

Bt T2

(TEIhR - SR8AR)

Software Engineering
(Eighth Edition)

lan Sommerville
) o aesgas B

ERBEH AR

N _/

G}mmzzﬂkaﬂﬁa\i

China Machire Press

Tan Sommerville: Software Engineering, Eighth Edition (ISBN 13: 978-0-321-31379-9,
ISBN 10: 0-321-31379-8).

Copyright © Addison-Wesley Publishers Limited 1982, 1984, © Pearson Education
Limited 1989, 2001, 2004, 2007.

This edition of Software Engineering, Eighth Edition is published by arrangement
with Pearson Education Limited. Licensed for sale in the mainland territory of the People’s

Republic of China only, excluding Hong Kong, Macau, and Taiwan.

A% 5 He SR AR R 35 [Pearson Educationtf A B H AR E B HR ., RS HRE
BHEEFF, TEUMEMEFRERSREEBNA,
WEN A BREF B RMMEHE (PRIEEE, B(], 588K,

WRIFRE, ERLR,
FHFEERE LERTRIARPESF

ZBRRIEIZS . E=. 01-2006-2848
EBEREE (CIP) #iE

TR (R - #58hR) / (38) FRBR4E/R (Sommerville, 1.) 2. —db3t: HULML
A H B, 2006.9

(424 AR 5 1)

454 J8 X . Software Engineering, Eighth Edition

ISBN 7-111-19770-4

.8 0. B O TERE-FEM-FEx V. TP311.5
o [il A B S TR CIPE R+ (2006) 550965745

HLBE Tk AR A (et vk X i 5 E A #5225 #RECSRAS 100037)
HILgH: BIRE

e FCEAL R ER R ENRN - BB IEL R RITIRAT
20064F9 HE 1 IREE 1 JRENAI

170mm x 242mm - S4F[3k

Efr: 79.007¢

JLAAS, A FEITH., Wi, ST, A& TERiE
AxMERE . (010) 68326294

BIRE 8318

XEEILIRE, FREROBFEMIERSERNERITE, E/5EREHRF
HHENGIEBE T ENERRYE, WIERXENES, EXEEBEEEREBAN
TE2EALARKEL. BUARNE, ERlferdERs, XENTLRSHBFTRERBE
FEHsEa, HEIERHONFE R FER OB MB %IRRT, HEkmEE
MSRPEEE, TUEMTHRNER, TRETHERUELE, REBEERME,
XEREENE, RMMEHFASEE AR HRE.

4, E2REBMAKEMOED T, REMHENL™LERJE, HFLAAWE
RHBEY, IHUHENEEFMHRABELANG, BEKE, WELEHHRIE
EHEFERE LEEEERE, AREGSEERRBHEZE. M RRILHIRT,
XEFRBERELHENBZRBRILTEARENZBBH BT LERELE 2
. Bk, Sl#E—#ESME TR ESREHENVEFTE LR RERRNHE
e, bEBHAEN. BREENHR—KAFNLHZEE,

PLB Dok it B E X EEARARREEIRE “HREAEETRS”. H1998
EFh, REAFRE LHEEARET #E. BREEMBEZEM L. 2 ILENTHR
25, #Ff15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann% &
ZRAHR NGRS T RIFAAIEREA, WENEA S E FEd F 8%k H Tanenbaum,
Stroustrup, Kernighan, Jim Gray3% XU & KW —HEHMER, L “HEIEENE
ASRUMR, HREFC] REER. KEAQENHR, BEERTXIEALN
LRI

“UREILBHEAS” MERTESS TERNNZENRE LR, BRHNERANIR
HTHEEEES, SRS EHIBML TEEMERMIE, mESOESLEY
FEREREFENGE, ARNEERAELPBHFEREF. £45, “TEIFRENR
E2HMTEEN M, XEBELREFHLTRFMNOR, HHFSERRAN
EXEM MBS EZBE, AP 5RBITT T B,

B E S PR IR D EE MBS ER R BIRA, BFRITEMEHN B TR
MM AP A—F R, Ak, EEATEMKSIHEMN DE, £ “LEHT
FERE Z THRENRFIRTTENER . B “THEIBEAET 24, SRENRE
Bobr, WIsBhFFRE “SBFRBE" FE, SEHELEFRTHHEEH TS “Schaum s
Outlines” RFIAK “@FELRBZIHFERART. ATRIEX =ZENBHIREYE, R
WA T ELHAERMENNIRS, FEATMBIETHEA SR, Lm k%, EFEX

iv

. BRREKRE, EEAFE, REREKRE. BEKE. LK%, FERHERE,
BRELL KRS, BAERBERFE, PEARKE, ARMEMRKFE, LREEBHR K%,
IR, BREBELRYE, BMKE, #HdLI2R, PEERERERESMFIAEF
DFEERNERKRFMBIAETENLNE T SBNELFEHR “TRESERS”,
ABATHR AL A0 R

X ZFENB RN L BE FR B EFIMREM ST, ARSI ENLEMER
EWHIBFEEGITERN. EPiFSEHHEAM. L T., Stanford U.C. Berkeley, C. M.
U SHALEREREH. PMURETEFIRW. BEEH. BIERL. HENGER
gy, BIRE., ®miFRE, KELE. BE%. Af5NE. BBEFSEEN A
BRI RIFIENECIRE, MAFRKREA—FNHBIESRIFEZF. AHF
S=Z1THMAR. ARHCH2SEFALEMERRA., FiX SR 2@ F &N EY
7512 T, BRELHETENLRENERPEREMAE,

WBRITERE . KBMEH . —REE. MIENERL. BanEE, XBREFER
1REREAETREMRIE, ERMNOBTRERLSERSE, TRBVERLERLKIERX
— &R BN EERY, BSMWHRARAZRERNMUEEZRSHES ., EEATMLEZI
FURBE M RN TR BRIES THEE, BINEEASENT:

B, Fipf:: hzjsj@hzbook.com
BEAEBIE: (010) 68995264

BRZdbht: AbRHAERX E S EEELS
BB gREY: 100037

EREBEERS

(30 R Z | IR F)
E H BEE SR
2 # IEF E Juid
FHE FRFR FiP
ERE &L He#E
Bz Z0E EwWE
718 K wEH EHEE
K A2 fa AZERS
® XK

The first edition of this textbook on software engineering was published more than
twenty years ago. That edition was written using a dumb terminal attached to an early
minicomputer (a PDP-11) that probably cost about $50,000. I wrote this edition on
a wireless laptop that cost less than $2,000 and is many times more powerful than
that PDP-11. Software then was mostly mainframe software, but personal computers
were just becoming available. None of us then realised how pervasive these would
become and how much they would change the world.

Changes in hardware over the past twenty or so years have been absolutely remark-
able, and it may appear that changes in software have been equally significant.
Certainly, our ability to build large and complex systems has improved dramatically.
Our national utilities and infrastructure—energy, communications and transport—
rely on very complex and, largely, very reliable computer systems. For building
business systems, there is an alphaber. soup of technologies—J2EE, .NET, EJB, SAP,
BPEL4WS, SOAP, CBSE—that allow large web-based applications to be deployed
much more quickly than was possible in the past.

However, although much appears to have changed in the last two decades, when
we look beyond the specific technologies to the fundamental processes of soft-
ware engineering, much has stayed the same. We recognised twenty years ago that
the waterfall model of the software process had serious problems, yet a survey
published in December 2003 in [EEE Sofiware showed that more than 40% of
companies are still using this approach. Testing is still the dominant program
validation technique, although other techniques such as inspections have been used
more effectively since the mid-1970s. CASE tools, although now based around the
UML, are still essentially diagram editors with some checking and code-generation
functionality.

viii Preface

Our current software engineering methods and techniques have made us much
better at building large and complex systems than we were. However, there are still
too many projects that are late, are over budget and do not deliver the software
that meets the customer s needs. While I was writing the 7th edition, a government
enquiry in the UK reported on the project to provide a national system to be used
in courts that try relatively minor offenders. The cost of this system was estimated
at £156 million and it was scheduled for delivery in 2001. In 2004, costs had
escalated to £390 million and it was still not fully operational. There is, therefore,
still a pressing need for software engineering education.

Over the past few years, the most significant developments in software engineer-
ing have been the emergence of the UML as a standard for object-oriented systerh
description and the development of agile methods such as extreme programming.
Agile methods are geared to rapid system development, explicitly involve the user
in the development team, and reduce paperwork and bureaucracy in the software
process. In spite of what some critics claim, I think these approaches embody good
software engineering practice. They have a well-defined process, pay attention to
system specification and user requirements, and have high quality standards.

However, this revision has not become a text on agile methods. Rather, I focus
on the basic software engineering processes—specification, design, development,
verification, and validation and management. You need to understand these processes
and associated techniques to decide whether agile methods are the most appropriate
development strategy for you and how to adapt and change methods to suit your
particular situation. A pervasive theme of the book is critical systems—systems whose
failure has severe consequences and where system dependability is critical. In
each part of the book, I discuss specific software engineering techniques that are
relevant to critical systems engineering.

Books inevitably reflect the opinions and prejudices of their authors. Some
readers will disagree with my opinions and with my choice of material. Such dis-
agreement is a healthy reflection of the diversity of the discipline and is essential
for its evolution. Nevertheless, I hope that all software engineers and software
engineering students can find something of interest here.

The structure of the book

The structure of the book is based around the fundamental software engineering
processes. It is organised into seven parts. The first six focus on software processes
and the final part discusses some important new software engineering technologies.

Part 1: Introduces software engineering, places it in a broader systems context
and presents the notions of software engineering processes and management.

Preface ix

Part 2: Covers the processes, techniques and deliverables that are associated with
requirements engineering. It includes a discussion of software requirements,
system modelling, formal specification and techniques for specifying dependability.
Part 3: This part is devoted to software design and design processes. Three out of
the six chapters focus on the important topic of software architectures. Other topics
include object-oriented design, real-time systems design and user interface design.
Part 4: Describes a number of approaches to development, including agile methods,
software reuse, CBSE and critical systems development. Because change is now
such a large part of development, I have integrated material on software evolution
and maintenance into this part.

Part 5: Focuses on techniques for software verification and validation. It includes
chapters on static V & V, testing and critical systems validation.

Part 6: This part covers a range of management topics: managing people,
cost estimation, quality management, process improvement and configuration
management.

Part 7: The final part includes three chapters that are devoted to important
new technologies that are already starting to be used. The chapters cover security
engineering, service-oriented software engineering and aspect-oriented software
development.

In the introduction to each part, I discuss the structure and organisation in more
detail.

Changes from the 7th edition

This new edition of my textbook can be thought of as a mid-life upgrade than a
radical new revision of the book. I have designed it to be completely compatible
with the 7th edition but have included a new section on Emerging Technologies.
This discusses recent developments which I believe are significant for the future of
software engineering. This section includes three additional chapters:

30. Security engineering where 1 discuss issues of how to ensure that your soft-
ware is secure and can resist external attacks.

31. Service-oriented software engineering where I describe new approaches to
application development using reusable web services.

32. Aspect-oriented software development where I introduce a new technique of
software development based around the separation of concerns.

As the other chapters in the bock are still current and relevant, [have not mod-
ified these, apart from very small changes to link to the new material in Chapters
30-32. More information on changes and the differences between the 6th and 7th
editions is available from the book website.

X Preface

Readership

The book is aimed at students taking undergraduate and graduate courses and at
software engineers in commerce and industry. It may be used in general software
engineering courses or in courses such as advanced programming, software specifica-
tion, and software design or management. Software engineers in industry may find
the book useful as general reading and as a means of updating their knowledge on
particular topics such as requirements engineering, architectural design, dependable
systems development and process improvement. Wherever practicable, the examples
in the text have been given a practical bias to reflect the type of applications that
software engineers must develop.

Using the book for teaching

The book is widely used in a range of software engineering courses and, if you already
use the 7th edition, then you will find this edition to be completely compatible with
it. I have deliberately left Chapters 1 to 29 of the 7th edition unchanged. If you
use these in your teaching, there is no need to change any of your supplementary
material or associated coursework. The new chapters are stand-alone chapters and
you may wish to introduce one or more of them to give students an understanding
of new developments in the subject.

I have designed the book so that it can be used in three types of software
engineering course:

1. General introductory courses in software engineering For students who have
no previous software engineering experience, you can start with the introductory
section, then pick and choose chapters from the other sections of the book.
This will give students a general overview of the subject with the opportunity
of more detailed study for those students who are interested. If the course’s
approach is project-based, the early chapters provide enough material to allow
students to get started on projects, consulting later chapters for reference and
further information as their work progresses.

