

	(23)	In relation $\Delta m = \frac{\Delta E}{c^2}$, c ² is very large q	uantity, this implies that small change in
		mass require:	00/21/2000
		(a) very small change in energy	(b) very huge change in energy
		(c) no change in energy	(d) none of these
	(24)	If relative effects are not taken in account	t, speed could not be determined any closer
		than	
		(a) 20ms	(b) 200ms^{-1}
- 6	(25)	(C) 20 cms	(d) 200cms
	23	(a) a or a the direction of motion	(b) perpendicular to the direction of motion
$\Delta M \Delta r$	NN	(c) opposite the direction of motion	(d) none of these
UU	\cup	PAST PAPER	R MCOS
	(26)	The length contraction happens only	GRW-2022 (G-I)
	(=0)	(a) Perpendicular to direction of motion	(b) Along the direction of motion
		(c) Opposite to the direction of motion	(d) Along any direction
	(27)	The theory of relativity was proposed by	SGD-2017 (G-I)
		(a) Newton	(b) Maxwell
		(c) Compton	(d) Einstein
	(28)	The mass of object will be doubled at spectrum a°	ed. SGD-2017 (G-I)
		(a) $2.6 \times 10^{\circ} \text{ m/s}$	(b) $1.6 \times 10^{\circ} \text{ m/s}$
	$\langle 20 \rangle$	(c) $3.6 \times 10^{\circ}$ m/s	(d) $0.6 \times 10^{\circ} \text{ m/s}$
	(29)	If velocity of a body becomes equal to "C"	, then its mass becomes:
		$(\mathbf{a}) \cap k \mathbf{a}$	F5D-2019 (G-1), 2022 (G-1) (b) m = m
		(a) 0 kg	$(\mathbf{b}) \mathbf{m} - \mathbf{m}_0$
		(c) $m \rightarrow \infty$	(d) $m = \frac{m_o}{2}$
			Z
		ENTRY TEST	ΓΜCQS
	(30)	According to special theory of relativity, tin	ne is not absolute quantity. This result applies
		to timing processes	
		(a) Physical	(b) Chemical
	(31)	The length of meter red moving with y	(u) An allocity equal to $3 \times 10^8 \text{mm}^2$ appears 2(m)
	(31)	observer at rest as	elocity equal to 3×10 and appreads to an
		(a) 1 m	(b) $\frac{1}{2}$ n
		$(\mathbf{c}) = \mathbf{n}$	(d) Zero
	(32)	At which relativistic speed the mass of an ob	viect will become double than its rest mass?
	. ,		$\sqrt{3}$ c
0	NA	VAN- OLUCE	(b) $\frac{\sqrt{32}}{2}$
	'UN'	20	$\frac{2}{\sqrt{2}}$
UU		(c) $\frac{2c}{5}$	(d) $\sqrt{\frac{2}{2}}$
		$\sqrt{3}$	V S

Topic 19.4:

	Black Body Radiation							
(33	3) A black body is that which:							
	(a) absorb infrared radiation only	(b) absorb ultraviolet radiation or ly						
	(c) absorb no radiation	(d) absorb all the radiations						
(34	4) The nature of radiation emitted by	a bedy depends upon:						
	(a) mass of body	(b) volume of body						
	(c) temperature of body	(d) and of these						
(35	5) When $a_{\rm P}$ latin in wire is heated, if	happears cherry red at about:						
	(a) 500°C	(b) 900° C						
0		(a) 1300°C						
1/////	Absorption power of perfect black	body is: (b) 1						
90 0	(a) 2010 (c) infinity	(\mathbf{b}) 1 (\mathbf{d}) none of these						
(3'	(C) mining7) The inner surface of cavity of the k	lack hody is:						
	(a) painted red	(b) painted white						
	(\mathbf{c}) blackened with soot	(d) panted green						
(38	8) Mathematically form of Stephen-B	Soltzmann law is:						
((a) $E = \sigma T^2$	(b) $\mathbf{E} = \sigma T^3$						
	(c) $\mathbf{E} = \sigma T^4$							
(30	9) According to Max Planck the ener	ov of each quanta is:						
	(a) $E = mc^2$	(b) $E=mv^2$						
	h							
	(c) $E = \frac{1}{f}$	(d) E=hf						
(4)	$0) \qquad \mathbf{The momentum of a moving photo}$	n is:						
(h	λ						
	(a) $p = \frac{1}{f}$	(b) $p = \frac{1}{h}$						
	h							
	(c) $p = \frac{n}{2}$	(d) $p=mc^2$						
(4)	1) The momentum of a photon of free	mency f is.						
(4)	(a) hf/c	(b) hc/f						
	$(\mathbf{c}) \mathbf{c}/\mathbf{hf}$	(\mathbf{d}) f/hc = \mathbf{c}						
(42	2) The energy E of each quantum is p	proportional to its						
, , , , , , , , , , , , , , , , , , ,	(a) velocity	(b) frequency						
	(c) mass	(1) time period						
(43	3) As the temperature of black body	s raised, the vavelength						
	(a) shifts towards longer value	(b) remain same						
	(c) shi ts towards smaller value	shifts towards longer as well as smaller value						
(44	4) The Planck's constant 'h' has the v	value of $(1) = 2 \circ (1) \circ (1)$						
	(2) 63×10^{-1} Js	(b) 2.9×10^{-34} Js						
- AMA	10 2 9 10 mK	(a) 6.63×10 Js						
111 U	(a) 1802	(b) 1027						
00	(a) 1692 (c) 1601	(d) 1927 (d) 1918						
(Δ	6) Wien's constant is about	(4) 1/10						
	(a) 6.63×10^{-34} Js	(b) 2.9×10^{-34} Js						
	(, 0.00 / 10 00							

	(c) 2.9×10^{-3} mK	(d) 6.63×10^{-24} Js
(47)	A black body is an	
	(a) ideal absorber	(b) ideal radiator
	(c) both a and b	(d) good absorber
(48)	When the platinum heated at 1300 [°] th	en its furns
(10)	(a) cherry colour	(b) yellow colcur
	(c) red colour	(d) duu red colour
(49)	At high an arguing the properties of	f shorter wavelength
(47)	(a) decreases	(b) remain same
5	(a) increases	(d) none of these
	The value of Stafen's constant is	(u) none of these
UVU	The value of Stelen's constant is $(-) 5 (7) + 10^{-8} W + 2^{-2} W^{-4}$	(b) 5 $(7 \times 10^{-6} \text{W} \text{m}^{-2} \text{W}^{-4}$
~	(a) 5.07×10^{-3} W	(b) 5.67 \times 10 Wm K
/ - / \	(c) $2.9 \times 10^{-5} \text{mK}$	(d) 6.63×10^{-1} Js
(51)	The energy of photon of radio waves is $(1)^{-10}$	s only
	(a) 10^{-10} eV	(b) 100 eV
	(c) 10^{-5} eV	(d) 1 MeV
(52)	Planck suggested that energy is radiat	ed or absorbed in discrete packets called
	(a) waves	(b) photon
	(c) quanta	(d) all of these
(53)	The stream of photons travel with spec	ed of
	(a) light	(b) greater than speed of light
	(c) sound	(d) greater than speed of sound
(54)	Planck assumed that from	hot bodies was due to some property of the
	atoms producing it.	
	(a) granular nature of radiation	(b) granular nature of absorption
	(c) granular nature of wave	(d) none of these
(55)	The intensity of emitted energy with	wavelength radiated from a black body at
(00)	different temperatures first time was r	neasured by
	(a) Lummer and Stefen	(b) Lummer and Pringsheim
	(c) Stefen and Pringsheim	(d) Wein and Stefen
	DACT DAI	PER MCOS
(56)	Radiations emitted hy human hody at	normal temperature 37°C lies in:
	Ludiations children by human body at	
	(a) X-ray region	(b) infra red region
	(c) visible region	(it) ultriviolet
(57)	The unit of Plank's constant is:	GRW-2019 (G-II)
. ,	(a) Volt	(b) IS
	(c) JS ⁻ O	(d) eV
(58)	The numerical value of Stefer's consta	ant is: SWL-2017, LHR-2019 (G-II)
. /	(a) 567×10^{-8}	(b) 2.9×10^{-3}
NI	(c) 563×10^{-34}	(d) 1.6×10^{-19}
(59)	When platinum wire is heated. It chan	ges to cherry red at temperature:
00	-	LHR-2021 (G-II)
	(a) 500 °C	(b) 900 °C
	(c) 1100 °C	(d) 1300 °C
(60)	If the temperature of the black body is	s doubled then energy radiated per second per
	unit area becomes.	GRW-2022 (G-II)

