Chapter

 ARTERNATUGG: CUREENT
Tonic 10 It

TGPGAMDUTMTITLE CHOICE QUESTIONS

Alternating Current

A.C is that which is produced by a voltage whose polarity keeps on reversing with
(a) distance
(b) time
(c) voltage
(d) charges
(2) The main reason for the world wide use of A.C is that it can be transmitted to
(a) short distances
(b) long distances
(c) very short distances
(d) intermediate distances
(3) The most common source of alternating current is
(a) D.C generator
(b) A.C generator
(c) D.C motor
(d) battery
(4) The output voltage of A.C generator at any instant is given by
(a) $V=V_{o} \sin \frac{2 \pi}{T} \times \frac{1}{f}$
(b) $V=V_{o} \sin \frac{2 \pi}{T} \times \frac{1}{t}$
(c) $V=V_{o} \sin \frac{2 \pi}{T} \times t$
(d) $V=V_{o} \sin \frac{T}{2 \pi} \times t$
(5) When $t=T / 4$ then the voltage attains the
(a) maximum value
(b) minimum value
(c) zero value
(d) none of these
(6) The angular frequency of rotation of the coil in A.C generator is expressed as
(a) $\omega=\frac{2 \pi}{T}$
(b) $\omega=\frac{T}{2 \pi}$
(c) $\omega=\frac{2 \pi}{f}$
(d) $\omega=2 \pi T$
(7) The waveform of an alternating vilage is thefprmand eraph oftweon
(a) time and frequency
(b) veltage and fecuency
(c) voltage and time
(d) Srequency and tim- period
(8) The sum of paiíive and ingative peak value is written as
(a) p-p ra.ue
(b) p-n value
(a) $\mathrm{p} \mathrm{n}-\mathrm{c}$ value
(d) n-n value
$9 \sqrt{r h e}$ highesi value reached by the voltage or current in one cycle is called
(a) peak value
(b) root mean square value
(c) instantaneous value
(d) peak to peak value
(10) The root mean square value of V is given by
(a) $V_{r m s}=\frac{V_{o}}{\sqrt{2}}$
(b) $V_{r m s}=\frac{\sqrt{2} V_{o}}{2}$
(c) $V_{r m s}=V_{o} \sqrt{2}$
(d) both a and b
(11) The instantaneous voltage " V " generated by a rotating coil in agnetic ffer has the form $\mathrm{V}=\mathrm{V}_{0} \sin 2 \pi f t$ here $2 \pi f$ is
(a) Amplitude of the voltage
(b) Perrod of the voltage
(c) Angular frequency of A.C
(d) frequency of voltage
(12) The e.ait Generated Dy a roting coll inemgntic tield has a graph similar to
(a) Straion lip
(b) Sine wave
(c) snua e ave
(d) All of the above
(13) The value one rms is
(a.) $2 V_{0}$
(b) $0.707 \mathrm{~V}_{\mathrm{o}}$
(c) $\frac{V_{o}}{\sqrt{2}}$
(d) both b and c
(14) An A.C voltmeter reads 440 V , its peak value is
(a) 611.25 V
(b) 311.23 V
(c) 311.12 V
(d) 620.4 V
(15) The root mean square value of A.C circuit is always
(a) positive
(b) negative
(c) zero
(d) none of these
(16) The value of $I_{r m s}$ is
(a) $0.87 \mathrm{I}_{0}$
(b) $0.707 \mathrm{I}_{0}$
(c) $0.07 \mathrm{I}_{0}$
(d) $7.707 \mathrm{I}_{0}$
(17) In ' $V=V_{0} \sin \theta$ ' the angle θ which specifies the instantaneous value of alternating voltage or current is known as
(a) displacement
(b) phase
(c) angular distance
(d) angular frequency
(18) The point where the waveform crosses the time axis, the phase is
(a) $\frac{3 \pi}{2}$
(b) 2π
(c) π
(d) $\frac{\pi}{2}$
(19) The loss of energy in transmitting power at long nistance is less in.
(a) alternating current
(c) direct crarent
(b) thernal elect icity
d electyondagnetism

By condecting the D. Can neter to measwe the A.C, it would measure its
(a) p-p atule
(b) instantaneous value
(c) viak vale
(d) average value over the cycle
$\sqrt{\text { a }}$ (f) $V_{0}=25.5 \sqrt{2}$ then the $V_{\text {rms }}$ value will be
(a) 25.5 V
(b) 18.02 V
(c) 36.06 V
(d) 25.95 V
(22) The instantaneous values of voltage and current in A.C circuit is
(a) in phase
(b) out of phase
(c) any phase
(d) none of these
(23) A sinusoidal current has rms value of 10 A . What is the maximum or peak value will he
(a) 14.14 A
(b) 18.02 A
(c) 7.07 A
(1) 25.55 A
PAST MAPF MCOS
(24) The valne peak to peak vollage is:

LHR -2017 (G-I)
(a) V_{o}
(b) $-V_{0}$
(c) $\sqrt{2}$,
(d) $2 \mathrm{~V}_{0}$
(25) Dain 5 each cycle of A.C, voltage reaches a peak value;
MIRPUR (AJK) 2017, BWP-2019 (G-II)
(a) once
(b) twice
(c) thrice
(d) four times
(26) The phase of AC at positive peak from origin is

SGD-2017 (G-I)
(a) $\frac{3 \pi}{2}$
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{4}$
(d) π
(27) The sum of positive and negative peak values are usually written as SGD-2017 (G-II)
(a) p-p values
(b) rms values
(c) cycle values
(d) p-n values
(28) An A.C voltmeter reads 220 V , its peak value will be:SGD-2022 (G-I), RWP-2022 (G-I)
(a) 255 V
(b) 311.12 V
(c) 300 V
(d) 200 V
(29) When effective value of current is 10 . What is its peak value?

SGD-2022 (G-II)
(a) 10
(b) 14.2
(c) 12
(d) 13
(30) The mean value of A.C. in one complete cycle is:

LHR-2022 (G-I)
(a) 1
(b) zero
(c) I_{0}
(d) $\frac{I_{o}}{\sqrt{2}}$
(31) If V_{o} is peak of A.C. voltage then mean square value of yoltage is:

(a) $\frac{V_{o}}{\sqrt{2}}$
(c) $\frac{1}{2}$
(32) If the frequency or A. © is 40 Hz then current passing through filament bulb get billance:

LHR-2022 (G-II)
(c) 100 times
(b) 80 times
(c) 40 times
(d) 50 times
(33) Root mean square value of alternating voltage with $V_{0}=100 \mathrm{~V}$, is equal to.

DGK-2022 (G-II)
(a) 0.7 V
(b) 7 V
(c) 700 V
(d) 70 V

ENTRY TEST MCQS
(34) In an A.C circuit instantaneous canrent is - It is nos id le when
(a) $t=\frac{T}{2}$
(c) $\mathrm{t}=\frac{\mathrm{T}}{4}$

(b)

(d) $t=T$
(35) The peak valyc of an alternating 60 Hz power supply is 140 V . An AC voltmeter conireen to the power supply will give a reading of approximately.
(a) 100 V
(b) 98 V
(c) 140 V
(d) 70 V

Topic 16.2 \& 16.3:

A.C Circuits and A.C Through a Resistor

(36) $V=I R$ is
(a) Joule's law
(b) Pascal's law
(c) Ohm's law
(d) Charles law
(37) The symbol used for inductor is
(a) R
(b) L
(c) C
(d) R-C
(38) At any time ' t ' the potential difference across the terminals of the resistors is given by
(a) $V=V_{o} \sin \omega t$
(b) $V=V_{o} \sin \omega f$
(c) $V=V_{o} \cos \omega t$
(d) $V=V_{o} \cos \omega f$
(39) The relation for the resistance according to Ohm's law is given by
(a) $\mathrm{R}=\mathrm{IV}$
(b) $V / I=R$
(c) $I / V=R$
(d) $1 / \mathrm{IV}=\mathrm{R}$
(40) The power dissipated in a resistive circuit is
(a) $P=I^{2} R$
(b) $\mathrm{P}=\mathrm{IV}$
(c) $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$
(d) all of these

PAST PAPER MCQS
(41) The basic element in a D.C circuit which contion the ctren t volage is called BWP-2022 (G-II)
(a) inductor (b) esistor
(c) capactor
(d) voltmeter
(42) In a caparitivecir iit of A. quantity, when $q=0$, the slope of $q-t$ curve is:

GRW-2019 (G-I)
(a) hi@n.um
(b) maximum
(c) zero
(d) negative
(43) Phase Difference between V and I of an A.C. through Resistor is: BWP-2019 (G-II)
(a) 0°
(b) 90°
(c) 180°
(d) 270°

ENTRY TEST MCQS

(44) The phase angle between the voltage and the current in an AC circuit consisting of a resistance is \qquad
(a) Zero
(b) 45°
(c) 90°

(d) 180

Topic 16.4:

A. Fthroush a Eapacitor

(45) The de ice used io sto recharses is called
(a) tsis or
(b) inductor
(c) craclito
(d) impedance
(4). Which current cannot flow continuously through the capacitor?
(a) A.C
(b) D.C
(c) thermoelectricity
(d) photo electricity
(47) The unit of capacitance
(a) Pascal
(b) Joule
(c) Henry
(d) Farad
(48) The basic relation between charge ' q ' and the voltage ' V ' across its plates is
(a) $\mathrm{q}=\mathrm{C} / \mathrm{V}$
(b) $q=C V$
(c) $q=V / C$
(d) $q=1 / \mathrm{CV}$
(49) The opposition offered by a capacitor to the flow of A.C is called
(a) capacitor
(b) inductive reactance
(c) capacitive reactance
(d) resistor
(50) The reactance of capacitors is represented by
(a) X_{C}
(b) X_{L}
(c) X_{q}
(d) X_{A}
(51) The unit of reactance of a capacitor is given by
(a) tesla
(b) volt
(c) farad
(d) ohm
(52) The reactance of a capacitor is given by
(a) $X_{C}=\frac{1}{\omega C}$
(b) $X_{C}=\omega C$
(c) $X_{C}=\frac{1}{2 \pi f \omega C}$
(d) $X_{C}=\frac{\omega}{2 \pi C}$
(53) The X_{C} of a capacitor joined acrass altonating sounce can be foud by the relation
(a)

(c)

(c) X_{c}
(d) $X_{C}=\frac{I_{r m s}}{\sqrt{V_{r m s}}}$

In acipacitor circuit, at low frequency, the reactance will be
(a) high
(b) low
(c) zero
(d) infinite
(55) The device that allows only the continuous flow of an A.C through a circuit is
(a) capacitor
(b) resistor
(c) reactor
(d) inductor

PAST PAPER MCQS

(56) The device which allows only flow of A.C through it is:
(a) Capacitor
(b) Inductor
(c) Battery
(d) Thirnistoc
(57) Direct current cannot flow throusp
(a) Resistor
(c) Indacior
(b) Capaciil:
(N) Ammeter

The reactancelof apacidor is enal to;
MIRPUR (AJK) 2017
a. $\sqrt{a} \mathrm{C}$
(b) $\frac{\omega}{\mathrm{C}}$
(c) $\frac{\mathrm{C}}{\omega}$
(d) $\frac{1}{\omega \mathrm{C}}$
(59) In pure capacitor AC circuit, the current I and charge q are

SGD-2017 (G-I)
(a) in phase
(b) out of phase
(c) parallel to each other
(d) none of above
(60) If the frequency of $A C$ supply is doubled then the capacitive reactance becomes

SWL-2017
(a) half
(b) two times
(c) four times
(d) one fourth
(61) The slope of (q-t) curve at any instant of time gives:

BWP-2017 (G-I)
(a) voltage
(b) current
(c) capacitance
(d) inductance
(62) The device which flow of A.C allows is.

MTN-2022 (G-I)
(a) capacitor
(b) inductor
(c) D.C motor
(d) battery

ENTRY TEST MCQS

(63) A $1 \mu \mathrm{~F}$ capacitor is connected across an AC source whose voltage amplitude is 50 V and angular frequency is $\mathbf{1 0 0} \mathbf{r a d} / \mathrm{s}$. The current amplitude will be
(a) 2.5 mA
(b) 5 mA
(c) 10 mA
(d) 15 mA
(64) The correct curve representing the variation of capacitive frequency f is

(1) The capacitive reactance of a capacitor in D.C circuit is
(a) 0
(b) $\omega \mathrm{C}$
(c) $\frac{1}{\omega c}$
(d) ∞

Topic 16.5:

A.C Through An Inductor

(66) When an alternating source of voltage is ap lied for ass an indus to it mus
(a) attract the flow of A.C(b) Oppose he flow of AC
(c) cancel the flow of A.C (a) no ns of these
(67) The indention reactance can beexpresed by the relation
(a) $X_{L}=$
(b) $X_{L}=\frac{1}{2 \pi \omega L}$
(c) $2=\omega$
(d) $X_{L}=\frac{\omega L}{2 \pi f}$
(1.5) In an inductive AC circuit, the current
(a) leads the voltage by 90°
(b) lags behind the voltage by 90°
(c) leads the voltage by 60°
(d) leads the voltage by 30°
(69) The inductance and capacitance behave oppositely as a function of
(a) sine
(b) current
(c) frequency
(d) cosine
(70) A coil which consists of thick copper wire closely wound in a large number of turns over a soft iron laminated core is called
(a) impedance
(b) R-L circuit
(c) choke
(d) inductor
(71) The behaviour of reactance is independent of
(a) frequency
(b) voltage
(c) current
(d) both b and c

PAST PAPER MCQS

(72) When A.C passes through an inductor, voltage leads the current by an angle:

GRW-2019 (G-I)
(a) 0°
(b) 45°
(c) 90°
(d) 180°
(73) At what frequency will an inductor of 1.0 H have a reactance of 500Ω : LHR-2019 (G-II)
(a) 50 Hz
(b) 80 Hz
(c) 500 Hz
(d) 1000 Hz
(74) A device which opposes the flow of A.C. is

DGK-2017 (G-D)
(a) resistor
(b) capacitor
(c) inductor
(d) none
(75) An inductor of 1 henry inductance has a reactance 500 owns, the the frequency required is approximately:

BWP-2017 (G-I)
(a) 50 Hz
(b) 190 Hz
(c) 80 F
(d) 120 Hz
(76) In alter at ing anent cir cit motor behave like

DGK-2022 (G-I)
(a, s :mi corcuctós
(b) Resistors
(d) winators
(d) Conductors
(\%/7) The device which allows only the flow of DC is.
DGK-2022 (G-I), BWP-2022 (G-II)
(a) Capacitor
(b) Inductor
(c) Transformer
(d) Generator
(78) For higher frequency, the X_{L} will be

RWP-2022 (G-I)
(a) high
(b) low
(c) zero
(d) infinite
(79) The reactance of an inductor increases with increase in

(a) frequency
(b) yol age
(c) resistance
(d) cipe ciance
ENTRY TESTMCCS
ff chak: covil of $\frac{1}{4 \pi} \mathrm{~m}$ Henry in an A.C circuit of fretilency 50 itz , willoe
(d) 025Ω
(b) 0.025Ω
(c) 2.5Ω
(d) 25Ω
(81) The inductive reactance of $2 \mathbf{m H}$ coil in $5 \mathrm{k} \mathrm{Hz} \mathrm{A.C} \mathrm{is}$
(a) 6.3Ω
(b) 6.38Ω
(c) 12.6Ω
(d) 63Ω

Topic 16.6:

Impedance

(82) The combined effect of resistance and reactance in a circuit is called
(a) impedance
(b) R-L circuit
(c) choke
(d) inductor
(83) The unit of impedance is
(a) ohm
(b) volt
(c) ampere
(d) henry

PAST PAPER MCQS

(84) S.I unit of impedance is:

LHR-2021 (G-II)
(a) Henry
(b) Hertz
(c) Ampere
(d) Ohm
(85) When 10 V are applied to an AC circuit the current flowing in it is 100 mA . Then the impedance will be
(a) 50Ω
(b) 200Ω
(c) 1000Ω
(d) 100Ω
(86) What will ide the imperance for $V=10 \sin \omega t)$ and $i=20 \sin (\omega t)$?
(a) 2002
(b) 2Ω
(c) 0.707 s s
(d) 0.5Ω
(87) The mperdence di an A.C circuit does not depend on
(a) Be Biance
(b) Capacitance
(c) Frequency
(d) Current

Topic 16.7:

(88) In R-C series circuit
(a) the current lags the applied voltage
(b) the voltage leads the applied current
(c) the current leads the applied voltage
(d) none of these
(89) For R-C series A.C circuit the apliel voltage is explessed as
(a) $V_{r m s} \Omega_{m s} \sqrt{R^{2}+(\sigma c)^{2}}$
(b) $V_{r m s}=I_{r m s} \sqrt{\frac{1}{R^{2}}+(\omega C)^{2}}$
(g) $V_{m \mathrm{O}}=I_{r m s} \sqrt{R^{2}+\frac{1}{(\omega C)^{2}}}$
(d) $V_{r m s}=I_{r m s} \sqrt{R+\frac{1}{(\omega C)^{2}}}$
(ッ0) In R-L series circuits
(a) the current lags the applied voltage
(b) the voltage lags the applied current
(c) the current leads the applied voltage
(d) none of these
(91) The impedance of R - L series circuits is expressed as
(a) $\frac{I_{m s s}}{V_{m s s}}=\sqrt{R^{2}+\frac{1}{(\omega L)^{2}}}$
(b) $Z=\sqrt{R^{2}+(\omega L)^{2}}$
(c) $Z=\sqrt{R+\frac{1}{(\omega L)^{2}}}$
(d) $\frac{I_{r m s}}{V_{r m s}}=\sqrt{R+\frac{1}{(\omega L)^{2}}}$
(92) In R-L series circuit, the impedance of the circuit is obtained by the vector sum of
(a) R and $\omega \mathrm{C}$
(b) R and $\omega \mathrm{L}$
(c) X_{C} and R
(d) R and $2 \pi \mathrm{fC}$
(93) The potential across the inductance leads the current by
(a) $\frac{\pi}{3}$
(b) π
(c) $\frac{2 \pi}{3}$
(d) $\frac{\pi}{2}$
(94) For R-L series circuit, the voltage is given by
(a) $V_{m s}=I_{m m s} \sqrt{R^{2}+\frac{1}{(\omega L)^{2}}}$
(b) $V_{r m s}=I_{\text {rms }} \sqrt{R+\frac{1}{(W L)^{2}}}$
(c) $V_{r m s}=I_{r m s} \sqrt{R^{2}+(\omega L)^{2}}$
(d) $\sqrt[L]{ } / n s=I,_{n s} \sqrt{\frac{1}{K^{2}}}+(\mathrm{c} L)^{2}$
(95) In R-Cser circuit, the hase diferencenetween the applied voltage and current is given b_{y}
$(2) \theta=\tan ^{-1}-\frac{2}{2}$
(b) $\theta=\tan ^{-1} \frac{R}{\omega L}$
(6) $\theta=\tan ^{-1} \frac{1}{\omega C R}$
(d) $\theta=\tan ^{-1} \omega C R$
(96) By taking R as a reference in $R-C$ and $R-L$ series circuits, it can be seen that reactance $\left(X_{C}\right)$ and inductance $\left(X_{L}\right)$ are
(a) directed parallel to each other
(b) directed perpendicular to each other
(c) directed opposite to each other
(d) none of these
(97) The potential across the inductarice is giver by
(a) $\mathrm{V}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{rms}} X_{C}$
(c) $\mathrm{V}_{\mathrm{rm}}=\mathrm{r}_{\mathrm{rm}} \omega \mathrm{C}$
(b) $V_{1} \mathrm{~ms}^{2}=\mathrm{Fr} \mathrm{mas}_{2} \mathrm{OL}$
(98) If the fer le y do dopled, then the eactance of a capacitor would be
(a) one for 1 h
(b) half
(c) icur imes
(d) doubled

PAST PAPER MCQS

99) The impedance of R-L series circuit is: MTN-2019 (G-I), MTN-2022 (G-I)
(a) $Z=\sqrt{R^{2}+X_{L}^{2}}$
(b) $Z=\sqrt{R^{2}+X_{C}^{2}}$
(c) $Z=\sqrt{R+X_{L}}$
(d) $Z=R$

ENTRY TEST MCQS

(100) A 50 Hz , 20V A.C source is connected across $R C$ series circuit as shown in the figure.

If the voltage across R is 12 V , then voltage across capacitor C will be
(a) 8 V
(b) 410 V
(c) 16 V
(d) Not possible as value of C and R not given
(101) A wire of resistance R is coiled inductively so that its inductance is L. The impedance of the coil at a frequency of f is
(a) $(\mathrm{R}+2 \pi \mathrm{fL})^{1 / 2}$
(b) $\mathrm{R}+1 / 2 \pi \mathrm{fL}$
(c) $\left(\mathrm{R}^{2}+\mathrm{f}^{2} \mathrm{~L}^{2}\right)^{1 / 2}$
(d) $\left(\mathrm{R}^{2}+4 \pi^{2} \mathrm{f}^{2} \mathrm{~L}^{2}\right)^{1 / 2}$

Topic 16.8:

Power in A. Circuits

(102) When voltage and current are in phase, the pove i. giver by
(a) $\mathrm{P}=\mathrm{V}_{\text {rms }} \mathrm{I}_{\text {rms }}$
(c) $\mathrm{P}=\mathrm{F} \quad \mathrm{V}$
(b) $P=v$ m. I_{ms}
(c) $\mathrm{P}=$ rms $/ \mathrm{V}_{\mathrm{m}}$
(d) $P=1 / I_{\text {rms }} V_{\text {rms }}$
(103) The power dis ipation in a pure inauctive or in a pure capacitive circuit is
(a) 17
(b) 0
(d) infinite
(1)4) in A.C circuit the relation $P=I_{\text {rms }} V_{\text {rms }}$ is valid only when,
(a) V and I are out of phase
(b) I and V are in phase
(c) P and IV are in phase
(d) none of these
(105) The power dissipation in A.C circuits is
(a) $\mathrm{P}=\mathrm{I}_{\text {rms }} \mathrm{V}_{\text {rms }}$
(b) $\mathrm{P}=\mathrm{I}_{\mathrm{rms}} \omega \mathrm{V}_{\mathrm{rms}}$
(c) $\mathrm{P}=\mathrm{I}_{\text {rms }} \mathrm{X} \mathrm{V}_{\text {rms }} \cos \theta$
(d) $\mathrm{P}=\mathrm{I}_{\mathrm{rms}}(\omega \mathrm{V})$
(106) In the given relation $P=I_{r m s} \times V_{r m s} \cos \theta$ the power factor is
(a) P
(b) $\mathrm{V}_{\mathrm{rms}}$
(c) $I_{\mathrm{rms}} \times V_{\mathrm{rms}}$
(107) Which coismes smant nower?

DGK-2017 (G-II)
(a) inducip
(b) resistor
(c) moter
(d) all of them

ENTRY TEST MCQS
(4.43) in the given relation $P=I_{\text {rms }} V_{\text {rms }} \cos \theta$ the power factor is
(a) P
(b) $\mathrm{V}_{\mathrm{rms}}$
(c) $I_{r m s} \times V_{r m s}$
(d) $\cos \theta$
(109) In an ac circuit, the instantaneous values of e.m.f. and current are $\varepsilon=200 \sin 314$ t volt and $I=\sin (314 t+\pi / 3)$ ampere. The average power consumed in watt is
(a) 20
(b) 100
(c) 200
(d) 50
(110) If $E=100 \sin (100 t)$ volt and $I=100 \sin \left(100 t+\frac{\pi}{3}\right)$ A. Power is
(a) $10^{4} \mathrm{~kW}$
(b) 10 kW
(c) 2.5 kW
(d) 5 kW

Topic 16.9:

Series Resonance Circuit

(111) In RLC series circuits, when the frequency of AC source is very small then
(a) $X_{C}>X_{L}$
(b) $X_{C}<X_{L}$
(c) $X_{C}=X_{L}$
(d) $X_{C}=0$
(112) At resonance V_{L}, in R-L-C series circuit
(a) the voltage drop across capacitance
(b) the voltage drop across inductance
(c) the current drop across inductance
(d) the current drop across capacitance
(113) When $X_{L}=X_{C}$, this condition is called
(a) inductance
(b) resonance
(c) capacitance
(d) balanced
(114) At resonance, in R-L-C series circgit the in pedance of tin circuit
(a) inductive
(b) resistive
(c) zero
(d) capacitlv
(115) At resomace frequency, in $1 \mathrm{~L}-\mathrm{L}$-C series vircuit the impedance of the circuit is
(a) minioum
(b) maximum
(c) zero
(d) infinite
(116)It r eso ance frequency, in R-L-C series circuit if the amplitude of the source ohts g © is constant then the current would be
(a) minimum
(b) maximum
(c) zero
(d) infinite
(117) In RLC series circuits, the relation ' $X_{L}>X_{C}$ ' true for
(a) high frequencies
(b) low frequencies
(c) null frequencies
(d) none of these
(118) In RLC series circuits, when the voltage and current are in phase then the power factor would be
(a) -1
(b) 0
(c) 1
(d) 2
(119) The net power loss through a puecaparitor or inductors
(a) -1
(c) 1
(b) 0
(d) 2
(120) The RIX seris circuti is alsereferen ac
(a) simple circuit
(b) acceptor circuit
(c) rajector circulit
(d) transmitted circuit

PAST PAPER MCQS
1.21) At nigh frequency, the value of reactance of capacitor will be

GRW-2019 (G-II), LHR-2021 (G-I)
(a) large
(b) small
(c) zero
(d) infinite
(122) In RLC series circuit, the current at resonance frequency is

GRW-2019 (G-II), DGK-2022 (G-II)
(a) minimum
(b) maximum
(c) zero
(d) infinite
(123) In RLC series circuit, the condition for resonance is.

