{\mathrm{e}}$	

(71) What is the similarities between F_{e} and F_{g} ?

Ans:

- Both Follow inverse square law
- Both are long range forces
- Both are basic forces of nature
- Both are conservative forces

PAST PAPER SHORT QUESTION

(72) What are similarities between electrostatic force and gravitational force? LHR-2017 (G-I)
(73) Give a comparison of electric and gravitational forces. . LHR-2021 (G-II), DGK-2022 (G-I)
(74) What are the similarities and difference between electric and gravitational forces?
(75) Write two differences between electrical and gravitational forces.

12.12 CHARGE ON ANELNETYMNMEMMLTENSMETHOD

(76) Describe the princinte of Milik an s wil deon nethod.

Ans: the basiep ine:ple of Mikan soin 'rop method is that the gravitational force ' Fg ' acting on the cropet is equal the the ctrical force

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{e}}=\mathrm{F}_{\mathrm{g}} \\
& \mathrm{qE}=\mathrm{mg}
\end{aligned}
$$

12.13 CAPACITOR

(77) Define Capacitance of a capacitor? Write down its units.

Ans: Capacitance:
"Ability of a capacitor to store charge is called capacitance of a capacitor."
It is denoted by "C." In quantitative terms, it is defined as "magnitude of charge stored on one plate of capacitor per unit applied voltage."

$$
\therefore \quad \mathrm{C}=\frac{\mathrm{Q}}{\mathrm{~V}}
$$

Units: S.I unit of capacitance is Thad (F) dined as "Chatge of one coulombs, given to one of the piates of a paill el plate capacion, produees a potential difference of one volt between them.

$$
\frac{1 F}{1 F}=1 \frac{\mathrm{C}}{\mathrm{~V}}
$$

Ir oratacal applications submultiples of farad like $\mathrm{pF}, \mathrm{nF}, \mu \mathrm{F} \& \mathrm{mF}$ are used as unit of capacitance.
(18)

What is capacitor? Define unit of capacitance.
SGD-2015
Ans: "A device which is used to store an electric charge and energy is called capacitor"

Unit of capacitance:
S.I unit of capacitance is farad (F) defined as one coulomb per volt.

$$
1 \mathrm{~F}=1 \frac{\mathrm{C}}{\mathrm{~V}}
$$

PAST PAPER SHORT QUESTION

12.14 CAPACITANCE OF A PARALLEL PLATE CAPACITOR

(81) Why does capacitance of a capacitor increase when a dielectric material is inserted between its plates?

FSD-2012
Ans: When dielectric is introduced between plates of charged capacitor then it will be polarized and atoms become dipole which have electric field opposite to external electric field between plates so resultant electric field decreases

$$
\mathrm{E}=\frac{\Delta \mathrm{V}}{d}
$$

So Potential difference between pates decreaks due to decease in electric field strength then by formula

(82) Kiow will capacitance of parallel plate capacitors be affected if area of plates is dsalles and separation between them is halved?

FSD-2013
As we know that

$$
\begin{equation*}
\mathrm{C}_{\mathrm{vac}}=\frac{A \varepsilon_{0}}{d} \tag{i}
\end{equation*}
$$

As given

$$
\begin{aligned}
A^{\prime} & =2 A \\
d^{\prime} & =\frac{d}{2}
\end{aligned}
$$

So equation (i) becomes

$$
C^{\prime}=\frac{2 A \varepsilon_{o}}{d / 2}
$$

$$
C_{C^{\prime}}^{\prime}=-=4 C
$$

Hence, capacitance becomes four times
(83) Write down the factors on which capacitance of capacitor depends upon.

Ans: As we know that $\quad \mathrm{C}_{\mathrm{vac}}=\frac{A \varepsilon_{0}}{d}$
Capacitance of capacitor depends upon the following factors.
(i) Area of plates of capacitor
(ii) Separation between the plate
(iii)Medium between the plates

12.15 ELECTRIC POLARIZATION OF THE DIELECTRIC

(84) What is meant by Electric polarization?

Ans: "The phenomenon, in which atoms/molecules of a material become electric dipoles on introducing that material in an externally applied electric field, is known as Electric polarization."
As its result,
(i) Atoms/molecules are elongated along the applied electric field.
(ii) Net electric charge appears on the outer face of the surface of the material.
(85) What changes takes place when polarization of Dielectric occurs?

Ans: Following changes take place:
(i) Atoms/molecules become electric dipoles
(ii) Net charge appears on the onte surface of dielectrip, but as ; wive, it remains electrically neutral.
(iii)Electio field is produced in the nside as well as outside of the dielectric, opposite to the Pp, ied elect ric fielc.
What is Dipol.
SGD-2013
Ta: Nho enc. but opposite charges separated by small distance are known as dipole

(87) What is polarization and how dipoles are formed in dielectric?

