

N

N

	(10)	The drift velocity is of the order of	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		(a) $10^{-2} \mathrm{ms}^{-1}$	(b) 10^{-5} ms^{-1}
		(c) 10^{-3} ms^{-1}	(d) 10^{-4} ms^{-1}
	(11)	The velocity of free electrons at room tern	perature due to their thermal motion is
		(a) few km per sec $\bigcirc \bigcirc \bigcirc \bigcirc$	(b) severa' hundred kin per sec
		(c) several km per sec	(d) se veral meter per sec
	(12)	The conventional current is due to flow of	
		(a) positive charge	(b) negative charge
		(c) both a and b	(d) none of these
	(13)	The speed of randomly moving electrons of	depends upon
N	(NN)	(a) velocity	(b) acceleration
	UU	(c) temperature	(d) all of these
)		PAST PAI	PER MCQS
	(14)	The drift velocity of electrons is of the order of	(DGK-2017, MTN-2019, GRW-2019)
		(a) 10^{-2} m/s	(b) 10^{-3} m/s
		(c) $10^3 \mathrm{m/s}$	(d) $10^6 \mathrm{m/s}$
	(15)	The velocity of an oscillating charge as it moves t	to and fro along the wire is:
	(10)		(LHR-2019)
		(a) Infinite	(b) Constant
		(c) Changing	(d) Zero
	(16)	A battery moves a charge of 400 C in a circuit in	time 50 seconds. The current will be
	(10)		(GRW-2022)
		(a) 2A	(b) 8A
		(c) 20A	(d) 200A
	(17)	The current which flows from a point at higher	potential to a point at lower potential is called
	()		(SGD-2017)
		(a) electric current	(b) conventional current
		(c) either of these	(d) none of above
		ENTRY T	EST MCQS
	(18)	How many electrons per second constitute a cur	rent of one micro ampere?
		(a) One electron	(b) 10^{-6} electrons
		(c) 10^6 electrons	(d) 6.25×10^{12} electrons
	(19)	A typical value of drift velocity is	
		(a) 1 mm s^{-1}	(b) 1 m s^{-1}
		(c) 10 m s^{-1}	(d) 1002 km s^{-1}
	Topic	13.2 & 13.3:	
		Source of Current and	<u>Effects of Current</u>
	(20)	A source of constant current joined across	s a circuit produces
		(a) highly potentia	(b) low potential
		(c) steady poten ial difference	(d) zero potential
	(21)	Resistor is a device which convert electric	energy to
R	181	(a) beat energy	(b) chemical energy
$\left[\right]$	90	(c) elastic energy	(d) nuclear energy
-	(22)	Heating effect of current is given by	
		(a) $H = I^2 Rt$	(b) $H = P t$
		(c) $H = V I t$	(d) all of these

Current Electricity

(23)	In electrolyte, the current flows due to me	otion of	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(a) proton	(b) electron	CONN
	(c) proton and electron	(d) positive and negative one	(COND-
(24)	Identify the incorrect statement	$1 - \pi \Gamma_0 N V (0)$	0
	(a) conventional current flow from -ve term	inal to theve terminal of a battery	
	(b) current in a metal is due to flow of electric	rond U U U	
	(c) current in solution is due to $+ve$ and $-ve$	1011	
	(d) current is the rate of flow charge	-	
(25)	In electrolysis process the CuSO ₄ deposite	ed at	
- OT	(a)anode	(b)cathode	
MANN	(c)neither cathode nor anode	(d) either a or b	
(26)	Thermocouple converts heat energy into		
0.0	(a) P.E	(b) K.E	
	(c) electrical energy	(d) nuclear energy	
(27)	Solar cells convert energy in	nto electrical energy	
	(a) solar	(b) heat	
	(c) mechanical	(d) chemical	
(28)	Electrical generator convert	_ energy into electrical energy	
	(a) solar	(b) heat	
	(c) mechanical	(d) chemical	
(29)	In electrolysis process, the vessel contain	ining the two electrodes and the	e liquid is
	called		
	(a) ohm meter	(b) voltameter	
	(c) ammeter	(d) galvanometer	
(30)	The liquid which conducts electric current	it is called	
	(a) cathode	(b) anode	
	(c) electrolyte	(d) electrode	
	PAST PA	PER MCQS	
(31)	The most common source of alternating voltage	eis:	(LHR-2022)
	(a) Motor	(b) Cell	
	(c) Generator	(d) Thermocouple	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(32)	Thermo-couples produce electric energy by:		(LHR-2022)
	(a) Heat	(b) Chemical energy	CONDE
	(c) Sunlight	(d) Mechanical energy	000
(33)	The heat produced by the passage of current fh	rough a resistor is.	(BWP-2022)
	(a) 1^2Rt	(b) IR ² t	
	(c) 1 ² R		
	ALLI O LI LENTBY 4	EST MCQS	
(34)	A heater coil is xit into two parts of equal lengt	th and one of them is used in the heater	r. The ratio
- OK	of the heat produced by this half coil to that by t	he original coil is	
NNN	(d)2:1	(b) 1:4	
MN ON	(c) 1:2	(d) 4:1	

Topic 13.4:

		(c) $\rho = \frac{RL}{A}$	(d) $\rho = \frac{L}{RA}$	aomin
	(55)	Resistivity depends upon the	00/121	(CODD-
	(00)	(a) length	(b) area ()	0000
		(c) temperature	(d) both a and b	
	(56)	The S.I unit of temperature co-efficient of	repstivity is	
	(20)	(a) K^{-1}	$C^{\circ -1}$	
		(c) F°	(d) $K^{-1}m$	
	(57)	The reciprocal of resistivity is called		
		(s) reactivity	(b) conductivity	
MA	101	() both a and b	(d) resistance	
NN) '	(58)	The unit of resistivity is	(u) resistance	
0.0	(50)	(a) K^{-1}	(b) ohm m	
		(a) \mathbf{K}	$(\mathbf{d}) \operatorname{ohm}^{-1}\mathbf{m}$	
	(50)	Inspectors can easily check the reliability	of a concrete bridge made with	
	(39)	(a) silver fibers	(b) carbon fibers	
		(a) sold fibers	(d) eluminium fibers	
	$(\boldsymbol{\epsilon} 0)$	(c) gold libers	(u) aluminum moers	
	(00)	(a) sheep a m	(b) $m h_{2} m^{-1}$	
		(a) $1 - 1 - 1$		
	$\langle (1) \rangle$	(c)onm m	(d) both b and c	
	(61)	The resistance of conductor does not depe	nd upon	
		(a) current	(b) length	
		(c) area	(d) diameter	
	(62)	Which of the following have the same tem	perature coefficient of resistivity	
		(a) iron and silver	(b) platinum and silver	
		(c) iron and platinum	(d) silver and gold	
	(63)	The substance whose resistance decrea	ases with increase in temperat	ure have
		temperature co-efficient		
		(a) negative	(b) positive	
		(c) zero	(d) infinite	
	(64)	Which of the following metal has the lowest	value of temperature coefficient of r	esistivity
		(a) silver	(b) gold	ROUND
		(c) copper	(d) aluminium	(GODD
		PAST PAI	PERMEQS	0
	(65)	When a wire of length ' ℓ ' and resistance 'R' is a	cut into two xuul par's ther resistivity (of each
		part		(SWL-2017)
		(a) becomes half	(b) remains unchanged	
		(c) becomes two times	(d) becomes four times	
	(66)	The wire of resistance R is cut into two equal par	rts, the resistance of each part becomes	R/2, what
-	nR	happens to its relistivity.		(DGK-2017)
NA	1/1/1	(a) becomes double	(b) remains same	
NN)	00	(c) becomes half	(d) becomes 4 times	
0	(67)	A substance having the negative temperature co	efficient of resistivity out of the followin	g is:
		(a) iron	(b) tungston	(BWP-2017)
			(\mathbf{D}) tungsten $(\mathbf{J}) = -14$	
		(c) carbon	(a) gold	

	(68)	If the length of the conductor is doubled and its	cross sectional area is halved, its conductance will				
		(a) Increases four times(c) Become one-halfENTRY 7	(b) Becomes one-fourth (d) Remains unchanged EST MCCS				
	(69)	Three resistances, each of 1Ω are joined in para	The such combinations are put in series.				
	()	The resultant resistance is					
		(a) 9Ω	(b) 3Ω				
		(c) 1Ω	(d) $1/3\Omega$				
	(70)	. urre: 2-chin resistors are connected to form a triangle. The resistance between any two corners					
AN	NM.		3				
MA	0 -	(a) 6Ω	(b) $\left(\frac{3}{4}\right) \Omega$				
-			4				
		(c) 2 Ω	(d) $(\frac{1}{3})$				
	Topic	13.6:					
		Colour Code of Car	bon Resistance				
	(71)	The colour code of carbon resistors consis	sts of				
		(a) 3 bands	(b) 4 bands				
		(c) 5 bands	(d) 7 bands				
	(72)	The first band of carbon resistor indicates	S				
		(a) zero digit	(b) resistivity				
		(c) first digit of numerical value	(d) tolerance				
	(73)	The third band indicates					
		(a) zero digit	(b) decimal multiplier				
		(c) first digit	(d) tolerance				
	(74)	Silver band shows the tolerance of					
		(a) $\pm 10\%$	(b) $\pm 5\%$				
		(c) ± 20	(d) ±25 %				
	(75)	A zero ohm resistor indicated by single					
		(a) blue colour	(b) black colour				
		(c) green colour	(d) yellow colour				
	(76)	The wounded wire over an insulating cyli	nder of theostat made of				
		(a) silver	(b) goid				
	< 	(c) manganese	(d) manganin				
	(77)	The thernustor convert the change of tem	perature into				
	o Th	(a) heat energy	(b) light energy				
ant	$NN\Gamma$	of solution energy	(d) electrical voltage				
NN	ரல்	If there is no fourth band is located on call $(a) + 10.9$	rbon resistor then its tolerance will be				
0 -		(a) $\pm 10\%$	(U) ±3 % (J) + 25 %				
		(c) ± 20	(a) $\pm 25\%$				
	(79)	wny snould a resistance be introduced in	a circuit in series deliberately?				
		(a) to increase current	(D) to decrease current				

	(c) to control current	(d) none of these	
(80)	Why should different resistances be	added in series in a circuit	
(00)	(a) to increase voltage	(b) to decrease voltage	> (C(U))
	(c) to divide voltage	(d) all of the above	0.1000
(81)	Rhostat can be functioned as		
(01)	(a) variable resister	(h) potential livider	
	(a) beta a unc h		
(93)	(c) bout a and b	(u) enn	
(82)	I nermistors are resist		
0.0	(a) current	(b) voltage	
IMM	(c) near sensitive	(d) all	
1 / (83)	Thermistors with high negative	temperature coefficient are ver	y accurate for
	measuring low temperature		
	(a) 10 K	(b) 20 K	
	(c) 30 K	(d) 40K	
	PAS	ST PAPER MCQS	
(84)	The numerical value of black color	in carbon resistors is:	(LHR-2017)
	(a) 0	(b) 1	
	(c) 2	(d) 3	
(85)	Thermistors with high negative tem	perature coefficient are very accu	urate for
			(AJK-2017)
	(a) 45 K	(b) 10 K	
(2.0	(c) 75 K	(d) 120 K	
(86)	In carbon resistors, which colour banc	I indicates the tolerance of $\pm 10\%$?	(RWP-2019)
	(a) White	(b) Silver	
(87)	If Fourth Band is missing on Carbon Re	Sistor, its 1 derance is: (h) + 10.0	(BWP-2019)
	$(a) \pm 3\%$	(b) $\pm 10\%$ (d) $\pm 20\%$	
(00)	(c) $\pm 20\%$	$(a) \pm 30 \%$	
(66)	Gold band snow tolerance of colour.	(h) + 100/	(M11N-2022)
	$(a) \pm 50\%$	(b) $\pm 10\%$	
(00)	(c) $\pm 15\%$	$(a) \pm 5\%$	
(89)	I hermistor with negative temperature of	(b) bigh temperatu	ing (Mino Ja)
	(a) low temperature 100K	(b) high temperature (d) low strange two 10 Z	6166
(00)	If there is a gingle block colour band and	(d) Ow temperature tox	e ofite registeres
(90)	ii ulere is a single black colora ballu area will bo	uno ane deury et a resistor trien une value	(DCK 2022)
		IIU ICUE	(DGK-2022)
	(a) Zeropun	(b) 10 ohm	
	(c) 100 chm	(\mathbf{d}) Infinity	
(91)	A the cmix for with positive temperature of	of co-efficient is heated then its resistance	re will
MAI	Ald on an bound on the		(RWP-2022)
1/1/1	(a) decrease	(b) increase	
	(c) not be affected	(d) become half	
(92)	A rheostat can be used as		(RWP-2022)
	(a) potential divider	(b) variable resistance	
	(c) amplifier	(d) both (a) & (b)	