M

N

	(a) 32 times	(b) 16 times
(61)	(c) 64 times $\mathbf{F}_{\mathbf{r}}$ and $\mathbf{T}_{\mathbf{r}}$	
(01)	For a black body, the product Λ_m and 1 is 1	(b) Planck's constant
	(a) Wien's constant	(d) Caulorab constant
(62)	Plank's constant h has the same unit as a	hat of DGK-2017 (G II), SGD-2017 (G-II)
(02)	(a) linear nomentum	b angular momentum
	(c) torove	(d) power
(63)	At low temperature, a body emits radiati	ons of: RWP-2019 (G-I)
((a) sl orter wave er gih	(b) longer wavelength
ADA	(c) a gh frequency	(d) high frequency & shorter wavelength
645	The value of Stefen's constant " σ " is give	n by:
00		MTN-2019 (G-II), LHR-2021 (G-I), GRW-2022 (G-I)
	(a) $5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-2}$	(b) $5.67 \times 10^8 \text{ Wm}^2 \text{ K}^2$
	(c) $5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$	(d) $5.67 \times 10^{-8} \text{ W}^2 \text{m}^2 \text{ K}^{-2}$
(65)	Plantinum wire becomes vellow at room	temperature of. FSD-2022 (G-II)
`	(a) 500 °C	(b) 900 °C
	(c) 1100 °C	(d) 1300 °C
	ENTRY TES	TMCQS
(66)	As the temperature of black body is	raised, the wavelength corresponding to
	maximum intensity	
	(a) Shifts towards longer wavelength	
	(b) Shifts towards shorter wavelength	
	(c) Remain the same	
	(d) Shifts towards longer as well as shorter	wavelengths
Topic	19.5:	
	Interaction of Electromagnet	ic Radiation with Matter
(67)	The emission of electrons from a metal	surface when exposed to light of suitable
	frequency is called:	
	(a) Compton effect	(b) pair production
	(c) photoelectric effect	(d) none of these
(68)	Electromagnetic radiation or photons int	eract with matter in
	(a) 2 distinct ways	(b) 3 distinct ways
	(c) 4 distinct ways	(d) 5 distinct ways
(69)	A photocell is based on	
	(a) Compton effect	(h) pair production
	(c) photoel-atric effect	(d) cone of these
(70)	If the threshold frequency of incident light	$r_{\rm c}$ for a metal surface is $f_{\rm c}$ its work function
(70)	(ϕ) will be	
	(a) = -hf	(b) $\phi = hf$
- nr	$(a, \phi = 1)$	
NNI.	$\psi = - (1 + 1_0)$	(d) $\psi = \Pi(1 - T_0)$
Μŵ	riotoelectric effect is observed when mos	(b) anode
	(a) semiconductor	(d) insulator
(72)	The security system is an example of	(*) 110014001
()	(a) The Compton effect	(b) Planck's theory
	r r r r r r r r r r r r r r r r r r r	

N

N

		(c) photo cell	(d) photo electric effect
	(73)	(K.E.) _{max} = hf-hf ₀ is known as:	
	. ,	(a) Compton equation	(b) Newton's equation (COUDE
		(c) Planck's equation	(d) photoelectric equation
	(74)	Photoelectric effect was discovered by:	
	(7.1)	(a) Finstein	(h) Herriz
		(a) May Plezak	(d) Wien's
	(75)	Le ph topogri for a monochami	(u) with s
	(15)	In photoelectric effect which monochrom	and light is anowed to shine on cathode, it
		begins to	
		(a) emit electrons	(b) absorb electrons
~	nR	(c) emit protens	(d) emit neutrons
N	(76)	Compton effect makes use of law of conse	rvation of:
$\left[\right]$	UU	(a) energy	(b) momentum
,		(c) charge	(d) all of these
	(77)	The change of very high energy photon in	to an electron and positron pair is called:
		(a) Compton effect	(b) pair production
		(c) annihilation of matter	(d) photoelectric effect
	(78)	When light falls on the metal surface the	anargies of the emitted electrons very with
	(70)	(a) speed of light	(b) frequency of light
		(a) speed of light	(b) frequency of fight
		(c)intensity of light	(d) remain unchanged
	(79)	The classical theory cannot explain the de	ependence of photo emission on
		(a) frequency of light	(b) speed of light
		(c) threshold frequency of light	(d) none of these
	(80)	The relation $hf - \phi = \frac{1}{2}mv^2$ called	
	(00)	2^{-110} max current 2^{-110} max 2^{-110} max	
		(a) Einstein's photoelectric equation	(b) Compton's photoelectric equation
		(c) Stefen's photoelectric equation	(d) Wein's photoelectric equation
	(81)	Albert Einstein was awarded Noble prize	in physics in
	(01)	(a)1921	(b) 1821
		$(a)_{1}_{2}_{2}_{2}$	(d)1021 (d)1056
	(02)		(u)1930
	(82)	In photoelectric effect, the threshold frequencies	uency is
		(a)different for different materials	(b) same for all material
		(c) neither different nor same	(d) small for all materials
	(83)	In Compton scattering the change in the	wavelength is given by
		(a) $A_{1}^{2} = \frac{h}{(1 + \cos\theta)}$	(b) $A_{1}^{2} = \frac{h}{(1 \cos \theta)}$
		(a) $\Delta \lambda = \frac{1}{mc^2}(1+\cos\theta)$	(b) $\Delta \lambda = \frac{mc^2}{mc^2}$
		h -	1-75)///(0.1000
		(c) $\Delta \lambda = \frac{nc}{n}(1 - cos\theta)$	$(1) \wedge \lambda =(1 - cos\theta)$
			m_{c}
	(84)	In Compton scattering the charge in way	eleroth will be maximum if
	(04)	(a) ancle of southering is 90°	(b) angle of scattering is 60°
		(a) angle of solution is 30°	(d) angle of scattering is 180°
		(c) anget of scattering is 45	(u) angle of scattering is 180
	(85)	The factor $\frac{h}{h}$ has dimension of	
3	AIA	m _c C	
	UN	(a) mass	(b) length
	0-	$(a) \operatorname{time}_{a}$	(d) frequency
			(u) mequency
	(86)	Compton was awarded Nobel prize in phy	ysics in
		(a) 1921	(b) 1927
		(c) 1827	(d) 1980

