
		(c) $V_{rms} = V_o \sqrt{2}$	(d) both a and b
	(11)	The instantaneous voltage "V" generated	l by a rotating coil in a magnetic field has
		the form $V = V_0 \sin 2\pi f t$ here $2\pi f$ is	1 TONG LOG
		(a) Amplitude of the voltage \bigcirc	(b) Period of the voltage
		(c) Angular frequency of A.C	(d) frequency of voitage
	(12)	The e.m.f. Generated by a rotating coll in	
		(a) Straight line	(b) Sine wave
		(c) square wave	(d) All of the above
6	(13)	The value of V _{rms} is	
an	NN.	$(i) \ge V_{o}$	(b) 0.707 V _o
A.A.	0	(c) $\frac{V_o}{\sqrt{2}}$	(d) both b and c
		$\sqrt{2}$	
	(14)	An A.C voltmeter reads 440V, its peak va	lue is
		(a) 611.25V	(b) 311.23V
		(c) 311.12V	(d) 620.4V
	(15)	The root mean square value of A.C circui	t is always
		(a) positive	(b) negative
		(c) zero	(d) none of these
	(16)	The value of I _{rms} is	
		(a) $0.87I_0$	(b) 0.707 I ₀
		(c) $0.07 I_0$	(d) 7.707 I_0
	(17)	In 'V=V ₀ sin θ ' the angle θ which specifies the instantaneous value of alternating	
		voltage or current is known as	
		(a) displacement	(b) phase
		(c) angular distance	(d) angular frequency
	(18)	The point where the waveform crosses the time axis, the phase is	
		(a) $\frac{3\pi}{2}$	(b) 2π
		2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		(c) π	(d) $\frac{\pi}{2}$
	(19)	The loss of energy in transmitting power :	
		(a) alternating current	(b) thermal electricity
	(- -)	(c) direct current	(d) electromagnetism
	(20)	By connecting the D.C antucter to measu	
		(a) p-p value	(b) instantaneous value
_	nR	(c) peak value	(d) average value over the cycle
AN	<u> (30)</u>	If $V_{\rm s} = 25.5 \sqrt{2}$ then the V _{rms} value will be	
(MA)	00	(a) 25.5V	(b) 18.02V
-		(c) 36.06V	(d) 25.95V
	(22)	The instantaneous values of voltage and c	
		(a) in phase	(b) out of phase

(c) any phase (d) none of these (23)A sinusoidal current has rms value of 10A. What is the maximum or peak value will be (a) 14.14 A (b) 18.02 A (d) 25.95 (c) 7.07 A PAST FAPER MCOS The value of peak to peak voltage is: (24)LHR -2017 (G-I) (a) V_{0} $(\mathbf{b}) - \mathbf{V}_{\mathbf{a}}$ (c) $\sqrt{2}V$ (d) $2V_{0}$ During each cycle of A.C, voltage reaches a peak value; MIRPUR (AJK) 2017, BWP-2019 (G-II) (a) once (b) twice (c) thrice (d) four times (26)The phase of AC at positive peak from origin is SGD-2017 (G-I) (a) $\frac{3\pi}{2}$ **(b)** $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ **(d)** *π* (27)The sum of positive and negative peak values are usually written as SGD-2017 (G-II) (a) p-p values (b) rms values (c) cycle values (d) p-n values (28) An A.C voltmeter reads 220V, its peak value will be:SGD-2022 (G-I), RWP-2022 (G-I) (a) 255V **(b)** 311.12V (c) 300V (d) 200V (29) When effective value of current is 10. What is its peak value? SGD-2022 (G-II) **(b)** 14.2 (a) 10 **(c)** 12 **(d)** 13 (30)The mean value of A.C. in one complete cycle is: LHR-2022 (G-I) **(a)** 1 (b) zero (d) $\frac{I_o}{\sqrt{2}}$ (c) $I_{\rm o}$ LHR-2022 (G-H If V_0 is peak of A.C. voltage then mean square value of veltage is: (31) (a) $\frac{V_o}{\sqrt{2}}$ (c) $\frac{1}{2}$ V² (d) V (32) If the frequency of A.C is 40 Hz then current passing through filament bulb get brilliance: LHR-2022 (G-II) (1) 100 times **(b)** 80 times (c) 40 times (**d**) 50 times (33)Root mean square value of alternating voltage with $V_0 = 100V$, is equal to. DGK-2022 (G-II) (a) 0.7 V **(b)** 7 V

	(c) 700 V	(d) 70 V			
(34)	ENTRY TEST MCQS (34) In an A.C circuit instantaneous carrent is - J _o . It is possible when t =?				
	(a) $t = \frac{1}{2}$				
	(c) $t = \frac{1}{2}$	$(\mathbf{d}) \ \mathbf{t} = \mathbf{T}$			
(35)		60 Hz power supply is 140 V. An AC voltmeter			
INN	connected to the power supply will (a) 100V	(b) 98 V			
90-	(c) 140 V	(d) 70 V			
Topic	16.2 & 16.3:				
		A.C Through a Resistor			
(36)	V= IR is				
(30)	(a) Joule's law	(b) Pascal's law			
	(c) Ohm's law	(d) Charles law			
(37)	The symbol used for inductor is				
	(a) R	(b) L			
	(c) C	(d) R-C			
(38)	At any time 't' the potential differenc	e across the terminals of the resistors is given by			
	(a) $V = V_o \sin \omega t$	(b) $V = V_o \sin \omega f$			
	(c) $V = V_o \cos \omega t$	(d) $V = V_o \cos \omega f$			
(39)	The relation for the resistance acco	rding to Ohm's law is given by			
	(a) R=IV	(b) V/I =R			
	(c) I/V=R	(d) $1/IV = R$			
(40)	The power dissipated in a resistive				
	(a) $P=I^2R$	(b) P=IV			
	(c) $P=V^2/R$	(d) all of these			
(41)		PAPER MCQS			
(41)	(a) inductor	vhich controls the current or voltage is called BWP-2022 (G-II) (b) resistor			
	(c) capacitor	(u) voltmeter			
(42)		tity, when $q = 0$, the slope of $q - t$ curve is:			
		GRW-2019 (G-I)			
MAN	(a) h imnean	(b) maximum			
NAA	(c) zero	(d) negative			
(43)		of an A.C. through Resistor is: BWP-2019 (G-II)			
	(a) 0°	(b) 90°			
	(c) 180°	(d) 270°			
	ENTRY	TEST MCQS			

