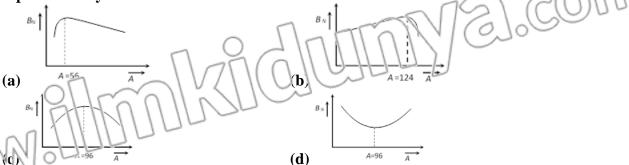


U ha	ipter–21	Nuclear Physics
	(a) 10^{-14} m	(b) 10^{-12} m
	(c) 10^{-10} m	(d) 10^{-8} m
(13)	Energy released by conversion of 1	amu of mass is: LER 2012 (C-I)
	(a) $1.6 \times 10^{-19} ev$	(b) 1.6×10 ⁻¹⁵ Mev
	(c) 200 Mev	(d) 931 Mey
(14)	0.1 kg mass will be equivalent to the	
	(a) $5 \times 10^{\circ}$ Joules	(b) 6×10^{19} Joules
	(c) 9×10^{11} Jcules	(d) 9×10^{19} Joules
		TEST MCQS
(15)	Size of nucleus is approximately	
JNE	$(a) 10^{-12} m$	(b) 10^{-11} m
UU	(c) 10^{-10} m	(d) 10^{-14} m
Topic	21.2:	
]	<u>Isotopes</u>
(16)	A device used to separate the isoto	opes of an element and to measure the masses of
	isotopes accurately is called	
	(a) holograph	(b) mass spectrograph
	(c) ultra violet spectrograph	(d) infra red spectrograph
(17)	Both Xenon and cesium each have	
	(a) 13 isotopes	(b) 34 isotopes
	(c) 36 isotopes.	(d) 10 isotopes
(18)	The second isotope of hydrogen is c	called
, ,	(a) tritium	(b) Protium
	(c) deuterium	(d) xetrium
(19)	The chemical properties of all isoto	
	(a) different	(b) alike
	(c) depend upon atomic mass number	(d) zero
(20)		the electron and charge of proton is called
	(a) meson	(b) lepton
	(c) photon	(d) positron
(21)	The most abundant isotope of neon	-
	(a) neon -21	(b) neon-20
	(c) neon -22	(d) neon-23
(22)	First isotope of hydrogen is called	$\sim (C(0))$
	(a) ordinary hydrogen	(b) protium
	(c) tritium	(d) both a and b
(23)	The chemical behavior of an atom	is determined by
	(a) atomic number	(b) atomic mass number
	(c) number of isotopes	(d) all of these
(24)	The chemical properties of an elem	ent depends upon the
~	(a) number of protons in nucleus	
AN.	(b) number of electrons inside the nue	
UN	(c) number of electrons around the nu	
0	(d) number of neutrons inside the nuc	
(25)		accessful to separate the isotopes of an element
	(a) chemical method	(b) physical method
	(c) both a and b	(d) none of these


M

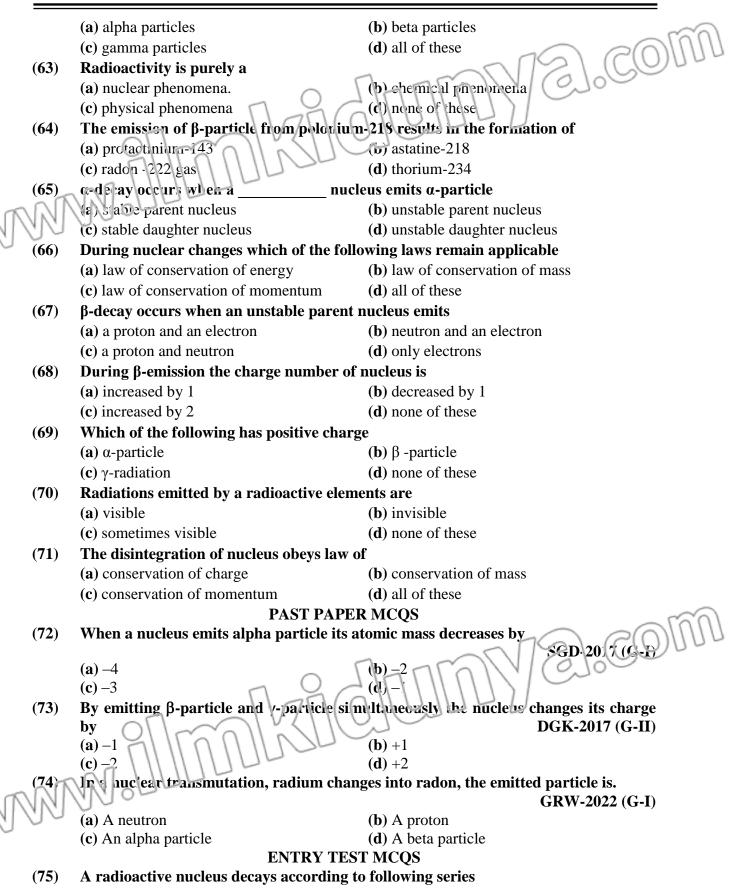
N.

Nuclear Physics

	(c) 2.13 MeV	(d) 28 MeV	
(38)			
(00)		(b) uranium	$751(C(0))^{10}$
			(0.1000
(39)			
(0))			
(40)		, 2 cooun	
(10)		(b) packing fraction	
6		· · · · ·	
AN		(u) officing fraction	
UU		(b) minimum	
<u> </u>			
(42)			
(42)			
(43)			a two protons and
(43)		k the hendin hucleus mu	o two protons and
		(b) 0.31MeV	
		· · /	
(44)			
(44)	(c) 2.13 MeV (d) 28 MeV The most stable element is (a) copper (b) uranium (c) condition (c) iron. (c) condition		
		· · · · ·	
(45)		(u) an of these	
(43)		(b) Average energy of pu	
		e	
(46)		(u) Average energy of rea	action
(40)		(b) $1.06 \times 10^{-21} \text{kg}$	
		e e	
(17)		•	CDW 2010 (C II)
(47)			GRW-2019 (G-II)
		· · · -	
(48)			TER 2011 (CUP)
(10)	0 01 1		
			Cue
(49)			SGD-2022 (G-II)
(42)			56 5 2022 (6 H)
(50)			DGK-2022 (G-I)
		(b) 9×10 ¹⁶ J	
MN			
\mathbf{N}			BWP-2022 (G-II)
	ENTRY TES	T MCQS	

(52) The dependence of binding energy per nucleon, B_N on the mass number, A, is represented by

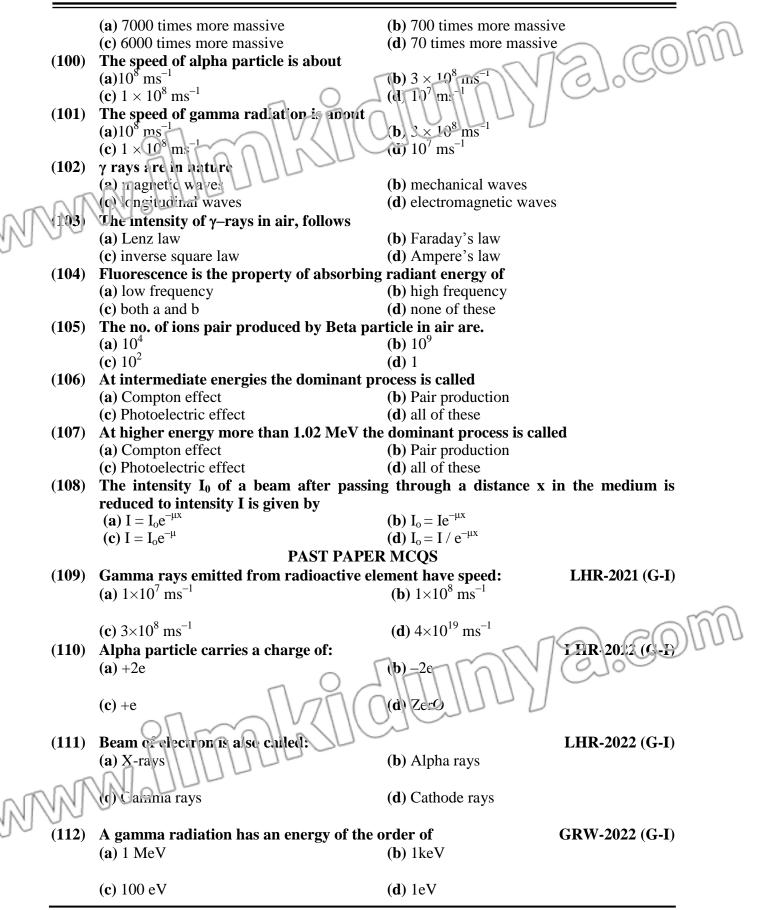
A nucleus has a nucleon number A, a proton number Z, and a binging energy B. The masses of the neutron and proton are m_n and m_p , and c is the speed of light. The mass of the nucleus is given by the expression