2. Introductory or intermediate courses on specific software engineering topics
The book supports courses in software requirements specification, software design,
software engineering management, dependable systems development and soft-
ware evolution, Each part can serve as a text in its own right for an introductory
or intermediate course on that topic. As well as further reading associated with
each chapter, I have also included information on other relevant papers and books
on the web site.

Preface Xi

Web pages

3. More advanced courses in specific software engineering topics The chapters
can form a foundation for a specific software course, but they must be sup-
plemented with further reading that explores the topic in greater detail. For
example, I teach an MSc module in systems engineering that relies on material
here. I have included details of this course and a course on critical systems
engineering on the web site.

The benefit of a general text like this is that it can be used in several related
courses. The text can be used in an introductory software engineering course and
in courses on specification, design and critical systems. Courses on component-based
software engineering and systems engineering use the book along with additional
papers that are distributed to students. Having a single text presents students with
a consistent view of the subject—and they don’t have to buy several books.

To reinforce the student’s learning experience, I have included a glossary of key
terms, with additional definitions cn the web site. Furthermore, each chapter has:

» aclearly defined set of objectives set out on the first page;
» alist of key points covered in the chapter;

» suggested further reading—either books that are currently in print or easily
available papers (lists of other suggested readings and links can be found on
my web site);

* exercises, including design exercises.

The Software Engineering Body of Knowledge project (http://www.swebok.org)
was established to define the key technical knowledge areas that are relevant to pro-
fessional software engineers. These are organised under 10 headings: requirements,
design, construction, testing, maintenance, configuration management, management,
process, tools and methods, and quality. While it would be impossible to cover all
of the knowledge areas proposed by the SWEBOK project in a single textbook, all
of the top-level areas are discussed in this book.

The publishers web site that is associated with the book is:
http:/fwww.pearsoned.co.uk/sommerville
To support the use of this book in software engineering courses, I have included

a wide range of supplementary material on the web site. If you follow the Material
for Instructors links, you can find:

xii Preface

* lecture presentations (PowerPoint and PDF) for all chapters in the book;

* class quiz questions for each chapter;

* case studies;

* project suggestions;

* course structure descriptions;

* suggestions for further reading and links to web resources for each chapter;

+ solutions for a selection of the exercises associated with each chapter and for
the quiz questions (available to instructor’s only).

My own web site, includes all of the material on the publishers web site plus
extensive supplementary material on software engineering such as links to other sites,
invited lectures that I have presented, teaching material that I have developed for
related courses such as Systems Engineering and the web sites of previous editions
of Software Engineering. The URL of this site is:

http:/fwww.software-engin.com

It has been my policy, both in the previous edition and in this edition, to keep
the number of web links in the book to an absolute minimum. The reason for this
is that these links are subject to change and, once printed, it is impossible to update
them. Consequently, the book’s web page includes a large number of links to resources
and related material on software engineering. If you use these and find problems,
please let me know and I will update the links.

I welcome vour constructive comments and spgeestions.about.tbe book.and.the weh
site. You can contact me at ian@software-engin.com. I recommend that you include
[SE8] in the subject of the e-mail message to ensure that my spam filters do not
accidentally reject your mail. I regret that I do not have time to help students with their
homework, so please do not ask me how to solve any of the problems in the book.

Acknowledgements

A large number of people have contributed over the years to the evolution of this book
and I'd like to thank everyone (reviewers, students and book users who have e-mailed
me) who has commented on previous editions and made constructive suggestions
for change. The editorial and production staff at Pearson Education in England and
the US were supportive and helpful, and produced the book in record time. So thanks
to Simon Plumtree, Mary Lince, Ros Woodward, Keith Mansfield, Patty Mahtani,
Daniel Rausch, Carol Noble and Sharon Burkhardt for their help and support.

Preface Xxiii

As 1 write, I am about to leave Lancaster University for new challenges at
St Andrews University in Scotland. I'd like to thank all of my current and pre-
vious colleagues at Lancaster for their support and encouragement over the years
as software engineering has evolved.

Finally, I'd like to thank my family who tolerated my absence when the book
was being written and my frustration when the words were not flowing. A big thank-
you to my wife Anne and daughters Ali and Jane for their help and support.

fan Sommerville,
February 2006

Part 1

Chapter 1

Chapter 2

Preface vii
Overview 1
Introduction 3
1.1 FAQs about software engineering 5
1.2 Professional and ethical responsibility 14
Key Points 17
Further Reading 18
Exercises 18
Socio-technical systems 20
2.1 Emergent system properties 23
2.2 Systems engineering 25
2.3 Organisations, people and computer systems 34
2.4 Legacy systems 38
Key Points 40
Further Reading 41
Exercises 41

Contents XV

5 Critical systems 43
3.1 A simple safety-critical system 46
3.2 System dependability 47
3.3 Availability and reliability 51
3.4 Safety 55
3.5 Security 58
Key Paints 60
Further Reading 61
Exercises 61

} Software processes 63
4,1 Software process models 65
4.2 Process iteration 71
43 Process activities 74
4.4 The Rational Unified Process 82
45 Computer-Aided Software Engineering 85
Key Points 89
Further Reading 90
Exercises 91

y Project management 92
5.1 Management activities 94
5.2 Project planning 96
5.3 Project scheduling 99
54 Risk management 104
Key Points 1m
Further Reading 112

Exercises 112

Requirements

Software requirements

6.1 Functional and non-functional requirements
6.2 User requirements

6.3 System requirements

6.4 Interface specification

6.5 The software requirements document

Key Points
Further Reading
Exercises

Requirements engineering processes

7.1 Feasibility studies

7.2 Requirements elicitation and analysis
7.3 Requirements validation

7.4 Requirements management

Key Points
Further Reading
Exercises

System models

8.1 Context models

8.2 Behavioural models
8.3 Data models

8.4 Object models

8.5 Structured methods

Key Points
Further Reading
Exercises

Contents Xvii

Chapter 10

Part 3

Chapter 12

Chapter 9 Critical systems specification 193
9.1 Risk-driven specification 195
9.2 Safety specification 202
9.3 Security specification 204
9.4 Software reliability specification 207
Key Points 213
Further Reading 214
Exercises 214
Formal specification 217
10.1 Formal specification in the software process 219
10.2 Sub-system interface specification 222
10.3 Behavioural specification 229

Key Points 236
Further Reading 236
Exercises 237
Design 239
Chapter 11 Architectural design 241
11.1 Architectural design decisions 245
11.2 System organisation 247
11.3 Modular decomposition styles 252
11.4 Control styles 256
11.5 Reference architectures 260
Key Points 263
Further Reading 264
Exercises 264
Distributed systems architectures 266
12.1 Multiprocessor architectures 269

12.2 Client-server architectures
12.3 Distributed object architectures
12.4 Inter-organisational distributed computing

Key Points
Further Reading
Exercises

Application architectures

13.1 Data processing systems

13.2 Transaction processing systems
13.3 Event processing systems

13.4 Language processing systems

Key Points
Further Reading
Exercises

Object-oriented design

14.1 Objects and object classes
14.2 An object-oriented design process
14.3 Design evolution

Key Points
Further Reading
Exercises

Real-time software design

15.1 System design

15.2 Real-time operating systems
15.3 Monitoring and control systems
15.4 Data acquisition systems

Key Points
Further Reading
Exercises

Contents Xix

Chapter 16 User interface design

Part 4

Chapter 17

Chapter 18

362
16.1 Design issues 366
16.2 The Ul design process 376
16.3 User analysis 378
16.4 User interface prototyping 381
16.5 Interface evaluation 383
Key Points 385
Further Reading 386
Exercises 386
Development 389
Rapid software development 391
17.1 Agile methods 396
17.2 Extreme programming 398
17.3 Rapid application development 405
17.4 Software prototyping 409
Key Points 412
Further Reading 413
Exercises 414
Software reuse 415
18.1 The reuse landscape 418
18.2 Design patterns 421
18.3 Generator-based reuse 423
18.4 Application frameworks 426
18.5 Application system reuse 428
Key Points 437
Further Reading 437
Exercises 438

xxX Contents

Chapter 19

Chapter 20

Chapter 21

Part 5

Chapter 22

Component-based software engineering

19.1 Components and component models
19.2 The CBSE process
19.3 Component composition

Key Points
Further Reading
Exercises

Critical systems development

20.1 Dependable processes
20.2 Dependable programming
20.3 Fault tolerance

20.4 Fault-tolerant architectures

Key Points
Further Reading
Exercises

Software evolution

21.1 Program evolution dynamics
21.2 Software maintenance

21.3 Evolution processes

21.4 Legacy system evolution

Key Points
Further Reading
Exercises

Verification and Validation

Verification and validation

22.1 Planning verification and validation

22.2 Software inspections

Contents Xxi

22.3 Automated static analysis 527
22.4 Verification and formal methods 530
Key Points 535
Further Reading 535
Exercises 536
Software testing 537
23.1 System testing 540
23.2 Component testing 547
23.3 Test case design 551
23.4 Test automation 561
Key Paints 563
Further Reading 564
Exercises 565
Critical systems validation 566
24.1 Reliability validation 568
24.2 Safety assurance 574
24.3 Security assessment 581
24.4 Satety and dependability cases 583
Key Points 586
Further Reading 587
Exercises 587

Management 589
Managing people 591
25.1 Selecting staff 593
25.2 Motivating people 596
25.3 Managing groups 599

25.4 The People Capability Maturity Model 607

xxii Contents

Chapter 26

Chapter 27

Chapter 28

Key Points
Further Reading
Exercises

Software cost estimation

26.1 Software productivity

26.2 Estimation techniques

26.3 Algorithmic cost modelling
26.4 Project duration and staffing

Key Points
Further Reading
Exercises

Quality management

27.1 Process and product quality

27.2 Quality assurance and standards
27.3 Quality planning

27.4 Quality control

27.5 Software measurement and metrics

Key Points
Further Reading
Exercises

Process improvement

28.1 Process and product quality

28.2 Process classification

28.3 Process measurement

28.4 Process analysis and modelling

28.5- Process change

28.6 The CMMI process improvement framework

Key Points

610
610
611

612

614
620
623
637

638
639
639

641

644
645
652
653
655

663
663
664

665

667
669
672
673
678
680

687

Contents XXii

Further Reading 687
Exercises 688
Configuration management 689
29.1 Configuration management planning 692
29.2 Change management 695
29.3 Version and release management 698
29.4 System building 705
29.5 CASE tools for configuration management 706
Key Points 711
Further Reading 711
Exercises 712

Emerging Technologies 715
Security engineering 7
30.1 Security concepts 720
30.2 Security risk management 722
30.3 Design for security 727
30.4 System survivability 737
Key Points 741
Further Reading 742
Exercises 742
Service-oriented software engineering 743
31.1 Services as reusable components 747
31.2 Service engineering 751
31.3 Software development with services 760
Key Points 768
Further Reading 768

Exercises 769

Aspect-oriented software development 770

32.1 The separation of concerns 772
32.2 Aspects, join points and pointcuts 776
32.3 Software engineering with aspects 780
Key Points 792
Further Reading 792
Exercises 793
Glossary 794
References 806
Index 824

Supporting resources

Visit wwwipearsoned.co.uk/sommerville to find valuable online resources

companion Website for students and instructors

* Lecture presentations (in PowerPoint and PDF) for all chapters in the book

» (lass quiz questions for each chapter

* Case studies

* Project suggestions

» Suggestions for further reading and links to web resources for each
chapter

For instructors only

+ Course structure descriptions

+ Solutions for a selection of the exercises associated with each chapter and
for the quiz questions

For more information please contact your local Pearson Education sales
representative or visit www.pearsoned.co.uk/zommervilie

A

o

The basic structure of this book follows the essential software processes of specifica-
tion, design, development verification and validation, and management. However
rather than plunge immediately into these topics, | have included this overview section
so that you can get a broad picture of the discipline. The chapters in this part are:

Chapter 1 is a general introduction to software engineering. To make this accessi-
ble and easy to understand, 1 have organised it using a question/answer structure
where | pose and answer questions such as ‘what is software engineering’. | also
introduce professionalism and ethics in this chapter.

Chapter 2 introduces socio-technical systems, a topic that | believe is absolutely essen-
tial for software engineers. Software is never used on its own but always as part of
some broader system including hardware, people and, often, organisations. These
profoundly affect the software requirements and operation. In this chapter | cover
the emergent system properties, systems engineering processes and some of the
ways in which organisational and human concerns affect software systems.