(87)	The value of $\frac{h}{m_o c}$ is	TO COM
	(a) 2.43×10^{-12} m	(b) 2.43×10^{-2} km
	(c) 2.43×10^{-12} km	$(\mathbf{d}) 2.4.5 \times [0^{-\infty}]\mathbf{n}$
(88)	A positron is a particle having mass equation	al and charge opposite to
	(a) electron	(b) heutron
	(c) proton	(d) meson
(89)	The sum of rest mass energy of electron	and positron is equal to
	(a) 1.02 MeV	(b) 0.511 MeV
	(c) LMeV	(d) 5MeV
	Sperum and potassium cathode emits	
MN 00	(a) electrons for violet light	(b) electrons for visible light
	(c) protons for infrared light	(d) electrons for infrared light
(91)	Cesium coated oxidation silver emits	
	(a) electrons for violet light	(b) electrons for visible light
	(c) electrons for ultra violet light	(d) electrons for infrared light
(92)	The photo cells are used to operate	
	(a) automatic street lighting	(b) counting system
	(c) security system	(d) all of these
(93)	Photo electric effect shows	
	(a)wave nature of light	(b)electromagnetic nature of light
	(c)corpuscular theory of light	(d) dual nature of light
(94)	The photo electric effect can be explaine	d by
	(a) wave nature of light	(b)electromagnetic nature of light
	(c) special theory of relativity	(d) quantum theory of light
(95)	If the scattered X-ray photons are obser	ved at $\theta = 90^{\circ}$ the Compton shift $\Delta\lambda$
	(a) greater than Compton wavelength	(b) is zero
	(c) equals the Compton wavelength	(d) less than Compton wavelength
	PAST PAPE	R MCQS
(96)	The factor $\frac{h}{m_{\circ}c}$ in Compton effect has the factor has the factor has the factor of the fac	ne dimensions of:
		LHR-2017 (G-I), MTN-2019 (G-II)
	(a) pressure	(b) length
	(c) mass	(d) momentum $\mathcal{O}(\mathcal{O})$
(97)	The unit of work function is:	GRW 2319 (G I), SGD-2022 (G II)
	(a) volt	(b) joule
	(c) watt	(d) farad
(98)	Albert Einstein was awar led Nobel Priz	e in physics in: LHR-2021 (G-I)
	(a) 1905)	(b) 1911
	(c) 1918	(d) 1921
(99)	The rest mass energy of an electron posi-	tron pair is: LHR-2021 (G-II)
01	(a) 0.51 Mev	(b) 1.02 Mev
MAND	(0) 1.2 MeV	(d) 1.00 Mev
	The rest mass of photon is	DGK-2017 (G-I), SGD-2017 (G-II), SGD-2022 (G-I)
	(a) 9.1×10^{-31} kg	(b) 1.67×10^{-27} kg
	(c) Infinite	(d) zero
(101)	The materialization of energy takes plac	e in the process of: SGD-2022 (G-I)
(_3_)	(a) photoelectric effect	(b) Compton effect
		· · · · · · · · · · · · · · · · · · ·

	(c) pair production	(d) Annihilation of	matter
(102)) Compton's shift will be maximum at the	angle of.	SGD-2022 (G-19)
	(a) 90°	(b) 180°	
	(c) 360°	(d) 60°	V/(0J0)
(103)) Rest mass energy of electron is 🔵 🦯	4 161 1 1 1 1 1	DGK-2017 (G-I)
	(a) 1.02 MeV	(b) 0.51 MeV	
	(c) 931 MeV	(d) 200 MeV	
(104)) The Compton shift $\Delta \lambda$ is equal to Comp	ton wavelength at a	n angle of
			DGK-2017 (G-II)
	(\mathbf{a})	(b) 120°	
NVN	Ng 4,50	(d) 90°	
///// /002	Compton wavelength is:		MTN-2019, 2022 (G-1)
00	(a) $\frac{h}{2}$	(b) $\frac{hc}{m}$	
	$m_o c^2$	m_o	
	h	hc	
	(c) $\frac{m}{m}$	(d) $\frac{1}{m \lambda}$	
(106	The energy required for pair production	is.	MTN-2019 2022 (C-I)
	(a) 0.51 MeV	(b) 1.02 MeV	WIII(-201), 2022 (G-1)
	(c) 2.04 MeV	(d) 3.06 MeV	
(107)	Compton effect is associated with:	(u) 5.00 me v	LHR-2022 (G-I)
	(a) gamma ravs	(b) Beta rays	
	(c) X-rays	(d) Positive ravs	
	h	() = = = = = = = = = = = = = = = = = =	
(108)) $\frac{1}{m}$ has the unit of:		FSD-2022 (G-I)
		(b) lon oth	
	(a) pressure	(b) length (d) momentum	
	(c) mass	(u) momentum	
	ENTRY TES	T MCOS	
(109)) Light of frequency 1.5 times the thresho	ld frequency is incid	dent on a photo sensitive
	material. If the		
	frequency is halved and intensity is doub	led the photo electr	ic current becomes
	(a) Four times	(b) Double	- 60
	(c) Half	(d) Zero	and commu
(110)) The figure shows the variation of phot	ocurrent with anod	e potential for a photo
	sensitive surface for three different radi	tions. Let Ia, I, and	i, be the intensities and
	f_a , f_b and f_c be the frequencies for the cur	ves a, b and c respe	ctivel y
	Photo cur ent	HAND -	D
	Ollow Market	<u></u>	
	$\square \square \square$		
		Anode potential	
a A	(a) $i_{1} = 0$ and $I_{2} \neq I_{1}$	(b) $f_a = f_c$ and $I_c = I$	
NVIND	(c) $f_a = f_b$ and $I_a = I_b$	(d) $f_a = f_b$ and $I_a = I$	
(111	A photon of energy 3.4eV is incident of	on a metal having	work function 2eV. The
	L 01/	8	

(111) A photon of energy 3.4eV is incident on a metal having work function 2eV. The maximum K.E of photo-electron is equal to