(a)
$$(A-Z)m_n + Zm_p - \frac{B}{c^2}$$
 (b)
(c) $Am_n + Zm_p - \frac{B}{c^2}$ (d)

(b)
$$(A+Z)m_n + Zm_p + \frac{B}{c^2}$$

(d) None of these

Topic 21.4:


Radioactivity (54) Radioactivity was discovered by (a) Huygens (b) Henry Becquerel (c) Marie Curie (d) Einstein (55) Gamma particles have (a) negative charge (b) positive charge (c) no charge. (**d**) both a & b (56) The elements showing radioactivity have atomic number 'Z' (a) Z > 50**(b)** Z < 82(c) Z >82. (**d**) Z < 70Curie is a unit of (57) (a) radioactivity (**b**) resistivity (c) conductivity (d) isotopes P(O) When nucleus emits alpha particle, its charge number decreases by (58) **(a)** 2 (b) 3**(c)** 1 (d) 4(59) Radioactive radiations are of (a) 3 types (b) 2 types (c) 1 type (d) 4 types (60) The elements whose charge number is less than 82 are a) unstable. (b) stable (c) neither stable nor unstable (d) none of these (61) The beta particles are similar to (a) protons (b) electrons (c) neutrons (d) positrons Helium nuclei are similar to (62)

		NY G NY B NY G NY Y NY									
		$X \xrightarrow{\alpha} X_1 \xrightarrow{\beta} X_2 \xrightarrow{\alpha} X_3 \xrightarrow{\gamma} X_4$ If the atomic number and atomic weight of the then the atomic number and atomic mass of X	e parent element X are 72 and 180 respectively,								
		(a) 70, 172	(b) op, [7]								
		(c) $69, 172$ (c) $68, 172$									
	Торіс	21.5: Half L	ife								
	(76)	The time required for a radioactive ma	terial to decrease in activity by one half is								
ant	M	called (1) Half life.	(b) half time								
$\langle NN \rangle$	UU	(c) mean time	(d) degradation time								
00	(77)	The S I unit of decay constant is									
	()	(a) m	(b) m^{-1}								
		$(c) s^{-1}$	$(d) ms^{-1}$								
	(78)	Half life of uranoium-239 is									
	(70)	(a) 23.5 days	(b) 23.5 minutes								
		(c) 23.5 seconds	(d) 23.5 years								
	(79)		(u) 25.5 years								
	(1)	The decay constant can be defined as									
		ΔN									
		(a) $\lambda = -\frac{N}{N}$	(b) $\lambda = -\frac{\Delta N}{\Delta t}$								
		Δt	Δt								
		<u></u>	ΔN								
		(a) $\lambda = -\frac{\frac{\Delta N}{N}}{\Delta t}$ (c) $\lambda = \frac{\frac{N}{\Delta N}}{\Delta t}$	(b) $\lambda = -\frac{\frac{N}{\Delta N}}{\Delta t}$ (d) $\lambda = \frac{\frac{\Delta N}{N}}{\frac{\Delta t}{\Delta t}}$								
	(80)	The half life of radium-226 is									
	(00)	(a) 1620 years	(b) 1920 years								
		(c) 19.20 years	(d) 19.23 years								
	(81)	The half life of iodine-131 is	(u) 19.25 years								
	(01)	(a) 8 days	(b) 23.5 minutes								
		(c) 48 days	(d) 1920 years								
	(82)	The ratio of the fraction of decaying ator									
	(02)	(a) half life	(b) decay time								
		(c) decay constant	(d) decay element								
	(92)	After two half lives the number of decay									
	(83)	(a) N									
			(h) N/2								
		(c) $\frac{3N}{4}$	(d) 11/4								
	(84)	Half life of radioactive element depends	upon								
	()	(a) temperature	(b) amount of substance								
	~ 11	(c) nature of material	(d) all of these								
- 015	183	The half life of sodium $(N_a - 24)$ is	(2)								
- MMI	UU	(a) 6 hours	(b) 8 days								
00		(c) 60 days	(d) 15 hours								
	(86)	The half life of iodine (I- 125) is									
		(a) 6 hours	(b) 8 days								
		(c) 60 days	(d) 15 hours								
		(c) 00 aujo	(w) 10 HOMID								