Chapter 3 discusses ‘critical systems’. Critical systems are systems where failure has
severe technical, economic or human consequences, and where system safety, secu-
rity and availability are key requirements. Chapters on aspects of critical systems are
included in each part of the book. in this chapter, | also introduce the first of the
running case studies in the book—the software for an insulin pump used in the treat-
ment of diabetic patients.

The first three chapters set the scene for software engineering and Chapter 4 con-
tinues this by introducing software process and software process models. 1 intro-
duce basic software engineering processes, the subject of the book, in this chapter.
1 also briefly discuss the Rational Unified Process, which is geared to object-oriented
system development. The final section of the chapter discusses how software pro-
cesses can be supported with automated software tools.

Chapter 5 introduces project management. Project management is part of all pro-
fessional development projects and | describe basic project planning, scheduling and
risk estimation here. Students in a software engineering course involved in a stu-
dent project should find the information they need here to draw up bar charts for
a project schedule and resource allocation.

1
'Introduction

Objectives

The objectives of this chapter are to introduce software engineering and
to provide a framework for understanding the rest of the book. When
you have read this chapter, you will:

® understand what software engineering is and why it is important;

@ know the answers to key questions that provide an introduction to
software engineering;

m understand some ethical and professional issues that are important
for software engineers.

Contents

1.1 FAQs about software engineering
1.2 Professional and ethical responsibility

roduction

Virtually all countries now depend on complex computer-based systems. National
infrastructures and utilities rely on computer-based systems and most electrical prod-
ucts include a computer and controlling software. Industrial manufacturing and dis-
tribution is completely computerised, as is the financial system. Therefore,
producing and maintaining software cost-effectively is essential for the functioning
of national and international economies.

Software engineering is an engineering discipline whose focus is the cost-
effective development of high-quality software systems. Software is abstract and
intangible. It is not constrained by materials, or governed by physical laws or by
manufacturing processes. In some ways, this simplifies software engineering as there
are no physical limitations on the potential of software. However, this lack of nat-
ural constraints means that software can easily become extremely complex and hence
very difficult to understand.

The notion of software engineering was first proposed in 1968 at a conference
held to discuss what was then called the ‘software crisis’. This software crisis resulted
directly from the introduction of new computer hardware based on integrated cir-
cuits. Their power made hitherto unrealisable computer applications a feasible
proposition. The resulting software was orders of magnitude larger and more com-
plex than previous software systems.

Early experience in building these systems showed that informal software devel-
opment was not good enough. Major projects were sometimes years late. The soft-
ware cost much more than predicted, was unreliable, was difficult to maintain and
performed poorly. Software development was in crisis. Hardware costs were tum-
bling whilst software costs were rising rapidly. New techniques and methods were
needed to control the complexity inherent in large software systems.

These techniques have become part of software engineering and are now widely
used. However, as our ability to produce software has increased, so too has the com-
plexity of the software systems that we need. New technologies resulting from the
convergence of computers and communication systems and complex graphical user
interfaces place new demands on software engineers. As many companies still do
not apply software engineering techniques effectively, too many projects still pro-
duce software that is unreliable, delivered late and over budget.

I think that we have made tremendous progress since 1968 and that the devel-
opment of software engineering has markedly improved our software. We have a
much better understanding of the activities involved in software development. We
have developed effective methods of software specification, design and implemen-
tation. New notations and tools reduce the effort required to produce large and com-
plex systems.

We know now that there is no single ‘ideal’ approach to software engineering.
The wide diversity of different types of systems and organisations that use these
systems means that we need a diversity of approaches to software development.
However, fundamental notions of process and system organisation underlie all of
these techniques, and these are the essence of software engineering.

1.1 ® FAQs about software engineering 5

1.1

1.1.1

Software engineers can be rightly proud of their achievements. Without com-
plex software we would not have explored space, would not have the Internet and
modern telecommunications, and all forms of travel would be more dangerous and
expensive. Software engineering has contributed a great deal, and I am convinced
that, as the discipline matures, its contributions in the 21st century will be even greater.

FAQs about software engineering

This section is designed to answer some fundamental questions about software engi-
neering and to give you some impression of my views of the discipline. The for-
mat that [have used here is the ‘FAQ (Frequently Asked Questions) list’. This approach
is commonly used in Internet newsgroups to provide newcomers with answers to
frequently asked questions. I think that it is a very effective way to give a succinct
introduction to the subject of software engineering.

Figure 1.1 summarises the answers to the questions in this section.

What is software?

Many people equate the term software with computer programs. However, 1 prefer a
broader definition where software is not just the programs but also all associated doc-
umentation and configuration data that is needed to make these programs operate cor-
rectly. A software system usually consists of a number of separate programs,
configuration files, which are used to set up these programs, system documentation,
which describes the structure of the system, and user documentation, which explains
how to use the system and web sites for users to download recent product information.

Software engineers are concerned with developing software products, i.e., soft-
ware which can be sold to a customer. There are two fundamental types of software
product:

1. Generic products These are stand-alone systems that are produced by a devel-
opment organisation and sold on the open market to any customer who is able
to buy them. Examples of this tvpe of product include software for PCs such as
databases, word processors, drawing packages and project management tools.

2. Customised (or bespoke) products These are systems which are commissioned
by a particular customer. A software contractor develops the software especially
for that customer. Examples of this type of software include control systems
for electronic devices, systems written to support a particular business process
and air traffic control systems.

6 Chapter 1 = Introduction

Question Answer

What is software? Computer programs and associated documentation. Software products
may be developed for a particular customer or may be developed for a
general market.

What is software engineering? Software engineering is an engineering discipline which is concerned
with all aspects of software production.

What is the difference between Computer science is concerned with theory and fundamentals; software
software engineering and engineering is concerned with the practicalities of developing and
computer science? delivering useful software.

What is the difference between System engineering is concerned with afl aspects of computer-based
software engineering and system systems development, including hardware, software and process

engineering? engineering. Software engineering is part of this process.

What is a software process? A set of activities whose goal is the development or evolution of
software.

What is a software process A simplified representation of a software process, presented from a

model? specific perspective.

What are the costs of software Roughly 60% of costs are development costs, 40% are testing costs. For

engineering? custom software, evolution costs often exceed development costs.
What are software engineering Structured approaches to software development which include system
methods? models, notations, rules, design advice and process guidance.

What is CASE (Computer-Aided Software systems which are intended to provide automated support for

Software Engineering)? software process activities. CASE systems are often used for method
support.

What are the attributes of good The software should deliver the required functionality and performance

software? to the user and should be maintainable, dependable and usable.

What are the key challenges Coping with increasing diversity, demands for reduced delivery times

facing software engineering? and developing trustworthy software.

Figure 1.1 Frequently An important difference between these types of software is that, in generic prod-

asked questions ucts, the organisation that develops the software controls the software specification.
about software For custom products, the specification is usually developed and controlled by the
engineering . . .
organisation that is buying the software. The software developers must work to that
specification.

However, the line between these types of products is becoming increasingly blurred.
More and more software companies are starting with a generic system and customising
it to the needs of a particular customer. Enterprise Resource Planning (ERP) sys-
tems, such as the SAP system, are the best examples of this approach. Here, a large
and complex system is adapted for a company by incorporating information about
business rules and processes, reports required, and so on.

1.1 = FAQs about software engineering 7

1.1.2

1.1.3

1.1.4

What is software engineering?

Software engineering is an engineering discipline that is concerned with all aspects
of software production from the early stages of system specification to maintaining
the system after it has gone into use. In this definition, there are two key phrases:

1. Engineering discipline Engineers make things work. They apply theories, meth-
ods and tools where these are appropriate, but they use them selectively and always
try to discover solutions to protlems even when there are no applicable theories
and methods. Engineers also recognise that they must work to organisational and
financial constraints, so they look for solutions within these constraints.

2. All aspects of software production Software engineering is not just concerned
with the technical processes of software development but also with activities
such as software project management and with the development of tools, meth-
ods and theories to support software production.

In general, software engineers adopt a systematic and organised approach to their
work, as this is often the most effective way to produce high-quality software. However,
engineering is all about selecting the most appropriate method for a set of circum-
stances and a more creative, less formal approach to development may be effective
in some circumstances. Less formal development is particularly appropriate for the
development of web-based systems, which requires a blend of software and graph-
ical design skills.

What's the difference between software engineering and
computer science?

Essentially, computer science is concerned with the theories and methods that under-
lie computers and software systems, whereas software engineering is concerned with
the practical problems of producing software. Some knowledge of computer sci-
ence is essential for software engineers in the same way that some knowledge of
physics 1s essential for electrical engineers.

Ideally, all of software engineering should be underpinned by theories of com-
puter science, but in reality this 1s not the case. Software engineers must often use
ad hoc approaches to developing the software. Elegant theories of computer science
cannot always be applied to real, complex problems that require a software solution.

What is the difference between software engineering and system
engineering?

System engineering is concerned with all aspects of the development and evolution
of complex systems where software plays a major role. System engineering is there-
fore concerned with hardware development, policy and process design and system

8 Chapter 1 & Introduction

1.1.5

1.1.6

deployment as well as software engineering. System engineers are involved in spec-
ifying the system, defining its overall architecture and then integrating the different
parts to create the finished system. They are less concerned with the engineering of
the system components (hardware, software, etc.).

System engineering is an older discipline than software engineering. People have
been specifying and assembling complex industrial systems such as aircraft and chem-
ical plants for more than a hundred years. However, as the percentage of software
in systems has increased, software engineering techniques such as use-case mod-
elling and configuration management are being used in the systems engineering pro-
cess. | discuss system engineering in Chapter 2.

What is a software process?

A software process is the set of activities and associated results that produce a soft-
ware product. There are four fundamental process activities (covered later in the
book) that are common to all software processes. These are:

1. Software specification where customers and engineers define the software to
be produced and the constraints on its operation.

2. Software development where the software is designed and programmed.

3. Software validation where the software is checked to ensure that it is what the
customer requires.

4. Software evolution where the software is modified to adapt it to changing cus-
tomer and market requirements.

Different types of systems need different development processes. For example,
real-time software in an aircraft has to be completely specified before development
begins whereas, in e-commerce systems, the specification and the program are usu-
ally developed together. Consequently, these generic activities may be organised in
different ways and described at different levels of detail for different types of soft-
ware. However, use of an inappropriate software process may reduce the quality or
the usefulness of the software product to be developed and/or increase the develop-
ment Costs.

Software processes are discussed in more detail in Chapter 4, and the important
topic of software process improvement is covered in Chapter 28.

What is a software process model?

A software process model is a simplified description of a software process that pre-
sents one view of that process. Process models may include activities that are part
of the software process, software products and the roles of people involved in soft-

1.1 @ FAQs about software engineering 9

ware engineering. Some examples of the types of software process model that may
be produced are:

1. A workflow model This shows the sequence of activities in the process along
with their inputs, cutputs and dependencies. The activities in this model rep-
resent humnan actions.

2. A dataflow or activity model This represents the process as a set of activities,
each of which carries out some data transformation. It shows how the input to
the process, such as a specification, is transformed to an output, such as a design.
The activities here may represent transformations carried out by people or by
computers.

3. A role/action model This represents the roles of the people involved in the soft-
ware process and the activities for which they are responsible.

Most software process models are based on one of three general models or
paradigms of software development:

1. The waterfall approach This takes the above activities and represents them as
separate process phases such as requirements specification, software design, imple-
mentation, testing and so on. After each stage is defined it is ‘signed-off’, and
development goes on to the following stage.

2. [Iterative development This approach interleaves the activities of specification,
development and validation. An initial system is rapidly developed from very
abstract specifications. This is then refined with customer input to produce a
system that satisfies the customer s needs. The system may then be delivered.
Alternatively, it may be reimplemented using a more structured approach to
produce a more robust and maintainable system.

3. Component-based software engineering (CBSE) This technique assumes that
parts of the system already exist. The system development process focuses on
integrating these parts rather than developing them from scratch. I discuss CBSE
in Chapter 19.

I return to these generic process models in Chapter 4 and Chapter 17.

1.1.7 What are the costs of software engineering?

There is no simple answer to this question as the distribution of costs across the
different activities in the software process depends on the process used and the type
of software that is being developed. For example, real-time software usually
requires rmore extensive validation and testing than web-based systems. However,

10 Chapter1 # In

troduction

Waterfall model

0

25 50 75 100

Specification

Design Development Integration and testing

Iterative development

0

25 50

Specification iterative development System testing

Component-based software engineering

0

25 50 75 100

Specification

Development Integration and testing

Development and evolution costs for long-lifetime

0

100 200 300 400

System development System evolution

Figure 1.2 Software
engineering activity
cost distribution

each of the different generic approaches to software development has a different
profile of cost distribution across the software process activities. If you assume that
the total cost of developing a complex software system is 100 cost units then Figure
1.2 illustrates how these are spent on different process activities.