RWP-2014

Ans: Dielectric consists of atoms and molecules which are electrically neutral. In the absence of electric field, the centre of positive and negative charge coincides. But when moreos of dielectric are placed in electric field between the plates of rpaci or then there is some displacement occur in the center of negat ve and renter of positive charge. Therefore, molecules become dipoie and siuistaner so said tal bel polarized and process is called elect ic polarization.
Dipole:
Two equal and upposite charges separated by small distance ire paid io iom creole.

PAST PAPER SHORT QUESTION

(i8) Define and write relation for dielectric constant in terms of capacitances of a capacitor.
(89) What is meant by electric polarization?

LHR-2022 (G-II)

12.16 ENERGY STORED IN A CAPACITOR

(90) What will be effect on the energy stored by capacitor if potential difference between the plates of capacitor becomes double?
Ans: As we know that

$$
\mathrm{U} .=\frac{1}{2} C V^{2}
$$

If V become double then energy stored becomes four times
(91) Prove that $\mathrm{U} .=\frac{1}{2} C V^{2}$

Ans: When $\mathrm{Q}=0$ then potential difference $=0$
and when charge $=\mathrm{Q}$ then let potential difference $=\mathrm{V}$
Thus, average potential difference $=\frac{0+V}{2}=\frac{V}{2}$
But potential difference $=\frac{P \cdot E}{q}$
Then
$\frac{P \cdot E}{q}=\frac{V}{2}$
or

As

12.17 CHARGING AND DISCHARGING OF CAPACITOR
(92) Show that $\mathrm{RC}=\mathrm{t}$?

Ans: As,

$$
\begin{array}{ll}
\mathbf{V}=\mathbf{I R} & \\
\mathbf{V}=\frac{\mathbf{q}}{\mathbf{t}} \cdot \mathbf{R} & \mathrm{Qq}=\mathrm{CV} \\
\mathbf{t}=\frac{\mathbf{q}}{\mathbf{V}} \mathbf{R} & \frac{q}{V}=C
\end{array}
$$

$$
t=R C
$$

(93) What is yle of eapacitor in working of wind hield wipers of cars? OR Why is pilicipehnd the yorking of wind shield wipers of cars?
Ans: The charging, discharging of a capacitor enables some wind shield wipers of cars to be used intern itenty during a light drizzle. In this mode of operation the wipers remain off If a wile and then turn on briefly. The timing of the on-off cycle is determined by the time constant of a resistor-capacitor combination.
(94) What depend on the slow or fast charging discharging of a capacitor?

Ans: Slow or fast charging, discharging of a capacitor depends on value of resistance connected across it in R-C series combination. For slow charging, discharging, high resistance is connected, across R-C series combination and for fast charging, discharging, low resistance is connected in this combination.
(95) Define time constant for RC circuit. Also draw (q-t) graph for charging capacitor in RC circuit.

Ans: This time $\mathrm{t}=\mathrm{RC}$ after which the charge on the capacitor grows to 0.63 times of its maximum value is called time constant of the capacitor.
(96) The time constant of a series $R C$ circuit is $t=R C$. Verify that an ohm times farad is equivalent to second.

SWL-2013
Ans: Ohm's law in terms of potential difference V , current I and resistance R can be written as, $\mathrm{V}=\mathrm{IR}$
Putting $I=\frac{q}{t}$, this equation transforms into the equation, $\mathrm{V}=\frac{\mathrm{q}}{\mathrm{t}} \mathrm{R}$
$\mathrm{V} \times \mathrm{t}$ or

$$
\mathrm{R}=\frac{\mathrm{V} \mathrm{\times t}}{\mathrm{q}}
$$

According to equation $\mathrm{q}=$ Multiplyirg quation (i) and (iil)

$$
R C=-\frac{x t}{q}=t
$$

Ferce 1 bhr xi farad=1 second
$y \mathrm{he}$ eOhms is the unit of resistance R

PAST PAPER SHORT QUESTION

(97)

Define time constant for RC circuit. Also draw (q-t) graph for charging capacitor in RC circuit.

BWP-2017 (G-I)
(98) How much is the amount of charge at start of discharging of capacitor and start of charging of a capacitor.

Prove that 1 ohm $\times 1$ farad $=1$ second BGK 2017 C
Prove that 1 ohm $\times 1$ farad $=1$ second \quad RwR-2022 $(9-1,8)$