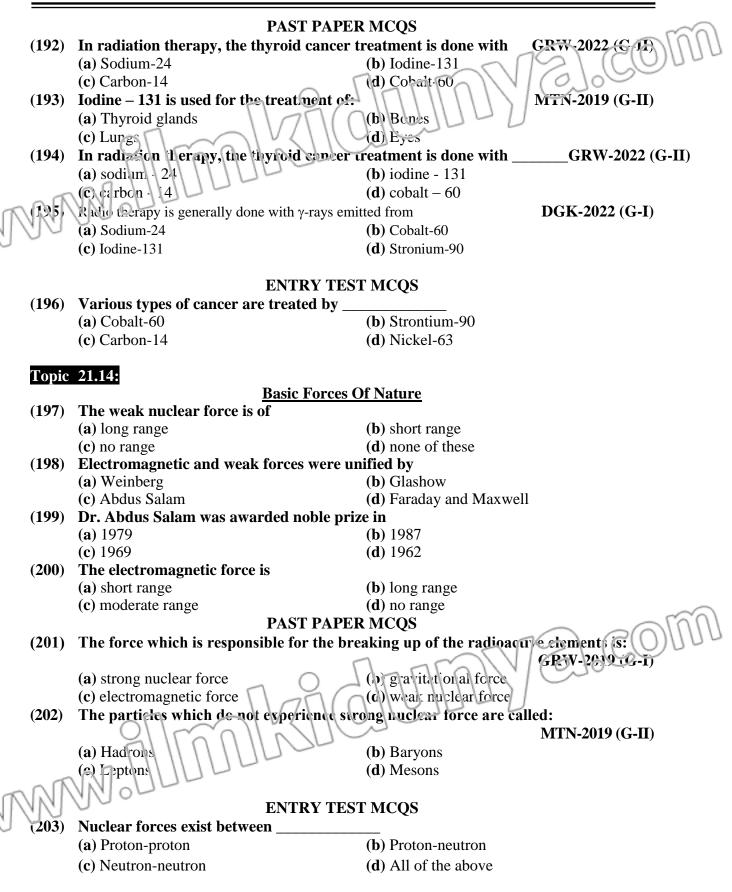
N

	PAST PA	PER MCQS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(87)	The half life of uranium-239 is:		LHR-2021 (G-E)
	(a) 1620 years	(b) 3.8 days	
	(c) 2.5 days	(d) 23.5 minutes	N(0)00-
(88)	The half life of I^{131} is; \frown		MIRPUR (AJK) 2017
	(a) 6 days	(b) 7 days	D
	(c) 8 days	(d) 9 days	
(89)	Half life of iodine-131 is 8 days and	t weighs 20 mg. After 4	half lives, the amount
	left behind will be:		FSD-2019 (G-I)
0	(a) 2 5 mg	(b) 1.25 mg	
MAN	(c) 0 625 mg	(d) 0.312 mg	
(90)	The unit of decay constant is:		SGD-2022 (G-I)
	(a) second	(b) second ^{-1}	
	(c) m^{-1}	(d) m.K	
(91)	Half-life is radioactive isotope of iodir		SGD-2022 (G-I)
	(a) 6 days	(b) 8 days	
	(c) 10 days	(d) 12 days	
(92)	After two half-lives the number of dec	ayed nuclei of an eleme	nt are.SGD-2022 (G-II)
	(a) N/4	(b) N/2	
	(c) 3N/4	(d) N	
(93)	The S.I. Unit of Decay Constant is:		BWP-2019 (G-II)
	(a) Second	(b) Meter	
	(c) $(\text{Second})^{-1}$	(d) $(Meter)^{-1}$	
(94)	The percentage of original quantity of	f radioactive material le	
	nearly		RWP-2022 (G-I)
	(a) 6%	(b) 5%	
	(c) 10%	(d) 3%	
		EST MCQS	
(95)	Half-life of radium is 1590 years. In	how many years sha	ll the earth loss all its
	radium due to radioactive decay?	(L) 1500 10 ¹²	
	(a) 1590×10 ⁶ years (c) 1590×10 ²⁴ years	(b) 1590×10^{12} years	
$(0\mathbf{C})$		(d) Never	many have will the
(96)	Tungsten-176 has a half-life of 2.	5 nours. After now	many nours will the
	disintegration rate of a tungsten-176 s	ample drop to $\frac{1}{16}$ its in	itial value?
	(a) 5	(b)-8.37770	V (0, 10)
	(c) 10		\sum
			D
Topic	21.6:	0	
		<u>diation with Matter</u>	
(97)	The range of particle depends upon th		
TNNI	(a) charge, mass and energy of particle	(b) density of mediu	ım
100	(c) ionization potential of the atoms	(d) all of these	
(98)	The ionization power of beta particle is	.	
	(a) equal to alpha particle	(b) equal to gamma	*
	(c) greater than alpha particle	(d) less than alpha p	particle
(99)	The alpha particle is about	than an electron	

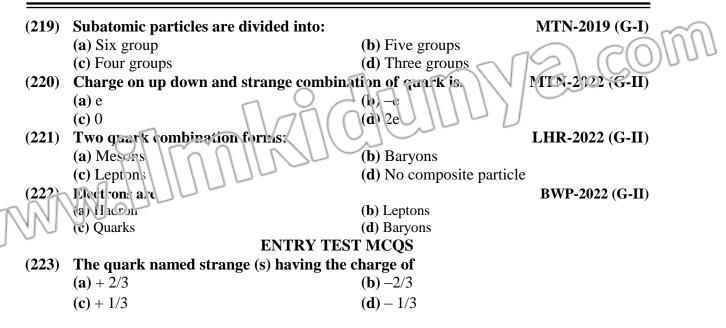
(112)	ENTRY TE								
(113)	Which of the following is in the increase $(a) \approx \frac{\beta}{2}$								
	(a) γ , β , α (c) β , α , γ	(b) γ , α , β (d) α , β , π							
Topic									
(1 1 1)	<u>Rediation</u>								
(114)	Which of the following is a radiation de								
	(a) Wilson cloud chamber	(b) Geiger Muller counter							
GIEN	(c) Solid stue detecto:	(d) all of these							
115	A Wilson could chamber uses	(b) vanora							
UU	(a) super heated liquid	(b) vapors (d) seturated vapors							
(116)	(c) super saturated vapors	(d) saturated vapors							
(116)	Geiger counter is a device to detect	(b) momentum of radiation							
	(a) mass of the particles								
(117)	(c) nuclear radiation	(d) charge on radiation							
(117)	Geiger counter is widely used in(a) optical experiments(b) laser experiments(c) mechanical experiments(d) radioactivity experiments								
(110)	-								
(118)	I V (
	(a) p-n junction	(b) p-n-p junction							
(110)	(c) amplifier	(d) n-p-n junction							
(119)	In G.M counter the positive ions take ti								
	(a) 10^{-2} sec (c) 10^{-3} sec	(b) 10^{-4} sec (d) 10^{-1} sec							
(100)									
(120)	order of	op and bottom of a cloud chamber is of the							
	(a) 7 kV	(b) 10kV							
	(c) 1kV	(d) 4kV							
(121)	In Wilson cloud chamber the alpha par	ticles leave							
	(a) thick tracks	(b) straight tracks							
	(c) continuous tacks	(d) all of these							
(122)	Geiger counter is not suitable for								
	(a) slow counting	(b) fast counting							
	(c) average counting	(d) none of these $\mathcal{O}(\mathcal{O})$							
(123)	Geiger counter can be used to determin	ne the							
	(a) range of particles	(b) penetia ing power of lovization particles							
	(c) both a and b	(d) at sorption of ionizing article							
(124)	Wilson cloud chamber is used for								
	(a) accelerating positively charged partic!	es (b) accelerating negatively charged particles							
	(c) making path of ion zing particle visibl								
(125)	In C M counter, the counter which pro								
OT	(a) vector	(b) resistor							
NNĽ	(d) scalar	(d) amplifier							
(120)	Quenching gas used in G.M counter is								
()	(a) Nobel gas	(b) Bromine							
	(c) Argon	(d) Neon							
	PAST PAP								
(127)	The dead time of G.M counter is:	LHR-2021 (G-I)							

Cr	napter–21	Nuclear Physics
	(a) 10^{-3} s (c) 10^{-6} s	(b) 10^{-4} s (d) 10^{-8} s
(128	 A device that shows the visible path of io (a) GM counter (c) scalar 	nizing particle is called DCK-20.7 (C-I) (b) solid state detector (d, Wilson cloud charaber
(129	The dead time of G.M counter is (a) 10^{-3} second	(b) 10 ⁻⁴ second
(130	(c) 10^{-6} second) The dead time of G M tube is (a) 10^{-3} sec	(d) 10 ⁻⁸ second RWP-2022 (G-II) (b) 10 ⁻⁶ sec
NTA	(g) 1) Osec	(d) 10^{-8} sec
00	ENTRY TES	T MCQS
(131		
	(a) Bromine(c) Neon	(b) Helium(d) All of these
Тор	ic 21.8:	
(12)) Mass of 1^{1} H is	eactions
(132	(a) 1.0078 u	(b) 16.999u
	(c) 4.000u	(d) 14.00034 u
(133		
	(a) 1900	(b) 1918
	(c) 1926 PAST PAPE	(d) 1912 P MCOS
(134	17 14 4	
(134)		
	(a) ${}_{1}^{1}H$	(b) $_{1}^{2}H$
	(c) ${}_{1}^{0}e$	(d) ${}^{0}_{-1}e$
(135	nuclei:	particle, then nitrogen nuclie change into BWP-2017 (G-I)
	(a) oxygen(c) helium	(b) carbon (d) beryllium
	ENTRY TES	TMEOR
<u>Тор</u> (136	ic 21.9:) The reaction in which a heavy nucleus sp	
(150	(a) nuclear fusion reaction	(b) nuclear fission reaction
NVN	(c) both a and b	(d) chemical reaction
(137	/ 8	
	(a) 0.9MeV	(b) 7.7MeV
(130	(c) 28MeV	(d) 200MeV
(138	The types of reactors are(a) 2	(b) 3
	(**) 2	369