DGK-2017 (G-I), GRW-2022 (G-I), BWP-2022 (G-I)
(a) $X_{C}>X_{L}$
(b) $X_{C}=X_{L}$
(c) $X_{C}<X_{L}$
(d) $X_{C}=Z$
(124) In RLC series circuit, at resonance frequency, the impedance is \qquad .
GRW-2022 (G-II)
(a) Zero
(b) Minimum
(c) Maximum
(d) Infinite
(125) In RLC series resonance circuit, at resonance frequency, impedance Z is: FSD-2019 (G-I)
(a) $\sqrt{R^{2}+X_{L}^{2}}$
(b) R
(c) $\sqrt{R^{2}+X_{C}^{2}}$
(d) X_{L}
(126) In RLC series circuit, at higher frequencies.

RWP-2019 (G-I)
(a) $X_{L}=X_{C}$
(b) $\mathrm{X}_{\mathrm{L}}>\mathrm{X}_{\mathrm{C}}$
(c) $X_{L}<X_{C}$
(d) $X_{L}=0$
(127) The capacitance required to construct a resonance circuit of frency 1001 HO with an inductor of $\mathbf{5} \mathbf{~ m H}$ is:
(a) 5.09 pF
(c) 5.0 mF
(b) 50.09 mF
(d)
50.9 pr

ENTEV年ET MCQS
(128) In an 1, CF secies circlit, the capacitor is changed from C to 4C. For the same resplan frequency, the inductance should be changed from L to
(a) 2 L
(b) $\frac{L}{2}$
(c) $\frac{\mathrm{L}}{4}$
(d) 4 L
(129) In RLC series circuit the impedance is $Z=\sqrt{R^{2}+\left(X_{L}-X_{c}\right)^{2}}$. The phase difference between $I_{\text {rms }}$ and $V_{\text {rms }}$ is
(a) $\theta=\tan ^{-1} \frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}$
(c) $\theta=\tan \frac{\left(\mathrm{X}_{\mathrm{L}}+\mathrm{X}_{\mathrm{C}}\right)}{\mathrm{R}}$
$e=i a n$

Parallel Resonance Circuit

FOUNTN:

(130) The L-C parallel circuit is excited by an alternating source of voltage whose frequency
(a) could be varied
(b) could not be varied
(c) is zero
(d) none of these
(131) The inductance (L) has a resistance which is
(a) negligible small
(b) zero
(c) very large
(d) infinite
(132) In parallel resonance circuits, the frequency is given by
(a) $f_{r}=\frac{1}{2 \pi \sqrt{R C}}$
(b) $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$
(c) $f_{r}=\frac{1}{4 \pi \sqrt{R C}}$
(d) $f_{r}=\frac{1}{4 \pi \sqrt{L R}}$
(133) In L-C parallel circuit, the current at the resonance frequency is
(a) minimum
(b) maximum
(c) zero
(d) infinite
(134) In L-C parallel circuits. The circuit resonate at a frequency $\omega=\omega_{r}$ which makes
(a) $X_{C}>X_{L}$
(b) $X_{C}<X_{L}$
(c) $X_{C}=X_{L}$
(d) $X_{C}=0$
(135) For L-C parallel circuit,
(a) current and voltage are out of phase
(b) current and voltage are in phase
(c) inductance and voltage are out of phase
(d) current and voltage has phase of 30°
(136) At the resonance the current is minimum in L-C parallel circuit the nower frets 1 c
(a) 0
(b) 1
(c) -1
(137) The SI ant of $\sqrt{L C}$:

(a) Secoud
(c) Hertz
(b) Ampere
(d) Farad

ENTRY TEST MCQS
Which one is not the property of parallel resonant circuit?
(a) At the resonance frequency, circuit impedance is maximum
(b) At the resonance the current is minimum
(c) At the resonance, power factor is 1
(d) At resonance, the branch current I_{L} and I_{C} may each be larger than the source current I_{r}
(139) Simple oscillating circuit consists of?
(a) Inductor and capacitor
(b) Resistance and capacitor
(c) Resistance and coil
(d) Inductor and resistance

Topic 16.11:

(140) An A.Csene to consist of acol with
(a) with a slip ing
(b) with a pair of slip rings
(o) with : phe of magnet
(d) with a Commutator
(1+1) As cine coil rotates an alternating voltage is generated across the
(a) Commutator
(b) magnet
(c) coil
(d) slip rings
(142) The number of coils used in three phase A.C generated are
(a) 1
(b) 2
(c) 4
(d) 3
(143) The coils in three phase A.C generator inclined at
(a) 90°
(b) 0°
(c) 120°
(d) 60°
(144) When the combination of three coils rotate in three phase A.C generator, then
(a) a voltage is generated
(b) 3 alternating voltage generated
(c) no voltage generate
(d) 2 alternating voltage generated
(145) The voltages generate in three phase A.C generator has the phase difference of
(a) 120°
(b) 90°
(c) 360°
(d) 180°
(146) The main advantage of having three phase supply is that the total load of the house or a factory is divided into
(a) 4 parts
(b) 3 parts
(c) 5 parts
(d) 2 parts
(147) The voltage across each of lines connected to terminals $A, B \& C$ of machine and the neutral line in three phase AC supply is
(a) 400 V
(b) 120 V
(c) 230 V
(d) 440 V

PASTRAPER MCR
(148) In three phase A.C suppry, the comis arinclined at angle of:
(a) 0°
(b) 0
(c) 130
(d) 120°
(149) The votas ac: oss any wolive imes in three phase AC supply is

FSD-2022 (G-II)
(a) flo 0 V
(b) 120 V
(c) 230
(d) 440 V

ENTRY TEST MCQS

(150) The line to neutral voltage in three phase A.C supply is
(a) 230 V
(b) 400 V
(c) 120 V
(d) 0 V
(151) In three phase A.C if rms value of any phase is V volt then potential difference between any two-phase lines is
(a) V volt
(c) $\sqrt{3}$ V volt

Topic 16.12:

(152) A coil anc a capacit or are eledrical components which together can produce
(a) picil at on or voltuge
(b) oscillation of current
(d)) ciil + tion of reactance
(d) oscillation of capacitance
(1.3) An L-C circuit behaves like an
(a) oscillating pendulum
(b) oscillating mass-spring system
(c) Amplifier
(d) all of these
(154) In metal detector the energy oscillates between
(a) resistor and capacitor
(b) capacitor and resonance
(c) inductor and capacitor
(d) resistor and inductor
(155) The metal detectors are used to locate
(a) buried metal objects
(b) metal at security checks
(c) both a and b
(d) none of these

PAST PAPER MCQS

(156) When a metal detector comes close to a metal then its frequency: RWP-2019 (G-I)
(a) becomes double
(b) remains same
(c) Decreases
(d) increases
(157) Metal detector consists of

SWL-2017
(a) $\mathrm{L}-\mathrm{C}$ circuit
(b) $\mathrm{R}-\mathrm{L}$ circuit
(c) $\mathrm{R}-\mathrm{C}$ circuit
(d) RLC-series circuit
(158) When an inductor comes close to a metallic object, its inductance is

DGK-2017 (G-II)
(a) decreased
(b) increased
(c) becomes half
(d) becomes 4 times
(159) The principle of metal detector is.