Current Electricity

	(93)	Colour code of 10Ω resistance with 5% tolera	nce is	(SGD-2021)
		(a) Black, black, Brown, Silver	(b) Brown, black,	CONN
		(c) Black, brown, black, Gold	(d) Brown, brown, black, Gold	(LOUD'
		ENTRY	EST MCQS	0
	(94)	The thermistor has a n 9 0		
		(a) Very small negative temperature coeffic	ient UUUUU	
		(b) Very small positive temperature coefficient	ient	
		(c) Ver v large negative temperature coeffici	lent	
		(d) Very large positive temperature coeffici	ent	
	(95)	A zero-chm resistor is indicated by		
AAA	NN N	(1.) White band	(b) Transparent band	
MN.	00	(c) Black band	(d) Red band	
\bigcirc				
	Topic	13.7:		
		Electrical Power and Power	Dissipation in Resistors	
	(96)	Electrical power is expressed as		
		(a) $V \frac{\Delta Q}{\Delta Q}$	(b) $\frac{t}{-}$	
		Δt	W W	
		$(\mathbf{a})^{V}$	ΔQ	
		$\left(\mathbf{C}\right) = \frac{1}{t}$	(d) $\frac{1}{V\Delta t}$	
	(97)	The unit of power is		
		(a) joule	(b) watt	
		(c) Kelvin	(d) ohm	
	(98)	Power (P) dissipated in resistor is given b	y	
		(a) I^2R	(b) V x I	
		(c) $\frac{V^2}{V}$	(d) all of these	
		R R	(u) an of these	
	(99)	The rate at which the battery is supplying	g the electrical energy is the	
		(a) power output	(b) power input	
		(c) electrical power	(d) both a and c	
	(100)	PAST PA	PER MCQS	
	(100)	Heat generated by a 50 watt bulb in one hour is		(FSD-2019)
		(a) 36000 J	(b) 48000 J	(C(U))
		(c) 18000 J		000
	(101)			
	(101)	when builds are connected in series that general	aly c find power, we give priority to the	relation
		(a) $P = IV$	(b) $P =$	
		MIIINII NU	R	
		(c) $P = 1^2 R$	(d) All	
	(102)	The luse rating for a fuse used in the plug	g of electric heater should be	heater
AN	1/1/1	current:		
MN.	00	(a) Much less than	(b) Just less than (d) Exactly equal to the	
0.5	(103)	There are two electric hulbs of 10 W and 100	W They are first connected in series a	and then in
	(103)	narallel across a source	They are more connected in series a	
		(a) 40 W bulb will be brighter in series and	100 W in parallel	

(b) 100 W bulb will be brighter in series an	d 40 W bulb in parallel
(c) 40 W bulb will be brighter in both the ca	ares
(d) 100 W bulb will be brighter in both the	cases and (CUUUU
13.8:	1 7 7 7 1 1 (0. 10 9
Electromotive Force and	Petentia 110 ffcrence
The energy supplied to the unit charge by	y the battery is called
(a) voltage	(b) emf
(c) capacitants	(u) current
Terminal potential difference of a batt	tery is equal to its emf when its internal
resistance is	
(a) cerg	(b) neither zero nor infinity
(c) very high	(d) very low
Electromotive force and potential differe	nce both measured in
(a) coulomb	(b) farad
(c) ampere	(d) volt
When the internal resistance 'r' of a sou	urce is equal to the load resistance, 'R' the
maximum power out put is given by	
(a) E	(b) E^2
(a) - r	$(0) \frac{r}{r}$
E^2	E
(c) $\frac{\Delta}{\Delta r}$	(d) $\frac{\Delta}{2R}$
41 The terminal notantial difference V of a	2R pollic
(a) E Ir	(b) $\mathbf{E} + \mathbf{I} \mathbf{r}$
(a) E-n (c) EL r	
(C) L1-1 The omf is always present when	(u) L171 current is drawn from the battery
(a) only maximum	(b) only minimum
(c) only zero	(\mathbf{d}) zero or no
The energy supplied to unit charge by the	e cell is given hv
ΛW	ΛO
(a) $E = \frac{\Delta W}{\Delta Q}$	(b) $E = \frac{\Delta Q}{\Delta W}$
ΔQ	ΔW
(c) $E = \Delta Q \times \Delta W$	(d) none of these
P _{out} will be maximum when	
(a) R>r	(b) R=r
(c)R <r< th=""><th>(d) none of these</th></r<>	(d) none of these
The emf resembles to the	
(a) current	(b) heat
(c) potential difference	(d) capaciture
The unit of emf is	
(a) ampere	(b) volt
(c) joule	(d) watt
	(b) Js^{-2}
(c) $J^{-1}C^{-1}$	(d) NC^{-1}
The internal resistance is offered by the	
(a) conductor	(b) circuit
(c) battery	(d) external resistance
The terminal potential (V_t) difference is a	equal to the emf when the circuit is
	(b) 100 W bulb will be brighter in series an (c) 40 W bulb will be brighter in both the ca (d) 100 W bulb will be brighter in both the ca (e) 100 W bulb will be brighter in both the ca Electromotive Force and The energy supplied to the unit charge by (a) voltage (c) capacitance Terminal potential difference of a batternessis ance is (a) very high Electromotive force and potential differe (a) coulomb (c) ampere When the internal resistance 'r' of a southard the energy supplied to the unit charge by (a) $\frac{E}{r}$ (c) $\frac{E^2}{4r}$ The terminal potential difference V of a contained the energy supplied to unit charge by the energy supplied to unit charge by the (a) $E = \Delta Q \times \Delta W$ Pout will be maximum when (a) only maximum (c) only zero The energy supplied to unit charge by the energy supplied to unit charge by the (a) $E = \Delta Q \times \Delta W$ Pout will be maximum when (a) current (c) potential difference The unit of emf is (a) ampere (c) jule Viva it = (a) $J^{-1}C^{-1}$ The internal resistance is offered by the (a) conductor (c) battery The terminal potential (V₁) difference is ofference is ofference)