(a) 1.4 eV	(b) 1.7eV
(c) 5.4 eV	(d) 6.8 eV

	(112)	Compton shift is Maximum when θ is	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		(a) 40°	(b) 0°
		(c) 180°	(d) 45°
	Topic	19.6:	of Matter
	(113)	The pair production and annihilation of	matier are:
		(a) similar phenomena	(b) opposite to each other
	(1 1 1)	(c) both of these	(d) none of these
	(114)	In a nil iletion of matter, positron and el	ectron pair disappears into two:
R	1ND	Ve) of Quarticles	(b) β - particles
4 P	00	(c) γ - ray photons	(d) none of these
	(115)	When an electron comes in contact with	a positron, they are annihilated according
		to the relation:	
		(a) $e^+ - e^- \rightarrow \gamma + \gamma$	(b) $e^+ + e^- \rightarrow \gamma$
		(c) $e^ e^- \rightarrow \gamma + \gamma$	(d) $e^+ + e^- \rightarrow \gamma + \gamma$
	(116)	The existence of positron was predicted b	Dy
		(a) Compton	(b) Dirac
		(c) De Broglie	(d) Heisenberg
	(117)	In pair production two photons are p	produced which are traveling in opposite
		directions so that	(b) mass is conserved
		(a) energy is conserved	(d) charge is conserved
	(118)	The Positron was discovered in the cosmi	(u) charge is conserved
	(110)	(a) Thomson	(b) Anderson
		(c) Millikan	(d) Chadwick
	(119)	The existence of positron was predicted b	ov Dirac in:
		(a) 1922	(b) 1924
		(c) 1926	(d) 1928
		PAST PAPE	R MCQS
	(120)	The existence of Positron was predicted by	by: BWP-2019 (G-II)
		(a) G.P. Thomson	(b) Dirac
		(c) Germer	(d) Newton
	(131)	ENTRY TES	T MCQ8
	(121)	to the relation:	a positron, eacy are annunated according
		(a) $e^+ - e^- \rightarrow x + x$	$(t) a^+ + a^ a$
		$\begin{pmatrix} a \\ e \\ -e \\ -e \\ -e \\ -e \\ -e \\ -e \\ -$	$(d) x^+ + x = x + x$
		$(c) e - b + \gamma$	$(\mathbf{u}) \in \pm c \rightarrow \gamma + \gamma$
	Topic		-
	Topic	Wave Nature of	of Particles
-	022	Louise de Broglie wavelength of a partic	le can be expressed by:
	NN.		
1		(a) $\lambda = \frac{1}{h}$	(b) $\Lambda = -p$
		h	I
		(c) $\lambda = \frac{\pi}{mc}$	(d) none of these
	(123)	According to De-Broglie, an electron can	be regarded as:
	()		

N

	(a) particle only	(b) are negligible
	(c) particle and wave both	(d) none of these
(124)	(c) particle and wave both The wavelength of \mathbf{v}_{-} rays is of the order	of:
(127)	(a) 10^{-8} m	(h) 10^{-9}
	(a) 10^{-10} m	$(0) 10^{-11}$
(125)	De-Broglie's hypothesis of way wature of	f decircus was can ^{ee} mod experimentally by:
(123)	(a) Lummer and Princsie in	b Pavisson and Germer
	(c) Finstein and Max Planks	(d) photoelectric equation
(126)	Davisson determine the wavelength of se	eattered electron from the relation
(120)	but ison when in a the werenength of se	h
mall	$(a) \lambda = -\frac{n}{1 + 1}$	(b) $\lambda = \frac{\pi}{2\sqrt{2-V}}$
[NN]	00°2mve	$2\sqrt{2m}ve$
900	(c) $\lambda = \frac{2h}{2}$	(d) $\lambda = -\frac{h}{2}$
	\sqrt{mVe}	$\sqrt{2mVe}$
(127)	If an electron is accelerated through a p	otential difference of 54 volts, its de-Broglie
	wavelength will be:	
	(a) 1.66×10^{-8} m	(b) 1.66×10^{-9} m
	(c) 1.66×10^{-10} m	(d) 1.66×10^{-12} m
(128)	Electron microscope makes practical use	e of the:
	(a) particle nature of electrons	(b) wave nature of electrons
(1.0.0)	(c) dual nature of electrons	(d) none of these
(129)	The Davison and Germer experiment in	dicates
	(a) interference	(b) polarization
(1.0.0)	(c) electron diffraction	(d) refraction
(130)	In Davisson and Germer experiment, tai	rget crystal is made up of
	(a) copper	(b) aluminium
(1	(c) nickle	(d) silver
(131)	Interference and diffraction of light con	firm its
	(a) particle nature of light	(b) wave nature of light
(1.2.4)	(c) dual nature of light	(d) electromagnetic nature of light
(132)	Prince Louis Victor de Broglie received	Nobel prize in
	(a) 1929	(b) 1981 (l) 1820
(100)	(c) 1939	(a) 1829
(133)	Light behaves as a stream of	(b) electrons $\sim 16 C(0) UUU$
	(a) protons	(b) electrons
(124)	(c) photons	(1) POSITIONS
(134)	A three dimensional image of compare	cable quality can be achieved by modern
	versions called (a) see with a plant a minimized by	(b) scening proton microscope
	(a) scaling electron fillescope	(d) scanning plotten incroscope
(125)	Which of the given is on a superticle of a	(u) scanning electron spectrometer
(155)	which of the given is in antiparticle of e	(b) positron
MAN		(d) position (d) neutron
UN/II	DAST DADE	P MCOS
(136)	Wave nature of light annears in	GRW.2019 (C.II)
	(a) pair production	(b) compton effect
	(c) photoelectric	(d) interference
	(c) photoeree are	

ENTRY TEST MCQS

(152) In Heisenberg Principle:

NAN

- (a) Position and momentum cannot be measured accurately of sub-atomic particles
- (b) Position and momentum cannot be measured accurately of electrons
- (c) Position and momentum can be measured accurately of electrons

(d) Position and momentum can be measured accurately of sub-atomic particles

E].CO

						_								76	2	COL
				(T	opic	AN al Mi	SW ultip	ER la	(E) ace (<u>(S</u> Ducsti	ons)	25	N	16	5	GON
1	B	21	B	41	D	61	Q	8th	A	101	[<u>C</u>]	121	þ	14T	C	
2	Α	_22	С	42	B	\$27	B	82	<u>A</u>	102	B	122	B	142	B	
3	O	23_	B	143	12/	463	B	83-	D)	103	B	123	С	143	Α	
4	<u> </u>	44	9	. 14	4	14	XL	- 84	D	104	D	124	C	144	B	
	A	251	A	1451		65	D	85	B	105	C	125	B	145	B	
MAN	5¢	26	D	46	C	66 (7	B	86	B	105	B	126	D	146	B	
ANNN V		21		47		07 20	C D	87 00	A	107	D D	127	D D	147	A	
	A P	20	A	40 10	D C	00 60	D	00 80	A	100 100	D	120	D C	140	D P	
9	D	30		49 50		09 70	R	07 90	A R	109	Δ	129	$\frac{\mathbf{C}}{\mathbf{C}}$	149	D C	
10	A	31	D	51	A	71	A	91	D	111	A	131	B	151	C	
12	B	32	B	52	C	72	C	92	D	112	C	132	A	152	A	
13	В	33	D	53	A	73	D	93	C	113	B	133	C			
14	С	34	С	54	Α	74	В	94	D	114	С	134	Α			
15	С	35	B	55	B	75	Α	95	С	115	D	135	B			
16	С	36	B	56	B	76	D	96	B	116	B	136	D			
17	С	37	С	57	B	77	B	97	B	117	С	137	Α			
18	Α	38	С	58	Α	78	B	98	D	118	B	138	С			
19	С	39	D	59	B	79	C	99	A	119	D	139	Α			
20	Α	40	С	60	B	80	Α	100	D	120	B	140	D			

MAN MARAGUM E. COM

KIPS TOPICAL SHORT QUESTIONS

19.1, 19.2 RELATIVE MOTION, INERTIAL FRAME OF REFERENCE

- (1) **Define relative motion.**
- Ans: Relation Motion: Anything is moving or not, all this depends on the state of observer, and the ideas which are stated with reference to some other mings are called relative. Hence,

"Relative motion means motion of one thing with reference to some other object."