MTN-2022 (G-II)
(a) resonance
(b) beats
(c) Faraday's law
(d) Lenz's law

ENTRY TESTMMCQS

(160) In a metal detector, in absenceof any metal the indictace and L_{B} have the relation
(a) $\mathrm{L}_{\mathrm{A}}<\mathrm{y}^{1} \sqrt{3}$
(b) $L_{A}<L_{B}$
(c) $L_{A}=L_{B}$
(d) None of these

Toncraf \&

Choke and Electromagnetic Waves

(6i) In space the speed of electromagnetic waves is
(a) $3 \times 10^{9} \mathrm{~ms}^{-1}$
(b) $2 \times 10^{8} \mathrm{~ms}^{-1}$
(c) $3 \times 10^{8} \mathrm{~ms}^{-1}$
(d) $3 \times 10^{-8} \mathrm{~ms}^{-1}$
(162) The waves which do not require any medium for their propagation
(a) mechanical waves
(b) stationary waves
(c) matter waves
(d) electromagnetic waves
(163) The electromagnetic phenomenon explained by
(a) Maxwell
(b) Einstein
(c) Newton
(d) Bo he
(164) The choke coil makes the inductance I er the coil
(a) quite large
(b) very) sn : 11
(c) zero \qquad $\sqrt{ }$
(d) infinite
(165) The electromagnetic Pier memnon explained Maxwell in
(a) 189
(b) 1864
(c) $1 / 89$
(d) 1869
156. Acer 1 (1)
(a) electric charge
(b) electric field
(c) magnetic field
(d) both b \& c
(167) The choke coil is used in
(a) A.C circuits
(b) D.C circuits
(c) potential meter
(d) potential divider
(168) According to Maxwell's equation the magnetic field produce due to
(a) changing in magnetic flux
(b) changing electric field
(c) changing power
(d) none of these
(169) The choke coil used in A.C circuits used to
(a) limit the voltage
(b) limit the current
(c) limit the power
(d) limit the potential difference
(170) In electromagnetic phenomenon the magnetic field, electric field and direction of their propagation are
(a) opposite to each other
(b) anti-parallel to each other
(c) parallel
(d) mutually orthogonal
(171) The electromagnetic waves have been classified into spectrum depending upon
(a) speed
(b) wavelength
(c) frequency
(d) both b and c
(172) Which one has the smallest wavelength
(a) gamma rays
(b) X-rays
(c) radio waves
(d) infra red rays
(173) Which one has the highest frequency
(a) gamma rays
(b) X-rays
(c) radio waves
(d)infra red rays
(174) The formula for speed of electromagnetic waves is
(a) $c=f \lambda$
(c) $c=f / \lambda$
(b) $v=c \lambda$
(c) $c=\lambda / f$
(175) To generate the electromagnet waves the clargediparticle must
(a) be stationary
(io) be accelerated
(c) havinpene gr
(d) none of these
(176) Theqped of light is sane as the speed of
(a) ada wives
(b) electromagnetic waves
(d) gamma rays
(d) all of these

PAST PAPER MCQS

(177) Which of the following electromagnetic waves have the shortest wavelength?

GRW-2022 (G-II)
(a) Radio wave
(b) Infrared wave
(c) Ultraviolet wave

(d) Micro wave

(178) Choke consumes extremely small:

FSD-2019 (G-I), SGD-2022 (G) 1 A
(a) Current
(b) Charge
(c) Power
(d) Potentin
(179) Resistance of pure choke is
(a) Zero
(c) Verysrai
(b) Lage

ENTRY TEST MCQS
$180)$ Wichone i not true about choke coil?
(a) $I t$ is an inductive coil
(b) It consumes extremely large power
(c) Used to limit current in AC circuit
(d) Both a and c
(181) X-rays have frequency greater than
(a) Visible light
(b) Ultraviolet
(c) Microwaves
(d) All of these

Topic 16.15:

Principle of Generation, Transmission and
 Reception of Electromagnetic Waves

(182) The electric charge at rest gives rise to
(a) gravitational force
(b) Coulomb's field
(c) frictional force
(d) Newton's force
(183) By shaking an electrically charged object to and fro, it is produced
(a) electromagnetic waves
(b) electric waves
(c) mechanical waves
(d) matter waves
(184) The electromagnetic waves which are propagated out in space from radio transmitting antenna are known as
(a) radio waves
(b) infrared waves
(c) mechanical waves
(d) matter waves
(185) A radio transmitting antenna generate electromagnetic waves by
(a) stationary charges
(b) accelerating charges
(c) both a and b
(d) none of these
(186) The piece of wire along which charges are made to accelerate is called
(a) transmitting antenna
(b) receiving 2สะํna
(c) L-C antenna
(d) receming station
(187) Which electromagnetic vaves enit. ed irom ant nna
(a) stationary waves
(b) ight woves
(c) trar(SD) r se wayes
(d) longitudinal waves
(188) As the ming ing otent al alternates, the charge on the antenna
(a) rem. in same
(b) always positive
(c) cunstanivoverses
(d) always negative

78p The orage appears across a receiving antenna placed in space is usually due to the
(a) radio waves of large number of frequencies
(b) longitudinal waves of high frequency
(c) light waves
(d) radio waves of single frequencies
(190) When a number of transmitting stations operate simultaneously, then in space we have a number of
(a) radio waves of same frequencies
(b) radio waves of different frequencies
(c) longitudinal waves of same fre uencies
(d) longitudinal waves of cifieremp reprercies

BAKT PAPER MCES
(191) When wacerate the charge wich type of waves are produced? SGD-2022 (G-I)
(a) mecharica vave
(b) travelling wave
(c) tationa yave
(d) electromagnetic wave

ENTRY TEST MCQS

192) Which one is true about electromagnetic waves?
(a) Speed of electromagnetic wave is $=\mathrm{c}=\frac{1}{\sqrt{\mu_{\mathrm{o}} \varepsilon_{o}}}=3 \times 10^{8} \mathrm{~ms}^{-1}$
(b) Electromagnetic waves are generated by accelerating charges.
(c) Particular frequency radio signal is tuned on receiver radio by adjusting the value of c .
(d) All of these
(193) Electromagnetic waves do not transport
(a) Energy
(b) Charge
(c) Momentum
(d) Information
(194) Accelerating charge has:
(a) Electric field
(b) Magnetic field
(c) Both
(d) None

Topic 16.16:

Modulation

(195) The process of combining the low frequency signal with high frequency radio waves is called
(a) modulation
(b) de-modulation
(c) rectification
(d) none of these
(196) As a result of modulation, the resultant wave is called
(a) de-modulated carrier waves
(b) carrier waves
(c) both a \& b
(d) modulated carriex y ales
(197) The low frequency signals is known as
(a) modulation signals
(c) de-modulated signals
(b) moculated cirr er ig aals
(a) catrier signal.
(198) The types of modulations are
(a) 3
(b) 4
(c) 5
(d) 2
(199) The typ of modelation in which the amplitude of the carrier wave is increased or Intiocheu as the amplitude of the superposing modulation signal increasing or uecreasing called
(a) A.F
(b) W.M
(c) F.M
(d) A.M
(200) The A.M transmission frequencies range is from
(a) 570 kHz to 1800 kHz
(b) 570 kHz to 1600 kHz
(c) 540 kHz to 1600 kHz
(d) 940 kHz to 1700 kHz
(201) In which type of modulation the carrier wave amplitude remain same
(a) wavelength modulation
(b) light modulation
(c) frequency modulation
(d) amplitude moc'uation
(202) The F.M transmission frecuencies ange is in om
(a) 70 kHz to 180 kHz
(b) $88 \mathrm{MH}_{2}$ o 000 NHz
(c) 60 kH Ho 160 kHz
(d) 401.4 Az to 170 kHz
(203) Which ed io wave are les efifected y eiectric interference
(a) F.M
(b) A.M
(c) A.F
(d) both a \& b
204. Whaduation is the process of combining the low frequency signal with a high requency radio waves called
(a) modulated waves
(b) carrier waves
(c) both a and b
(d) none of these
(205) The waves which are less able to travel around obstacles such as hills and large buildings are
(a)A.M waves
(b) A.F waves
(c) F.M waves
(d) both a \& c

PAST PAPER MCQS

(206) The process of combining low frequency signal with a high frequency radio waves is called

SGD-2017 (G-II)
(a) amplification
(b) resonance
(c) demodulation
(d) modulation
(207) The A.M transmission frequencies range is from

DGK-2022 (G-II)
(a) 540 Hz to 1600 Hz
(b) 540 MHz to 1600 MHz
(c) 540 kHz to 1600 kHz
(d) 540 Hz to 1600 kHz