R

(44)	The phase angle between the voltage and the current in an AC circuit consisting of a		
	resistance is	$\sim 100 C(0)$	
	(a) Zero (c) 90°	(b) 45° (d) 180°	
T	Πρη		
Topic	A.C. through	a Capacitor	
(45)	The device used to store charges is calle (a) resistor	(b) inductor	
n	(c) cupacitor	(d) impedance	
	Which current cannot flow continuous		
0.0	(a) A.C	(b) D.C	
	(c) thermoelectricity	(d) photo electricity	
(47)	The unit of capacitance		
()	(a) Pascal	(b) Joule	
	(c) Henry	(d) Farad	
(48)	The basic relation between charge 'q' a		
	(a) q=C/V	(b) q=CV	
	(c) $q=V/C$	(d) $q=1/CV$	
(49)	The opposition offered by a capacitor t	o the flow of A.C is called	
	(a) capacitor	(b) inductive reactance	
	(c) capacitive reactance	(d) resistor	
(50)	The reactance of capacitors is represen	ited by	
	(a) X _C	(b) X _L	
	(c) X_q	(d) X _A	
(51)	The unit of reactance of a capacitor is g	given by	
	(a) tesla	(b) volt	
	(c) farad	(d) ohm	
(52)	The reactance of a capacitor is given by	y	
	(a) $X_C = \frac{1}{\omega C}$	(b) $X_c = \omega C$	
	(c) $X_C = \frac{1}{2\pi f \omega C}$	(d) $X_c = \frac{\omega}{2\pi c}$	
(53)	The X_C of a capacitor joined across alt	emaiing source can be found by the relation	
	(a) $X_C = \frac{I_{rms}}{V_{rms}}$	(b) $X_C = \frac{V_{mc}}{I_{rms}}$	
	(c) $X_C := -\frac{V_{ms}}{\sqrt{L_{ms}}}$	(d) $X_C = \frac{I_{rms}}{\sqrt{V_{rms}}}$	
AM)	In a capacitor circuit, at low frequency		
00	(a) high	(b) low (d) infinite	
(55)	(c) zero The device that allows only the continu	(d) infinite f_{A} (c) through a circuit is	
(33)	(a) capacitor	(b) resistor	
	(c) reactor	(d) inductor	
	(-)	(-)	

pic		
~		
)		
		(b) oppose the flow of A C
7)		(a) none of these
)	The incucave reactance can be expressed	A_4
	(a) $X_L = \frac{1}{dyL}$	(b) $X_L = \frac{1}{2\pi\omega L}$
N		(d) $X = \omega L$
1	10-000	(d) $X_L = \frac{\omega L}{2\pi f}$
5		U U U U U U U U U U U U U U U U U U U
		(b) lags behind the voltage by 90°
		(d) leads the voltage by 30°
))		
,		(b) current
		(d) cosine
))		
/		
		(b) R-L circuit
	· · · ·	(d) inductor
D		
-,	-	(b) voltage
		(d) both b and c
n		e e e e e e e e e e e e e e e e e e e
-)	when A.C passes through an inductor, vo	• •
		GRW-2019 (G-I)
		(b) 45°
		(d) 180°
)		
	(a) 50 Hz	(b) 80 Hz
	(c) 500 Hz	(d) 1000 Hz
b	A device which opposes the flow of A.C. is	DGK-2017 (G-L)
	(a) resistor	(b) capacitor $\mathcal{C}(\mathcal{O})$
		(d) none
5)		
		BWP-2017 (G-I)
	(a) 50 Hz	(b) 100 Hz
	(c) 80 H	(d) 120 Hz
5)	In alternating current circuit inductor behave	e like DGK-2022 (G-I)
0		(b) Resistors
IN	VNUOP	(d) Conductors
U		
)	-	
		(b) Inductor
	(c) Transformer	(d) Generator
B)	For higher frequency, the X_L will be	RWP-2022 (G-I)
		 (a) attract the flow of A.C (c) cancel the flow of A.C (c) cancel the flow of A.C The inducave reactance can be expressed (a) X_L = 1/(0). (c) V_L = 00. (c) Inductance and capacitance behave of (a) sine (c) frequency (c) frequency (c) choke (c) choke (c) courrent PAST PAPER (c) Nen A.C passes through an inductor, vo (a) 0° (c) 90° (c) 4t what frequency will an inductor of 1.0 H (a) 50 Hz (c) 500 Hz (c) son Hz (c) 80 FE <l< th=""></l<>

	(a) high	(b) low
	(c) zero	(d) infinite
(79)	The reactance of an inductor increases wi	th increase in RWP 2012 (G LE)
	(a) frequency	(b) voltage
	(c) resistance	(d) capaciance
	ENTRYTEST	MCCS
(00)		of m Honory in an A C singuit of
(80)	The inductive reactance of a choke con	a of $\frac{1}{4\pi}$ m Henry in an A.C circuit of
	frequency 50 Hz, will be	
ND	$(\epsilon) 0.25 \Omega$	(b) 0.025 Ω
<u> 1970</u>	(c) 2.5Ω	(d) 25Ω
(81)	The inductive reactance of 2 mH coil in 5	
	(a) 6.3Ω	(b) 6.38 Ω
	(c) 12.6Ω	(d) 63Ω
	() 12.0 22	

Topic 16.6:

	Impedance			
(82)	The combined effect of resistance and reactance in a circuit is called			
	(a) impedance	(b) R-L circuit		
	(c) choke	(d) inductor		
(83)	The unit of impedance is			
	(a) ohm	(b) volt		
	(c) ampere	(d) henry		
	PAST PAP	PER MCQS		
(84)	S.I unit of impedance is:	L	HR-2021 (G-II)	
	(a) Henry	(b) Hertz		
	(c) Ampere	(d) Ohm		
(85)	When 10V are applied to an AC circui	t the current flowing in it is 100	OmA. Then the	
	impedance will be	~	ESD-2022 (2-1)	
	$(\mathbf{a}) 50\Omega$	(b) 200 Ω	21 (2000	
	(c) 1000 Ω	(1) 100 Ω	010	
		EST MCOS		
(86)	What will be the impedance for $V = 10$			
(00)	(a) 200 2	(b) 2Ω		
	(a) $200 = 2$ (c) 0.707Ω	(b) 2.32 (d) 0.5Ω		
(87)	The mpendence Z of an A.C circuit do			
ANN	(a) Resistance	(b) Capacitance		
MM	(c) Frequency	(d) Current		
0 -	(c) requercy	(u) Current		

Topic 16.7:

R-C and R-L Series Circuits

(88) In R-C series circuit
(a) the current lags the applied voltage
(b) the voltage leads the applied current
(c) the current leads the applied voltage
(d) none of these
(a)
$$V_{mw} = t_{mw}\sqrt{k^2 + (aC)^2}$$

(b) $V_{mw} = t_{mw}\sqrt{k} + \frac{1}{(aC)^2}$
(c) $V_{mw} = t_{mw}\sqrt{k}^2 + (aC)^2$
(c) V_{mw}

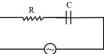
(a) directed parallel to each other

N

- (b) directed perpendicular to each other
- (c) directed opposite to each other
- (d) none of these

(c) $Z = \sqrt{R + X_I}$

- The potential across the inductance is given by (97)
 - $(\mathbf{k}) \mathbf{V}_{1 \, \text{ns}} =$ (a) $V_{rms} = I_{rms} X_C$ (c) $V_{rms} = I_{rms} \omega C$ (**d**) $V_{\rm rms} = \mathbf{i}_{\rm rms} (\omega \mathbf{L})$
- (98) If the frequency is doubled, then the reactance of a capacitor would be (a) one four h (b) half (c) four times (d) doubled