		(c) 4	(d) 5						
(1	139)	In which of the following process are neut							
(-	,	(a) inverse beta decay	(b) nuclear fission						
		(c) spontaneous fission	(d) nuclear fusion						
(1	140)	Who invented nuclear fission? \bigcirc \square							
(1	L T U)	(a) Rutherford	(b) Outo Hal n						
		(c) Hans Eethe	(d) Marie Curie						
(1	141)		r than the critical mass, then the chain						
(1	171)	reaction proceeds at a	i than the critical mass, then the cham						
		(a) : pid speed	(b) slow speed						
	NR	(c) $r_1 n_1 p_1 q_2 p_2 q_4$	(d) negligible speed						
ANA	МĽ	The most important and vital part of a re							
MM A	1-161	(a) core	(b) moderator						
0 -		(c) condenser	(d) turbine						
(1	1 4 2)		(u) turbine						
()	143)	The moderator used in nuclear reactor is	(b) and imm						
		(a) aluminium	(b) sodium						
(1	1 4 4)	(c) carbon (d) none of these							
()	144)	The temperature of the core of nuclear re							
		(a) 300°C	(b) 1200°C						
	= \	(c) 500°C	(d) 1300°C						
()	145)		tron, out of all neutrons produced in one						
		fission reaction produces further fission r							
		(a) atomic mass	(b) terminal mass						
		(c) critical mass	(d) none of these						
(1	146)	In nuclear reactors the heavy water used							
		(a) heat transfer	(b) moderator						
		(c) coolant source (d) all of these							
(1	147)	In fast reactors which of the following is u							
		(a) U=238	(b) U-239						
		(c) Pu-239	(d) Np-239						
(1	148)		own to thermal energy to produce further						
		fission is called							
		(a) fast reactor	(b) thermal reactor						
(1 (1 (1		(c) power reactor	(d) slow reactor						
(1	149)	In Karachi nuclear power plant, which of							
		(a) cadmium rods	(b) heavy vater						
		(c) boron rods	(d, graphi e rod						
(1	150)	The core of fast reactors consists of a mix							
		(a) plutenium	(b) uranium dioxide						
		(c) both a and b	(d) none of these						
		PAST PAPER							
(1	151	The average number of neutrons produce	-						
- ATA	NΝ	MOOD -	GRW-2022 (G-I)						
NNN	N	(a) 2.5	(b) 3						
00-		(c) 2	(d) 4						
(1	152)	Which of the following is not needed in fa							
		(a) Moderator	(b) Control rods						
		(c) Turbine	(d) Heat exchanger						


Nuclear Physics

			Nuclear Trysles
(153)	The moderator used in a nuclear react	or is	MTN-2022 (G-II)
	(a) aluminum	(b) sodium	
	(c) calcium	(d) graphite	761 ((0)111
(154)	Energy given out per nucleon per fissio		
(154)	Energy given out per nucleon per fissio	on or neavy element like una	
	(-) 200 M-M	Cables AN	Link-2022 (G-II)
	(a) 200 MeV	(b) 208 MeV	1
	(c) 5 MeV	(d) 0.9 MeV	
(155)	The average number of nattrons produ	uced per fission of uranium	
			GRW-2022 (G-I)
OT	(a) 25	(b) 3	
INL	(0)200	(d) 4	
(1.56)	Which of the following is not needed in	fast nuclear reactor?	GRW-2022 (G-II)
	(a) Moderator	(b) Control rods	
	(c) Turbine	(d) Heat exchanger	
(157)	Slow neutron can cause fission in	_	DGK-2022 (G-I)
	(a) Uranium-235	(b) Uranium-238	
	(c) Neptonium	(d) Lithium	
(158)	Slow Neutrons can cause Fission in.	(-)	BWP-2022 (G-I)
(100)	(a) Uranium - 235	(b) Uranium - 238	
	(c) Plutonium - 239	(d) Thorium -234	
(159)	Which of the following is used as mode		RWP-2022 (G-I)
(139)	(a) heavy water	(b) boron	KW1-2022 (G-1)
		(\mathbf{d}) aluminum	
(1(0))	(c) cadmium	(u) alullillulli	DWD 2022 (C II)
(160)	Slow neutrons can cause fission in	·	RWP-2022 (G-II)
	(a) uranium-238	(b) uransium-235	
	(c) neptunium	(d) lithium	
(1(1))	ENTRY TH		
(161)	Which of the following isotopes is norm	· ·	
	(a) $\frac{^{238}_{92}}{^{235}_{11}}U$	(b) $^{239}_{93}Np$	
	(c) $\frac{255}{92}U$	$(\mathbf{d})_{2}^{4}He$	
			- 120
Topic	21.10:		
	Fusion I		121 GOVE
(162)	Such reaction in which two light nuclei		cleus is cellea
	(a) fusion reaction.	(b) fission reaction	
	(c) emission reaction	(d) diffusion reaction	1
(163)	The sun is composed primarily of		
	(a) aluminium	(b) hydrogen	
	(c) plutoni un	(d) carbon	
(164)	In sun the energy is released due to fus	ion reaction called	
NN	(a) D-reaction	(b) n-reaction	
UU	(c) p-p reaction	(d) p-n reaction	
(165)	The temperature at the surface of the s		
	(a) 7000 degree Celsius	(b) 5 million degree Cels	sius
	(c) 3400 degree Celsius	(d) 6000 degree Celsius	14 5
(166)	In p-p chain reaction the amount of end	U U	
	In p-p chain reaction the amount of en		


		(a) 200MeV		(b) 25.7MeV						
	(1(7)	(c) 1MeV		(d) 6.4 MeV						
	(167)	(a) 200MeV	e amount of energy	gy obtained per nucleor is (b) 25.7MeV						
		(a) 2001/16 v (c) 1MeV	0	(0) 23. MeV (0) 6.4 MeV						
	(168)	The number of protons	take nort in puck							
	(100)	(a) 4	take part in duch	(b) 6						
		(\mathbf{c}) 2	11/11/	(d) 3						
			FAST PAPE							
	(169)	The temp. of core of sun is		DGK-2022 (G-II)						
	NN	(a) 5) M ℃		(b) 40 M °C						
NNI	UU	(c) 20 M °C		(d) 10 M °C						
00	~									
	(170)	Which of the following	ENTRY TES is a fusion reactio							
	(170)	(a) $_{0}n^{1}+_{7}N^{14}\longrightarrow_{6}C$		(b) $_{1}\text{H}^{3} \longrightarrow_{2} \text{He} +_{1} \text{B}^{0}$						
		0 1 0	•							
		$(\mathbf{c})_1 \mathbf{H}^2 +_1 \mathbf{H}^2 \longrightarrow_2 \mathbf{H}$	e	(d) None of these						
	Topic	21.11:								
			Radiation E	xposure						
	(171)	The cosmic radiation co								
		(a) high energy particles		(b) electromagnetic radiation						
		(c) both a & b		(d) low energy charged particles						
	(172)	A smoker inhales								
		(a) toxic smoke		(b) hazardous radiation						
		(c) both a & b		(d) none of these						
			ENTRY TES	T MCQS						
	(173)	Example of somatic effe	ects are:							
		(a) Skin burn		(b) Loss of hair						
		(c) Drop in the white bloc	od cells	(d) All of these						
	Topic	21.12:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
			Biological Effects	of Radiation						
	(174)	1 rem =		00/210000						
		(a) 0.01 Sv	0	(b) & OF SV () () () ()						
		(c) 1.01Sv	n Sc	(c) 0.0001Sv						
	(175)	1 Sv =	() (7) ((
		(a) 1 Cy × RBE	$\sum \left \sum \left($	(b) $2 \text{ Gy} \times \text{RBE}$						
		(c) 1 Gy/FBE	11 ND -	(d) RBE/1 Gy						
	(176)		n a body absorbi	ng it relates to a quantity called						
	NA	(a) radiated dose		(b) absorbed dose						
AN	NM L	(:) ionized dose		(d) integrated dose						
1/1/1	(177)	Doses of wi	ll cause radiation							
0		(a) 2Sv		(b) 3Sv						
	(a - c :	(c) 4Sv	/	(d) 5Sv						
	(178)	1 Curie is equal to	disintegra							
	(a) 3.7×10^{10} (b) 5.7×10^{10}									