In the waterfall approach, the costs of specification, design, implementation and
integration are measured separately. Notice that system integration and testing is
the most expensive development activity. Normally, this is about 40% of the total
development costs but for some critical systems it is likely to be at least 50% of
the system development costs.

If the software is developed using an iterative approach, there is no hard line
between specification, design and development. Specification costs are reduced because
only a high-level specification is produced before development in this approach.
Specification, design, implementation, integration and testing are carried out in par-
allel within a development activity. However, you still need an independent system
testing activity once the initial implementation is complete.

Component-based software engineering has only been widely used for a short
time. We don’t have accurate figures for the costs of different software develop-
ment activities in this approach. However, we know that development costs are reduced

1.1 ™ FAQs about software engineering 11

1.1.8

Figure 1.3 Product
development costs

relative to integration and testing costs. Integration and testing costs are increased
because you have to ensure that the components that you use actually meet their
specification and work as expected with other components.

On top of development costs, costs are also incurred in changing the software
after it has gone into use. The costs of evolution vary dramatically depending on
the type of system. For long-lifetime software systems, such as command and con-
trol systzms that may be used for 10) years or more, these costs are likely to exceed
the development costs by a factor of 3 or 4, as illustrated in the bottom bar in Figure
1.3. However, smaller business systems have a much shorter lifetime and corre-
spondingly reduced evolution costs.

These cost distributions hold for customised software that is specified by a cus-
tomer and developed by a contractor. For software products that are (mostly) sold
for PCs, the cost profile is likely to be different. These products are usually devel-
oped from an outline specification using an evolutionary development approach.
Specification costs are relatively low. However, because they are intended for use
on a range of different configurations, they must be extensively tested. Figure 1.3
shows the type of cost profile that might be expected for these products.

The evolution costs for generic software products are particularly hard to esti-
mate. In many cases, there is little formal evolution of a product. Once a version
of the product has been released, work starts on the next release and, for market-
ing reasons, this is likely to be presented as a new (but compatible) product rather
than as a modified version of a product that the user has already bought. Therefore,
the evolution costs are not assessed separately as they are in customised software
but are simply the development costs for the next version of the system.

What are software engineering methods?

A software engineering method is a structured approach to software development
whose &im is to facilitate the production of high-quality software in a cost-effective
way. Methods such as Structured Analysis (DeMarco, 1978) and JSD (Jackson, 1983)
were first developed in the 1970s. These methods attempted to identify the basic
functional components of a system; function-oriented methods are still used. In the
1980s and 1990s, these function-criented methods were supplemented by object-
oriented (OO) methods such as those proposed by Booch (Booch, 1994) and
Rumbaugh (Rumbaugh, et al., 1991). These different approaches have now been
integrated into a single unified approach built around the Unified Modeling
Language (UML) (Booch, et al., 1999; Rumbaugh, et al., 1999a; Rumbaugh, et al.,
1999b).

0 25 50 75 100
vevelopmient System testirig

speciticatibn

12 Chapter 1 = Introduction

Component Description Example
System model Descriptions of the system models which should Object models, data-flow models,
descriptions be developed and the notation used to define state machine models, etc.
these models.
Rules Constraints which always apply to system models. Every entity in a system model

must have a unique name.

Recommendations Heuristics which characterise good design practice No object should have more than
in this method. Following these recommendations seven sub-objects associated

should lead to a well-organised system model. with it.
Process guidance Descriptions of the activities which may be Object attributes should be
followed to develop the system models and the documented before defining the
organisation of these activities operations associated with an object.
Figure 1.4 Method There is no ideal method, and different methods have different areas where they
components are applicable. For example, object-oriented methods are often appropriate for

interactive systems but not for systems with stringent real-time requirements.

All methods are based on the idea of developing models of a system that may
be represented graphically and using these models as a system specification or design.
Methods include a number of different components (Figure 1.4).

1.1.9 What is CASE?

The acronym CASE stands for Computer-Aided Software Engineering. It covers a
wide range of different types of programs that are used to support software process
activities such as requirements analysis, system modelling, debugging and testing. All
methods now come with associated CASE technology such as editors for the nota-
tions used in the method, analysis modules which check the system model according
to the method rules and report generators to help create system documentation. Th
CASE tools may also include a code generator that automatically generates source
code from the system model and some process guidance for software engineers.

1.1.10 What are the attributes of good software?

As well as the services that it provides, software products have a number of other
associated attributes that reflect the quality of that software. These attributes are not
directly concerned with what the software does. Rather, they reflect its behaviour
while it is executing and the structure and organisation of the source program and
associated documentation. Examples of these attributes (sometimes called non-
functional attributes) are the software s response time to a user query and the under-
standability of the program code.

The specific set of attributes that you might expect from a software system obvi-
ously depends on its application. Therefore, a banking system must be secure, an

1.1 « FAQs about software engineering 13

Figure 1.5 Essential
attributes of good

software

1.1.11

Product c'haracterislic

Maintainability Software should be written in such a way that it may
evolve to meet the changing needs of customers. This is a
critical attribute because software change is an inevitable
consequence of a changing business environment.

Dependability Software dependability has a range of characteristics,
including reliability, security and safety. Dependable
software should not cause physical or economic damage
in the event of system failure.

Efficiency Software should nat make wasteful use of system
resources such as memory and processor cycles. Efficiency
therefore includes responsiveness, processing time,
memory utilisation, etc.

Usability Software must be usable, without undue effort, by the type of
user for whom it is designed. This means that it should have
an appropriate user interface and adequate documentation.

interactive game must be responsive, a telephone switching system must be reliable,
and so on. These can be generalised into the set of attributes shown in Figure 1.5,
which, [believe, are the essential characteristics of a well-designed software system.

What are the key challenges facing software engineering?

Software engineering in the 21st century faces three key challenges:

1. The heterogeneity challenge Increasingly, systems are required to operate as dis-
tributed systems across networks that include different types of computers and
with different kinds of support systems. It is often necessary to integrate new
software with older legacy systems written in different programming languages.
The heterogeneity challenge is the challenge of developing techniques for build-
ing dependable software that is flexible enough to cope with this heterogeneity.

2. The delivery challenge Many traditional software engineering techniques are
time-consuming. The time they take is required to achieve software quality.
However, businesses today must be responsive and change very rapidly. Their
supporting software must char.ge equally rapidly. The delivery challenge is the
challenge of shortening delivery times for large and complex systems without
compromising system quality.

3. The trust challenge As software is intertwined with all aspects of our lives, it
is essential that we can trust that software. This is especially true for remote
software systems accessed through a web page or web service interface. The
trust challenge is to develop tzchniques that demonstrate that software can be
trusted by its users.

14 Chapter 1 ® Introduction

1.2

Of course, these are not independent. For example, it may be necessary to make
rapid changes to a legacy system to provide it with a web service interface. To address
these challenges, we will need new tools and techniques as well as innovative ways
of combining and using existing software engineering methods.

Professional and ethical responsibility

Like other engineering disciplines, software engineering is carried out within a legal
and social framework that limits the freedom of engineers. Software engineers must
accept that their job involves wider responsibilities than simply the application of
technical skills. They must also behave in an ethical and morally responsible way
if they are to be respected as professionals.

It goes without saying that you should always uphold normal standards of honesty
and integrity. You should not use your skills and abilities to behave in a dishonest
way or in a way that will bring disrepute to the software engineering profession. However,
there are areas where standards of acceptable behaviour are not bounded by laws but
by the more tenuous notion of professional responsibility. Some of these are:

1. Confidentiality You should normaily respect the confidentiality of your
employers or clients irrespective of whether a formal confidentiality agreement
has been signed.

2. Competence You should not misrepresent your level of competence. You
should not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the
use of intellectual property such as patents and copyright. You should be care-
ful to ensure that the intellectual property of employers and clients is protected.

4. Computer misuse You should not use your technical skills to misuse other peo-
ple’s computers. Computer misuse ranges from relatively trivial (game play-
ing on an employer s machine, say) to extremely serious (dissemination of viruses).

Professional societies and institutions have an important role to play in setting
ethical standards. Organisations such as the ACM, the IEEE (Institute of Electrical
and Electronic Engineers) and the British Computer Society publish a code of pro-
fessional conduct or code of ethics. Members of these organisations undertake to
follow that code when they sign up for membership. These codes of conduct are
generally concerned with fundamental ethical behaviour.

The ACM and the IEEE have cooperated to produce a joint code of ethics and
professional practice. This code exists in both a short form, shown in Figure 1.6,
and a longer form (Gotterbarn, et al., 1999) that adds detail and substance to the

1.2 - Professional and ethical responsibility 15

Software Engineering Code of Ethics and Professional Practice
ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE

The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are
included in the full version give examples and details of how these aspirations change the way we act as
software engineering professionals. Without the aspirations, the details can become legalistic and tedious;
without the details, the aspirations can become high sounding but empty; together, the aspirations and the
details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design, development,
testing and maintenance of software a beneficial and respected profession. In accordance with their
commitment to the health, safety and welfare of the public, software engineers shall adhere to the
following Eight Principles:

1. PUBLIC - Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER ~ Software engineers shall act in a manner that is in the best interests of their
client and employer consistent with the public interest.

3. PRODUCT - Software engineers shall ensure that their products and related modifications meet the
highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain integrity and independence in their professional
judgment.

5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and promote an ethical
approach to the management of software development and maintenance.

6. PROFESSION - Software engineers shall advance the integrity and reputation of the profession consistent

with the public interest.

COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the practice of their profession
and shafl promote an ethical approach to the practice of the profession.

~

Figure 1.6 ACM/IEEE shorter version. The rationale behind this code is summarised in the first two para-

Code of Ethics graphs of the longer form:

(©IEEE/ACM 1999)
Computers have a central and growing role in commerce, industry, government,
medicine, education, entertainment and society at large. Software engineers are
those who contribute by direct participation or by teaching, to the analysis, spe -
ificarion, design, development, certification, maintenance and testing of software
systems. Because of their roles ir. developing software systems, software engi-
neers have significant opportunities to do good or cause harm, to enable others
to do good or cause harm, or to influence others to do good or cause harm. To
ensure. as much as possible, thar their efforts will be used for good, software
engineers must commit themselves to making software engineering a beneficial
and respected profession. In accordance with that commitment, software engi-
neers shall adhere to the following Code of Ethics and Professional Practice.

The Code contains eight Principles related to the behaviour of and decisions
made by professional software engineers, including practitioners, educators,
managers, supervisors and policy makers, as well as trainees and students of

troduction

the profession. The Principles identify the ethically responsible relationships
in which individuals, groups, and organizations participate and the primary
obligations within these relationships. The Clauses of each Principle are illus-
trations of some of the obligations included in these relationships. These obli-
gations are founded in the software engineer’s humanity, in special care owed
to people affected by the work of sofiware engineers, and the unique elements
of the practice of software engineering. The Code prescribes these as obli-
gations of anyone claiming to be or aspiring to be a software engineer.

In any situation where different people have different views and objectives, you
are likely to be faced with ethical dilemmas. For example, if you disagree, in prin-
ciple, with the policies of more senior management in the company, how should
you react? Clearly, this depends on the particular individuals and the nature of the
disagreement. Is it best to argue a case for your position from within the organisa-
tion or to resign in principle? If you feel that there are problems with a software
project, when do you reveal these to management? If you discuss these while they
are just a suspicion, you may be overreacting to a situation; if you leave it too late,
it may be impossible to resolve the difficulties.

Such ethical dilemmas face all of us in our professional lives and, fortunately,
in most cases they are either relatively minor or can be resolved without too much
difficulty. Where they cannot be resolved, the engineer is faced with, perhaps, another
problem. The principled action may be to resign from their job, but this may well
affect others such as their partner or their children.

A particularly difficult situation for professional engineers arises when their
employer acts in an unethical way. Say a company is responsible for developing a
safety-critical system and because of time-pressure, falsifies the safety validation
records. Is the engineer s responsibility to maintain confidentiality or to alert the
customer or publicise, in some way, that the delivered system may be unsafe?

The problem here is that there are no absolutes when it comes to safety. Although
the system may not have been validated according to predefined criteria, these crite-
ria may be too strict. The system may actually operate safely throughout its lifetime.
It is also the case that, even when properly validated, a system may fail and cause an
accident. Early disclosure of problems may result in damage to the employer and other
employees; failure to disclose problems may result in damage to others.