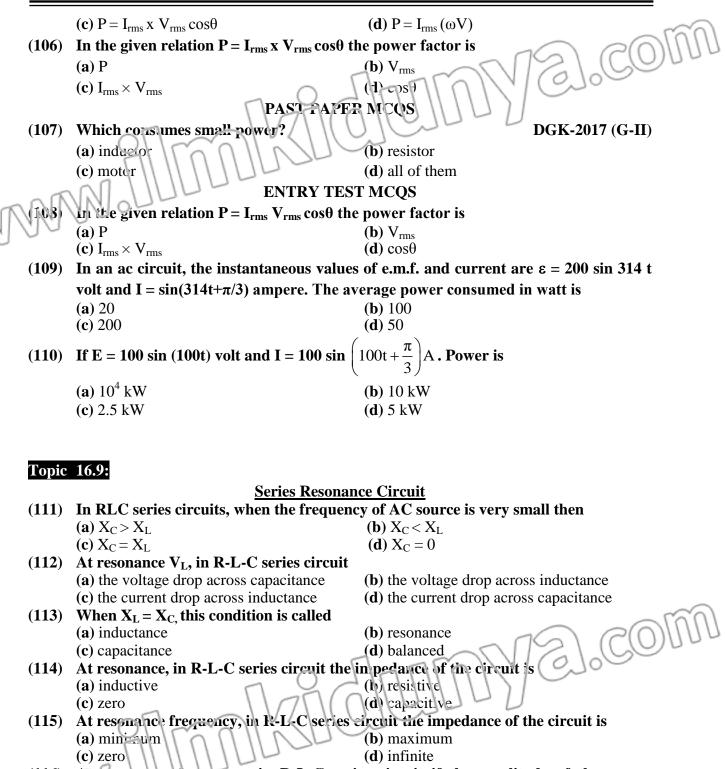

PAST PAPER MCQS

- The impedance of R-L series circuit is: (a) $Z = \sqrt{R^2 + X_L^2}$
- MTN-2019 (G-I), MTN-2022 (G-I) **(b)** $Z = \sqrt{R^2 + X_C^2}$

(d) Z = R

ENTRY TEST MCQS

(100) A 50 Hz, 20V A.C source is connected across RC series circuit as shown in the figure.

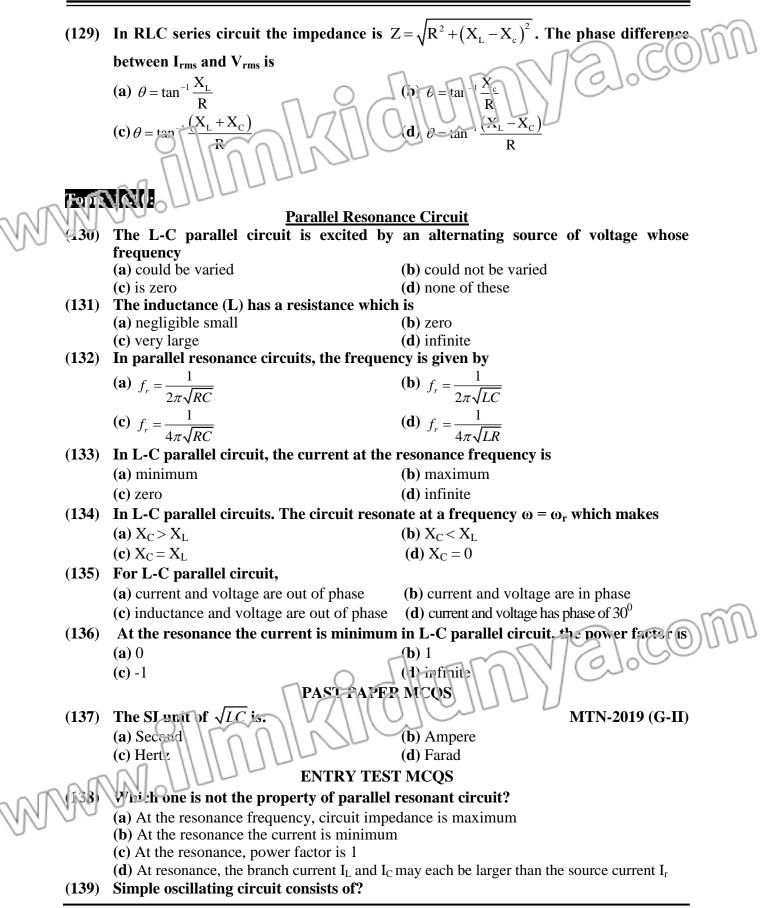

If the voltage across R is 12V, then voltage across capacitor C will be

(d) Not possible as value of C and R not given (101) A wire of resistance R is coiled inductively so that its inductance is L. The impedance of the coil at a frequency of f is (a) $(R+2\pi fI)^{1/2}$ (b) $D \perp 1/2\pi fI$ 1/2

(a) $(R+2\pi IL)$	(b) $R^{+1/2\pi iL}$
(c) $(R^2+f^2L^2)^{1/2}$	(d) $(R^2 + 4\pi^2 f^2 L^2)^1$

Topic 16.8:

31.COlf Power in A.C Circuits (102) When voltage and current are in phase, the power is given by (b) $P=V_{rms}/I_{rms}$ (a) P=V_{rms} I_{rms} (d) P=1/ Irms Vrms (c) $P=I_{rms}/V_{rms}$ (103) The power discipation in a pure inductive or in a pure capacitive circuit is **(b)** 0 (a) h (d) infinite **d** 1 In A.C circuit the relation $P=I_{rms} V_{rms}$ is valid only when, (a) V and I are out of phase (**b**) I and V are in phase (c) P and IV are in phase (d) none of these (105) The power dissipation in A.C circuits is (a) $P = I_{rms}V_{rms}$ **(b)** $P = I_{rms} \omega V_{rms}$

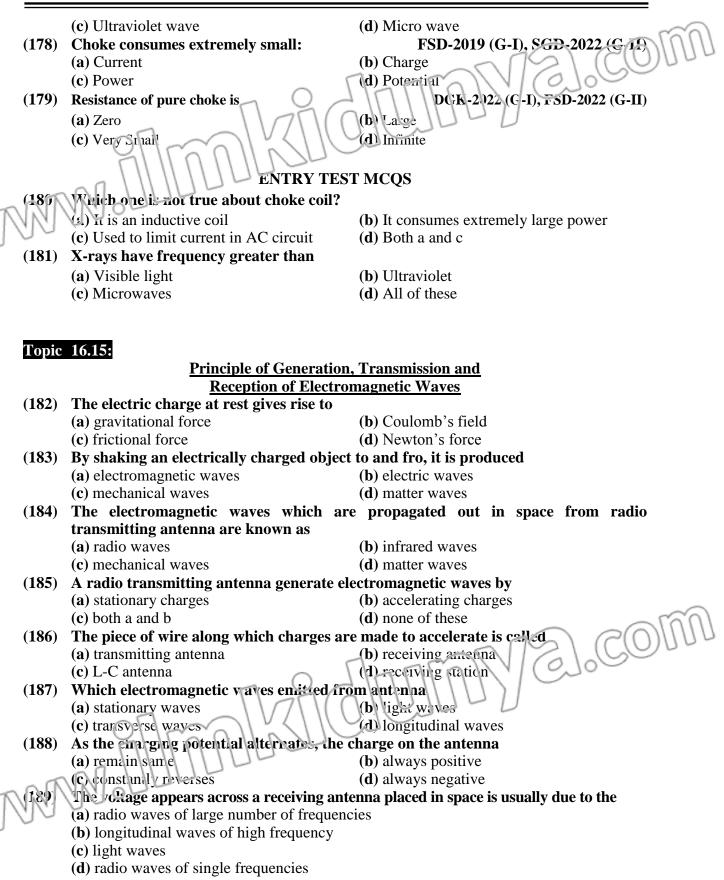

(116) At resonance frequency, in R-L-C series circuit if the amplitude of the source to the go is constant then the current would be
 (a) minimum
 (b) maximum
 (c) zero
 (d) infinite

- (117) In RLC series circuits, the relation 'X_L > X_C' true for

 (a) high frequencies
 (b) low frequencies
 - (c) null frequencies (d) none of these