ENTRY TEST MCQS

(208) Frequency range of $\mathbf{F} . \mathrm{M}$ signal is
(a) 540 kHz to 1600 kHz
(b) 88 MHz to 108 MHz
(c) 1 MHz to 100 MHz
(d) None of these
(209) The modulated electromagnetic waves of frequency 100 kHz are falling on an aerial of radio. These will induce a current of frequency.
(a) 10 kHz
(b) 50 kHz
(c) 100 kHz
(d) 150 kHz

02

ANSWERKEYS

(Topical Mutitiple Cnoce Ouestions)

1	B	21	A	41	B	61	B	81	$1)$	1		1	1	,	I)	11	0	181	D	201	C	221
2	B	22	C	42	B	62	A	82	A	151	A		B	142		162	b	182	B	202	B	222
3	B	23	A	43	(A)	3	-	8	A		$1:$	123.	\square	143	B	163	A	183	A	203	A	223
4	C	24	D	44	A	4	C		D	$1{ }^{1}$	B	124	B	144	A	164	A	184	A	204	B	
5	A	25	B	4	C		1	85	\bar{D}	105	C	125	B	145	C	165	B	185	B	205	C	
6	A	5	B	W	B		B	86	D	106	D	126	B	146	B	166	B	186	C	206	D	
			A	47	D	67	C	87	D	107	A	127	A	147	C	167	A	187	A	207	C	
	A	28	B	48	B	68	B	88	C	108	D	128	C	148	D	168	B	188	C	208	B	
9	A	29	B	49	C	69	C	89	C	109	D	129	D	149	A	169	B	189	A	209	C	
10	D	30	B	50	A	70	C	90	A	110	C	130	A	150	A	170	D	190	B	210		
11	C	31	C	51	D	71	D	91	B	111	A	131	A	151	C	171	D	191	D	211		
12	B	32	B	52	A	72	C	92	B	112	B	132	B	152	B	172	A	192	D	212		
13	D	33	D	53	B	73	B	93	D	113	B	133	A	153	B	173	A	193	B	213		
14	D	34	B	54	A	74	C	94	C	114	B	134	C	154	C	174	A	194	C	214		
15	A	35	B	55	A	75	C	95	C	115	A	135	B	155	C	175	B	195	A	215		
16	B	36	C	56	A	76	B	96	C	116	B	136	B	156	C	176	D	196	D	216		
17	B	37	B	57	B	77	B	97	D	117	A	137	C	157	A	177	C	197	A	217		
18	C	38	A	58	D	78	A	98	B	118	C	138	A	158	A	178	C	198	D	218		
19	A	39	B	59	D	79	A	99	A	119	B	139	A	159	B	179	A	199	D	219		
20	D	40	D	60	A	80	B	100	C	120	B	140	B	160	C	180	B	200	C	220		

KIPS TOPICAL SHORT QUESTIONS

16.1 ALTERNATING CURRENT

(1)

What is meant by peak value? Define also peak to $\boldsymbol{f}^{\text {tak value? }}$
Ans: Peak Value
Maximum value of voltage o wrent an either ride is all peak value. It is densied by V_{o} tor roltage ind I_{o} for current.
Peak to prak value
It is he um of positive and negative peak values usually written
 a. $\mathrm{P}-\mathrm{p}$ value.

For voltage $V_{P-P}=2 V_{o}=2 \sqrt{2} V_{\text {rms }}$
For current $I_{P P}=2 I_{o}=2 \sqrt{2} I_{r m s}$
(2) Prove that
(i) $\mathrm{V}_{\text {rms }}=\mathbf{0 . 7 0 7} \mathrm{V}_{0}$
(ii) $\mathbf{I}_{\mathrm{rms}}=\mathbf{0 . 7 0 7} \mathrm{I}_{\mathbf{0}}$

Ans: (i) $\mathrm{V}_{\mathrm{rms}}$ is defined as the square root of the average of square of voltages through out the cycle.
Proof: Since the numbers of positive and negative peaks in A.C are same, which may reduce the total value to zero, but average of squares will not be zero. So

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{\mathrm{V}_{\text {min }}^{2}+\mathrm{V}_{\text {max }}^{2}}{2}}=\sqrt{\frac{0+\mathrm{V}_{0}^{2}}{2}} \\
& \mathrm{~V}_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{o}}}{\sqrt{2}} \Rightarrow \quad \Rightarrow \quad \mathrm{~V}_{\mathrm{rms}}=0.707 \mathrm{~V}_{\mathrm{o}}
\end{aligned}
$$

(ii) I_{rms} is defined as the square root of the average of squares of maximum and minimum currents through out the cycle.
Proof: Since the number of positive and negative peaks in A.C are same which may reduce the total current to zero, but average of squares will not be zero. So

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{rms}}=\frac{\sqrt{\mathrm{I}^{2}{ }_{\text {min }}+\mathrm{I}^{2}{ }_{\text {max }}}}{2}=\frac{\sqrt{0+\mathrm{I}^{2}}}{2}=\frac{\mathrm{I}_{\mathrm{o}}}{\sqrt{2}} \\
& \mathrm{I}_{\mathrm{rms}}=0.707 \mathrm{I}_{\mathrm{o}}
\end{aligned}
$$

(3) Define (a) instantaneous value
(b) Peak value.

Ans: 1) Instantaneous value: The value of alternating voltage or current at any instanio circuit from some reference point is known as its instantaneons ralus. tis oiven by

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{\mathrm{o}} \sin \theta \\
& \mathrm{~V}=\mathrm{V}_{\mathrm{o}} \sin \omega \mathrm{t} \\
& \mathrm{~V}=\mathrm{V}_{\mathrm{o}} \sin 2 \pi \mathrm{ft} \\
& \mathrm{Si} \mathrm{~min}^{\text {arly, }} \\
& \mathrm{I}=\mathrm{I}_{\mathrm{o}} \text { sin } \\
& \mathrm{I}=1 \\
& =1 \sin \sin
\end{aligned}
$$

 cycie is called peak value. It is represented by V_{o} and I_{0}.
(4) How does the voltage output of a generator change with angular velocity?

Ans: The output V of A.C generator at any instant
$V=V_{0} \sin \frac{2 \pi}{T} t$
Where $\mathrm{T}=$ time period of rotation of coil
$\frac{2 \pi}{\mathrm{~T}}=2 \pi \mathrm{f}=\omega=$ angular fequency of rotation

(5) What is meant by phase of A.C quantities?

Ans: The instantaneous value of voltage is given by the relation

$$
V=V_{0} \sin \omega t=V_{0} \sin \theta
$$

The angle θ which specified the instantaneous value of alternating voltage or current is known as its phase.
(6) What is difference between alternating and direct current?

Ans:

Alternating Current (A.C.)	Direct Current (D.C.)
- Alternating current whose magnitude varying continuously and reverses its direction periodically. - A.C. generator is common source of alternating current. - The frequency of A.C. in Asia 50 Hz . - A.C. cannot flow through an	- Direct current is due to flow of charges in one direction without reversing its direction. - Cell and battery are common source of direct current. - The frequency of pure D.C. is zero. - D.C. cannot flow through a capacitor.

(7) Define Root Mean Square (rms) value of potential and current.

Ans: Root Mean Square value of voltage is defined as the square ruet of the average of suanot. voltage throughout the cycle. $\mathrm{V}_{\text {rms }}$ isgiven by ;

$$
\mathrm{V}_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{o}}}{\sqrt{2}}
$$

(i) Define peak value of A.C. voltage.

Ans: Maximum value of voltage on either side is called peak value. It is denoted by V_{0}.

(9) Define phase of alternating voltage.

Ans: The instantaneous value of voltage is given by the relation

$$
V=V_{0} \sin \omega t=V_{0} \sin \theta
$$

The angle θ which specilie the insaranaous value of allernatins oltage or current is known as itsphase.
(10) What is the main reasor ior the worldwide use of A.C.?

Ans: The main yeason for the worldwide use of A.C. is that it can be transmitted to long d siences easily and at a very low cost.
(1) Give different conditions for representing an alternating quantity?

Ans: A.C quantities are represented by anti-clock wise rotating vectors such that Length of vector represent the peak or rms value of A.C quantity.
Vector is along horizontal plane of A.C quantity is zero.
The angular frequency ω of rotating vector must same as that of A.C quantity.
PAST PAPER SHORT QUESTIONS
(12) What is meant by phase of A.C quantities?

LHR-2017 (G-I), DGK-2017 (G-II)
(13) A sinusoidal current has rms value of 10A. What is the maximum or peak value?