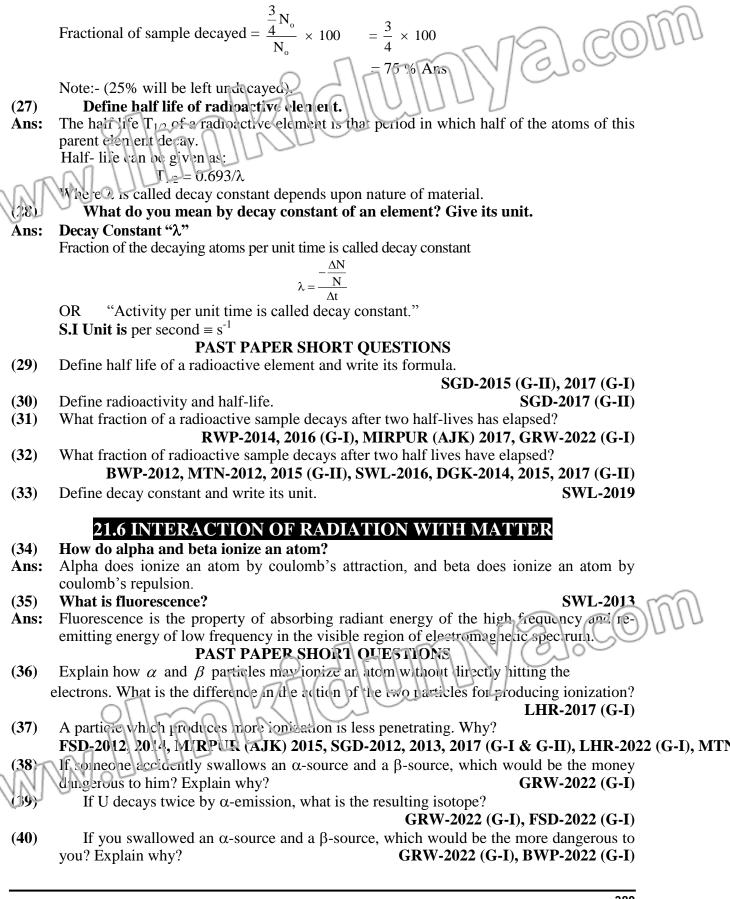
Nuclear Physics

	(c) 3.7×10^{20}	(d) 3.7×10^{13}
(179)	Absorbed dose is defined as	
(1)	(a) $D = E/m$	(b) $D = m/E$
(100)	(c) $D = Em$	$(\mathbf{d}) \mathbf{D} = \frac{1}{2} \ln \mathbf{E}$
(180)	1 rad is equal to	
	(a) 0.01 Gy	(b) 0.09Gy
	(c) 1.01 Gy	(d) 0.001 Gy
(181)	An old whit, the rem is equal to	
	(a) 0.1 Sv	(b) 0.01 Sv
1	(\mathbf{c}) $(\mathbf{b}\mathbf{v})$	(d) none of these
201	PAST PAPE	RMCOS
182	The S.I. unit of radiation dose is	GRW-2019 (G-II)
(July)	(a) roentgen	(b) curie
	(c) grey	(d) rem
(102)		
(183)	1 rem is equal to:	MTN-2019, 2022 (G-I)
	(a) 0.1 Sv	(b) 0.01 Sv
	(c) 10 Sv	(d) 100 Sv
(184)	Absorbed Dose is defined as.	BWP-2022 (G-I)
		(b) $\frac{M}{E}$ (d) $\frac{E}{C}$
	(a) $\mathbf{M} \times \mathbf{E}$	(b) $\frac{1}{F}$
	F	
	(c) $\frac{E}{M}$	(d) $\frac{L}{L}$
		0
	ENTRY TES	•
(185)	What is the absorbed dose D of a sample	e of 2 kg which is given an amount of 100 J
	of radioactive energy?	
	(a) 200 Gy	(b) 50 Gy
	(c) 102 Gy	(d) 98 Gy
Topic	21.13:	
	Biological and Medical	l Uses of Radiation
(186)	Radioactive iodine can be used to check	person's is working properly
	(a) cancer	(b) skin cancer
	(c) lungs	(d) thyroid gland
(187)	cobalt-60 is used for treatment of	
	(a) cancer	(b) kidneys
	(c) lungs	(1) in yroid
(188)	The gamma rays radiographs are used in	
(_30)	(a) agriculture used	(b) medica diagnosis
	(c) support industry	(d) all of these
(189)		Ley an or these
(109)		(b) alpha radiation
	(a) gamina radiation	(b) alpha radiation (d) all of these
201	(c) cosm c radiation	(d) all of these
(130)	Which of the following used in the medic	
00	(a) tracers	(b) G.M counters
	(c) Solid state detectors	(d) all of these
(191)	L	
	(a) blood cancer	(b) skin cancer
	(c) bone cancer	(d) all of these

	Topic	21.15:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
		Building Blocks	of Matter								
	(204)	Subatomic particles are divided in		SICOUL							
		(a) 2 groups	(b) 3 groups	$(0,]_0 \subseteq \mathbb{C}$							
		(c) 4 groups $\bigcirc \bigcirc \bigcirc \bigcirc$	(d, 5 groups								
	(205)	The particles that experience the strong n									
		(a) quarks	(b) leptons								
		(c) hadroos.	(d) positrons								
	(206)	The types of quarks are									
	- 00	(a) 2	(b) 4								
an	AN.	1000	(d) 5								
NNI	(207)	A pair of quark and anti quark is called									
00		(a) leptons	(b) baryons								
		(c) mesons	(d) quarks								
	(208)	The particles lighter than protons are call									
		(a) leptons	(b) baryons								
		(c) mesons	(d) quarks								
	(209)	Which of the following are leptons									
		(a) electron (b) muons									
		(c) neutrinos (d) all of these									
	(210)	The particles equal in mass or greater tha	-	led							
		(a) leptons	(b) baryons								
		(c) mesons	(d) quarks								
	(211)	The particles which do not experience strong nuclear force									
		(a) electrons (b) muons									
		(c) neutrons	(d) both a and b								
	(212)	Three quarks make up a									
		(a) lepton	(b) baryon								
		(c) meson	(d) quark								
		PAST PAPER	MCQS								
	(213)	Types of quark are:		LHR-2017 (G-I)							
		(a) 2	(b) 4								
		(c) 6	(d) 8	- ran							
	(214)	A pair of quark and antiquark make a:		GRV -2019 ((r1)							
		(a) meson	(b) hadron								
		(c) lepton	(d) harvon	Center							
	(215)	A pair of quark and anti cuark makes a;		RPUR (AJK) 2017							
		(a) proton	(b) neutron								
	$(\mathbf{A}1\mathbf{C})$	(c) electron	(d) meson								
	(216)	Which group belongs to Hadrons?		FSD-2019 (G-I)							
		(a) Protons and neutrons	(b) Mesons and neutrons								
	OF	(C) Photons and electrons	(d) Positrons and electrons								
ann	(2)(7)	Which pair belongs to hadrons		DGK-2017 (G-I)							
/V/	00	(a) protons and neutrons	(b) neutrons and electrons								
0 -	(010)	(c) photons and electrons	(d) positrons and electrons								
	(218)	Which pair of particles belongs to the had		BWP-2017 (G-I)							
		(a) photons and electrons	(b) positron and electrons								
		(c) protons and neutrons	(d) photons and positrons								