R

(118)		e and current are in phase then the power
	factor would be	
	(a) -1	
(119)	(c) 1 The net power loss through a pure capa	(d) 2
(119)	(a)-1	(b) 0
	(a) 1 (c) 1	
(120)	The RLC series circun is also referred a	
()	(a) simple circuit	(b) acceptor circuit
	(c) rejector circuit	(d) transmitted circuit
mall	PAST PAPE	R MCQS
	At nigh frequency, the value of reactance	e of capacitor will be
000		GRW-2019 (G-II), LHR-2021 (G-I)
	(a) large	(b) small
	(c) zero	(d) infinite
(122)	In RLC series circuit, the current at reso	
	2 \lambda	GRW-2019 (G-II), DGK-2022 (G-II)
	(a) minimum	(b) maximum
(100)	(c) zero	(d) infinite
(123)	In RLC series circuit, the condition for r	esonance is. 017 (G-I), GRW-2022 (G-I), BWP-2022 (G-I)
	(a) $X_{\rm C} > X_{\rm L}$	(b) $X_C = X_L$ (G-1), $GWV - 2022$ (G-1), $BVV - 2022$ (G-1)
	(a) $X_C > X_L$ (c) $X_C < X_L$	$\begin{array}{c} \textbf{(b)} \ \mathbf{A}_{\mathrm{C}} = \mathbf{A}_{\mathrm{L}} \\ \textbf{(d)} \ \mathbf{X}_{\mathrm{C}} = \mathbf{Z} \end{array}$
(124)	In RLC series circuit, at resonance frequ	
(124)	in NDC series circuit, at resonance requ	GRW-2022 (G-II)
	(a) Zero	(b) Minimum
	(c) Maximum	(d) Infinite
(125)		ce frequency, impedance Z is: FSD-2019 (G-I)
()	(a) $\sqrt{R^2 + X_L^2}$	(b) R
	(a) $\sqrt{K + X_L}$	
	(c) $\sqrt{R^2 + X_C^2}$	(d) X_L
(126)	In RLC series circuit, at higher frequence	cies. RWP-2019 (G-I)
()	(a) $X_L = X_C$	(b) $X_L > X_C$
	(c) $X_L < X_C$	$(\mathbf{d}) \mathbf{X}_{\mathrm{L}} = 0$
(127)	The capacitance required to construct	a resonance circuit of frequency 1000kHz
	with an inductor of 5 mH is:	MaN-2019 (G-I)
	(a) 5.09 pF	(φ) 5.09 μF
	(c) 5.0 mF	(d) 50 9 pl
	ENTRYJES	ST MCQS
(128)	In an L/CR series circuit, the capacito	r is changed from C to 4C. For the same
- 01	resonant frequency, the inductance shou	ld be changed from L to
INNN.		
100	(a) 2L	(b) $\frac{L}{2}$
	(c) L	II (E)
	(c) $\frac{L}{4}$	(d) 4L


Alternating Current

		(a) Inductor and capacitor(c) Resistance and coil	(b) Resistance and capacitor(d) Inductor and resistance
	<u>Topic</u> (140)	16.11: An A.C generator consist: of a contwith	Suppiy
	(140)	(a) with a slip ring	(b) with a pair of slip rings
	6	(c) with a pur of magnet	(d) with a Commutator
00	AL	As the coil rotates an alternating voltage i	
NNI	UU	(a) Commutator	(b) magnet
00		(c) coil	(d) slip rings
	(142)		
	(142)	The number of coils used in three phase A	0
		(a) 1	(b) 2 (d) 2
	(1.10)	(c) 4	(d) 3
	(143)	The coils in three phase A.C generator in	
		(a) 90°	(b) 0°
		(c) 120°	(d) 60°
	(144)	When the combination of three coils rotat	
		(a) a voltage is generated	(b)3 alternating voltage generated
		(c) no voltage generate	(d)2 alternating voltage generated
	(145)	The voltages generate in three phase A.C g	
		(a) 120°	(b) 90^{0}
		(c) 360°	(d) 180°
	(146)	The main advantage of having three pha	se supply is that the total load of the house
		or a factory is divided into	
		(a) 4 parts	(b) 3 parts
		(c) 5 parts	(d) 2 parts
	(147)	The voltage across each of lines connected	d to terminals A,B & C of machine and the
		neutral line in three phase AC supply is	- 100
		(a) 400V	(b) 120V
		(c) 230V	(d) 440V
		PAST PAPE	A MEDS TIM IN VICE JOU
	(148)	In three phase A.C supply, the coas are in	
	()	(a) 0°	(b) 90°
		(c) 130°	(d) 120°
	(149)	The voltage across any two live lines in th	ree phase AC supply is FSD-2022 (G-II)
	()	(a) #)0V	(b) 120V
-	NA	Vc) 230V	(d) 440V
MA ,	0 -	ENTRY TES	ΓΜCOS
-	(150)	The line to neutral voltage in three phase	-
		(a) 230 V	(b) 400 V
		(c) 120 V	(d) 0 V

	(151)	In three phase A.C if rms value of an	y phase is V volt then potential difference
		between any two-phase lines is	
		(a) V volt	(b) 3V volt
		(c) $\sqrt{3}$ V volt	(d) $\frac{\sqrt{3}}{\sqrt{3}}$ V volt
,	Topic	16.12:	
•	ropie	Principle of Me	tal Detectors
	(152)	A coil and a capacitor are electrical com	
	()	(a) o cillation of voltage	(b) oscillation of current
0	NI	(c) oscillation of reactance	(d) oscillation of capacitance
ANN	(153)	An L-C circuit behaves like an	
VIN V	0 0	(a) oscillating pendulum	(b) oscillating mass-spring system
\bigcirc		(c) Amplifier	(d) all of these
	(154)	In metal detector the energy oscillates be	etween
	. ,	(a) resistor and capacitor	(b) capacitor and resonance
		(c) inductor and capacitor	(d) resistor and inductor
	(155)	The metal detectors are used to locate	
		(a) buried metal objects	(b) metal at security checks
		(c) both a and b	(d) none of these
		PAST PAPE	
	(156)	When a metal detector comes close to a r	-
	(100)	(a) becomes double	(b) remains same
		(c) Decreases	(d) increases
	(157)	Metal detector consists of	SWL-2017
	(107)	(a) L–C circuit	(b) R–L circuit
		(c) R–C circuit	(d) RLC-series circuit
	(158)	When an inductor comes close to a metallio	
	(150)	(a) decreased	(b) increased
		(c) becomes half	(d) becomes 4 times
	(159)	The principle of metal detector is.	(d) becomes 4 times MTN-2022 (G-II)
	(139)		(b) beats
		(a) resonance	
		(c) Faraday's law	(d) Lenz's law
			$\neg (C(0)) \cup \cup \cup$
		ENTRY TES	TMCQS
	(160)	In a metal detector, in absence of any	metal the inductance L_A and L_B have the
		relation	$\neg \parallel \cup \parallel \downarrow \cup \mid \downarrow$
		(a) $L_A \geq L_B$	$(\mathbf{b}) \mathbf{L}_{A} < \mathbf{L}_{B}$
		(c) $L_A = \tilde{L}_B$	(d) None of these
			(u) None of these
	Torio	161 8 16 14	
- 0	rx P		magnatia Waxas
	(61)	In space the space of electromagnetic wa	
100	(101)	In space the speed of electromagnetic wa (a) 3 x 10 ⁹ ms ⁻¹	(b) $2 \times 10^8 \text{ms}^{-1}$
-		(a) $5 \times 10^{10} \text{ ms}^{-1}$	(b) 2×10^{-11} ms ⁻¹
	(167)		
	(162)	The waves which do not require any med	(b) stationary waves
_		(a) mechanical waves	(D) stationary waves