You must make up your own mind in these matters. The appropriate ethical posi-
tion here depends entirely on the views of the individuals who are involved. In this
case, the potential for damage, the extent of the damage and the people affected by
the damage should influence the decision. If the situation is very dangerous, it may
be justified to publicise it using the national press (say). However, you should always
try to resolve the situation while respecting the rights of your employer,

Another ethical issue is participation in the development of military and nuclear
systems. Some people feel strongly about these issues and do not wish to participate
in any systems development associated with military systems. Others will work on mil-
itary systems but not on weapons systems. Yet others feel that national security is an
overriding principle and have no ethical objections to working on weapons systems.

Chapter 1 & Key points 17

In this situation it is important that both employers and employees should make
their views known to each other in advance. Where an organisation is involved in
military or nuclear work, it should be able to specify that employees must be will-
ing to accept any work assignment. Equally, if an employee is taken on and makes
clear that he does not wish to work on such systems, employers should not put pres-
sure or. him to do so at some later date.

The general area of ethics and professional responsibility is one that has
received increasing attention over the past few years. It can be considered from a
philosophical standpoint where the basic principles of ethics are considered, and
software engineering ethics are discussed with reference to these basic principles.
This is the approach taken by Laudon (Laudon, 1995) and to a lesser extent by Huff
and Martin (Huff and Martin, 1995).

However, I find their approach is too abstract and difficult to relate to everyday
experience. I prefer the more concrete approach embodied in codes of conduct and
practice. I think that ethics are best discussed in a software engineering context and
not as a subject in their own right. In this book, therefore, I do not include abstract
ethical discussions but, where appropriate, include examples in the exercises that
can be the starting point for a group discussion on ethical issues.

--

¢ Software engineering is an engineering discipline that is concerned with all aspects of
software production.

" REY POINTS

@ Software products consist of developed programs and associated documentation. Essential
product attributes are maintainability, dependability, efficiency and acceptability.

The software process includes all of the activities involved in software development. The
high-level activities of software specification, development, validation and evolution are
part of all software processes.

Methods are organised ways of producing software. They include suggestions for the
process to be followed, the notations to be used, system models to be developed and rules
governing these models and design guidelines.

w CASE tools are software systems that are designed to support routine activities in the
software process such as editing design diagrams, checking diagram consistency and
keeping track of program tests that have been run.

: Software engineers have responsibilities to the engineering profession and society. They
should not simply be concerned with technical issues.

Professional societies publish codes of conduct that set out the standards of behaviour
expected of their members.

18 Chapter 1 - Introduction

rUrRTHER READING RN EE... I NN

Fundamentals of Software Engineering. A general software engineering text that takes a rather
different perspective on the subject than this book. (C. Ghezi, et. al., Prentice Hall, 2003.)

‘Software engineering: The state of the practice’. A special issue of IEEE Software that includes
several articles discussing current practice in software engineering, how this has changed and the
extent to which new software technologies are used. (IEEE Software, 20 (6), November 2003.)

Software Engineering: An Engineering Approach. A general text that takes a rather different
approach to my book but which includes a number of useful case studies. (J. F. Peters and W.
Pedrycz, 2000, John Wiley & Sons.)

Professional Issues in Software Engineering. This is an excellent book discussing legal and
professional issues as well as ethics. | prefer its practical approach to more theoretical texts on
ethics. (F. Bott, et al., 3rd edition, 2000, Taylor & Francis.)

‘Software engineering code of ethics is approved’. An article that discusses the background to the
development of the ACM/IEEE Code of Ethics and includes both the short and long form of the
code. (Comm. ACM, D. Gotterbarn, et al., October 1999.)

‘No silver bullet: Essence and accidents of software engineering'. In spite of its age, this paper is a
good general introduction to the problems of software engineering. The essential message of the
paper, that there is no simple answer to the problems of software engineering, hasn’t changed. (F.
P. Brooks, /EEE Computer, 20 (4), April 1987.)

R SR, ST %
1.1 By making reference to the distribution of software costs discussed in Section 1.1.6, explain
why it is appropriate to consider software to be more than the programs that can be
executed by end-users of a system.

1.2 What are the differences between generic software product development and custom
software development?

1.3 What are the four important attributes which all software products should have? Suggest four
other attributes that may sometimes be significant.

1.4 What is the difference between a software process model and a software process? Suggest
two ways in which a software process model might be helpful in identifying possible process
improvements.

1.5 Explain why system testing costs are particularly high for generic software products that are
sold to a.very wide market.

1.6 Software engineering methods became widely used only when CASE technology became

Chapter 1 m Exercises 19

available to support them. Suggest five types of method support that can be provided by
CASE tools.

1.7 Apart from the challenges of heterogeneity, rapid delivery and trust, identify other problems
and challenges that software engineering is likely to face in the 21st century.

1.8 Discuss whether professional engineers should be certified in the same way as doctors or
lawyers.

1.9 For each of the clauses in the ACM/IEEE Code of Ethics shown in Figure 1.6, suggest an
appropriate example that illustrates that clause.

1.10 To help counter terrorism, many countries are planning the development of computer
systems that track large numbers of their citizens and their actions. Clearly this has privacy
implications. Discuss the ethics of developing this type of system.

2

Socio-technical systems

Objectives

The objectives of this chapter are to introduce the concept of a
socio-technical system—a system that includes people, software
and hardware—and to discuss the systems engineering process.
When you have read this chapter, you will;

know what is meant by a socio-technical system and understand
the difference between a technical computer-based system and a
socio-technical system;

have been introduced to the concept of emergent system
properties such as reliability, performance, safety and security;

understand the activities that are involved in the systems
engineering process;

understand why the organisational context of a system affects its
design and use;

know what is meant by a ‘legacy system’, and why these systems
are often critical to the operation of many businesses.

Contents

2.1 Emergent system properties

2.2 Systems engineering

2.3 Organisations, people and computer systems
2.4 |egacy systems

Chapter 2 ® Socio-technical systems 21

The term system is one that is universally used. We talk about computer systems,
operating systems, payment systems, the educational system, the system of government,
and so on. These are all obviously quite different uses of the word system although
they share the characteristic that, sornehow, the system is more than simply the sum
of its parts.

Very abstract systems such as the system of government are well outside the
scope of this book. Consequently, I focus here on systems that include computers
and that have some specific purpose such as to enable communication, support nav-
igation, and compute salaries. Therefore, a useful working definition of these types
of systems is:

A system is a purposeful collection of interrelated components that work together
to ackieve some objective.

This general definition embraces a vast range of systems. For example, a very
simple system such as a pen may only include three or four hardware components.
By contrast, an air traffic control system includes thousands of hardware and soft-
ware components plus human users who make decisions based on information from
the computer system.

Systems that include software fall into two categories:

* Technical computer-based systems are systems that include hardware and soft-
ware components but not proceclures and processes. Examples of technical sys-
tems include televisions, mobile phones and most personal computer software.
Individuals and organisations use technical systems for some purpose but
knowledge of this purpose is not part of the system. For example, the word
processor I am using is not aware that is it being used to write a book.

* Socio-technical systems include one or more technical systems but, crucially,
also include knowledge of how the system should be used to achieve some broader
objective. This means that these systems have defined operational processes,
include people (the operators) as inherent parts of the system, are governed by
organisational policies and rules and may be affected by external constraints
such as national laws and regulatory policies. For example, this book was cre-
ated through a socio-technical publishing system that includes various processes
and rechnical systems.

Essential characteristics of socio-technical systems are as follows.

1. They have emergent properties that are properties of the system as a whole rather
than associated with individual parts of the system. Emergent properties
depend on both the system components and the relationships between them. As
this is so complex, the emergent properties can only be evaluated once the sys-
tem has been assembled.

22 Chapter 2 m Socio-technical systems

2. They are often nondeterministic. This means that, when presented with a spe-
cific input, they may not always produce the same output. The system’s
behaviour depends on the human operators, and people do not always react in
the same way. Furthermore, use of the system may create new relationships
between the system components and hence change its emergent behaviour.

3. The extent to which the system supports organisational objectives does not just
depend on the system itself. It also depends on the stability of these objectives,
the relationships and conflicts between organisational objectives and how peo-
ple in the organisation interpret these objectives. New management may re-
interpret the organisational objective that a system is designed to support, and
a successful’ system may then become a ‘failure’.

In this book, I am concerned with socio-technical systems that include hardware
and software, which have defined operational processes and which offer an inter-
face, implemented in software, to human users. Software engineers should have some
knowledge of socio-technical systems and systems engineering (White, et al., 1993;
Thayer, 2002) because of the importance of software in these systems. For exam-
ple, there were fewer than 10 megabytes of software in the US Apollo space pro-
gram that put a man on the moon in 1969, but there are about 100 megabytes of
software in the control systems of the Columbus space station.

A characteristic of all systems is that the properties and the behaviour of the sys-
tem components are inextricably intermingled. The successful functioning of each
system component depends on the functioning of some other components. Thus,
software can only operate if the processor is operational. The processor can only
carry out computations if the software system defining these computations has been
successfully installed.

Systems are usually hierarchical and so include other systems. For example, a
police command and control system may include a geographical information sys-
tem to provide details of the location of incidents. These other systems are called
sub-systems. A characteristic of sub-systems is that they can operate as indepen-
dent systems in their own right. Therefore, the same geographical information sys-
tem may be used in different systems.

Because software is inherently flexible, unexpected systems problems are often
left to software engineers to solve. Say a radar installation has been sited so that
ghosting of the radar image occurs. It is impractical to move the radar to a site with
less interference, so the systems engineers have to find another way of removing
this ghosting. Their solution may be to enhance the image-processing capabilities
of the software to remove the ghost images. This may slow down the software so
that its performance becomes unacceptable. The problem may then be characterised
as a ‘software failure’ whereas, in fact, it was a failure in the design process for
the system as a whole.

This situation, where software engineers are left with the problem of enhancing
software capabilities without increasing hardware cost, is very common. Many so-
called software failures were not a consequence of inherent software problems; they

2.1 Emergent system properties 23

2.1

were the result of trying to change the software to accommodate modified system
engineering requirements. A good example of this was the failure of the Denver
airport baggage system (Swartz, 1996), where the controlling software was
expected to deal with several limitations in the equipment used.

Software engineering is therefore critical for the successful development of
complex, computer-based socio-technical systems. As a software engineer, you should
not simply be concerned with the software itself but you should also have a broader
awareness of how that software interacts with other hardware and software systems
and how it is supposed to be used. This knowledge helps you understand the lim-
its of software, to design better software and to participate as equal members of a
systems engineering group.

Emergent system properties

The complex relationships between the components in a system mean that the sys-
tem is more than simply the sum of its parts. It has properties that are properties
of the system as a whole. These emergent properties (Checkland, 1981) cannot be
attributed to any specific part of the system. Rather, they emerge only once the sys-
tem components have been integrated. Some of these properties can be derived directly
from the comparable properties of sub-systems. However, more often, they result
from complex sub-system interrelationships that cannot, in practice, be derived from
the properties of the individual system components. Examples of some emergent
properties are shown in Figure 2.1.
There are two types of emergent properties:

1. Functional emergent properties appear when all the parts of a system work
together to achieve some objective. For example, a bicycle has the functional
property of being a transportation device once it has been assembled from its
components.

2. Non-functional emergent properties relate to the behaviour of the system in its
operational environment. Examples of non-functional properties are reliability,
performance, safety and security. These are often critical for computer-based
systems, as failure to achieve some minimal defined level in these properties
may make the system unusable. Some users may not need some system func-
tions so the system may be acceptable without them. However, a system that
is unreliable or too slow is likely to be rejected by all its users.

To illustrate the complexity of emergent properties, consider the property of sys-
tem reliability. Reliability is a complex concept that must always be considered at
the system level rather than at the individual component level. The components in

24 Chapter 2 = Socio-technical systems

Figure 2.1 Examples
of emergent
properties

Property ~ Description s

Volume The volume of a system (the total space occupiec) varies
depending on how the component assemblies are arranged and
connected.

Reliability System reliability depends on component reliability but

unexpected interactions can cause new types of failure and
therefore affect the reliability of the system.

Security The security of the system (jts ability to resist attack) is a
complex property that cannot be easily measured. Attacks mey
be devised that were not anticipated by the system designers
and so may defeat buit-in safeguard .

Repairability This property reflects how easy it is to fix 2 problem with the
system once it has been discovered. it depends on being able to
diagnose the problem, access the components that are faulty and
modify or replace these components.

Usability This property reflects how easy it is to use the system. It
depends on the technical system components, its operators and
its operating environment.

a system are interdependent, so failures in one component can be propagated
through the system and affect the operation of other components. It is often diffi-
cult to anticipate how the consequences of component failures propagate through
the system. Consequently, you cannot make good estimates of overall system reli-
ability from data about the reliability of system components.