(2) Differentiate between in ertical & non-inertial frame of reference.

`	/
A	ns

\backslash	Inertal Frame of Reference	Non-inertial Frame of Reference
	i. A frame of reference which is either at	i. A frame of reference which is moving
	rest or moving with constant velocity is	with non uniform velocity is non inertial.
	inertial.	
	ii. Laws of motion are valid in inertial	ii. Laws of motion are not valid in non
	frame of reference.	inertial frame of reference.
	iii. A frame of reference having zero	iii. A frame of reference having non zero
	acceleration is inertial.	acceleration is non inertial.
	iv. A class room and car moving with	iv. A car and bus moving with non
	constant velocity are examples of inertial	uniform velocity are examples of non
	frame of reference.	inertial frame of reference.
	v. It is non-accelerated frame.	v. It is accelerated frame.

(3) What is a frame of reference?

- **Ans:** A frame of reference is any coordinate system relative to which measurements are taken. In space, a frame of reference consists of three mutually perpendicular axes fixed on the earth. The position of an object in space is expressed by a set of Cartesian co-ordinates namely x-axis y-axis and z-axis.
- (4) Define frame of reference and differentiate an inertial frame from a non-inertial frame.

Ans: Frame of Reference

A co-ordinate system with reference to which we can take our observations is known as frame of reference.

Inertial Frame

A frame of reference at rest or moving with uniform velocity is known as an inertial frame of reference.

Non inertial frame

An accelerating frame of reference is known as non-inertial frame of reference.

(5) A satellite is orbiting around earth. It is frame of reference inertial or non-inertial? Justify your answer.

Ans: "A sate me orbiting the carth is a non-inertial frame of reference."

Justification: An inertial frame requires velocity vector \vec{v} to remain constant; in the case of orbiting satellite this vector is never constant. Hence satellite orbiting the earth is a pon-inertial frame of reference.

PAST PAPER SHORT QUESTIONS

- (6) What are the measurements on which two observers in relative motion will always agree upon? LHR-2017 (G-I), BWP-2017 (G-I)
- (7) What is NAVSTAR navigation system? DGK-2017 (G-I), LHR-2022 (G-I), FSD-2022 (G-II)

- (8) What is difference between inertial & non-inertial frame of reference. MTN-2022 (G-I)
- (9) Rest and motion are not absolute but relative. Explain this statement with chample, **BWP-2022(G iI)**
 - 19.3 SPECIAL THEORY OF RELATIVITY
- (10) What is the practical application of the results of the special theory?
- Ans: Its practical application is NAV STAR navigation system. Whin the help of this system, position and speed of aircraft cap be found to an accuracy of about 2 cms⁻¹ and 50 m respectively. Using this result, the location of any aircraft after an hour flight can be predicted to about 50 m as compared to about 760 m determined without using relativistic effects.

Give some important results drawn from Einstein's theory of relativity?

(i) According to Einstein's theory of relativity

$$m = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$$
$$\ell = \ell_o \sqrt{1 - \frac{v^2}{c^2}}$$

 $t = \frac{t_o}{\sqrt{1 - \frac{v^2}{v^2}}}$

And

Ans:

According to these results we can conclude that

(i) If speed of object approaches to speed of light, then mass becomes infinite

(ii) At speed, comparable to that of light, length contraction takes place along the direction of motion.

(iii) In moving frame, which is moving relative to speed of light, clock runs slower than normal clock.

(12) Differentiate between special theory of relativity and general theory of relativity.

Ans: Special Theory of Relativity

It deals with inertial frame of reference. This theory treats problems involving inertial or non-accelerating frames of reference.

In special theory of relativity, gravitational field does not play any part.

General Theory of Relativity

It deals with non-inertial or accelerating frame of reference. This theory nears problems relating to frames of reference accelerating with respect to one another.

- (13) If applied force is increased, can an object move with the speed of light?
- Ans: No, because by doing so $v \approx v$. Hence,

$$m = \frac{m_o}{\sqrt{\frac{1 - v^2}{c^2}}} = \frac{m_o}{\sqrt{\frac{1 + c^2}{c^2}}} = \infty$$

But n finite mass is impossible. Hence, speed of light is not achieved. V/hat the rest mass of photon be zero?

As
$$m = \frac{m_o}{\sqrt{1 - v^2/c^2}} \Longrightarrow m_o = m\sqrt{1 - \frac{v^2}{c^2}}$$

So, with rest mass m_0 , photon must move with v = c.

$$m_o = m\sqrt{1 - \frac{c^2}{c^2}} \Longrightarrow m_o = m\sqrt{1 - 1}$$

$$\Rightarrow m_{o} = m(0) = 0$$

Hence, moving mass of photon becomes infinite and is energy becomes infinite too. As we know that energy of photon is not infirite, Hence, it rest mass must be zero.

- Speed of material object can acver exceed speed of light why? (15)
- Suppose speed of material object is equal to speed of light i.e v = cAns:

$$\sqrt{1 - \frac{v^2}{c^2}} = \frac{m_o}{\sqrt{1 - \frac{c^2}{c^2}}} = \frac{m_o}{\sqrt{1 - 1}} = \frac{m_o}{o} = \infty$$
Multiplying both side by acceleration

ng both side by acceleration 'a' so

$$ma = (\infty) (a)$$

$$F = \alpha$$

This shows that infinity force is required to accelerate the object up to speed of light which is physically impossible. Hence speed of material object is always less than speed of light.

What do you mean by $E = mc^2$? (16)

By $E = mc^2$, we mean that mass is convertible to energy and energy can be converted to Ans: mass. In other words, we can say that mass is highly concentrated form of energy.

What is NAVSTAR navigation system? (17)

- The results of special theory of relativity are put to practical use even in everyday life by Ans: a modern system of navigation satellites called NAVSTAR. The location and speed anywhere on Earth can now be determined to an accuracy of about 2 cms⁻¹. If relativity effects are not taken into account, speed could not be determined any closer than about 20cms⁻¹. Using these results the location of an aircraft after an hour's flight can be predicated to about 50m as compared to about 760 m
- determined by without using relativistic effects. A body having rest time $t_0 = 3.0$ is moving with the velocity of 0.95c. Find the value of (18) its relativistic time t.

t_o

Ans:
$$t_a = 3.0$$
s, $v = 0.95$ c, $t = ?$

TT.:

(19)

(20)

Using
$$t = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

 $t = \frac{3.0s}{\sqrt{1 - (0.95c)^2}} = \frac{3.0s}{\sqrt{1 - (0.95)^2}} = 2.5s$
(19) Write two postulates of special theory of relativity?
Ans: (i) Physical laws are denical in all non accelerated (inertial) frames.
(ii) The speed 'c' of light in vacuum is constant throughout the universe and independent
of speed of the observer or source. On the basis of these postulates the following results
can be deduced.
(20) What is energy of a photon in joules, if its wavelength is 1240 nm?
(h = 6.63 × 10⁻³⁴ Js, c=3 × 10⁸ ms⁻¹)
Ans: $\lambda = 1240$ nm , E=?