SGD-2017 (G-II), MIRPUR-2017, LHR-2017 (G-I), LHR-2021 (G-I, II), DGK-2022 (G-I, II), FSD-2022 (G-I)
(14) How many times per second will an incandescent lamp reach maximum brilliance when connected to a 50 Hz source?

DGK-2017 (G-II), SGD-2017 (G-II), LHR-2021 (G-II), RWP-2022 (G-I)
(15) Define instantaneous value and peak value of alternating current.

MTN-2016 (G-I), BWP-2017 (G-I)
(16) Define peak value and peak to peak value of A.C. voltage?

BWP-2014, DGK-2017 (G-II), LHR-2022 (G-II)
(17) What do you mean by root mean square value of voltage and write its formula? MTN-2019 (G-II), BWP-2022 (G-I)
(18) What do you mean by phase lag and phase lead?

RWP-2022 (G-I)
(19) What is meant by phase difference?

RWP-2022 (G-II)

16.2 A.C. CIPCUITS

(20) How voltage and current are coringlled in 1 ciccuts?

Ans: In A.C circuit voltage and current arecontrolled by resistor capacitor and inductor
PASTPAPE SHOHTCUETONS
(21) What diffence between A.C. circui ana Dd. circuit?LHR-2022 (G-I), DGK-2022 (G-II)

(22) ExIflain shortiy A Ctirough a Resistor.

An: Atarytine, , the potential difference across the resistor produced by A.C source is given g $v=V_{o} \sin (\omega t)$
And by ohm's law, current is given as
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}} \sin \omega \mathrm{t}$
$\mathrm{I}=\mathrm{I}_{\mathrm{o}} \sin \omega \mathrm{t}$

from equation (1) and (2) it is clear that both are in phase in resistor. It can be represented vectorially as.

PAST PAPER SHORT QUESTIONS

16.4 A.foTHIGUGE ACAPAKITDR

(23) Define resciance of a mpacitor. Also wr ite dovn its tormula.

Ans: It is opposion inered co capaciton to alternating current. It is also called alternating current. Resistarce of (apacitor, it is denoted 1 y Xc and is given by

is unit is ohms $\mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}$
where $\omega=2 \pi \mathrm{f}$
(24) In a RC circuit, will the current lag or lead the voltage? Illustrate your answer by a vector diagram.

LHR-2012
Ans: As $\quad I=\frac{\Delta q}{\Delta t}=$ rate of flow of charge. Hence current at any instant is the slope of q-t curve.
At O when $\mathrm{q}=0$ slope is maximum so I is maximum. From O to A slope $q-t$ curve decreased to zero. So I is zero at N. From
 A to B slope of $q-t$ curve is negative so I is negative from N to R. Variation of current is represented by curve PNRST. From fig it is clear that current leads the voltage by $\frac{\pi}{2}$ because when at point A phase of V is $\frac{\pi}{2}$ and that of I is π. Hence current leads V by $\frac{\pi}{2}$ vectorially it is represented in fig c.

Fig.(c)
(25) Describe the condition which will make the reactance small.

Ans: It is opposition offered by capacitor to A.C. It is also called A.C resistance of capacitor, it is denoted by X_{c} and is given by

$$
\mathrm{X}_{\mathrm{c}}=\frac{\text { Voltage }}{\text { Current }}
$$

Its unit is ohms $\mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}$
In case of capacitor reactanea becomes smaul ty u ing higher frequency A.C. source
PAST FAPEF SHOR R OUESTIDNO
(27) Homdoes doubing the frequency affect the reactance of a capacitor?

BWP-2017 (G-I)
Define reartance of a apacitor Anso writedown its formula.
FSD-2022 (G-II)

16.5 A.C. THROUGH AN INDUCTOR

(2, What is meant by inductive reactance?
Ans: The opposition offered by the inductive coil to the flow of A.C is called inductive reactance. It is denoted by X_{L}. Its unit is ohm.
Mathematically,

$$
X_{L}=\omega L=2 \pi f L
$$

(29) At what frequency will an inductor of 1.0 H have a reactance of 500Ω ?

EwP-2010 (r.
Ans: The reactance of an inductor is given by;
(30) Define tho e ?

Ans: An in ducto collues not consume energy, the coil is often employed for controlling A.C Withut consumption of energy. Such an inductance coil is known as choke.

PAST PAPER SHORT QUESTIONS

(31) At what frequency will an inductor of 1.0 H have a reactance of 500Ω ?

GRW-2019 (G-II), RWP-2019 (G-I)
(32) Explain the power dissipation in an inductor.

LHR-2021 (G-I)

16.6 IMPEDENCE

(33) When 10 V are applied to an A.C circuit, the current flowing in it is 100 mA . Find its impedance.
Ans: As we know that;

$$
\text { Impendence }=\frac{\text { voltage }}{\text { current }}=\frac{10}{100 \times 10^{-3}}=100 \Omega
$$

(34) Define impedance and write its formula? Also give its unit?

Ans: The combined opposing effect of resistance and reactances to A.C is called impedance it is denoted by Z

$$
Z=\frac{V_{r m s}}{I_{r m s}} .
$$

Its unit is ohm.

PAST PAPER SHORT QUESTIONS

(35) Define impedance and write its formula. Also give its units.

MTN-2017 (G-I), LHR-2019 (G-II), DGK-2022 (G-I)
(36) When 10 V are applied to an A.C circuit, the current flowing in it is 100 mA . Find its impedance.

16.7 R-C AND R-L SERIES CIRCHIK

(37) Define impedance and write the impedance txpresson or-L ser ies cincut.

Ans: Impedance:
The compined oppesing eifecteof resisiance and reactances to A.C is called impedance it is denoted by 2 . It s enit is chm.

$$
Z=\frac{V_{r m s}}{I_{r m s}} .
$$

R-L SERIES CIRCUIT

In R-L series circuit impedance is given by;
Impedance $\mathrm{Z}=\mathrm{V} / \mathrm{I}=\sqrt{\mathrm{R}^{2}+(\omega \mathrm{L})^{2}}$

PAST PAPER SHORT QUESTIONS

(38) How does doubling the frequency affect the reactance of an inductor and 2 eapacitor

DGK-2017 (G-I), LHR-2021 (G-I), BWP-2022 (G-I, सSD-202 2 (G-II)

A choke coil placed in series witip electri become-din, why is it su?
Define impedance and write the impedance expession for R-L serics (ir cuii.
auses the lamp to
BWP-2022 (G-I)

16885OWER IN A.C. CIRCUITS

What power factor? What are its values for pure resistor, capacitor and inductor circuits?
Ans: Power factor is equal to the cosine of phase angle between the voltage and current vectors i.e power factor $=\cos q$

As, we know that power in A.C circuit is given as

$$
\begin{aligned}
& P=V_{r m s} \mathrm{I}_{\mathrm{rms}} \cos q \\
& \cos q=\frac{\mathrm{P}}{\mathrm{~V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}}
\end{aligned}
$$

For resistor, since $q=0^{\circ}$ its value is one, as $\cos 0^{\circ}=1$.
For inductor, since $q=90^{\circ}$, thus $\cos 90^{\circ}=0=$ power factor and for capacitor, aging since $q=90^{\circ}$, the $\cos 90^{\circ}=0=$ power factor.
(42) How power is calculated in an A.C circuit? Write its formula.

Ans: Electrical power can be calculated by using $\mathrm{P}=\mathrm{VI}$. This relation is applicable only when V and I are in phase as in case of pure resistive circuit. An average power dissipated in inductor and capacitor is zero because of phase difference of $\frac{\pi}{2}$ between V and I so in these cases voltage has no component along I.
(43) Compare the impedance diagram of $R-C$ and $R-L$ circuits.

Ans: By comparing the impedance diagram of R-C and R-L circuits it can be seen that the vector lines of reactance X_{c} and X_{L} are directed opposite to each other with R as reference

LHR-2017 (G-I)
RWP-2022 (G-I)

16.9 SERIES RESONANCE CIRCUIT

(46) Write the properties of a series resonant circuit.