There are three related influences on the overall reliability of a system:

1. Hardware reliability What is the probability of a hardware component failing
and how long does it take to repair that component?

2. Software reliability How likely is it that a software component will produce an
incorrect output? Software failure is usually distinct from hardware failure in
that software does not wear out. Failures are usually transient so the system
carries on working after an incorrect result has been produced.

3. Operator reliability How likely is it that the operator of a system will make an
error?

All of these are closely linked. Hardware failure can generate spurious signals
that are outside the range of inputs expected by software. The software can then
behave unpredictably. Operator error is most likely in conditions of stress, such as
when system failures are occurring. These operator errors may further stress the hard
ware, causing more failures, and so on. Thus, the initial, recoverable failure can
rapidly develop into a serious problem requiring a complete system shutdown.

2.2 # Systems engineering 25

Figure 2.2 The

systems engineering

process

2.2

Requirements
definition

System
decommissioning /
System \
evolution £

Sub-system '\ System \
development /¢ installation £

System
integration /*

Like reliability, other emergent properties such as performance or usability are
hard to assess but can be measured after the system is operational. Properties such
as safety and security, however, pose different problems. Here, you are not simply
concerned with an attribute that is related to the overall behaviour of the system
but are zoncerned with behaviour that the system should not exhibit. A secure sys-
tem is one that does not allow unauthorised access to its data but it is clearly impos-
sible to predict all possible modes of access and explicitly forbid them. Therefore,
it may cnly be possible to assess these properties by default. That is, you only know
that a system is insecure when someone breaks into it.

Systems engineering

Systems engineering is the activity of specifying, designing, implementing, validating,
deploying and maintaining socio-technical systems. Systems engineers are not just con-
cerned with software but also with hardware and the system’s interactions with users
and its environment. They must think about the services that the system provides, the
constraints under which the system must be built and operated and the ways in which
the system is used to fulfil its purpose. As I have discussed, software engineers need
an understanding of system engineering because problems of software engineering are
often a result of system engineering decisions (Thayer, 1997; Thayer, 2002).

The phases of the systems engineering process are shown in Figure 2.2. This
process was an important influence on the ‘waterfall’ model of the software pro-
cess that I describe in Chapter 4.

There are important distinctions between the system engineering process and the
software development process:

26 Chapter 2 = Socio-technical systems

Figure 2.3 Disciplines
involved in systems
engineering

2.21

Software Electronic Mechanical
engineering engineering engineering

AIC systems
engineering 4

Structural
engineering

| User interface
design

c MI Ele'ctnc?I Architecture |,
engineering s engineering | 4

1. Limited scope for rework during system development Once some system engi-
neering decisions, such as the siting of base stations in a mobile phone system,
have been made, they are very expensive to change. Reworking the system design
to solve these problems is rarely possible. One reason software has become so
important in systems is that it allows changes to be made during system devel-
opment, in response to new requirements.

2. Interdisciplinary involvement Many engineering disciplines may be involved
in system engineering. There is a lot of scope for misunderstanding because
different engineers use different terminology and conventions.

Systems engineering is an interdisciplinary activity involving teams drawn from
various backgrounds. System engineering teams are needed because of the wide knowl-
edge required to consider all the implications of system design decisions. As an
illustration of this, Figure 2.3 shows some of the disciplines that may be involved
in the system engineering team for an air traffic control (ATC) system that uses
radars and other sensors to determine aircraft position.

For many systems, there are almost infinite possibilities for trade-offs between
different types of sub-systems. Different disciplines negotiate to decide how func-
tionality should be provided. Often there is no correct’ decision on how a system
should be decomposed. Rather, you may have several possible alternatives, but you
may not be able to choose the best technical solution. Say one alternative in an air
traffic control system is to build new radars rather than refit existing installations.
If the civil engineers involved in this process do not have much other work, they
may favour this alternative because it allows them to keep their jobs. They may
then rationalise this choice with technical arguments.

System requirements definition

System requirements definitions specify what the system should do (its functions)
and its essential and desirable system properties. As with software requirements analysis

2.2 g Systems engineering 27

(discussed in Part 2), creating system requirements definitions involves consulta-
tions with system customers and end-users. This requirements definition phase usually
concentrates on deriving three types of requirement:

1. Abstract functional requirements The basic functions that the system must pro-
vide are defined at an abstract level. More detailed functional requirements spec-
ification takes place at the sub-system level. For example, in an air traffic control
system, an abstract functional rzquirement would specify that a flight-plan database
should be used to store the flight plans of all aircraft entering the controlled
awrspace. However, you would not normally specify the details of the database
urless they affected the requirements of other sub-systems.

2. System properties These are non-functional emergent system properties such
as availability, performance and safety, as I have discussed above. These non-
functional system properties affect the requirements for all sub-systems.

3. Characteristics that the system must not exhibit It is sometimes as important to
specify what the system must not do as it is to specify what the system should do.
For example, if you are specifying an air traffic control system, you might spec-
ify that the system should not present the controller with too much information.

An umportant part of the requirements definition phase is to establish a set of
overall objectives that the system should meet. These should not necessarily be
expressed in terms of the system’s functionality but should define why the system
is being procured for a particular environment.

To illustrate what this means, say you are specifying a system for an office build-
ing to provide for fire protection and for intruder detection. A statement of objec-
tives based on the system functionality might be:

To srovide a fire and intruder alarm system for the building that will pro-
vide internal and external warning of fire or unauthorised intrusion.

This objective states explicitly that there needs to be an alarm system that pro-
vides warnings of undesired events. Such a statement might be appropriate if you
were replacing an existing alarm system. By contrast, a broader statement of objec-
tives might be:

To ensure that the normal functioning of the work carried out in the building
is not seriously disrupted by events such as fire and unauthorised intrusion.

If you set out the objective like this, you both broaden and limit the design choices.
For example, this objective allows for intruder protection using sophisticated lock-
ing technology—without any internal alarms. It may also exclude the use of sprin-
klers for fire protection because they can affect the building’s electrical systems
and so seriously disrupt work.

28 Chapter 2 ® Socio-technical systems

Figure 2.4 The
system design
process

2.2.2

Define sub-system

Partition
fequirements & interfaces

Identify ‘ Specify sub-system
sub-systems g functionality 3
Assign requirements
to sub-systems g

A fundamental difficulty in establishing system requirements is that the prob-
lems that complex systems are usually built to help tackle are usually ‘wicked prob-
lems’ (Rittel and Webber, 1973). A ‘wicked problem’ is a problem that is so complex
and where there are so many related entities that there is no definitive problem spec-
ification. The true nature of the problem emerges only as a solution is developed.
An extreme example of a ‘wicked problem’ is earthquake planning. No one can
accurately predict where the epicentre of an earthquake will be, what time it will
occur or what effect it will have on the local environment. We cannot therefore
completely specify how to deal with a major earthquake. The problem can only be
tackled after it has happened.

System design

System design (Figure 2.4) is concerned with how the system functionality is to be
provided by the components of the system. The activities involved in this process are:

1. Partition requirements You analyse the requirements and organise them into
related groups. There are usually several possible partitioning options, and you
may suggest a number of alternatives at this stage of the process.

2. Identify sub-systems You should identify sub-systems that can individually or
collectively meet the requirements. Groups of requirements are usuaily related
to sub-systems, so this activity and requirements partitioning may be amalga-
mated. However, sub-system identification may also be influenced by other organ-
isational or environmental factors.

3. Assign requirements to sub-systems You assign the requirements to sub-
systems. In principle, this should be straightforward if the requirements parti-
tioning is used to drive the sub-system identification. In practice, there is never
a clean match between requirements partitions and identified sub-systems.
Limitations of externally purchased sub-systems may mean that you have to
change the requirements to accommodate these constraints.

4. Specify sub-system functionality You should specify the specific functions pro-
vided by each sub-system. This may be seen as part of the system design phase

2 2 m Systems engineering 29

Requirements
Elicitation and
Analysis

Architectural
Design

Problem
Definition

System Requirements and Design | _

Figure 2.5 A spiral
model of
requirements and
design

or, if the sub-system is a software system, part of the requirements specifica-
tion activity for that system. You should also try to identify relationships between
sub-systems at this stage.

5. Define sub-system interfaces You define the interfaces that are provided and
required by each sub-system. Once these interfaces have been agreed upon, it
becomes possible to develop these sub-systems in parallel.

As the double-ended arrows in Figure 2.4 imply, there is a lot of feedback and
iteration from one stage to another in this design process. As problems and ques-
tions arise, you often have to redo work done in earlier stages.

Altaough I have separated the processes of requirements engineering and design
in this discussion, in practice they are inextricably linked. Constraints posed by exist-
ing systems may limit design choices, and these choices may be specified in the
requirements. You may have to do some initial design to structure and organise the
requirements engineering process. As the design process continues, you may dis-
cover problems with existing requirements and new requirements may emerge.
Consequently, one way to think of these linked processes is as a spiral, as shown
in Figure 2.5.

The spiral process reflects the reality that requirements affect design decisions
and vice versa, and so it makes sznse to interleave these processes. Starting in the

30 Chapter 2 w Socio-technical systems

Figure 2.6 A simple
burglar alarm system

2.2.3

Movement - Door
sensors e Sensors

y \
Alarm
controller

External
L control centre
. Voice Telephone
Siren .
synthesiser calier

centre, each round of the spiral may add detail to the requirements and the design.
Some rounds may focus on requirements, some on design. Sometimes, new knowl-
edge collected during the requirements and design process means that the problem
statement itself has to be changed.

For almost ali systems, there are many possible designs that meet the require-
ments. These cover a range of solutions that combine hardware, software and human
operations. The solution that you chose for further development may be the most
appropriate technical solution that meets the requirements. However, wider organ-
isational and political considerations may influence the choice of solution. For exam-
ple, a government client may prefer to use national rather than foreign suppliers for
its system, even if the national product is technically inferior. These influences usu-
ally take effect in the review and assessment phase in the spiral model where designs
and requirements may be accepted or rejected. The process ends when the review
and evaluation shows that the requirements and high-level design are sufficiently
detailed to allow the next phase of the process to begin.

System modelling

During the system requirements and design activity, systems may be modelled as
a set of components and relationships between these components. These are nor-
mally illustrated graphically in a system architecture model that gives the reader an
overview of the system organisation.

The system architecture may be presented as a block diagram showing the major
sub-systems and the interconnections between these sub-systems. When drawing a
block diagram, you should represent each sub-system using a rectangle, and you
should show relationships between the sub-systems using arrows that link these rect-
angles. The relationships indicated may include data flow, a uses’/'used by’ rela-
tionship or some other type of dependency relationship.

For example, Figure 2.6 shows the decomposition of an intruder alarm system
into its principal components. The block diagram should be supplemented by brief
descriptions of each sub-system, as shown in Figure 2.7.

22 = Systems engineering 31

Figure 2.7 Sub-
system descriptions
in the burglar alarm

system

2.2.4

Sub-system Description

Movement sensors Detects movement in the rooms monitored by the system

Door sensors Detects door opening in the external doors of the building
Alarm controller Controls the operation of the system

Siren Emits an audible warning when an intruder is suspected
Voice synthesiser Synthesises a voice message giving the location of the

suspected intruder

Telephone calier Makes external calls to notify security, the police, etc.

At this level of detail, the system is decomposed into a set of interacting sub-
systems. Each sub-system should be represented in a similar way until the system
is decomposed into functional components. Functional components are components
that, when viewed from the perspective of the sub-system, provide a single func-
tion. Bv contrast, a sub-system usually is multifunctional. Of course, when viewed
from another perspective (say that of the component manufacturer), a functional com-
ponent may itself be a system in its own right.

Historically, the system architecture model was used to identify hardware and
software components that could be developed in parallel. However, this hardware/
software distinction is becoming increasingly irrelevant. Almost all components now
include some embedded computing capabilities. For example, a network linking
machines will consist of physical cables plus repeaters and network gateways. The
repeaters and the gateways include processors and software to drive these proces-
sors as well as specialised electronic components.

At the architectural level, it is now more appropriate to classify sub-systems accord-
ing to their function before making decisions about hardware/software trade-offs.
The decision to provide a function in hardware or software may be governed by
non-technical factors such as the availability of off-the-shelf components or the time
available to develop the component.

Block diagrams may be used for all sizes of system. Figure 2.8 shows the archi-
tecture of a much larger system for air traffic control. Several major sub-systems
shown are themselves large systems. The arrowed lines that link these systems show
information flow between these sub-systems.