Sel.

Using
$$E=hf=\frac{hc}{\lambda}$$

 $E=\frac{6.63\times10^{-34} J_{S}\times3\times10^{8} ms^{-1}}{1240\times10^{-9} m}=1.6\times10^{-19} J$
 $E=1.0eV$ Ans.
PAST PAPER SHORT OUESTIONS
(21) Write we postrates of special theory of relativity? GRW-2019 (G-II), 2022 (G-I)
(22) Does the dulation means that time-really passes more slowly in moving system or that it
only seems to pass more slowly? MIRPUR (AJK) 2017
(23) If the speed of light were infinite, what would be the equations of special theory of
relativity reduce to? SWL-2017, FSD-2022 (G-I)
(24) Define special theory of relativity and write its postulate? DGK-2022 (G-I)
(25) If an object moves with speed of light, what will be its mass? Explain with equation.
BWP-2022 (G-II)
(26) Find the mass m of a moving object with speed 0.8c. RWP-2022 (G-II)
(27) What happens to total radiations from a blackbody if its absolute temperature is doubled?
Ans: According to Stefan – Boltzmann's law,
 $E=\sigma T^4$

When the temperature is increased to double of its value, then

 $E = \sigma(2T)4$

Or $_{E = \sigma \times 16T^4}$

 $E = 16\sigma T^4 = 16 E$

Thus, the total radiation energy E' will increase 16 times.

(28) The rest mass of a photon is zero. What can you say about its momentum? Explain the reason.

Ans: Momentum of Photon

In the special theory of relativity, rest mass being zero does not imply that momentum of the photon will be zero. It is non-zero, and is equal to the following value:

 $=4.9\times10^{-19}$ J

$$p = \frac{hf}{c}$$
 OR $p = \frac{h}{\lambda}$

 $\lambda = 400 \,\mathrm{nm}$

E= hf =

5.63×10

hc

Reason for this non-zero photon is that photon is never found at rest.

(29) What is the energy of quanta in eV having wavelength $\lambda = 400 \text{ pm}?$ (h = 6.63 × 10^{-3} (J.))

F=

Ans:

ins:

Using

V/hy is a cavity radiator considered as a black body? Black Body

m

A hypothetical body which absorbs all kind of radiations when it is cold and emits all kind of radiation when it is hot is known as a black body.

me

In practice no substance is an ideal black body. The practical

(b) Absorption of radiation

radiation

cavity

approximation of a black body is a solid that has a hollow cavity within it. It has a small hole and the radiation can enter or escape only through this hole.

The inside is blackened with lamp black to make it good absorber and a bao reflector. Any radiation entering the black body suffers multiple reflections and ult mately its inside the cavity.

(31) Define Stefan Boltzmann Luw for radiation.

Ans: Stefan Boltz nann Law states that area under each curve represents the total energy (E) radiated per second per square meter over all wavelengths at a particular temperature. It is found that area is directly proportional to the fourth power of kelvin temperature T. Thus $E \propto T^4$

$$E = \sigma T^4$$

Where σ is called Stephen's constant. Its value is 5.67 × 10⁻⁸ Wm⁻²K⁻⁴ and the above relation is known as Stephen-Boltzmann Law.

(32) Prove
$$p = \frac{h}{\lambda}$$
.
Ans: Derivation:
 $E=hf$
 $E=mc^2$... (i)
 $E=hf$... (ii)
Comparing eq. (i) and (ii)
 $mc^2 = hf$
 $mc = \frac{hf}{c}$
 $\because v = f\lambda$
 $p = \frac{h}{\lambda}$ \because $p=mc$

PAST PAPER SHORT QUESTIONS

(33) What are black body radiations?

GRW-2019 (G-I), LHR-2021 (G-II)

(34) As a solid is heated and begins to glow, why does it first appear red?

SGD-2017 (G-II), LHR-2021 (G-I), MTN-2022 (G-I)

(35) What happens to total radiation from a blackbody if its absolute temperature is doubled?

MIRPUR (AJK) 2017, LHR-2022 (G-I), BWP-2022 (G-I) nta, radio wave or X-rays? DGK-2017 (G-II)

- (36) Which has lower energy quanta, radio wave or X-rays?
- (37) State Stefen's Boltzmann law. Also write the value of Stefen's constant.LHR-2022 (G T

19.5 INTERACTION OF ELECTROMAGNETIC RADIATION WITH MATTER

- (38) Write an equation for Compton's effect in terms of frequency?
- Ans: The Compton relation is given oy.

$$\lambda = \lambda_s - \lambda_t = -\frac{h}{m_s} \left(1 - \cos t^2 \right)$$

Dividing both sides by c

$$=\frac{\lambda_s}{c}-\frac{\lambda_i}{c}=\frac{h}{mc^2}(1-\cos\theta)$$

$$\frac{1}{f} = \frac{1}{f} + \frac{h}{mr^2} (1 - \cos\theta)$$

 $f_s f_i m_o c^2$

which is the required equation

SGD-2015

Chapter-19

- (39) What determines the number of photoelectrons emitted from a metal surface and their maximum kinetic energy?
- Intensity of light determines the no. of photo-electrons and frequency of light determines Ans: the K.E of ejected electrons.
- Find Compton shift in the wavelength of a photon scattered at an angle of 90°? (40)

Ans: As

Compton shift in the v

$$\Delta \lambda = \frac{h}{nc} (1 - \cos \theta)$$
If $\theta = 90^{\circ}$

$$\Delta \lambda = \frac{h}{m_o c} (1 - \cos 90^{\circ})$$

$$= \frac{h}{m_o c} = 2.43 \times 10^{-12} m$$

)

- 1. Security systems Ans:
 - 2. Counting systems
 - 3. Automatic door systems
 - 4. Automatic street lighting
 - 5. Exposure meter for photography
 - 6. Sound track of movies.
- (42) What is maximum value of Compton's shift? How it is related to Compton's wavelength.
- Compton's shift is obtained by Ans:

$$\Delta \lambda = \frac{h}{m_o c} (1 - \cos \theta)$$

When photons are scattered at an angle of 180° then

$$\Delta \lambda = \frac{h}{m_o c} (1 - \cos 180^\circ) = \frac{h}{m_o c} (1 - (-1))$$

 $\Delta \lambda = 2 \frac{h}{m_c c}$ (A maximum value of Compton's shift)

Above relation shows that maximum value of Compton's shift is two times of Compton's wavelength.

(43) Differentiate between photoelectric effect and compton effect.

Ans.

PHOTOELECTRIC EFFEC

	i. It is the phenomenon of emission of	<i>i</i> It is the phenomenon of scattering of
	electrons from metal surface due to the	photons from loosely bounded electrons
	incident photons (radiation).	and scattered photon has increased
M	NLIUU	wavelength.
$\langle \rangle$	ji. Photons are completely absorbed	ii. Photons transfer partly their momentum
U	within the metal surface.	and energy.
	iii. Photons of visible light or ultraviolet	iii. Photons of x-rays are used.
	region of electromagnetic spectrum are	
	used.	