Ans: Following are the important properties of a series resonant circuit.
(i) The resonance frequency is given by

$$
\mathrm{f}_{\mathrm{r}}=1 / 2 \pi \sqrt{\mathrm{LC}} \text { when } \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{c}}
$$

(ii) The impedance of the circuit at resonance is minimum and it is qual th R.
(iii) At resonance frequency ' f ' the voltage drop across indictor and canac tor mey be greater than the source voltage.
(iv) The power factor of resontice series cir u it is 'i' since the impedance of the circuit at resonance is resistive so the curentand vetage are in phase.
(v) (If) the amp\%ite of the source voltage ' V ' is constant, the current is maximum at tili. resonance frequency
(47) What is resonance cor dition in RLC series circuit? Give its equation? LHR-2014

Ans: \sqrt{n} betweer low and high frequency there will be frequency for which $X_{L}=X_{C}$, this cond tion is called resonance.
As

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}} \\
& \omega_{r} L=\frac{1}{\omega_{r} C} \text { or } \\
& \omega_{r}^{2}=\frac{1}{L C} \\
& \omega_{r}=\frac{1}{\sqrt{L C}} \text { or } \\
& 2 \pi f_{r}=\frac{1}{\sqrt{L C}} \text { or } \\
& f_{r}=\frac{1}{2 \pi \sqrt{L C}}
\end{aligned}
$$

PAST PAPER SHORT QUESTIONS

(48) What is resonance condition in RLC series circuit? Give its equation?

BWP-2022 (G-II)

16.10 PARALLEL RESONANCE CIRCUIT

(49) What is the condition of resonance in parallel resonant circuit?

Ans: If R is small, then for $L C$ parallel circuit, the resonance takes place when $X_{L}=X_{C}$. At this point frequency is called resonant frequency and is given by the relation

$$
f_{r}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
$$

(50) Write four properties of parallel resonance circuit.

Ans: (i) The resonance frequency is

$$
\mathrm{f}_{\mathrm{r}}=\frac{1}{2 \sqrt{-E}}
$$

(ii) At resonance the imperaince is maxinum equals to CR. Hence furrent is minimum at resonance and in nhase with/ yol \& ge
(iii) A re;panearaneh curents I_{L} and I_{C} myeach be larger than source currents I_{R}.
(iv) At espanare powier factor is ane.

PAST PAPER SHORT QUESTIONS

(51) 1 efte ty 0 oreperties of parallel resonance circuit.

FSD-2022 (G-II)

16.11 THREE PHASE A.C. SUPPLY

(12) Give some advantages of three phase A.C supply?

Ans: (1) The total load is divided into three parts. Hence it can bear large load of a house or factory.
(2) It can be used to operate heavy machinery, which need 400 V for operation.

PAST PAPER SHORT QUESTIONS
What is the main advantage of three phase A.C. supply?

16.12 PRINCIPLE OF METAL PFTACIQRS

(56) Explain the principle of metal detector

Ans: The working principle of metal waftor bistd ba beets
Explanetion:
Two oscilator A and B are used in the operation of common type of metal detector. In the absence of any nea.b. netal object the inductances L_{A} and L_{B} are the same and hence the 7 sor ance frequeney of two circuits is also same. When the inductor B, called search FDiv (Cule near a metal object, its inductance L_{B} decreases and corresponding oscillator fequency increases and thus a beat note is heard in the attached speaker.

PAST PAPER SHORT QUESTIONS

Explain the principle of metal detector.
SWL-2017

16.13 CHOKE

(58) Define choke, give its uses.

Ans: It consists of an inductance coil and is used to adjust the current in A.C circuits. It plays the same part in A.C circuits as resistance in D.C circuits for many purposes
Use: It is use to reduce the current in a given A.C circuit without small wastage of energy, when the supply voltage is constant.
(59) What is a choke coil and why is it used in A.C circuits?

Ans: It is a coil which consists of thick copper wire wound closely in a large number of turns over a soft iron laminated cores.
It is used in A.C circuits to limit current with extremely small wastage of energy as compared to resistance or a rheostat.
(60) How much energy is consumed by a choke when an AC is passed through it? Explain.

Ans: Choke makes the inductance L of the coil quite large whereas its resistance R is very small. Thus it consumes extremely small power it is used in A.C. circuits to limit current with extremely small wastage of energy as compared to a resistance or a rheostat.

PAST PAPER SHORT QUESTIONS

(61) What is choke? Explain its use in A.C circuit.

MIRPUR (AJK) 2017, FSD-2019 (G-I), RWP-2019 (G-I), DGK-2022 (G-I), FSD-2022 (G-I)

16.14 ELECTROMAGNETIC WAVES

(62) What is the source of transmitting electromagnetic waves?

Ans: Electromagnetic waves are transmitted by fadio transmiting antenr a. Antenn geverates Electromagnetic waves with the heip of oscillition of accereraing charge
(63) Write down the characte istics of vectromape ic waves.

Ans: (i) Electromagnetic waves requ/red 10 redium.
(ii) Ejectromenetio waves are doscription of Maxwell equations formulated by Murwe in 864
(iii) ilectron agn tid waves propagate with speed of light. i.e. $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(ive) Electornagnetic waves are produced by changing fields produced by changing flux i.e.
(a) Changing electric flux causes magnetic field.
(b) Changing magnetic flux causes electric field.
(v) Speed of electromagnetic waves can be given by

$$
\mathrm{c}=\frac{1}{\sqrt{\epsilon_{\mathrm{o}} \mu_{\mathrm{o}}}} \text { where } \epsilon_{\mathrm{o}}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2} \text { and } \mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{Am} .
$$

(vi) Electromagnetic waves consist of mosing electric fieli and riagnetig fiblds
(vii) Electric field E , magnetic İeld B anれdiec ion of propagation of waves are mutually perpendi ular.
(viii) Electromagnetic waves are priodic waves, laving speciric wavelength and frequencyrerated by c $=1 \lambda$

HIFPRINCIPLE OF GENERATION, TRANSMISSION AND RECEPTION OF ELECTRMAGNETIC WAVES

(65) What is the principle of generation of electromagnetic waves?

SWL-2019
Ans: Electromagnetic waves generated only when there is electric and magnetic field changing. A charge at rest or moving with constant speed will not produce these waves because there is no change of electric flux and magnetic flux. A radio transmitting antenna is an example of generating electromagnetic waves by accelerated charges.

PAST PAPER SHORT QUESTIONS

(66) Write advantages of FM over AM.

GRW-2019 (G-I)
(67) Explain the condition under which electromagnetic waves are produced from a source.

RWP-2022 (G-II)

16.16 MODULATION

(68) What are the transmission frequencies for electromagnetic waves in (i) A.M range, (ii) F.M range.

Ans: (i) A.M range: The A.M. transmission frequencies range from 540 kHz to 1600 kHz .
(ii) F.M range: The F.M transmission frequencies are much higher and ranges between 88 MHz to 108 MHz .
(69) With reference to modulation, give the difference between the information and carrier.

Ans: In modulation the carrier is a high frequency radio wave and information is a low frequency signal. The low frequency signal is known as modulation signal. Modulation is achieved by changing amplitude or the frequency of the carrier wave in accordance with a modulated signal.
(70) Define modulation and write its types.

Ans: Modulation is the process of combining low frequency rigol with a hig faquelif radio waves called carries waves. The resutant maver a e ca.led mod 1 ated catics waves. The low frequency signal is called the 7 rod uating signel.
So, modulation is of trootype
(i) Amplttide notulation A.M
(ii) Frequency modulation.(F.M)
(71) Dififrentic te letween amplitude modulation and frequency modulation. SWL-2017

Amplitude Modulation (AM)	Frequency Modulation (FM)

A type of modulation is which amplitude of the carrier wave is increased or decreased as the amplitude of the superposing modulating signal increases and decreases. Its frequency ralg/ 755040 $\mathrm{kHz}^{1000} \mathrm{kHz}$ AM vaves are ino eable to travel arcund ob table such as hills \& large (eu) lives so have a larger range.	A type of modulation in which frequency of the carrier wave is increased o: decreased as the morulatiog higral implitude increases or dece eises butthe carr er vave amplituce iem ains constant. Its t -quency range is $88 \mathrm{MHz}-108$ MAz. FM radio waves are affected less by electrical interference provide a higher quality transmission of sound.

PAST PAPER SHORT QUESTIONS

(72) Give advantages and disadvantages of F.M / and A.M SGD-2017 (G-II), DGK-2022 (G-II)
(73) How the reception of a particular radio station is selected on your radio set?

SGD-2017 (G-I), MIRPUR (AJK) 2017, SWL-2017, BWP-2017 (G-I), LHR-2022 (G-II)
(74) Differentiate between amplitude modulation and frequency modulation.
(75) Define modulation and write its types.

DGK-2017 (G-I), BWP-2019 (G-II)
(76) What is meant by A.M and F.M?

LHR-2022 (G-I), BWP-2022 (G-II)