ANSWER KEYS

							(1	opic	al Mi	ոսթ	le Ch	oice	Ques	tion	S)							
1 A	21	B	41	С	61	В	81	Α	101	B	121	D	141	Α	161	С	181	B	201	D	221	Α
2 B	22	B	42	D	62	Α	82	С	102	D	122	В	142	Α	162	Α	182	С	202	С	222	B
3 D	23	Α	43	D	63	Α	83	С	103	С	123	С	143	С	163	B	183	B	203	D	223	D
4 C	24	С	44	Α	64	В	84	С	104	B	124	С	144	С	164	С	184	С	204	В		
5 D	25	B	45	С	65	В	85	D	105	С	125	С	145	С	165	D	185	B	205	С		
6 A	26	С	46	С	66	D	86	С	106	Α	126	В	146	B	166	B	186	D	206	С		
7 B	27	B	47	D	67	D	87	D	107	B	127	В	147	Α	167	D	187	Α	207	С		
8 C	28	Α	48	B	68	Α	88	С	108	Α	128	D	148	B	168	B	188	B	208	С		
9 B	29	С	49	D	69	Α	89	B	109	С	129	B	149	B	169	С	189	С	209	D		
10 A	30	B	50	Α	70	B	90	B	110	Α	130	С	150	С	170	С	190	Α	210	B		
111 A	31	B	51	B	71	D	91	B	111	D	131	Α	151	Α	171	С	191	В	211	D	-TE	(n)
12 A	32	B	52	Α	72	Α	92	С	112	Α	132	Α	152	С	172	С	12	B	212	PB())//	UL
13 D	33	D	53	Α	73	B	93	С	113	D	133-	ΔB	153	<u>_</u>	175	R	197	GA !	213	Ň		
14 C	34	B	54	B	74	С	94	D	114		134	4	154	14	174	A.	194	LB-	214	Α		
15 D	35	Α	55	С	75	С	95	10	115	X	135	A	155	<u>A</u>	1153	A	195	B	215	D		
16 B	36	С	56	С	76	Α	_96_	Q	16				156	10-	176	Б	196	Α	216	Α		
17 C	37	D	57	(\mathbf{A})	ኮፖኒ	C	ጋሻጉ	<u>þ</u>	1 47		<u> 187</u>	X	157	Α	177	B	197	B	217	Α		
18 C	38	С	58	A	78	B	98	<u>D</u>	118	À	138	Α	158	Α	178	Α	198	D	218	С		
19 B	39	C	-591	A	44	A	نوؤ ز	A	119	B	139	B	159	Α	179	Α	199	Α	219	D		
20 D	1991	B	160	8/	-96-	A	100	D	120	С	140	С	160	B	180	Α	200	B	220	С		
2011	NV] /	50																			
UU	0																					



378

	Ans:	Mass defect:
		The mass of the nucleus is always less than the totals mass of the protons and neutron
		that make up the nucleus. The difference of the two masses is called mass defect.
		Binding energy:
		The missing mass is converted to energy in the formation of the nucleus and is called the
		binding energy. The energy required to break a nucleus into its constituent particles
		(Protons - neutrons).
	(12)	How much energy is released when 1 amu is converted into energy? GRW-2014
		OR
0	AR	By using $E = \Delta mc^2$, show that 1.66×10^{-27} kg = 931Mev. GRW-2013
	Ans:	By using $E = mc^2$
UU	0	When 1 amu is converted into energy
		$E = 1.66 \times 10^{-27} \times (3 \times 10^8)^2$ joule
		$= 1.49 \times 10^{-10}$ joule
		$=\frac{1.49\times10^{-10}}{10}eV$
		$=\frac{1.49\times10}{1.6\times10^{-19}}eV$
		1 49
		$=\frac{1.49}{1.6}\times10^9$
		$= 0.93125 \times 10^{9}$
		$= 0.95125 \times 10^{6}$ Divide and multiply by mega (1M= 10^{6})
		= 931MeV is released.
		PAST PAPER SHORT QUESTIONS
	(13)	Define mass defect and binding energy.
	()	LHR-2012, GRW-2014, 2019 (G-I), SWL-2016, DGK-2016 (G-I & G-II), 2017 (G-I),
		BWP-2019 (G-II), LHR-2021 (G-I), BWP-2022 (G-II),
	(14)	Define the terms "mass defect" and "binding energy". GRW-2022 (G-II)
	(15)	What is B.E curve? In which part of the curve Binding energy maximum? MTN-2022 (G-II)
	(16)	What is the mass defect? BWP-2022 (G-II)
		21.4 RADIOACTIVITY
	(17)	Rn ²²² decays to a new element 'y' by two alpha and two β -emissions. What you can
		say about new element?
	Ans:	After the emission of two alpha particles
		$_{86}$ Rn ²²² \longrightarrow $_{82}$ Y ²¹⁴ +2(₂ He ⁴)
		After two β -emissions
		x^{214} $x^{214} \cdot 2(-2)$
		$_{82} Y^{214} \longrightarrow_{84} Y^{214} + 2(\1 e^\circ)$
		Hence, new element will be ${}_{24}Y^{2/4}$.
	(18)	What is the use of α , β and γ -radiation?
- 00	AN	a particles
ANN	UU	They are used to treat skin cancer because their penetrating power is small.
90	~	β-particles
		They are used to treat the tumors under the skin due to their large penetration power
		γ-particles

They are used to treat the infection in interior parts of the body clue to their longest penetration power. What do you understand by background radiation? State two sources of this (19) radiation. The radiations present in the space near a radioactive radiation detector such as Geiger Ans: tube are called back ground radiations Following are the two sources of this radiation. a. The cosmic rays entering the earth iroan the upper atmosphere along with the sunlight. b. The presence of radioactive materials in the upper atmosphere or the presence of radioactive wastes of nuclear reactors etc. What is the difference between an electron and β-particles? (20) β -particle is negatively charged particle emitted from the nucleus of radioactive element. Ins: An electron is negatively charge particle which revolves around the nucleus. How do γ rays differ from X-rays? (21) (i) X-rays are produced by stopping high energy electrons on heavy metals such as Ans: tungsten. γ -rays are produced of radioactive decay of nuclei. (ii) Spectrum of X-ray is continuous for a certain range of wavelength depending upon the voltage of X-ray tube. Spectrum of γ -rays is discrete or line spectrum with wavelength depending upon the nature of radioactive nuclide. $^{139}_{56}\text{Ba}\,\text{emits}$ a $\beta\text{-particle}$ and lanthanum La is formed. Write its nuclear reaction. (22)LHR-2014 $^{139}_{56}\text{Ba} \rightarrow ^{139}_{57}La + ^{0}_{-1}e$ Ans: **PAST PAPER SHORT QUESTIONS** If $\frac{233}{92}U$ decays twice by α -emission, what is the resulting isotope? (23) **BWP-2022 (G-I)** (24)How can radioactivity help in the treatment of cancer? **RWP-2022 (G-II)** 21.5 HALF LIFE After four half-lives, what %age of an element remains? (25)No. of atoms left behind after four half-lives $=\left(\frac{1}{2}\right)^n N_o = \left(\frac{1}{2}\right)^n$ Ans: % age of sample = $\frac{N_o / 16}{N} \times 100 = 525\%$ What fraction of a radioactive sample decays after two half lives have elapsed? (26)Let No be the priginal number of radioactive atom at any instant then Ans: Number of atoms decayed after first half life $T = T_{1/2} = \frac{1}{2} N_o$ Number of atoms decayed after 2^{nd} half life $= 2T_{1/2} = \frac{1}{2}$, $\frac{1}{2}N_o = \frac{1}{4}N_o$

Total number of atoms decayed after two half-lives = $\frac{1}{2}$ N_o + $\frac{1}{4}$ N_o

	(41)	Explain how α and β -particles may ionizer an atom an atom witho	ut directly hittings
		the electron?	DGK-2022 (G 19)
	(42)	If someone accidently swallows an α -source and a β -source whice	n would be more
			DGH-2022 (G-II)
	(43)	What do you understand by Background Radiation? State two sources of	
			BWP-2022 (G-II)
	(4.4)	21.2 RADIATION DETECTORS	
	(44)	For what purpose, alcohol or bromine is mixed with principal g	
R		When positive ions strike the cathode, secondary electrons are emitted. These electrons would be accelerated to give further spurious counts.	
[90	by mixing a small amount of quenching (i.e. alcohol or bromine) gas	
		gas (argon) in Geiger tube.	with the principal
	(45)	What do you mean by the "dead time" of a Geiger counter?	
	Ans:	The dead time $(10^{-4}s)$ of Geiger counter is the time during which	further incoming
		particles cannot be counted.	U
	(46)	Describe the principle of operation of a solid state detect	tor of ionization
		radiation in terms of generation and detection of charge carriers.	LHR-2017 (G-I)
	Ans:	A solid state detector is a specially designed p-n Junction, operating un	
		in which electron-hole pairs produced by the incident radiation to cause	e a current pulse to
	(17)	flow through the external circuit.	
	(47) Ans:	Write down two advantages of Solid State Detector. Two advantages of Solid State Detector are given as;	LHR-2019 (G-II)
	Ans.	1. It is much smaller in size than any other detector.	
		 It operates at low voltage. 	
	(48)	Briefly give the uses of Wilson Cloud Chamber and G.M. Count	ter. GRW-2012
	Ans:	Wilson Cloud Chamber	
		It shows the visible path of an ionizing particle.	
		For alpha particles, the tracks is thick, straight and continuous.	
		For beta particles, thin and discontinuous tracks.	
		For gamma particles, Leave no definite tracks along their path.	
		G.M. Counter Geiger counter can be used to determine the range or penetration	norman of ionizing
		particles. The reduction in the count rate by inserting metal plates of	
		between the source and the tube helps to estimate the penetration power of the	
	(49)		MTN-2015 (C-11)
	Ans:	When positive ions strike the cathode secondary electrons are emitted	
		These electrons would be accelerated to give further spurious counts. T	
		is prevented by mixing a small an out of quenching gas with the p	
		process of nixing is called quenching.	1 0
		PAST PAPER SHORT QUESTIONS	
	(50)	Vrite cown wo advantages of Solid-State Detector. LHR-2019 (G	
5	(51)		LHR-2022 (G-II)
		Define fluorescence.	DGK-2022 (G-I)
J	(53)	Define self-quenching.	RWP-2022 (G-I)
			COLON
	/ - •	21.8 & 21.9 NUCLEAR REACTIONS & NUCLEAR FI	SSION
	(54)	Briefly explain how heat is produced in a nuclear reactor?	