(44) Will higher frequency light eject greater number of electrons than low frequency light?

Chapter-19

Ans: No the number of photoelectrons does not depend upon the frequency but depends upon the intensity of light. Therefore, high frequency light will not emit more electrons than a low frequency light. It means that both high and low frequency lights will emit the same number of electrons.

(45) What do you understand by work function and stopping potential (cut off)

Ans: Work Functions

The maximum energy required to eject an electron from any metallic surface is called its work function. The work function is different for different metals. It is generally denoted by ϕ .

Stopping potential (or cut off potential)

The external voltage used to stop ejected photoelectrons is called cut-off potential or stopping potential.

(46) Write important results of the photo-electric effect.

- Ans: It has been found by experiments that
 - (i) No photo-electrons are emitted when the frequency of light is below the threshold frequency.
 - (ii) The speed of photoelectrons increases with the increase in frequency of the incident light.
 - (iii)The number of photo-electrons emitted is directly proportional to the intensity of the incident light.
 - (iv)The threshold frequency depends upon the nature of the metal.
 - (v) A beam of light of frequency slightly greater than the threshold frequency, however weak it may be, causes an immediate emission of electrons.

(47) Write a note on work function ϕ' of a metal.

Ans: The minimum energy required by the electron to escape from the metal surface is called work function of a metal. It is denoted by ϕ' which is given as

 $\phi = hf_o$

If the energy of incident photon is sufficient the electron is ejected immediately from the metal surface. A part of the photon energy (work function) is used by the electron to break away from the metal and the rest appears as the kinetic energy of the electron. That is Incident photo energy-work function = Maximum K.E. of photo-electron

Or hf -
$$\phi = \frac{1}{2} \text{mv}_{\text{max}}^2$$

This is known as Einstein's photoelectric equation.

(48) What is meant by Compton's wavelength?

Ans: The term $\frac{h}{m_o c}$ in the Compton's scattering equation

$$\Delta \lambda = \frac{h}{m_o c} (1 - \cos \theta)$$

Where $\frac{h}{m_o c}$ is called Compton wavelength.

By putting the values of h, m_o and c, its value is found to be

$$\frac{h}{m_o c} = \frac{0.63 \times 10^{-34}}{9.1 \times 10^{-31} \times 3 \times 10^8} = 2.43 \times 10^{-12} \,\mathrm{m}$$

Compton wavelength becomes equal to Compton shift $\Delta\lambda$ at an angle of 90°.

- (49) Discuss the minimum and maximum value of Compton's shift.
- **Ans:** When angle of scattering is zero

E1.COM

(50) What is photocell? Write its two uses.

Ans: Principle:

A photocell is based on photoelectric effect.

Construction:

A simple photocell is shown in fig.1. It consists of an evacuated glass bulb with a thin anode rod and a cathode of an appropriate metal surface.

Uses:

- **1.** Security systems
- **2.** Counting systems
- **3.** Automatic door systems
- **4.** Automatic street lighting

(51) What is stopping potential?

Ans: If this potential is made more and more negative, at a certain value, called stopping potential V_0 the current becomes zero. Even the electrons of maximum energy are not able to reach collector plate. The maximum energy of photoelectrons is thus.

$$\frac{1}{2}$$
 mv²_{max} = V_oe

- (52) Define Compton Effect. At what angle Compton shift becomes equal to Compton wave length?
- Ans: It is the phenomenon of scattering of photons from loosely bounded electrons and scattered photon has increased wavelength.

If the angle is 90° then the Compton shiit become equal to the Compton wavelength

As

$$\Delta \lambda = -\frac{h}{m_o c}(1 - \cos \theta)$$

$$\text{If } \theta = 90^\circ$$

$$\Delta \lambda = \frac{h}{m_o c}(1 - \cos 90^\circ)$$

$$= -\frac{h}{m_o c} = 2.43 \times 10^{-12} m$$

$$\frac{n}{m_{o}c} = 2.43 \times 10^{-12} m$$

(53) Define photoelectric effect and pair production.

Ans:	Photoelectric effect	
	It is phenomenon of emission of electrons from metal	
	surface due to the incident photons (radiation).	
	Photons are completely absorbed with in metal surface.	
	It is a kind of instruction of very high energy wholey such fulleus	
	as that of γ rays with matter in which photon energy is	
	changed nuo an electron – posi ron pair. Pair Production	
	The interact or usually takes place in the electric field in the vicinity of a heavy nucleus	
MAN	as shown in the figure.	
(52)	What is condition of pair-production? Briefly explain	
Ans:	Condition for Pair Production:	
	For an electron or positron, the rest mass energy = $m_0c^2 = 0.511$ MeV.	
	To create the two particles 2×0.511 MeV or 1.02 MeV energy is required.	
	For photons of energy greater than 1.02MeV, the probability of pair production	
	two particles in the form of kinetic energy	
	The process can be represented by the equation.	
	Energy of photon = (Energy required for pair production) + (K.E of the particles)	
	$hf = 2m_0c^2 + K.E.(e^-) + K.E.(e^+)$	
PAST PAPER SHORT QUESTIONS		
(55)	Why can red light be used in a photographic dark room when developing films, but a blue	
(56)	or white light cannot? LHR-2017 (G-I), DGK-2022 (G-II)	
(50)	DGK-2017 (G-I), LHR-2017 (G-I), LHR-2021 (G-II)	
(57)	Define Compton effect. At what angle Compton shift becomes equal to the Compton	
()	wave length? LHR-2019 (G-II), SGD-2017 (G-I)	
(58)	Define Compton effect. Write its equation. SGD-2017 (G-I)	
(59)	Will bright light eject more electrons from a metal surface than dimmer light of the same	
	color? SGD-2017 (G-I), RWP-2022 (G-I), FSD-2022 (G-II)	
(00) (61)	Photon A has twice the energy of photon B. What is the ratio of the momentum of A to Control o	
(01)	that of B? MIRPUR (AJK) 2017, RWP 2022 (G-U)	
(62)	Calculate the value of Compton wave length of photon. (FSD-22:19 (G-i)	
(63)	Write down four uses of photocell SWL-2017, DCK-2022 (G-I)	
(64)	When light shines on a surface, is momentum transforred to the metal surface.	
(65)	Why don't we observe a Compton effect with visible light?	
(00)	W/I-2017 (C-J), M1N-2022 (G-II), RWP-2022 (G-II), FSD-2022 (G-II)	
(66)	What is condition of pair-production? Briefly explain SWL-2019	
N79/m	Define Compton effect. Write formula of Compton shift for scattering angle θ .	
1/1/1	BWP-2019 (G-II)	
✓ (68)	A beam of red light and beam of blue light have exactly the same energy. Which been	
(60)	contain the greater number of photon? GRW-2022 (G-I) Which has lower energy quents? Padia wayes and V rays CDW 2022 (G-I) DWD 2022 (C-II)	
(09) (70)	Define threshold frequency and work function Also give it unit MTN-2022 (C-II) DCK-2022 (C-I)	
(70)		