	(a) close	(b) open	- 60
	(c) both a and b	(d) none of these	
(117)) The emf is the and	is its effect	1 GODD
	(a) source and current	(b) current and voltage	200
	(c) cause and potential difference \bigcirc	(d) potent al difference and cau	use
	FAST	PAPER MCQS	
(118)	For an open circuit, terminal potential differ	rence 'V'' is.	(RWP-2019)
	(a) $V_t = 2 cnv f$	(b) $V_t = emf$	
	(c) $V_t > 2ern^2$	(d) $V_t < 2emf$	
(119)	During danger the 'eel' turn itself into a livir	ng battery. Then the potential difference	ce between its
MN	livad and tail can be upto:		(SGD-2022)
100	(a) 600V	(b) 440V	
	(c) 220V	(d) 160 V	
(120)	When the internal resistance of source is equ	al to the load maximum power dissip	ated is.
()	1	1 1	(SGD-2022)
	(a) E/4r	(b) $E/4r^2$	
	(c) $E^2/4r$	(d) $E^2/4r^2$	
	ENTRY	Y TEST MCQS	
(121)	Maximum power is delivered by battery to a	a load resistance R when	
	(a) $\mathbf{R} = \mathbf{r}$	(b) $R > r$	
	(c) $\mathbf{R} < \mathbf{r}$	(d) $R \ge r$	
(122)	A cell of emf E Volt and internal resistance	r ohm is being charged with a current	t of <i>i</i> amp. Then
()	the terminal notential difference is		
	(a) E	(b) $E - ir$	
	(c) $\mathbf{E} + i\mathbf{r}$	(d) $E - iR$	
Торі	ic 13.9:		
(100)	<u>Kirchh(</u>	off's Rule	
(123)) Kirchhoff's 1 st rule follow the law of c	onservation of	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(a) energy	(b) voltage	
	(c) mass	(d) charge	1 (CODD)
(124)) Kirchhoff's 2 nd rule follow the law of c	conservation of	2000
	(a) energy	(w) voltage	
	(c) mass	(d) charge	
(125)) If a source of emf is traversed from po	sitive to negative the potential ch	ange will be
	(a) positive	(b) zero	
	(c) negative	(d) constant	
(126)	The algebraic arm of potential changes	for a complete circuit is zero, is a	statement of
MM	(a) Kinchnoff's 1 st rule	(b) Kirchhoff's 2 nd rule	

- (**b**) Kirchhoff's 2nd rule (d) Faraday's law
- (127) If a resistor is traversed in the direction of current the change in potential is (a) positive (b) zero
 - (d) constant (c) negative
- (128) The complex networks are analyzed by

(c) Lenz's law

ENTRY TEST MCQS

(137) The condition for Wheatstone bridge to be balanced is given by

Topic 13.11:

Potentiometer

(139) A potentiometer circuit gives continuously varying

- (a) potential difference (b) current
- (c) charge (d) capacitance

(140) A device which can measure the potential without drawing any current is called

- (a) Wheat stone bridge
- (b) galvanometer
- (c) potentiometer
- (d) voltmeter

(141) In potentiometer the ratio of emf 's to cells is equal to the corresponding ratio of their

- (a) balance lengths (b) balance currents (c) both a and b (d) none of these (142) The relation for potentiometer is given (a) $\frac{E_1}{E_2} = \frac{l_1}{l_2}$ (b) $\frac{E_2}{E_1} = \frac{l_1}{l_2}$ (c) $\frac{E_1}{E_1} = \frac{l_2}{l_1}$ (d) $E_1 l_1 = E_2 l_2$ ENTRY TEST MCQS
- (143) Two cells of e.m.f E₁ and E₂ and of negligible internal resistance are connected with two variable resistors as shown in the diagram.

ANSWER KEYS

					(To	pica	l Mu	iltip	le Cho	Dice	Quest	ions)					
	1	B	21	Α	41	B	61	Α	81	С	101	С	121	Α	141	Α		
	2	С	22	D	42	B	62	С	82	С	102	С	122	С	142	Α		
	3	В	23	D	43	D	63	Α	83	Α	103	Α	123	D	143	С		
	4	Α	24	Α	44	D	64	В	84	Α	104	B	124	Α				
	5	Α	25	С	45	Α	65	B	85	B	105	Α	125	С				
	6	B	26	С	46	Α	66	B	86	B	106	D	126	В				
	7	В	27	Α	47	Α	67	С	87	С	107	С	127	С				
	8	B	28	С	48	Α	68	B	88	D	108	Α	128	С				
	9	Α	29	В	49	Α	69	С	89	D	109	D	129	Α			500	2
	10	С	30	С	50	С	70	D	90	Α	110	Α	130	Α	~		2010	Π
	11	B	31	С	51	B	71	B	91_	B	111	B	131	C	12	2/	a	
	12	Α	32	Α	52	B	72	C	92	D	12	C	-132	B	((2	0	
	13	С	33	Α	53	A	73 '	B	<u>851</u>	12	١įβ	(B	133	R	\sim			
	14	С	_34	Α	54	B	747	A	[9]	¢/	ોચ્યુ	A	134	5	1			
	15 ₆	75	85_		55	14	₽₹	B	193-	D,	115	С	135	D				
	16	Z1	36	B	56		76	721	96	Α	116	B	136	С				
	17	B	371	A	57	1 Pr	77	D	97	B	117	С	137	В				
a ma	18	D	38	B	58	B	78	C	9 8	D	118	B	138	Α				
	19	Ă	39	Α	59	B	79	C	99	D	119	Α	139	Α				
IN UU	20	С	40	Α	60	D	80	С	100	D	120	C	140	С				

KIPS TOPICAL SHORT QUESTIONS 13.1 ELECTRIC CURRENT

(1) How current flows through a metallic conductor.

Ans: In the absence of electric field, the free electrons in conductor are in random motion, which depends upon the temperature.

When electric field is set up in a conductor by a source which establishes constant potential difference across the conductor, the free electrons modify their random motion in such a way that they drift slowly opposite to field. Thus, a net directed motion of charges takes place along the wire and a current begins to flow through it.

What is the difference between conventional current and electronic current?

Ans: Conventional current:

It is defined as that current which passes from a point at higher potential to a point at a lower potential as it represents the movement of positive charges.

Electronic current:

The current due to motion of negative charges (or electrons) that flows from the negative terminal of the battery to the positive terminal in the electrical circuit is called electronic current.

(3) What is the unit of electric current? Define it.

Ans: The SI unit of current is ampere.

As I =
$$\frac{\Delta Q}{\Delta t}$$

1

ampere =
$$\frac{1 \text{ coulomb}}{1 \text{ sec}}$$

Current through the conductor is said to be one ampere if current flows at the rate of one coulomb per second.

(4) What is conventional current?