(56)

ns:

- The eq. of fission reaction of U-235 is written as: Ans: $^{235}_{92}$ U + $^{1}_{0}$ n \longrightarrow $^{141}_{56}$ Ba + $^{92}_{36}$ Kr + 3^{1}_{0} n + Q Where Q is the amount of energy released and it is nearly equal to 200 Mey. This energy is appeared in the form of heat.
- Why does water is used to slow down the neutrons rather than lead? (55)
- When neutrons collide with lead nuclei, they are bounced back. While lead atoms remain Ans: at rest due to their greater mass. But, in case of water, collision b/w neutrons and hydrogen nuclei, present in water is perfectly elastic. In this collision, neutrons are sloved down, while proton starts moving.
 - Hence, water may be used efficiently to slow down the neutrons rather than lead.

What is the principle of Nuclear Reactor?

The environment of fissioning nuclei is controlled in such a way that only one neutron out 2.5 neutrons released on the average is used to induce fission in another atom. In this way, the rate of energy generation is maintained at a constant level. Thus, controlled chain reaction is the principle of nuclear reactor.

(57) What is fission chain reaction?

We know that when $^{235}_{92}$ U absorbs a neutron, it breaks into two nuclei almost of equal Ans: masses along with two or three neutrons and release or energy. This fission reaction can be maintained continuously by proper use of the neutrons emitted during fission reaction of $^{235}_{92}$ U. Such a process is called Fission chain reactions.

What are the main parts of nuclear reactor?

(58) Ans: A reactor usually has four important parts. These are:

- Core
- Moderators
- Heavy water
- Control rods

(59) What are "thermal reactors".

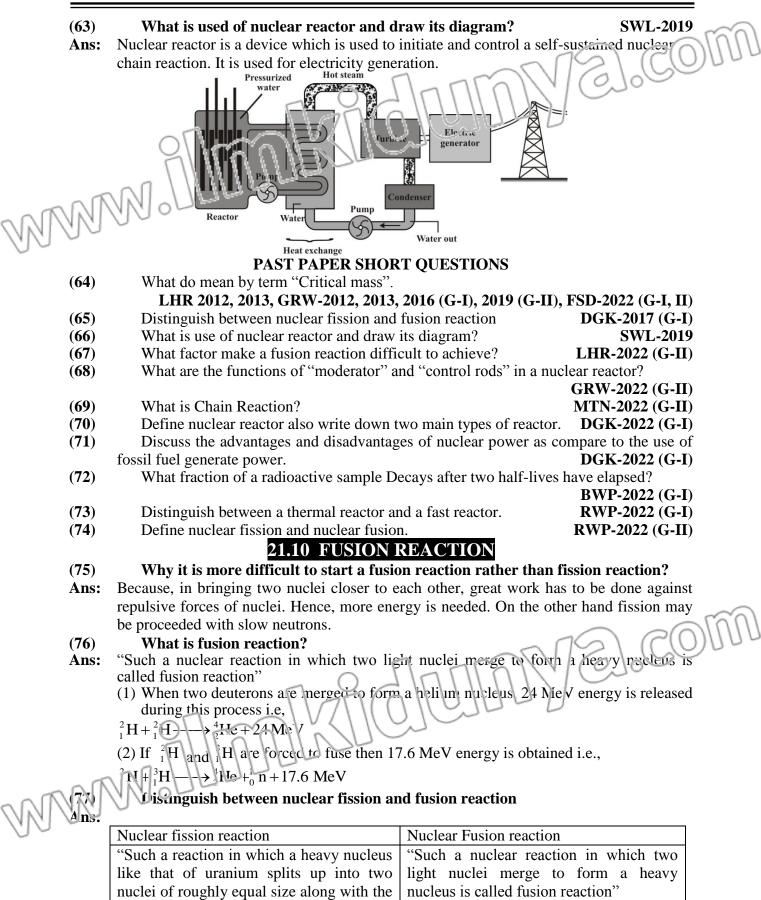
The thermal reactors are called "thermal" because the neutrons must be slowed down to Ans: "thermal energies" to produce further fission. They use natural uranium or slightly enriched uranium as fuel. Enriched uranium contains a greater percentage of $^{235}_{92}$ U than natural uranium does. There are several designs of thermal reactors.

(60) What is the function of moderators in a nuclear reactor?

Ans: **Moderators:**

The fuel rods are placed in a substance of small atomic weight, such as water, heavy water, carbon or hydrocarbon etc. These substances are called moderators. The function of these moderators is to slow down the speed of the neutrons produced during the fission process and to direct them towards the fuel. Heavy water is used as a moderator in nuclear reactor.

- (61) What do you mean by critical mass and critical volume? **RWP-2013** Such a mass of vranium is which one neutron, out of all the neutrons produced in one Ans: firs on reaction, produces further fission is called critical mass.
 - The volume of this mass of uranium is called critical volume.


Explain the working of control rods in a nuclear reactor.

SGD-2016 (G-I)

GRW-2016 ((+1)

The control rods, made of cadmium or boron are moved in or out of the reactor core to Ans: control the neutrons that can initiate further fission reaction. In case of emergency for repair purposes control rods are allowed to fall back into the reactor and this stops the chain reaction and shuts down the reactor.

SGD-2012

Nuclear Physics

	emission of energy during the reaction is called fission reaction"
	${}^{235}_{92}U + n_0^1 \longrightarrow {}^{141}_{56}Ba + {}^{92}_{36}Kr + 3{}^1_0n + Q \qquad {}^2_1H + {}^3_1H \rightarrow {}^4_2He + {}^1_0n + 176MeV$
(78)	Describe steps of p-p reactions of nuclear fusion in sur. RWP-2012
Ans:	During this process two hydrogen nuclei or two protons tuse to form leuteron. This
	reaction takes place as $^{1}_{1}H + ^{1}_{1}H \longrightarrow ^{2}_{1}H + ^{0}_{1}e + \text{Energy}$
	With the fusion reaction of deuteron with proton, ${}_{2}^{3}$ He isotope of helium is formed i.e.,
W	$\int_{1}^{2} H + {}_{1}^{1} H \longrightarrow_{2}^{3} He + \gamma \operatorname{-radiation} + \operatorname{Energy}$
90	In the last stage the two nuclei of ${}_{2}^{3}$ He react in the following manner
	$_{2}^{3}$ He+ $_{2}^{3}$ He= \longrightarrow_{2}^{4} He+ $_{1}^{1}$ H+ $_{1}^{1}$ H+Energy

In this reaction six protons take part and finally a helium nucleus and two protons are formed.