R

	(c) matter waves	(d) electromagnetic waves
(163)	The electromagnetic phenomenon explain	od by
(103)	(a) Maxwell	(b) Einstein
	(c) Newton	(b) Einstein (d) Bohr
(164)		
(164)	The choke coil makes the inductance L c	
	(a) quite large	(b) very small
	(c) zero	(d) infinite
(165)	The electrom agnetic phenomenon explain	
	(a) 1894'	(b) 1864
and	(c) [/89	(d) 1869
165	Accer Ing to Maxwell's equation the char	
100	(a) electric charge	(b) electric field
	(c) magnetic field	(d) both b & c
(167)	The choke coil is used in	
	(a) A.C circuits	(b) D.C circuits
	(c) potential meter	(d) potential divider
(168)	According to Maxwell's equation the mag	netic field produce due to
	(a) changing in magnetic flux	(b) changing electric field
	(c) changing power	(d) none of these
(169)	The choke coil used in A.C circuits used to	D
	(a) limit the voltage	(b) limit the current
	(c) limit the power	(d) limit the potential difference
(170)	In electromagnetic phenomenon the mag	gnetic field, electric field and direction of
	their propagation are	
	(a) opposite to each other	(b) anti-parallel to each other
	(c) parallel	(d) mutually orthogonal
(171)	The electromagnetic waves have been class	sified into spectrum depending upon
	(a) speed `	(b) wavelength
	(c) frequency	(d) both b and c
(172)	Which one has the smallest wavelength	
	(a) gamma rays	(b) X-rays
	(c) radio waves	(d) infra red rays
(173)	Which one has the highest frequency	
	(a) gamma rays	(b) X-rays
	(c) radio waves	(d)infra red rays
(174)	The formula for speed of electromagnetic	(b) X-rays (d)infra red rays vaves is
	(a) $c=f\lambda$	$(\mathbf{p}) \mathbf{v} = \mathbf{c} \lambda$
	(c) $c = f/\lambda$	(d) $c = \lambda/f$
(175)	To generate the electromagnetic waves the	e charged particle must
	(a) be stationary	(b) be accelerated
	(c) have no energy	(d) none of these
(176)	The speed of light is same as the speed of	
nn	(2) rdio wives	(b) electromagnetic waves
NNN.	(d) gamma rays	(d) all of these
100	PAST PAPER	A MCQS
(177)	Which of the following electromagnetic w	8
		GRW-2022 (G-II)
	(a) Radio wave	(b) Infrared wave

(190)			operate simultaneously, then in space we
		have a number of	TO COMPU
		(a) radio waves of same frequencies	
		(b) radio waves of different frequencies	In MINICIO
		(c) longitudinal waves of same frequencies	
		(d) longitudinal waves of cifiercar repleted	
	(101)	PAST PAPER	
	(191)		be of waves are produced? SGD-2022 (G-I)
		(a) mechanical wave	(b) travelling wave
0	MA	(c) stationally wave	(d) electromagnetic wave
ANN	' L'NY	ENTRY TEST	-
M.	(19Z)	Which one is true about electromagnetic	
		(a) Speed of electromagnetic wave is $= c = -$	$\frac{1}{1} = 3 \times 10^8 \mathrm{ms}^{-1}$
		(b) Electromagnetic waves are generated by	6 6
		(c) Particular frequency radio signal is tuned of	on receiver radio by adjusting the value of c.
		(d) All of these	
	(193)	Electromagnetic waves do not transport	
		(a) Energy	(b) Charge
		(c) Momentum	(d) Information
	(194)	Accelerating charge has:	
		(a) Electric field	(b) Magnetic field
		(c) Both	(d) None
	Topic	16.16:	
		Modulat	
			ncy signal with high frequency radio waves
		is called	
		(a) modulation	(b) de-modulation
	(10c)	(c) rectification	(d) none of these
	(196)	As a result of modulation, the resultant w	
		(a) de-modulated carrier waves(c) both a & b	(b) carrier waves (d) modulated carrier waves
	(197)	The low frequency signals is known as	(u) modulated calles, waves
	(1)))	(a) modulation signals	(b) moc'ulated carrier signals
		(c) de-modulated signals	(d) carier signal:
	(198)	The types of modulations are	
	(1)0)	(a) 3	(b) 4
		(c) 5	(d) 2
	(199)		plitude of the carrier wave is increased or
000	NN		erposing modulation signal increasing or
NNI	UU	decreasing called	
00	-	(a) A.F	(b) W.M
		(c) F.M	(d) A.M
	(200)	The A.M transmission frequencies range	
		(a) 570 kHz to 1800 kHz	(b) 570 kHz to 1600 kHz

Which actio waves are less effect (a) F.M (c) A.F Modulation is the process of frequency radio waves called (a) modulated waves (c) both a and b	 (b) A.M (d) both a & b combining the low frequency signal with a high (b) carrier waves 								
Modulation is the process of frequency radio waves called (a) modulated waves	combining the low frequency signal with a high								
Trequency radio waves called (a) modulated waves									
(a) modulated waves	(b) carrier waves								
(c) both a and b									
	(d) none of these								
The waves which are less able	e to travel around obstacles such as hills and large								
buildings are									
(a)A.M waves	(b) A.F waves								
	(d) both a & c								
	ST PAPER MCQS								
The process of combining low frequency signal with a high frequency radio waves is called SGD-2017 (G-II)									
· · ·	(b) resonance								
(c) demodulation	(d) modulation								
The A.M transmission frequence	8								
	(b) 540 MHz to 1600 MHz								
(c) 540 kHz to 1600 kHz	(d) 540 Hz to 1600 kHz								
ENT	FRY TEST MCQS								
Frequency range of F.M signal	is								
(a) 540 kHz to 1600 kHz	(b) 88 MHz to 108 MHz								
(c) 1 MHz to 100 MHz (d) None of these									
The modulated electromagnetic waves of frequency 100 kHz are falling on an aerial of									
radio. These will induce a curren	t of frequency.								
(a) 10 kHz	(b) 50 kHz								
(c) 100 kHz	(d) 150 kHz								
Π	$\mathcal{G}(\mathcal{G}(\mathcal{G}(\mathcal{G}))))$								
ALLOLLIN									
	(c) F.M waves PAS The process of combining low f called (a) amplification (c) demodulation The A.M transmission frequence (a) 540 Hz to 1600 Hz (c) 540 kHz to 1600 kHz Frequency range of F.M signal (a) 540 kHz to 1600 kHz (c) 1 MHz to 100 MHz The modulated electromagnetic								