Chapter-19

(71) Compton shift ($\Delta\lambda$) in a wave in zero. Calculate the scattering angle of photon.**BWP-2022** (G-X (72)Can pair production take place in vacuum? Explain. RWP-2022 (G-I) 19.6 ANNIHILATION OF MATTER Particle and its anti-particle co-exist? Explain? (73)No, whenever particle and antiparticle meet, they destroy each other. Hence these Ans: particles vanish and appear in the form of energy Is gamma- ray photon produced in annihilation of matter, produce a pair of (74) electron and positron? No. As we knew for the phenomenon of pair production γ – ray photon must have Ans: intalinum energy of 1.02 MeV. ir annihilation of matter, photons produced have energy 0.51MeV which is smaller than 1.02 MeV i.e energy required to produce a pair of electron and positron. What do you mean by annihilation of matter? (75)Ans: It is the reverse process of pair production. When a particle and its γ-photon antiparticle come close to each other, they annihilate or destroy \bigcirc electron £ each other. This process is known as annihilation of matter. $e^- + e^+ \rightarrow$ $\gamma + \gamma$ The two photons are produced traveling in opposite direction so that momentum is conserved this is shown in fig. Each photon has energy 0.51MeV equivalent to rest mass positron energy of a particle. PAST PAPER SHORT OUESTIONS (76) Is it possible to create a single electron from energy? Explain.

GRW-2022 (G-II), MTN-2022 (G-I), FSD-2022 (G-I)

19.7 WAVE NATURE OF PARTICLES

- (77) What are the advantages of an electron microscope over optical microscope?
- Ans: (i) The resolving power of an electron microscope is thousand times greater than that of an optical microscope. Therefore, such minor details which cannot be seen by an optical microscope can be observed by an electron microscope.
 - (ii) A 50 kV electron microscope can resolve a distance 0.5 nm to 1 nm whereas best optical microscope has the resolving power of 0.2 μ m. This is the major advantage of electron microscope over optical microscope.
 - (iii) In an electron microscope, focusing of invisible electron beam can be done by electron and magnetic field instead of optical lens in an optical instrument.
 - (iv) The picture of internal structure of an object can be obtained with the help of electron microscope vilile an optical microscope is unable to do so.
- (78) What is de Broglie wavelength of a particle of mass 5.0 mg moving with 8 ms^{-1} ?

Ans:

$$h = 5.63 \times 10^{-7.1} \text{s}$$

 $n = 5.0 \text{ mg} = 5.0 \times 10^{-6} \text{ kg}$
 $v = 8.0 \text{ ms}^{-1}$
 $h = 6.63 \times 10^{-34} \text{ Js}$
Using $\lambda = \frac{h}{\text{mc}} = \frac{6.63 \times 10^{-34} \text{ Js}}{5.0 \times 10^{-6} \text{ kg} \times 8.0 \text{ ms}^{-1}} = 1.66 \times 10^{-29} \text{ m}$

(79) What is wave particle duality? Give its one practical use.

So we are forced to assume both wavelike and particles like properties for all matter. Ans: electrons, protons, neutrons, molecules etc. and also light x rays, y-rays etc. have to be included in this.

In other words, matter and radiction have a dual wave particle rature and this new concept is known as wave particle duality. The particles use is electron microscope.

What is mean by De-Proglie hypothesis? (80)

De-Broglie states that "when waves can behave like particles why should not particles Ans: behave like waves." And the wavelength associated to a particle of mass m, moving with velocity v is given by him,

h $\lambda = -$

, where h is plank's constant. mv

This assumption was experimentally confirmed by Davison and Germer. According to this experiment, particles like electrons can show wave-like properties according to the proposal of De-Broglie.

What is photon? Derive the relation between momentum of photon and wavelength (81) of light?

Photon: Ans:

Einstein used the idea of quantization of energy proposed by Max Planck that light is emitted or absorbed in quanta, known as photons. Simply, small packets of energy are also called as photons. The energy of each photon of frequency f as given by quantum theory is

Derivation:

$$E = mc^{2} \qquad \dots (i)$$

$$E = hf \qquad \dots (ii)$$
Comparing eq. (i) and (ii)

$$mc^{2} = hf$$

$$mc = \frac{hf}{c}$$

$$\because v = f\lambda$$

$$p = \frac{h}{\lambda} \Rightarrow \frac{1}{\lambda} = \frac{f}{v}$$

PAST PAPER SHORT OUESTIONS

What advantages an electron microscope has over an optical microscope? (82) SGD-2017 (C-II), LHR-2021 (G-I) MIN-2022 (G-II), DGK-2022 (G-II)

- If an electron and proton have the same de Broglie wavelength, which particle has greater (83) BWP-2017 (G-I), LHR-2021 (G-II) speed?
- When does light behave as wave? When does it behave as a particle? (84)

DGK-2017 (G-II), LHR-2022 (G-II)

- A rarticle of mass 5.0 mg moves with speed of 8.0 ms⁻¹. Calculate de-Broglie wave (85) length. MTN-2019 (G-I) **GRW-2022 (G-II)**
 - (86) What is wave particle duality? Explain.
 - (87) Calculate the wavelength of an electron moving at 40 m/s.
 - (88) We do not notice de-Brogli wavelength for a pitched cricket ball. Explain why.FSD-2022 (G-I)

DGK-2022 (G-II)

7(0)

(89) Define positron and Heisenberg uncertainty principle?

Positron:

A positron is a particle having mass and charge equal in magnitude to that of electron but the charge being of opposite in nature i.e. positive.

The positron is also known as antiparticle of electron or anti-electron.

Heisenberg uncer ality principle:

This principle states that position and momentum of a particle cannot both be measured simultaneously with perfect accuracy.

(90) Write the two statements of uncertainty principle.

Ans: UNCERTAINTY PRINCIPLE:

Werner Heisenberg in 1927 proposed two principles:

i) Uncertainty in position (Δx) and momentum (Δp)

ii) Uncertainty in energy (ΔE) and time (Δt)

Uncertainty in position and momentum:

 $\Delta x.\Delta p \approx h$

Either
$$\Delta x \approx \frac{h}{\Delta p}$$
 or $\Delta p \approx \frac{h}{\Delta x}$

i.e. position and momentum of an object cannot be measured simultaneously

Uncertainty in energy and time:

 $\Delta E.\Delta t \approx h$

Either $\Delta E \approx \frac{h}{\Delta t}$ or $\Delta t \approx \frac{h}{\Delta E}$

(91) State uncertainty principle. Give its two mathematical forms.

Ans: This principle states that position and momentum of a particle cannot both be measured simultaneously with perfect accuracy.

Uncertainty in position and momentum: COI $\Delta x.\Delta p \approx h$ $\Delta p \approx \frac{h}{m}$ Either $\Delta x \approx \frac{h}{\Delta p}$ or i.e. position and momentum of an object cannot be measured simultaneously Uncertainty in energy and time: $\Delta E \Delta t \approx h$ $\Delta t \approx \frac{h}{\Delta E}$ Either or **PAST PAPER SHORT QUESTIONS** Define positron and Heisenberg uncertainty principle **RWP-2019 (G-I)** Explain uncertainty principle. (93) LHR-2022 (G-I)