PAST PAPER SHORT QUESTIONS

- (79) What factors makes a fusion reaction difficult to achieve?
 LHR-2021 (G-I), DGK-2022 (G-II), LHR-2022 (G-I), GRW-2022 (G-II), SWL-2017, LHR-2017 (G-I)
- (80) Discuss the advantages and disadvantages of fusion power from the point of safety, pollution and resources. SGD-2017 (G-II)
- (81) In Uranium fission reaction, the estimated energy is where as in fusion P-P Chain reaction 25.7 why fusion is more energetic than fission? MTN-2022 (G-I)

21.11 & 21.12 RADIOACTIVE EXPOSURE & BIOLOGICAL EFFECTS OF RADIATION

(82) Define: (a) Curie (b) Becquerel

Ans: Becquerel: The strength of the radiation source is indicated by its activity measured in Becquerel (Bq). One Becquerel is one disintegration per second.
 Currise A large unit of melicien is unit (Ci) which enable 2.7 = 10¹⁰ if it is the second of the

Curie: A large unit of radiation is curie (Ci) which equals 3.7×10^{10} disintegrations per second.

(83) What is meant by absorbed dose, also write down the units of absorbed dose?

Ans: It is defined as the energy E absorbed from ionizing radiation per unit mass most the absorbing body.

The effect of radiation on a body absorbing it relates to a quantity called absorbed cose D.

(1)

Its Si unit is gray (Gy) defined as one joule per kilogram. 1 Gy =

An o'd unit is rad, an short form for radiation absorbed dose.

1 rad = 0.01 Gy.

PAST PAPER SHORT QUESTIONS

What do you understand by background radiations? State two sources of this radiation. RWP-2022 (G-II), FSD-2022 (G-II), SGD-2017 (G-II), SWL-2017, 2017 (G-I)

(85) What is meant by absorbed dose, also write down the units of absorbed dose? SWL-2017

(86) (87)	Define absorbed dose (D) and write its SI units. Define (a) Absorbed dose (b) Gray MTN-2019 (C-17) GRW-2022 (G-I), FSD-2022 (G-II)				
(88)	What do you understand by back ground radiations? State any two sources of				
	radiation.				
	RWP-2022 (G-II)				
	SULATION				
	2113 BIOLOGICAL AND MEDICAL USES OF RADIATION				
188)	Gine the uses of nuclear radiation in Radiation Therapy.				
Ans:	USES:				
\cup	(i) High energy radiations like X-rays and γ -rays can penetrate into human body. They				
	can be focused on the cancerous tumors to destroy them.				
	(ii) The tumors which are not effectively attacked by γ -rays are treated with neutron therapy.				
	(iii)Artificial Co-60 is used for treatment of various kinds of cancer. This isotope provides high energy γ -rays.				
	(iv)Iodine-131 is taken inside the body to treat thyroid cancer the radiation emitted by it destroys the cancerous cells.				
	(v) Radioactive radon gas in small gold capsule, known as radon seeds, is employed to destroy the cancerous cell.				
(90)	How a radioisotope be used to determine the effectiveness of fertilizer?				
Ans:	Radioactive phosphorus or nitrogen used as a tracer in agriculture, provide information				
	about the best fertilizer to supply to a particular crop and soil. Due to their use, varieties				
	of crops such as rice, wheat and cotton have improved. Moreover, plants have shown				
(01)	more resistance to disease and give better yield and grain quality.				
(91) Ans:	How can radioactivity help in the treatment of Cancer? Radioactivity & Treatment of Cancer: Cancerous cells are always weak as compared				
Alls.	to the normal cells, and hence are destroyed by firing β -radiation or γ -radiation from				
	radioactive source. Sometimes encapsulated "seeds" made from radioactive source are				
	implanted in the malignant tissues for local and short ranged treatment.				
	For example:				
	• γ-rays from Co-60 in general				
	• Iodine–131 for treatment of cancer of thyroid gland.				
	 Phosphorus-32 or strontium-90 may be used for skin cancers. 				

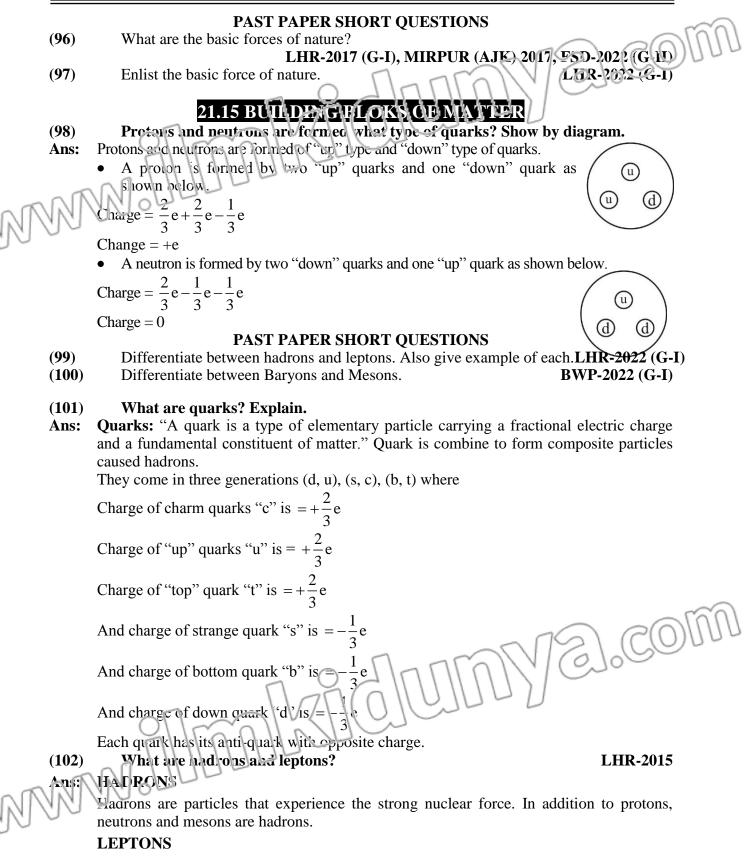
PAST PAPER SHORT QUESTIONS

- How can radioactivity help in the treatment of cancer?
 - 5GD-2017 (C-I), EWF-2017 (G-I), RWP-2022 (G-I), FSD-2022 (G-I)
- Write my two uses of radiography. Differentiate between mass defect and binding energy.

FSD-2019 (G-I) **RWP-2022 (G-II)**

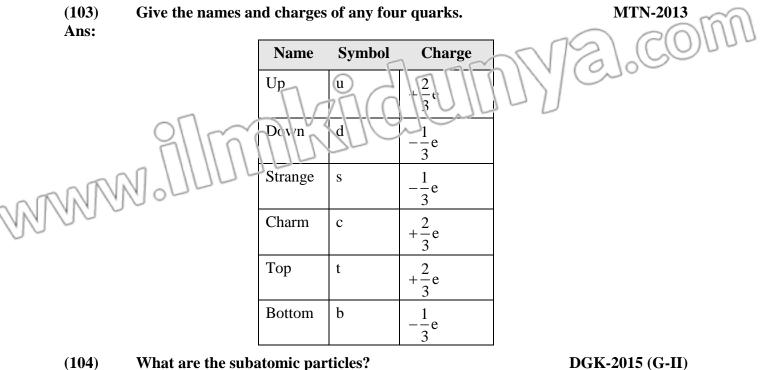
21.14 BASIC FORCES OF NATURE What are the basic forces of nature?

(95) Ans:


(92)

(93)

(94)


i) Gravitational force iv) Weak Nuclear force

ii) Magnetic force v) Strong nuclear force iii) Electric force

Leptons are particles that do not experience strong nuclear force. Electron, muons and neutrinos are leptons.

Chapter–21

Subatomic particles are particles which are much smaller than atom. Ans: For example, electron, proton, neutron, neutrino, muon, etc.....

PAST PAPER SHORT QUESTIONS

- What are hadrons? Give examples. (105)
- (106) Differentiate between Baryons and Measons.
- Define and differentiate between Hadrons and leptons.RWP-2019 (G-I), FSD-2019 (G-I) (107)

6].CO VZ MMM.

DGK-2015 (G-II)

LHR-2021 (G-I)

LHR-2021 (G-II)

387