																		aC	2	G	>((DAU
												/ER	1	_	~	2	N	16	3	100	ット	90
					_			Ì	-	10. IS	hip	le Ch	-1-1-		1-1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	\sum		~	<u>ر</u>		
1	B	21	A	41	B	61	B	81		101	Ã	P_{Γ}	<u>R</u>	143		រុល		181	D	201	C	221
2		22	C	42	B	A	A	82_	A	192		122	<u>/</u>	142	20	162	Ŀ		B	202	B	222
3	B	23	A	43		63	B	83	A	103		123		143	B	163	Α	183	Α	203	A	223
4	C	24	D	44	<u>A</u> _	194	<u>C</u>	84	D	104		124	B	144	A	164	A	184	A	204	B	-
5	A	25	B	-สก	0	166	P	<u>1</u> 851	D	105	C	125	B	145	C	165	B	185	B	205	C	-
6	A.	R	RΝ	ΝU	9/		B	86	D	106	D	126	B	146	B	166	B	186	C	206	D	-
\mathcal{N}		NK.	A	47	D	67	C	87	D	107	A	127	A	147	C	167	A	187	A	207	C	-
V		28	B	48	B	68	B	88	C	108	D	128	C	148	D	168	B	188	C	208	B	-
-9	A	29	B	49	C	69	C	89	C	109	D	129	D	149	A	169	B	189	A	209	С	-
1(30	B	50	A	70	C	90	A	110	C	130	A	150	A	170	D	190	B	210		-
11		31	C	51	D	71	D	91	B	111	A	131	A	151	C	171	D	191	D	211		-
12		32	B	52	A	72	C	92	B	112	B	132	B	152	B	172	A	192	D	212		-
13		33	D	53	B	73	B	93	D	113	B	133	A	153	B	173	A	193	B	213		-
14		34	B	54	A	74	C	94	C	114	B	134	C	154	C	174	A	194	C	214		-
15		35	B	55	A	75	C	95	C	115	A	135	B	155	C	175	B	195	A	215		-
16		36	C	56	A	76	B	96	C	116	B	136	B	156	C	176	D	196	D	216		-
17		37	B	57	B	77	B	97	D	117	A	137	C	157	A	177	C	197	A	217		-
18	_	38	A	58	D	78	A	98	B	118	C	138	A	158	A	178	C	198	D	218		-
19		39	B	59	D	79	A	99	A	119	B	139	A	159	B	179	A	199	D	219		-
20	D	40	D	60	Α	80	B	100	C	120	B	140	B	160	C	180	B	200	C	220		

WWW. MAARACUMYZ. COM

-peak

KIPS TOPICAL SHORT QUESTIONS

- 16.1 ALTERNATING CURRENT
- (1) What is meant by peak value? Define also peak to reak value?

Ans: Peak Value

Maximum value of voltage or current on either side is valled peak $+v_{o}$ +peak value. It is denoted by V_{o} for voltage and L_{o} for current.

Peak to peak value

It is he sum of positive and negative peak values usually written at p - p value.

For voltage $V_{P-P} = 2V_o = 2\sqrt{2}V_{rms}$

For current $I_{PP} = 2I_o = 2\sqrt{2}I_{rms}$

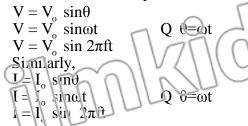
(2) **Prove that**

(i) $V_{rms} = 0.707 V_o$ (ii) $I_{rms} = 0.707 I_o$

Ans: (i) V_{rms} is defined as the square root of the average of square of voltages through out the cycle.

Proof: Since the numbers of positive and negative peaks in A.C are same, which may reduce the total value to zero, but average of squares will not be zero. So

$$V_{\rm rms} = \sqrt{\frac{V_{\rm min}^2 + V_{\rm max}^2}{2}} = \sqrt{\frac{0 + V_0^2}{2}}$$
$$V_{\rm rms} = \frac{V_0}{\sqrt{2}} \implies V_{\rm rms} = 0.707 \text{ V}$$

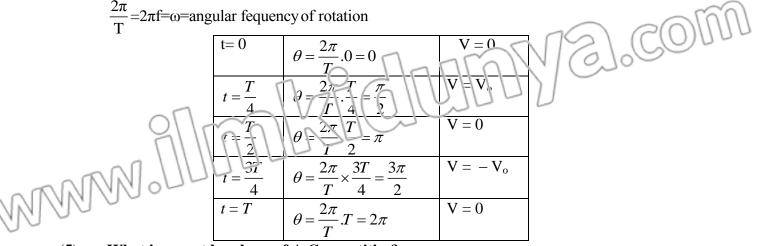

(ii) I_{rms} is defined as the square root of the average of squares of maximum and minimum currents through out the cycle.

Proof: Since the number of positive and negative peaks in A.C are same which may reduce the total current to zero, but average of squares will not be zero. So

$$I_{\rm rms} = \frac{\sqrt{I_{\rm min}^2 + I_{\rm max}^2}}{2} = \frac{\sqrt{0 + I^2}}{2} = \frac{I_{\rm o}}{\sqrt{2}}$$
$$I_{\rm rms} = 0.707 I_{\rm o}$$

(3) Define (a) instantaneous value (b) Peak value.

Ans: 1) Instantaneous value: The value of alternating voltage or current at any instancia a circuit from some reference point is known as its instantaneous value. It is given by


Prais value: Highest value attained by an alternating quantity (voltage or current) in a cycle is called peak value. It is represented by V_0 and I_0 .

How does the voltage output of a generator change with angular velocity?

Ans: The output V of A.C generator at any instant

$$V = V_0 \sin \frac{2\pi}{T} t$$

Where T = time period of rotation of coil

(5) What is meant by phase of A.C quantities?

Ans: The instantaneous value of voltage is given by the relation

 $V = V_0 sin\omega t = V_0 sin\theta$

The angle θ which specified the instantaneous value of alternating voltage or current is known as its phase.

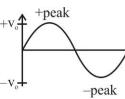
(6) What is difference between alternating and direct current?

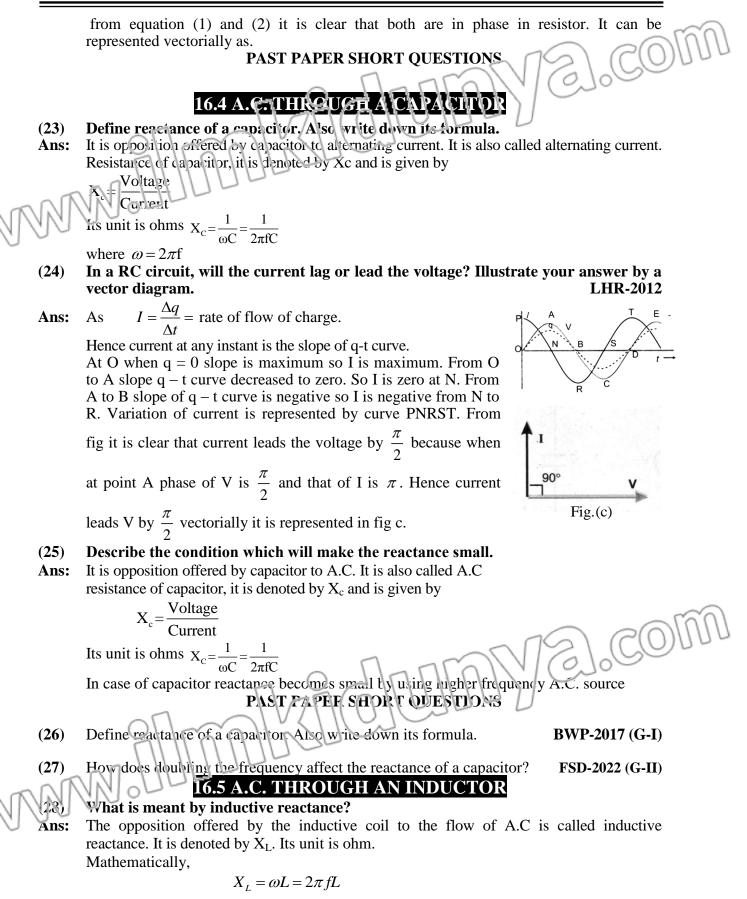
Ans:

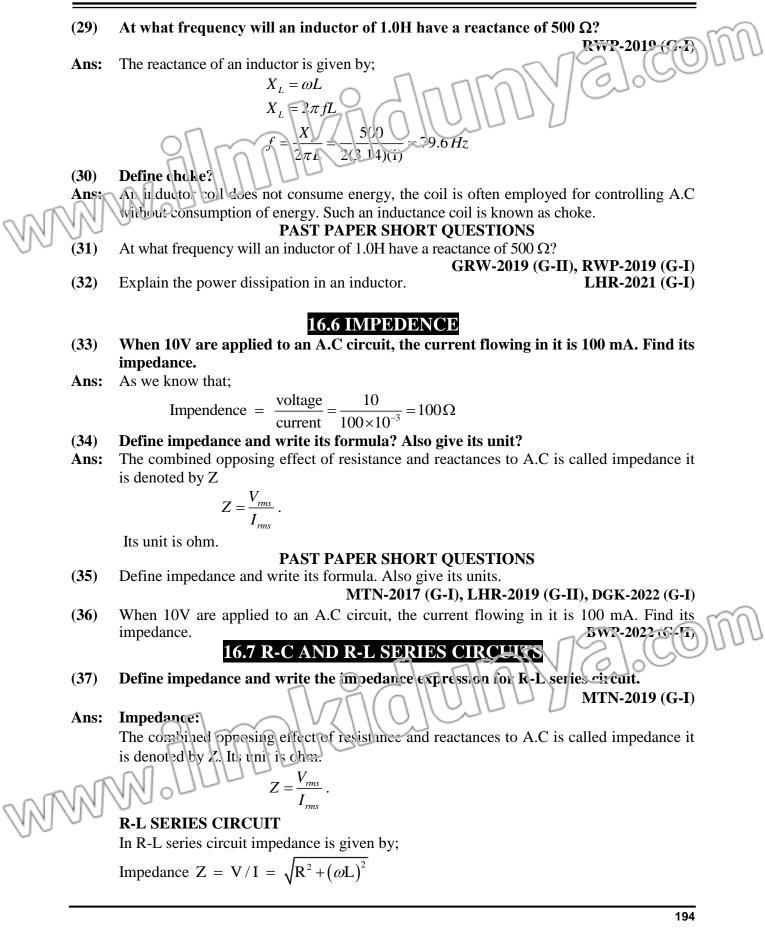
Alternating Current (A.C.)	Direct Current (D.C.)
• Alternating current whose	• Direct current is due to flow of
magnitude varying continuously	charges in one direction
and reverses its direction	without reversing its direction.
periodically.	• Cell and battery are common
• A.C. generator is common	source of direct current.
source of alternating current.	• The frequency of pure D.C. is
• The frequency of A.C. in Asia	zero.
50 Hz.	• D.C. cannot flow through a
• A.C. cannot flow through an	capacitor.
inductor	

(7) Define Root Mean Square (rms) value of potential and current.

Ans: Root Mean Square value of voltage is defined as the square root of the average of square voltage throughout the cycle. V_{rms} is given by;


Root Mean Square value of current is defined as the square root of the average of squares of maximum and minimum currents throughout the cycle. I_{rms} is given by;


Define peak value of A.C. voltage.


 $V_{\rm rms} = \frac{V_{\rm o}}{\sqrt{2}}$

Ans: Maximum value of voltage on either side is called peak value. It is denoted by V_0 .

MTN-2019 (G-I)

PAST PAPER SHORT QUESTIONS

- (38) How does doubling the frequency affect the reactance of an inductor and a capacitor DGK-2017 (G-I), LHR-2021 (G-I), BWP-2022 (G-I), FSD-2022 (G-I)
- (39) Define impedance and write the impedance expression for R-L series circuit
- (40) A choke coil placed in series with an electric lamp in AC circuit causes the lamp to become din, why is it so? BWP-2022 (G-I)

68 POWER IN A.C. CIRCUITS

What is power factor? What are its values for pure resistor, capacitor and inductor circuits?

Ans: Power factor is equal to the cosine of phase angle between the voltage and current vectors i.e power factor $= \cos q$

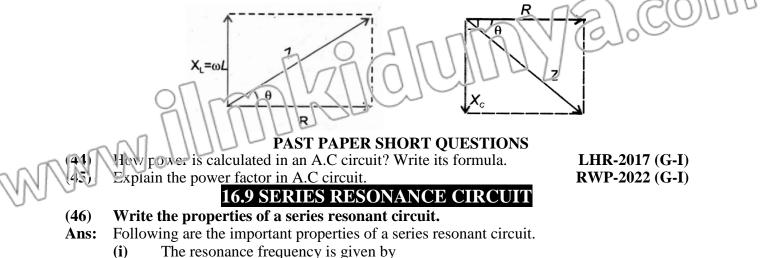
As, we know that power in A.C circuit is given as

$$P = V_{rms} I_{rms} \cos q$$
$$\cos q = \frac{P}{V_{rms} I_{rms}}$$

For resistor, since $q = 0^{\circ}$ its value is one, as $\cos 0^{\circ} = 1$.

For inductor, since $q = 90^\circ$, thus $\cos 90^\circ = 0 =$ power factor and for capacitor, aging since $q = 90^\circ$, the $\cos 90^\circ = 0 =$ power factor.

(42) How power is calculated in an A.C circuit? Write its formula.


Ans: Electrical power can be calculated by using P = VI. This relation is applicable only when V and I are in phase as in case of pure resistive circuit. An average power dissipated in

inductor and capacitor is zero because of phase difference of $\frac{\pi}{2}$ between V and I so in

these cases voltage has no component along I.

(43) Compare the impedance diagram of R-C and R-L circuits.

Ans: By comparing the impedance diagram of R-C and R-L circuits it can be seen that the vector lines of reactance X_c and X_L are directed opposite to each other with R as reference

195

- $f_r = 1/2\pi \sqrt{LC}$ when $X_L = X_c$
- (ii) The impedance of the circuit at resonance is minimum and it is equal to R.
- (iii) At resonance frequency 'f' the voltage drop across inductor and capacitor may be greater than the source voltage.
- (iv) The power factor of resonance series circuit is 'i' since the impedance of the circuit at resonance is resistive so the current and voltage are in phase.
- (v) If the amplitude of the source voltage 'V' is constant, the current is maximum at the resonance frequency.
- (47) What is resonance condition in RLC series circuit? Give its equation? LHR-2014 Ans: In between low and high frequency there will be frequency for which $X_L=X_C$, this condition is called resonance.

(51)

$$X_{L} = X_{C}$$

$$\omega_{r}L = \frac{1}{\omega_{r}C} \quad or$$

$$\omega_{r}^{2} = \frac{1}{LC}$$

$$\omega_{r} = \frac{1}{\sqrt{LC}} \quad or$$

$$2\pi f_{r} = \frac{1}{\sqrt{LC}} \quad or$$

$$f_{r} = \frac{1}{2\pi\sqrt{LC}}$$

PAST PAPER SHORT QUESTIONS

(48) What is resonance condition in RLC series circuit? Give its equation? BWP-2022 (G-II)

16.10 PARALLEL RESONANCE CIRCUIT

- (49) What is the condition of resonance in parallel resonant circuit?
- Ans: If R is small, then for LC parallel circuit, the resonance takes place when $X_L = X_C$. At this point frequency is called resonant frequency and is given by the relation

$$f_r = \frac{1}{2\pi\sqrt{\text{LC}}}$$

(50) Write four properties of parallel resonance circuit.