Sub-system development

During sub-system development, the sub-systems identified during system design
are implemented. This may involve starting another system engineering process for

32 Chapter 2 ® Socio-techpical systems

Figure 2.8 An
architectural model
of an air traffic
control system

Radar Transponder [Data comms. Aircraft Telephone
system system system comms. system

Position ‘ Comms. Backup comms. §
processor processor processor

Aircraft
simulation

system

Fliight plan
database

Controller
consoles

Accounting

system

Activity logging
system

individual sub-systems or, if the sub-system is software, a software process involv-
ing requirements, design, implementation and testing.

Occasionally, all sub-systems are developed from scratch during the development
process. Normally, however, some of the sub-systems are commercial, off-the-shelf
(COTS) systems that are bought for integration into the system. It is usually much
cheaper to buy existing products than to develop special-purpose components. At
this stage, you may have to reenter the design activity to accommodate a bought-
in component. COTS systems may not meet the requirements exactly but, if off-
the-shelf products are available, it is usually worth the expense of rethinking the
design.

Sub-systems are usually developed in parallel. When problems are encountered
that cut across sub-system boundaries, a system modification request must be
made. Where systems involve extensive hardware engineering, making modifica-
tions after manufacturing has started is usually very expensive. Often ‘work-
arounds” that compensate for the problem must be found. These ‘work-arounds’ usually
involve software changes because of the software’s inherent flexibility. This leads
to changes in the software requirements so, as I have discussed in Chapter 1, it is
important to design software for change so that the new requirements can be imple-
mented without excessive additional costs.

2.2 = Systems engineering 33

2.2.5

2.2.6

Systems integration

During the systems integration process, you take the independently developed sub-
systems and put them together to make up a complete system. Integration can be
done using a ‘big bang’ approach, where all the sub-systems are integrated at the
same time, However, for technical and managerial purposes, an incremental inte-
gration process where sub-systems are integrated one at a time is the best approach,
for two reasons:

1. It is usually impossible to schedule the development of all the sub-systems so
that they are all finished at the same time.

2. Incremental integration reduces the cost of error location, If many sub-systems
are simultaneously integrated, an error that arises during testing may be in any
of these sub-systems. When a single sub-system is integrated with an already work-
ing system, errors that occur are probably in the newly integrated sub-system or
in the interactions between the existing subsystems and the new sub-system.

Once the components have been integrated, an extensive programme of system
testing takes place. This testing should be aimed at testing the interfaces between
components and the behaviour of the system as a whole.

Sub-system faults that are a consequence of invalid assumptions about other sub-
systems are often revealed during system integration. This may lead to disputes between
the various contractors responsible for the different sub-systems. When problems are
discovered in sub-system interaction, the contractors may argue about which sub-
system is faulty. Negotiations on how to solve the problems can take weeks or months.

As more and more systems are built by integrating COTS hardware and soft-
ware cornponents, system integration is becoming increasingly important. In some
cases, there is no separate sub-systzm development and the integration is, essen-
tially, the implementation phase of the system.

System evolution

Large, complex systems have a very long lifetime. During their life, they are changed
to correct errors in the original system requirements and to implement new require-
ments that have emerged. The system’s computers are likely to be replaced with
new, faster machines. The organisation that uses the system may reorganise itself
and hence use the system in a different way. The external environment of the sys-
tem may change, forcing changes to the system.

System evolution, like software evolution (discussed in Chapter 21), is inher-
ently costly for several reasons:

1. Proposed changes have to be analysed very carefully from a business and a
technical perspective. Changes have to contribute to the goals of the system
and should not simply be technically motivated.

ocio-technical systems

2. Because sub-systems are never completely independent, changes to one sub-
system may adversely affect the performance or behaviour of other sub-
systems. Consequent changes to these sub-systems may therefore be needed.

3. The reasons for original design decisions are often unrecorded. Those respon-
sible for the system evolution have to work out why particular design decisions
were made.

4. As systems age, their structure typically becomes corrupted by change so the
costs of making further changes increases.

Systems that have evolved over time are often reliant on obsolete hardware and
software technology. If they have a critical role in an organisation, they are known
as legacy systems—systems that the organisation would like to replace but where
the risks of introducing a new system are high. I discuss some issues with legacy
systems in Section 2.4,

System decommissioning

System decommissioning means taking the system out of service after the end of its
useful operational lifetime. For hardware systems this may involve disassembling
and recycling materials or dealing with toxic substances. Software has no physical
decommissioning problems, but some software may be incorporated in a system to
assist with the decommissioning process. For example, software may be used to mon-
itor the state of hardware components. When the system is decommissioned, com-
ponents that are not worn can therefore be identified and reused in other systems.

If the data in the system that is being decommissioned is still valuable to your
organisation, you may have to convert it for use by some other system. This can
often involve significant costs as the data structures may be implicitly defined in
the software itself. You have to analyse the software to discover how the data is
structured and then write a program to reorganise the data into the required struc-
tures for the new system.

Organisations, people and computer systems

Socio-technical systems are enterprise systems that are intended to help deliver some
organisational or business goal. This might be to increase sales, reduce material used
in manufacturing, collect taxes, maintain a safe airspace, etc. Because they are embed-
ded in an organisational environment, the procurement, development and use of these
system is influenced by the organisation’s policies and procedures and by its work-
ing culture. The users of the system are people who are influenced by the way the

2.3 = Organisations, people and computer systems 35

2.3.1

organisation is managed and by their interactions with other people inside and out-
side of the organisation.

Therefore, when you are trying to understand the requirements for a socio-technical
system you need to understand its organisational environment. If you don’t, the systems
may not meet business needs, and users and their managers may reject the system.

Human and organisational factors from the system’s environment that affect the
system design include:

1. Process changes Does the system require changes to the work processes in the
environment? If so, training will certainly be required. If changes are signifi-
cant, or if they involve people losing their jobs, there is a danger that the users
will resist the introduction of the system.

2. Job changes Does the system de-skill the users in an environment or cause them
to change the way they work? If so, they may actively resist the introduction of
the system into the organisation. Designs that involve managers having to change
their way of working to fit the coraputer system are often resented. The managers
may feel that their status in the organisation is being reduced by the system.

3. Organisational changes Does the system change the political power structure in
an organisation? For example, if an organisation is dependent on a complex sys-
tem, those who know how to operate the system have a great deal of political

power.

These human, social and organisational factors are often critical in determining whether
or not a systemn successfully meets its abjectives. Unfortunately, predicting their effects
on systems is very difficult for engineers who have little experience of social or cul-
tural studies. To help understand the effects of systems on organisations, various method-
ologies have developed such as Mumford’s socio-technics (Mumford, 1989) and
Checkland’s Soft Systems Methodology (Checkland and Scholes, 1990; Checkland,
1981). There have also been extensive sociological studies of the effects of computer-
based systems on work (Ackroyd, et al., 1992).

Ideally, all relevant organisational knowledge should be included in the system spec-
ification so that the system designers may take it into account. In reality, this is impos-
sible. System designers have to make assumptions based on other comparable systems
and on common sense. If they get these wrong, the system may malfunction in unpre-
dictable ways. For example, if the designers of a system do not understand that dif-
ferent paris of an organisation may actually have conflicting objectives, then any
organisation-wide system that is developed will inevitably have some dissatisfied users.

Organisational processes

In Section 2.2, I introduced a system engineering process model that showed the
sub-processes involved in system development. However, the development process
is not the only process involved in systems engineering. It interacts with the

36 Chapter 2 m Socio-technical systems

Figure 2.9
Procurement,
development and
operational
processes

Procurement

process

‘ Pment

process A&
ational ,
process g

system procurement process and with the process of using and operating the sys-
tem. This is illustrated in Figure 2.9.

The procurement process is normally embedded within the organisation that wiil
buy and use the system (the client organisation). The process of system procure-
ment is concerned with making decisions about the best way for an organisation to
acquire a system and deciding on the best suppliers of that system.

Large complex systems usually consist of a mixture of off-the-shelf and specially
built components. One reason why more and more software is included in systems
is that it allows more use of existing hardware components, with the software act-
ing as a ‘glue’ to make these hardware components work together effectively. The
need to develop this ‘glueware’ is one reason why the savings from using off-the-
shelf components are sometimes not as great as anticipated. I discuss COTS sys-
tems in more detail in Chapter 18.

Figure 2.10 shows the procurement process for both existing systems and sys-
tems that have to be specially designed. Some important points about the process
shown in this diagram are:

1. Off-the-shelf components do not usually match requirements exactly, unless the
requirements have been written with these components in mind. Therefore, choos-
ing a system means that you have to find the closest match between the sys-
tem requirements and the facilities offered by off-the-shelf systems. You may
then have to modify the requirements and this can have knock-on effects on
other sub-systems.

2. When a system is to be built specially, the specification of requirements acts
as the basis of a contract for the system procurement. It is therefore a legal, as
well as a technical, document.

3. After a contractor to build a system has been selected, there is a contract nego-
tiation period where you may have to negotiate further changes to the require-
ments and discuss issues such as the cost of changes to the system.

I have already outlined the main phases of the system development process.
Complex systems are usually developed by a different organization (the supplier)
from the organization that is procuring the system. The reason for this is that the
procurer’s business is rarely system development so its employees do not have the

2.3 = Organisations people and computer systems 37

Off-the-shelf
system available

Survey market for
existing systems

Custom system
required

Figure 2.10 The
system procurement
process

Adapt Choose
requirements system
lssue request '\ Select
to tender tender

Issue request
for bids

Choose
supplier ’

Negotiate Let contract for
contract). development J

skills needed to develop complex systems themselves. In fact, very few single organ-
isations have the capabilities to design, manufacture and test all the components of
a large, ccmplex system.

This supplier, who is usually called the principal contractor, may contract out
the development of different sub-systems to a number of sub-contractors. For large
systems, such as air traffic control systems, a group of suppliers may form a con-
sortium to bid for the contract. The consortium should include all of the capabili-
ties required for this type of system, such as computer hardware suppliers, software
developers, peripheral suppliers and suppliers of specialist equipment such as
radars.

The precurer deals with the contractor rather than the sub-contractors so that there
is a single procurer/supplier interface. The sub-contractors design and build parts
of the system to a specification that is produced by the principal contractor. Once
completed, the principal contractor integrates these different components and deliv-
ers them to the customer buying the system. Depending on the contract, the pro-
curer may allow the principal contractor a free choice of sub-contractors or may
require the principal contractor to choose sub-contractors from an approved list.

Operational processes are the processes that are involved in using the system
for its defined purpose. For example, operators of an air traffic control system fol-
low specific processes when aircraft enter and leave airspace, when they have to
change height or speed, when an emergency occurs and so on. For new systems,
these operational processes have to be defined and documented during the system
development process. Operators may have to be trained and other work processes
adapted to make effective use of the new system. Undetected problems may arise
at this stage because the system specification may contain errors or omissions. While
the system may perform to specification, its functions may not meet the real oper-
ational needs. Consequently, the operators may not use the system as its design-
ers intended.

The key benefit of having people in a system is that people have a unique capa-
hility of being able to respond effectively to unexpected situations even when they
have never had direct experience of these situations. Therefore, when things go wrong,

38 Chapter 2 ® Socio-technical systems

2.4

the operators can often recover the situation, although this may sometimes mean
that the defined process is violated. Operators also use their local knowledge to adapt
and improve processes. Normally, the actual operational process is different from
that anticipated by the system designers.

This means that designers should design operational processes to be flexible and
adaptable. The operational processes should not be too constraining, they should
not require operations to be done in a particular order, and the system software should
not rely on a specific process being followed, Operators usually improve the pro-
cess because they know what does and does not work in a real situation.

An issue that may only emerge after the system goes into operation is the prob-
lem of operating the new system alongside existing systems. There may be physi-
cal problems of incompatibility, or it may be difficult to transfer data from one system
to another. More subtle problems might arise because different systems have dif-
ferent user interfaces. Introducing the new system may increase the operator error
rate for existing systems as the operators mix up user interface commands.

Legacy systems

Because of the time and effort required to develop a complex system, large computer-
based systems usually have a long lifetime. For example, military systems are often
designed for a 20-year lifetime, and much of the world’s air traffic control still relies
on software and operational processes that were originally developed in the 1960s
and 1970s. It is sometimes too expensive and too risky to discard such business-
critical systems after a few years of use. Their development continues throughout
their life with changes to accommodate new requirements, new operating platforms,
and so forth.