GRW-2012

Ans: The current due to flow of an equivalent positive charge is called conventional current. It is directed from positive terminal of the battery (higher potential) to the negative terminal of the battery (lower potential)

(5) A charge of 90 coulomb passes through a wire in one hour and fifteen minutes. What is current in wire? MTN-2013

Ans: Given data is (0)[(Amount of charge is Q = 90 CTime t = 1 hour and 15 minute = 60+15 = 75 minutes = 75×60 sec = 4500 sec Where $I = \frac{Q}{T} = \frac{90}{4500} = 0.02 \text{ A}$ (6) Define drift velocity and also write its value at 100m temperature. **SWL-2019** The velocity with which the free electrons get drifted towards the positive terminal under Ans: the action of applied electric field is called drift velocity of the free electrons. the electrons get displaced from lower to higher potential with only a small velocity known as a drift velocity. The value of drift velocity is of order 10^{-3} m/sec. How many electrons pass through an electric bulb in one minute if the 30 mA (7) current is passing through it? SWL-2019 Where the current is given by $I = \frac{Q}{T}$ Ans: O = ne $I = \frac{Q}{T} \Longrightarrow Q = IT$ I = 30 mAT = 1min = 60s $Q = ne = 30 \times 10^{-3} \times 60 = 1.8 C$ $n = \frac{1.8}{e} = \frac{1.8}{1.6 \times 10^{-19}} = 1.125 \times 10^{19}$ PAST PAPER SHORT QUESTION (8) What is unit of electric current? Define it. SWL-2017 (9) Define drift velocity and also write its value at room temperature. SWL-2019 How many electrons pass through an electric bulb in one minute if the 300 mA current is (10)passing through it? SWL-2019 How many electrons pass through an electronic bulb in 2 minutes if the current pasting (11) MTN-2022 (6 through it?

(12) A charge 9C passes through a conductor in one bour What is the current in the conductor? RWP-2022 (G-I)

13.2,18 3 SOORCE OF CLARENT, EFFECTS OF CURRENT

(13) Write about any two sources of current.

- Ans: Sources of current are given will:
- (j) \lor Cell converts chemical energy into electrical energy.
- (ii) Electric generators convert mechanical energy into electrical energy.

(14) Name two different effects of current.

COM

Ans: Effects of Current:

- Heating effect
- Magnetic effect
- Chemical effect
- (15) How the heating effect produce when current flows through the conductor? Ans: it is produced as a result of measure collisions of free electrons against lattice atoms in a conductor.

PAST PAPER SHORT QUESTION

How the beating effect produces when current flows through the conductor?

- SGD-2017 (G-I), RWP-2019 (G-I)
- (17) Write four sources of current. BWP-2017 (G-I), MTN-2019 (G-II), LHR-2022 (G-II)
- (18) What is meant by a current source? Explain with example. DGK-2022 (G-II)

13. 4 OHM'S LAW

(19) What is series and parallel combinations of resistors?

Ans:

(16)

		SERIES COMBINATION		PARALLEL COMBINATION	
	•	Resistances connected end to end	•	Resistances connected side by side are	
		are called series combination of		called parallel combination of resistance.	
		resistances. i.e.		i.e.	
		\mathbf{R}_1 \mathbf{R}_2 \mathbf{R}_3		\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	
		↓			
		Î		, t t t t t t t t t t t t t t t t t t t	
		V			
	•	There is a single path of current.	•	There are more than one path of current.	0
	•	Current through each resistance is	•	Sum of currents through all resistances is	D
		same i.e. $I_1 = I_2 = I_3 = I$		equal to the net current of the circuit. I.e.	ハ
			5	$I = I_1 + I_2 + I_3$	
	•	Sum of potential difference accoss	5	Potential difference across each resistance	
		each is equal to the potentia	()	is came as that or battery i.e.	
		difference of the battery i.e.	J	$V_1 = V_2 = V_3 = V$	
		$\mathbf{V} := \mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3$			
0	^	Equivalent resistance of series	•	Equivalent resistance of parallel	
2Π	11	combination is		combination is	
NU	Ű	$R_{eq} = R_1 + R_2 + R_3$		$1/R_{eq} = 1/R_1 + 1/R_2 + 1/R_3 + \dots$	
	•	Equivalent resistance is greater	•	Equivalent resistance is less than the	
		than the maximum of all		minimum of all resistances combined in	
		resistances combined in series i.e.		parallel i.e.	
				$R_{eq} > R_1, R_{eq} > R_2R_{eq} > R_{max.}$	

(23)conductor?

Ans: When area of cross section is large, the collision chance of free charge carriers i.e. electrons a all statice atoms is small which means smaller resistance, and vice-versa. For this reason the resistance of a conductor is inversely proportional to its area of cross-section.

(24)How many ways resistance can be arranged in electrical circuit?

- A resistance can be arranged either in series combination or in parallel combination is an Ans: electrical circuit.
- (25)State OHM's law and write its formula.

Ans:	"The current flowing through a conductor is directly pro	portional to the potential
	difference across its ends provided the physical state such	as temperature etc. of the
	conductor remains constant".	$\alpha \pi S (\pi U)$
	If V be the potential difference applied and I be the current the	NV (0.109
	or $V = IR$ Here \mathbf{P} = constant of propertionality and is call as say it takes	
(26)	Define \mathbf{r} sistence \mathbf{A} iso define its unit	
(20) Ans	Resistance	
1113.	It is the opposition offered by the atoms of the conductor to the	flow of charge.
	Unit:	6
n II	In SI soutem, unit of resistance is ohm (Ω)	
UN	Resistance is said to be 1Ω if a current of 1A flows through	igh the conductor when a
0	potential difference of 1V is applied across its ends.	
	$\mathbf{B} - \frac{V}{V}$	
	I = I	
	$10 - \frac{W}{V}$	
	$152 - \frac{1}{1A}$	
	PAST PAPER SHORT QUESTION	
(27)	Define resistance. Also define its unit.	BWP-2017 (G-I)
(28)	State ohm's law and write its formula.	DGK-2017 (G-I)
(29)	What are the difficulties in testing whether filament of a lighted	l bulb obeys Ohm's law?
	SWL-2017, DGK-2017 (G-I), LHR-2017 (G-I), LHR-2022 ((G-I), MTN-2022 (G-II)
(30)	Do bends in a wire affect its electrical resistance? Explain.	
	LHR-2022 (G-II), GRW-202	22 (G-I), RWP-2022 (G-I)
(31)	What are ohmic and non-ohmic conductors? Give examples.	GRW-2022 (G-II)

(32) Differentiate between ohmic and non-ohmic device with example . DGK-2022 (G-I)

13.5 RESISTIVITY AND ITS DEPENDENCE UPON TEMPERATURE

- (33) Why there are more chances for burning out a thinner region of filement of lighted bulb than the thicker one?
- Ans: As $R \propto \frac{1}{A}$, hence resistance of thinner region is larger than thicker one. Hence, more heat is produced in thinner region, which may buin it out.