- Ans: (i) The resonance frequency is $f_r = \frac{1}{2r_r}$
 - (ii) At resonance the impedance is maximum equals to L/CR. Hence current is minimum at resonance and in phase with voltage
 - (iii) At resonance oranch currents I_L and I_C may each be larger than source currents I_R .
 - (iv) At esonance power factor is one.
 - **PAST PAPER SHORT QUESTIONS**
 - Write two properties of parallel resonance circuit. 16.11 THREE PHASE A.C. SUPPLY

FSD-2022 (G-II)

RWP-2015

- (52) Give some advantages of three phase A.C supply?Ans: (1) The total load is divided into three parts. Hence it can bear large load of a house or factory.
 - (2) It can be used to operate heavy machinery, which need 400 V for operation.

PAST PAPER SHORT QUESTIONS

(53) What is the main advantage of three phase A.C. supply?

LHR-2022 (G-I)

- (54) Discuss two uses of three phase A.C. supply.
- (55) Write four properties of parallel resonance circuit.

LHR-2022 (G-II) RWP-2022 (G II)

SWL-2017

- (56) Explain the principle of metal detector
- Ans: The working principle of metal detector based on beats

Explanation:

Two oscillators A and B are used in the operation of common type of metal detector. In the absence of any nearby metal object the inductances L_A and L_B are the same and hence the resonance frequency of two circuits is also same. When the inductor B, called search to it comes hear a metal object, its inductance L_B decreases and corresponding oscillator frequency increases and thus a beat note is heard in the attached speaker.

PAST PAPER SHORT QUESTIONS

(57) Explain the principle of metal detector.

SWL-2017

16.13 CHOKE

16.12 PRINCIPLE OF METAL DETECTORS

(58) Define choke, give its uses.

- Ans: It consists of an inductance coil and is used to adjust the current in A.C circuits. It plays the same part in A.C circuits as resistance in D.C circuits for many purposesUse: It is use to reduce the current in a given A.C circuit without small wastage of energy, when the supply voltage is constant.
- (59) What is a choke coil and why is it used in A.C circuits?
- Ans: It is a coil which consists of thick copper wire wound closely in a large number of turns over a soft iron laminated cores.It is used in A.C circuits to limit current with extremely small wastage of energy as compared to resistance or a rheostat.
- (60) How much energy is consumed by a choke when an AC is passed through it? Explain.
- **Ans:** Choke makes the inductance L of the coil quite large whereas its resistance R is very small. Thus it consumes extremely small power it is used in A.C. circuits to limit current with extremely small wastage of energy as compared to a resistance or a rheostat.

PAST PAPER SHORT QUESTIONS

(61) What is choke? Explain its use in A.C circuit. MIRPUR (AJK) 2017, FSD-2019 (G-I), RWP-2019 (G-I), DGK-2022 (G-I), FSD-2022 (G-I)

16.14 ELECTROMAGNETIC WAVES

- (62) What is the source of transmitting electromagnetic waves?
- Ans: Electromagnetic waves are transmitted by radio transmitting antenna. Antenna generates Electromagnetic waves with the help of oscillation of accelerating charge
- (63) Write down the characteristics of electromagnetic waves.
- Ans: (i) Electromagnetic waves required to medium.
 - (ii) Electromagnetic waves are description of Maxwell equations formulated by Maxwell in 864
 - (iii) Electron agnetic waves propagate with speed of light. i.e. 3×10^8 m/s.
 - (iv) Electromagnetic waves are produced by changing fields produced by changing flux i.e.
 - (a) Changing electric flux causes magnetic field.
 - (b) Changing magnetic flux causes electric field.
 - (v) Speed of electromagnetic waves can be given by

(64)

(66)

$$c = \frac{1}{\sqrt{\epsilon_o \mu_o}}$$
 where $\epsilon_o = 8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$ and $\mu_o = 4\pi \times 10^{-7} \text{ Wb/Am}.$

- Electromagnetic waves consist of moving electric field and thagnetic field (**vi**)
- (vii) Electric field E, magnetic field B and direction of propagation of waves are mutually perpendicular.
- Electromagnetic waves are periodic (viii) waves having specific wavelength and frequency related by $c = t\lambda$.

PAST PAPER SHORT QUESTIONS

What are the electromagnetic waves?

LHR-2021 (G-II) **MASPRINCIPLE OF GENERATION, TRANSMISSION AND** RECEPTION OF ELECTRMAGNETIC WAVES

- What is the principle of generation of electromagnetic waves? (65)
- SWL-2019
- Electromagnetic waves generated only when there is electric and magnetic field changing. A Ans: charge at rest or moving with constant speed will not produce these waves because there is no change of electric flux and magnetic flux. A radio transmitting antenna is an example of generating electromagnetic waves by accelerated charges.

PAST PAPER SHORT QUESTIONS Write advantages of FM over AM.

GRW-2019 (G-I)

Explain the condition under which electromagnetic waves are produced from a source. (67)

RWP-2022 (G-II)

16.16 MODULATION

- (68) What are the transmission frequencies for electromagnetic waves in (i) A.M range, (ii) F.M range.
- Ans: (i) A.M range: The A.M. transmission frequencies range from 540 kHz to 1600 kHz. (ii) F.M range: The F.M transmission frequencies are much higher and ranges between 88 MHz to 108 MHz.
- (69) With reference to modulation, give the difference between the information and carrier.
- In modulation the carrier is a high frequency radio wave and information is a low Ans: frequency signal. The low frequency signal is known as modulation signal. Modulation is achieved by changing amplitude or the frequency of the carrier wave in accordance with a modulated signal.
- (70) Define modulation and write its types.
- Modulation is the process of combining low frequency signal with a high frequency radio Ans: waves called carries waves. The resultant waves are called modulated carries waves. The low frequency signal is called the nodulating signal.

So, modulation is of two types

- **(i)** Amplitude modulation (A.M)
- Frequency modulation (F.M) (ii)

Differentiate Letween amplitude modulation and frequency modulation. SWL-2017 (71)Ans:

Amplitude Modulation (AM)

Frequency Modulation (FM)

A type of modulation is which A type of modulation in which frequency amplitude of the carrier wave is of the carrier wave is increased or decreased as the moculating increased decreased sign al or as the amplitude superposing emplitude increases or decreases but the of the carrier wave amplitude tem ains constant. modulating signal increases and decreases. Its frequency range is 540 Its frequency range is 88 MHz - 108 kHz -1000 kHz MHz. AM waves are moveable to travel FM radio waves are affected less by around obstacle such as hills & large electrical interference provide a higher tuildings so have a larger range. quality transmission of sound.

PAST PAPER SHORT QUESTIONS

- (72) Give advantages and disadvantages of F.M / and A.M SGD-2017 (G-II), DGK-2022 (G-II)
- (73) How the reception of a particular radio station is selected on your radio set? SGD-2017 (G-I), MIRPUR (AJK) 2017, SWL-2017, BWP-2017 (G-I), LHR-2022 (G-II)

FSD-2022 (G-II)

- (74) Differentiate between amplitude modulation and frequency modulation. SWL-2017
- (75) Define modulation and write its types.

DGK-2017 (G-I), BWP-2019 (G-II) LHR-2022 (G-I), BWP-2022 (G-II)

(76) What is meant by A.M and F.M?

Z].COI malki MMM.