(34) How does the resistance of a conductor changes with length?

Ans: We know that $\mathbf{F} =$

AS FOL

Hence, resistance increases with increases in length as electrons have to suffer more collisions.

- (35) What is resistivity and how it depend upon temperature?
- Ans: Resistivity: It is defined as

"The resistance of a meter cube of a material."

C(0)

$$n - \frac{RA}{R}$$

It unit is Ωm

Dependence on Temperature: Within certain limits:

(i) Resistivity increases with increase of temperature of conductor.

(ii) Resistivity decreases with increase of ten perature or semiconductor.

(iii)Resistivity remains constant with change of temperature of insulator.

What is temperature co-efficient of resistance? (36)

Ans: It is defined as

Change in resistance per unit original resistance per degree rise in temperature or fractional change in resistance per Kelvin.

If R_0 and R_t are resistance at 0°C and t°C respectively then.

$$\alpha = \frac{R_t - R_o}{R_o t}$$

Here α is the temperature coefficient of resistance.

Unit:

Its unit is C⁻¹ or K⁻¹

- Give two substances having negative temperature co efficient. Also define (37) temperature co efficient. **GRW-2016 (G-I)**
- Substances like carbon and semiconductors possess negative value of α . Their resistance Ans: decreases with increase in temperature.

Change in resistance per unit original resistance per degree rise in temperature or fractional change in resistance per Kelvin.

If R_0 and R_t are resistance at 0°C and t°C respectively then.

$$\alpha = \frac{R_t - R_o}{R_o t}$$

Here α is the temperature coefficient of resistance. It is defined as:

(38) Differentiate between resistance and resistivity give their unit.

Ans: **Resistivity:**

> "The nce of a meter cube of a material."

$$\rho = \frac{\kappa A}{L}$$

Its unit is Ωm

Resistance:

It is the opposition offered by the atoms of the conductor to the flow of charge. In SI system, unit of resistance is obin (Ω).

(39) A wire of length 10 n has resistance 100Ω . If the wire is stretched to increase its length three times. What will be its new resistance? FSD-2016 (G-I) Ans:

The given longth of the wire is 10 m has a resistance 100 ohm. When the wire is stretched three times the new length is 30m and the new resistance is 900 ohm because area of the wire is also be decrease three time.

SGD-2012

		$R = \rho \frac{L}{A} \Longrightarrow R \propto \frac{L}{A}$	D
		$R' \propto \frac{3L}{A_3} \Rightarrow R' \propto \frac{9L}{A} \Rightarrow R' = 9R$ PAST PAFER SHORT QUESTION	
	(40)	Define ten perature coefficient of resistance and write its formula.	
		LAR-2019 (G-II), LHR-2022 (G-I), RWP-2022 (G-I)	
	(41)	What is temperature c-officient of resistance?SWL-2017, LHR -2021 (G-II)	
ant	(42)	Why does the resistance of a conductor rise with temperature?	
MM	(43)	SGD-2017 (G-I) & (G-II), DGK-2017 (G-I), LHR -2021 (G-II) What is difference between resistivity and conductivity?	
U	(-3)	GRW-2022 (G-I), BWP-2022 (G-II)	
	(44)	Why does the resistance of a conductor rise with temperature?	
		GRW-2022 (G-II), DGK-2022 (G-I, II)	
	(45)	A wire of length 5m has resistance. If the wire is stretched to increase its length three	
		times. What will be its new resistance? MTN-2022 (G-I)	
	(46)	Distinguish between Resistivity and conductivity. BWP-2022 (G-II)	
	(47)	A wire of length 10m has resistance 100 Ω . If the wire is stretched to increases its length	
		three times. What will be its new resistance? RWP-2022 (G-II)	
	(48)	13. 6 COLOUR CODE FOR CARBON RESISTANCE What would be the resistance of the two carbon wires having following colour bands?	
	<i>a)</i>	Orange, Green, Black, Silver	
	b)	Orange, Green, Black, Silver White, Violet, Red, Golden	
	b) Ans:	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be	
	b) Ans:	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver	
	b) Ans:	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver $3 5 - \pm 10\% = 35W(\pm 10\%)$ b) The resistance of second wire be	
	b) Ans:	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver $3 5 - \pm 10\% = 35W(\pm 10\%)$ b) The resistance of second wire be White violet Red Golden	Ŋ
	b) Ans:	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver $3 5 - \pm 10\% = 35W(\pm 10\%)$ b) The resistance of second wire be White violet Red Golden $9 7 00 +5\% = 9700\Omega(+5\%)$	D
	(49) (49) (50)	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver $3 5 - \pm 10\% = 35W(\pm 10\%)$ b) The resistance of second wire be White violet Red Golden $9 7 00 \pm 5\% = 9700\Omega(\pm 5\%)$ What will be tolerance if there is no four th colour ? It will be 20% if there is no fourth colour banc printed on carbon resistor. How is a rheostat used as a potential livider? LHR-2013	D
	(49) Ans: (50) Ans:	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver $3 5 - \pm 10\% = 35W(\pm 10\%)$ b) The resistance of second wire be White violet Red Golden $9 7 00 \pm 5\% = 9700\Omega(\pm 5\%)$ What will be tolerance if there is no fourth colour? It will be 20% if there is no fourth colour band printed on carbon resistor. How is a rheostat used as a potential livit cer? LHR-2013 Rheostat: It is a wire wound around a variable resistance consisting of a bar wire of manganin wound oround on inputcing excitated	D
	(49) Ans: (49) Ans: (50) Ans: Potent	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver $3 5 - \pm 10\% = 35W (\pm 10\%)$ b) The resistance of second wire be White violet Red Golden $9 7 00 \pm 5\% = 9700\Omega (\pm 5\%)$ What will be tolerance if there is no fourth colour ? It will be 20% if there is no fourth colour band printed on carbon resistor. How is a rheostat used as a potential divider? It is a wire wound around a variable resistance consisting of a bar wire of manganin wound around an insulating cylinder. tial Divider:	D
	(49) Ans: (49) Ans: (50) Ans: Potent	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver $3 5 - \pm 10\% = 35W (\pm 10\%)$ b) The resistance of second wire be White violet Red Golden $9 7 00 \pm 5\% = 9700\Omega (\pm 5\%)$ What will be tolerance if there is no four th colour? It will be 20% if there is no fourth colour band printed on carbon resistor. How is a rheostat used as a potential divider? LHR-2013 Rheostat: It is a wire wound around a variable resistance consisting of a bar wire of manganin wound around an insulating sympley. tial Divider It can be used as a potential divider if battery is connected	D
WW	(49) Ans: (49) Ans: (50) Ans: Potent	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver $3 5 - \pm 10\% = 35W(\pm 10\%)$ b) The resistance of second wire be White violet Red Golden $9 7 00 \pm 5\% = 9700\Omega(\pm 5\%)$ What will be tolerance if there is no fourth colour? It will be 20% if there is no fourth colour carbon resistor. How is a rheostat used as a potential divider? It is a wire wound around a variable resistance consisting of a bar wire of manganin wound around an insulating cylinder. It can be used as a potential divider if battery is connected ww A and B of rheostate. Current through wire is $I = \frac{V}{R}$	D
W	(49) Ans: (50) Ans: Potent	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver $3 5 - \pm 10\% = 35W(\pm 10\%)$ b) The resistance of second wire be White violet Red Golden $9 7 00 \pm 5\% = 9700\Omega(\pm 5\%)$ What will be tolerance if there is no four th colour? It will be 20% if there is no fourth colour band printed on carbon resistor. How is a rheostat used as a potential' livit or? How is a rheostat used as a potential' livit or? It is a wire wound around a variable resistance consisting of a bar wire of manganin wound around on insulating cylinder. It can be used as a potential divider if battery is connected ow A and B of rheostate. Current through wire is $I = \frac{V}{R}R$ = resistance of wire AB. The potential difference across B	D
W	(49) Ans: (50) Ans: Potent	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver 3 5 - $\pm 10\% = 35W(\pm 10\%)$ b) The resistance of second wire be White violet Red Golden 9 7 00 $\pm 5\% = 9700\Omega(\pm 5\%)$ What will be tolerance if there is no fourth colour ? It will be 20% if there is no fourth colour band printed on caroon resistor. How is a rheostat used as a potential livider? It will be 20% if there is no fourth colour band printed on caroon resistor. How is a rheostat used as a potential livider? It is a wire wound around a variable resistance consisting of a bar wire of manganin wound around an insulating cylinde: the used as a potential divider if battery is connected of w A and B of rheostate. Current through wire is $I = \frac{V}{R}R$ = resistance of wire AB. The potential difference across B and C of wire AB is given by	D
W	(49) Ans: (50) Ans: Potent	Orange, Green, Black, Silver White, Violet, Red, Golden a) The resistance of first wire be Orange Green Black Silver $3 5 - \pm 10\% = 35W (\pm 10\%)$ b) The resistance of second wire be White violet Red Golden $9 7 00 \pm 5\% = 9700\Omega (\pm 5\%)$ What will be tolerance if there is no fourth colour ? It will be 20% if there is no fourth colour ? How is a rheostat used as a potential / livider? How is a rheostat used as a potential / livider? It is a wire wound around a variable resistance consisting of a bar wire of manganin wound around an insulating cylinder. Tial Divider: It can be used as a potential divider if battery is connected ow A and B of rheostate. Current through wire is $I = \frac{V}{R}R$ = resistance of wire AB. The potential difference across B and C of wire AB is given by	D

Use of rheostat as potential divider

SGD 2013, RWP-2019 (G-I)

FSD-2019 (G-I)

RWP-2019 (G-I) GRW-2022 (G-II)

 $V_{BC} = Ir$ $= \frac{V}{R}r$ r is the resistance between B and C $V_{BC} = \frac{r}{R}V$ When sliding contact C is at B then r=0, $V_{BC}=0$. When sliding contact moves away from B, value of r increases due to increase of length of wire due to which potential between BC increases. L' contact be at A, r=R then $V_{BC}=V$. In their way, potential between B and C continuously varies.

What is meant by tolerance of a resistor? Write the value of tolerance of silver and gold. FSD-2019 (G-I)

Ans: By the tolerance we mean that the possible variation from marked value.

The ring at the second end determines the tolerance or percentage accuracy as following

Silver $\pm 10\%$

 $Gold \pm 5\%$

If there is no fourth band, tolerance will be $\pm 20\%$

(52) What is thermistor? Give its applications.

Ans: A thermistor is a heat sensitive resistor usually made from semiconductor. One type of thermistor has negative temperature co-efficient of resistance that is its resistance falls when its temperature is increased. Thermistors with high negative temperature coefficient are used for resistance thermometer in very low temperature measurement of the order of 10K. Thermistors with positive temperature co-efficient are also available.

PAST PAPER SHORT QUESTION

(53) Describe a circuit which will give a continuously varying potential.

LHR- 2017 (G-I), SGD-2017, DGK-2017, RWP-2022 (G-II)

- (54) What is meant by tolerance of a resistor? Write the values of tolerance of silver and gold.
- (55) What is thermistor? Give its applications.
- (56) How does Rheostat work as variable resistor?
- (57) Calculate the resistance of a carbon resistor of a carbon resistor with first bond Red becould bond, Violet, third bond Orange and fourth bond have Silver colour. MTN-2022 (G-II)
- (58) Colour code of carbon resistors, esually consists of four bands. Starting from left, interpret the different colour bands with example DGK-2022 (G-II)

13. 7 FLECTRICAL POWER AND POWER DISSIPATION IN RESISTORS

Find the neat dissipated through a bulb of 60w in two hours?

Heat = P ' t = 60' 2 ' 3600= 4.32 ' 10^5 Joule

(60) Write the unit of a) conductivity b) electric power c) EMF d) Temperature coefficient of resistance. :- Ohm⁻¹ m⁻¹ or mho m⁻¹ or siemen a) Conductivity Ans: b) Electric Power :- Watt Joule :- Volt = c) emf Coulont d) Temperature Coefficient of resistance :- K⁻¹ An ordinary bull is marked 60 watts 200 volts. What is the resistance? (FSD 2014) (61) Given data is Ans: P = 60 V/-V = 200VAs we know that the formula of power is $P = \frac{V^2}{P}$ $R = \frac{V^2}{P} = \frac{(200)^2}{60} = 666.6\,\Omega$

PAST PAPER SHORT QUESTION

(62) Is the filament resistance lower or higher in a 500 W, 220 V light bulb than in a 100 W, 200 V bulb?

LHR-2017 (G-I), DKG-2017 (G-II), LHR-2022 (G-II), GRW-2022 (G-I), BWP-2022 (G-I, II)

(63) Prove that : Volt \times Ampere = Watt.

LHR-2022 (G-I)

13.8 ELECTROMOTIVE FORCE & TERMINAL POTENTIAL DIFFERENCE

- What do you understand by close circuit and open circuit? (64)
- A circuit having external resistance zero (R=0) from which current flows is known as Ans: close circuit.

A circuit having infinite external resistance $(R=\infty)$ from which no current flows is known as open circuit.

- **Differentiate between EMF and P.D?** (65)
- Ans:

5)	Differentiate between EMF and P.D?	_	2012164
s:		[]	<u> </u>
	$EMF \cap \mathcal{G}$	1	POTENTIAL DIFFERENCE
	• It is a potential difference across the	è.	it is a potential difference across the
- CA	source when no current flows	\mathcal{L}	source when some current flows.
	• emails the cause.	•	Potential Difference is an effect of emf.
	• It can neve: be zero.	•	It may be zero
	t is given by the relation.	•	It is given by the relation.
1 > 1	E = V + Ir		$\mathbf{V} = \mathbf{E} - \mathbf{I}\mathbf{r}$
0	• Voltmeter connected with source	•	Voltmeter connected with source
	measures emf with open circuit.		measures Potential Difference with
	-		closed circuit.

(66) Under what condition, the terminal voltage is greater than EMF of the battery?

When battery is being charged by some other source of emf, then terminal voltage of that Ans: battery will be greater than its emf. LHE-2013 What is electromotive force and give its units? (67) In order to maintain a constant current through a circuit, source of energy is required to Ans: supply power equal to that which is dissipated as heat in resistance. The strength of such a force is called as electronotive force. Also we can define end as energy supplied to unit charge by the cell A device which converts non-electric energy into the electric energy is called a soruce of electromotive force. The unit of cm^{f} is oule/coulomb which is volt (V). PAST PAPER SHORT QUESTION Distinguish between EMF & Terminal Potential. 68) **GRW-2019 (G-I), BWP-2022 (G-II)** (69) Explain why the terminal potential difference of a battery decreases when the current drawn from it is increased? LHR -2021 (G-I), MTN-2022 (G-I) What is the difference between electromotive force and terminal potential difference? (70)**DGK-2017 (G-II)** (71) What is meant by an electromotive force (emf)? Give its unit. **RWP-2022 (G-II)**

13.9 KIRCHHOFF'S RULES

(72) State Kirchhoff's 1st and 2nd rule.

Ans: Kirchhoff's First Rule

It states that algebraic sum of currents meeting at a point is zero. This is called Kirchhoff's current law. Kirchhoff's 1^{st} rule is also known as Kirchhoff's point rule. $\Sigma I = 0$

$\sum I = 0$

Kirchhoff's Second Rule

It is stated as:

Algebraic Sum of voltage changes across a closed circuit or loop must be equal to zero.

According to law of conservation of energy, the total change in energy of our system is zero.

Thus $+E_1 \Delta Q - IR_1 \Delta Q - E_2 \Delta Q - IR_2 \Delta Q = 0$

Or $E_1 - IR_1 - E_2 - IR_2 = 0$

(73) Is the principle of conservation of energy applicable to electrical circuits?

Ans: Yes, principle of conservation of energy is applicable to electrical circuits. It is usually applied in the form of Kirchoff's voltage law, which states that algebraic sum of all the potential drops in a closed loop is zero i.e. $\sum N = 0$

- (74) State Kirchhoff's 1^{st} and 2^{nc} rules and write their mathematical forms.
 - Sate Kirchhoff's First Rule. And write its mathematical form.

MTN-2019 (G-I)

(76) State Kirchhoff's 2nd rule and write its mathematical relation.

DGK-2017 (G-II), BWP-2019 (G-II), GRW-2019 (G-II)

13.10 WHEATSTONE BRIDGE

- (77) In balanced condition Wheatstone bridge galvanometer shows no deflections, why?
- **Ans:** This is so because both the terminals of a galvanometer are at the same potential, hence no current flows through the galvanometer.
- (78) Why a voltmeter can not read the exact value of EMF of a cell?
- Ans: When a voltmeter is connected across a cell, it draws some current from the cell. Hence, a small potential drop takes place and actual FNF of the cell decreases.
- (79) Draw the circuit diagram of a Wheatstone bridge and write down its balancing condition.

Ans: Curcuit Diagrams of Wheatstone Bridge

When circuit is on, and galvanometer G shows no deflection, then bridge is said to be balanced and the condition for this is

$$\frac{\mathbf{R}_1}{\mathbf{R}_2} = \frac{\mathbf{R}_3}{\mathbf{R}_4}$$

- (80) When a Wheatstone bridge is balanced, no current flows through the galvanometer. Why?
- Ans: It is due to same potentials at the two terminals of the galvanometer when resistances

 R_1, R_2, R_3, R_4 are selected such that $\frac{R_1}{R_2} = \frac{R_3}{R_4}$.

PAST PAPER SHORT QUESTION

(81) What is Wheatstone bridge? How can it be used to determine an unknown resistance?

LHR -2021 (G-I)

13.11 POTENTIOMETER

- (82) Why should the potentiometer wire be long and uniform in diameter?
- Ans: Potential difference is directly proportional to the length of the wire i.e. $V \sim l$ So, long wire of uniform diameter supports high value of P.D which can be used to balance the P.D across a circuit.
- (83) What is potentiometer? Give its principle?
- Ans: Definition: An instrument which measures P.D. without drawing any current form the circuit. Principle: The P.D. across a uniform conductor is directly proportional to its length when a constant current is flowing through it.
- (84) How can you compare emf of two cells with the help of a potentiometer?
- Ans: Suppose $E_1 \& E_2$ are emf's of two cells to be compared. For this purpose potentiometer is badar call by connecting $E_1 \& E_2$ separately. Let l_1 is the balancing length for $E_1 \& E_2$ is the balancing length for E_2 . These two emf's will be compared by the following formula:

$$\frac{\mathbf{E}_1}{\mathbf{E}_1} = \frac{l_1}{l_1}$$

$$\mathbf{E}_2 \quad l_2$$

That emf is proportional to balancing length in potentiometer.

(85) Why potentiometer is an accurate measuring instrument?

MM

- Ans: Potentiometer is an accurate measuring instrument because it draws no current from battery whose emf is required to be measured, and when no current is being drawn from battery then its terminal potential difference equals to its emf.
 - PAST PAPER SHORT QUESTION
- (86) Describe a circuit which will give a continuously varying potential.
 LHR- 2017 G-I, SCD-2017, BGK-2017, RWP-2022 (G-II)