Legacy systems are socio-technical computer-based systems that have been
developed in the past, often using older or obsolete technology. These systems include
not only hardware and software but also legacy processes and procedures—old ways
of doing things that are difficult to change because they rely on legacy software.
Changes to one part of the system inevitably involve changes to other components,

Legacy systems are often business-critical systems. They are maintained
because it is too risky to replace them. For example, for most banks the customer
accounting system was one of their earliest systems. Organisational policies and pro-
cedures may rely on this system. If the bank were to scrap and replace the customer
accounting software (which may run on expensive mainframe hardware) then there
would be a serious business risk if the replacement system didn’t work properly.
Furthermore, existing procedures would have to change, and this may upset the peo-
ple in the organisation and cause difficulties with the bank’s auditors.

Figure 2.11 illustrates the logical parts of a legacy system and their relationships:

24 s legacy systems 39

Figure 2.11 Legacy
system components

Embeds
knowledge of
Uses e
Support Application Business policies
software software and rules
Runs on Runs-on Uses Uses Constrain
\i /
System Application Business
hardware § data processes
) P i

1. System hardware In many cases, legacy systems have been written for main-
frame hardware that is no longer available, that is expensive to maintain and
that may not be compatible with current organisational IT purchasing policies.

2. Support software The legacy system may rely on a range of support software
from the operating system and utilities provided by the hardware manufacturer
through to the compilers used for system development. Again, these may be
obsolete and no longer supported by their original providers.

3. Application software The application system that provides the business services
is usually composed of a number of separate programs that have been devel-
oped at different times. Sometimes the term legacy system means this applica-
tion software system rather than the entire system.

4. Apphcation data These are the data that are processed by the application sys-
tem. [n many legacy systems, an immense volume of data has accumulated over
the lifetime of the system. This data may be inconsistent and may be dupli-
cated in several files.

5. Business processes These are processes that are used in the business to achieve
some business objective. An exarnple of a business process in an insurance com-
pany would be issuing an insurance policy; in a manufacturing company, a busi-
ness process would be accepting an order for products and setting up the associated
manufacturing process. Business processes may be designed around a legacy
system and constrained by the functionality that it provides.

6. Business policies and rules These are definitions of how the business should
be carried out and constraints on the business. Use of the legacy application
system may be embedded in these policies and rules.

An alternative way of looking at these components of a legacy system is as a series
of layers, as shown in Figure 2.12. Each layer depends on the layer immediately below
it and interfaces with that layer. If interfaces are maintained, then you should be able
to make changes within a layer without affecting either of the adjacent layers.

40 Chapter 2 & Socio-technical systems

Figure 2.12 Layered Socio-technical system
model of a legacy
system Business processes

Application software

Support software

In practice, this simple encapsulation rarely works, and changes to one layer of
the systermn may require consequent changes to layers that are both above and below
the changed level. The reasons for this are:

1. Changing one layer in the system may introduce new facilities, and higher lay-

ers in the system may then be changed to take advantage of these facilities. For
example, a new database introduced at the support software layer may include

POINTS

Socio-technical systems include computer hardware, software and people, and are situated
within an organisation. They are designed to help the organisation meet some broad goal.

s

% The emergent properties of a system are characteristic of the system as a whole rather than
of its component parts. They include properties such as performance, reliability, usability,
safety and security. The success or failure of a system is often dependent on these
emergent properties.

The systems engineering process includes specification, design, development, integration
and testing. System integration, where sub-systems from more than one supplier must be
made to work together, is particularly critical.

« Human and organisational factors such as organisational structure and politics have a
significant effect on the operation of socio-technical systems.

% Within an organisation, there are complex interactions between the processes of system
procurement, development and operation.

i Alegacy system is an old system that still provides essential business services.

4 Legacy systems are not just application software systems. They are socio-technical systems
so include business processes, application software, support software and system hardware,

Chapter 2 = Exercises 41

facilities to access the data through a web browser, and business processes may
be modified to take advantage of this facility.

2. Changing the software may slow the system down so that new hardware is needed
to improve the system performance. The increase in performance from the new
hardware may then mean that further software changes which were previously
impractical become possible.

3. It is often impossible to maintain hardware interfaces, especially if a radical
change to a new type of hardware is proposed. For example, if a company moves
from mainframe hardware to client-server systems (discussed in Chapter 11)
these usually have different operating systems. Major changes to the applica-
tion software may therefore be required.

FURTHER READING Wil RS NP D O D

‘Software system engineering: A tutorial’. A good general overview of systems engineering,
although Thayer focuses exclusively on computer-based systems and does not discuss socio-
technical issues. (R. H. Thayer, IEEE Computer, April 2002.)

‘Legacy information systems: Issues and directions’. An overview of the problems of legacy systems
with a particular focus on the problems of legacy data. (. Bisbal, et al., IEEE Software,
September/October 1999.}

Systems Engineering: Coping with Complexity. At the time of this writing, this is still the best
available systems engineering book. It focuses on systems engineering processes with good
chapters on requirements, architecture and project management. (R. Stevens, et al,, 1998,
Prentice Hall.)

‘Airport 95: Automated baggage system’. An excellent, readable case study of what can go wrong
with a systems engineering project and how software tends to get the blame for wider systems
failures. (ACM Software Engineering Notes, 21, March 1996.)

EXERCISES i & % A N

2.1 Explain why other systems within a system’s environment can have unanticipated effects on
the functioning of a system.

2.2 Explain why specifyirig a system to be used by emergency services for disaster management
is an inherently wicked problem.

2.3 Suggest how the software systems used in a car can help with the decommissioning
(scrapping) of the ovarall system.

42 Chapter 2 ® Socio-technical systems

24

25

2.6

2.7

2.8
29

2.10

2.11

Explain why it is important to produce an overall description of a system architecture at an
early stage in the system specification process.

Consider a security system that is an extended version of the system shown in Figure 2.6,
which is intended to protect against intrusion and to detect fire. It incorporates smoke
sensors, movement sensors, door sensors, video cameras under computer control, located at
various places in the building, an operator console where the system status is reported, and
external communication facilities to call the appropriate services such as the police and fire
departments. Draw a block diagram of a possible design for such a system.

A flood warning system is to be procured which will give early warning of possible flood
dangers to sites that are threatened by floods. The system will include a set of sensors to
monitor the rate of change of river levels, links to @ meteorological system giving weather
forecasts, links to the communication systems of emergency services (police, coastguard,
etc.), video monitors installed at selected locations, and a control room equipped with
operator consoles and video monitors.

Controllers can access database information and switch video displays. The system database
includes information about the sensors, the location of sites at risk and the threat conditions
for these sites (e.g., high tide, southwesterly winds), tide tables for coastal sites, the
inventory and location of flood control equipment, contact details for emergency seivices,
local radio stations, and so on.

Draw a block diagram of a possible architecture for such a system. You should identify the
principal sub-systems and the links between them.

A multimedia virtual museum system offering virtual experiences of ancient Greece is to be
developed for a consortium of European museums. The system should provide users with the
facility to view 3-D models of ancient Greece through a standard web browser and should
also support an immersive virtual reality experience. What political and organisational
difficulties might arise when the system is installed in the museums that make up the
consortium?

Explain why legacy systems may be critical to the operation of a business.

Explain why legacy systems can cause difficulties for companies that wish to reorganise their
business processes.

What are the arguments for and against considering system engineering as a profession in its
own right such as electrical engineering or software engineering?

You are an engineer involved in the development of a financial system. During installation,
you discover that this system will make a significant number of people redundant. The
people in the environment deny you access to essential information to complete the system
installation. To what extent should you, as a systems engineer, become involved in this? Is it
your professional responsibility to complete the installation as contracted? Should you
simply abandon the work until the procuring organisation has sorted out the problem?

3
Critical systems

Objectives

The objective of this chapter is to introduce the idea of a critical
system—a system in which dependability is its most important
property. When you have read this chapter, you will:

B understand that in a critical system, system failure can have severe
human or economic consequences;

m understand four dimensions of system dependability: availability,
reliability, safety and security;

@ understand that to achieve dependability you need to avoid mistakes
during the development of a system, to detect and remove errors
when the system is ir use and to limit the damage caused by
operational failures.

Contents

3.1 A simple safety-critical system
3.2 System dependability

3.3 Availability and reliability

3.4 Safety

3.5 Security

44 Chapter 3 % Critical systems

" Software failures are relatively common. In most cases, these failures cause incon-
venience but no serious, long-term damage. However, in some systems failure can
result in significant economic losses, physical damage or threats to human life. These
systems are called critical systems. Critical systems are technical or socio-technical
systems that people or businesses depend on. If these systems fail to deliver their
services as expected then serious problems and significant losses may result.

There are three main types of critical systems:

1. Safety-critical systems A system whose failure may result in injury, loss of life
or serious environmental damage. An example of a safety-critical system is a
contro!l system for a chemical manufacturing plant.

2. Mission-critical systems A system whose failure may result in the failure of
some goal-directed activity. An example of a mission-critical system is a nav-
igational system for a spacecraft.

3. Business-critical systems A system whose failure may result in very high costs
for the business using that system. An example of a business-critical system is
the customer accounting system in a bank.

The most important emergent property of a critical system is its dependability.
The term dependability was proposed by Laprie (Laprie 1995) to cover the related
systems attributes of availability, reliability, safety and security. As I discuss in Section
3.2, these properties are inextricably linked, so having a single term to cover them
all makes sense.

There are several reasons why dependability is the most important emergent prop-
erty for critical systems:

1. Systems that are unreliable, unsafe or insecure are often rejected by their users.
If users don’t trust a system, they will refuse to use it. Furthermore, they may
also refuse to buy or use products from the same company as the untrustwor-
thy system, believing that these products perhaps cannot be trusted.

2. System failure costs may be enormous. For some applications, such as a reac-
tor control system or an aircraft navigation system, the cost of system failure
is orders of magnitude greater than the cost of the control system.

3. Untrustworthy systems may cause information loss. Data is very expensive to
collect and maintain; it may sometimes be worth more than the computer sys-
tem on which it is processed. A great deal of effort and money may have to
be spent duplicating valuable data to guard against data corruption.

The high cost of critical systems failure means that trusted methods and tech-
niques must be used for development. Consequently, critical systems are usually
developed using well-tried techniques rather than newer techniques that have not

Chapter 3 = Critical systems 45

been subject to extensive practical experience. Rather than embrace new techniques
and methods, critical systems developers are naturally conservative. They prefer to
use older techniques whose strengths and weaknesses are understood rather than
new techniques which may appear to be better but whose long-term problems are
unknown.

Expensive software engineering techniques that are not cost-effective for non-
critical systems may sometimes be used for critical systems development. For exam-
ple, formal mathematical methods of software development (discussed in Chapter
10) have been successfully used for safety and security critical systems (Hall, 1996,
Hall and Chapman, 2002). One reason why these formal methods are used is that
it helps reduce the amount of testing required. For critical systems, the costs of ver-
ification and validation are usually very high—more than 50% of the total system
development costs.

Although a small number of coritrol systems may be completely automatic, most
critical systems are socio-technical systems where people monitor and control the
operation of computer-based systems. The costs of critical systems failure are usu-
ally so high that we need people in the system who can cope with unexpected sit-
uations, and who can often recover from difficulties when things go wrong.

Of course, while system operators can help recover from problems, they can also
cause problems if they make mistakes. There are three ‘system components’ where
critical systems failures may occur:

1. System hardware may fail because of mistakes in its design, because compo-
nerits fail as a result of manufacturing errors, or because the components have
reached the end of their natural life.

2. System software may fail because of mistakes in its specification, design or
implementation.

3. Human operators of the system may fail to operate the system correctly. As
hardware and software have become more reliable, failures in operation are now
probably the largest single cause of system failures.

These failures can be interrelated. A failed hardware component may mean sys-
tem operators have to cope with an unexpected situation and additional workload.
This puts them under stress—and people under stress often make mistakes. This
can cause the software to fail, which means more work for the operators, even more
stress, and so on.

As a result, it is particularly important that designers of critical systems take a
holistic, systems perspective rather than focus on a single aspect of the system. If
the hardware, software and operational processes are designed separately without
taking the potential weaknesses of other parts of the system into account, then it
is more likely that errors will occur at interfaces between the various parts of the
system.

46 Chapter 3 m Critical systems

Figure 3.1 Insulin
pump structure

insulin reservoir
11
| Pump Clock

Needle
assembly

Sensor f— [Controller }———»| Alarm

3

Display1 Display2

Power supply

3.1 A simple safety-critical system

/

There are many types of critical computer-based systems, ranging from control sys-
tems for devices and machinery to information and e-commerce systems. They could
be excellent case studies for a software engineering book, as advanced software engi-
neering techniques are often used in their development. However, understanding these
systems can be very difficult, as you need to understand the features and constraints
of the application domain where they operate.

Consequently, the critical systems case study that I use in several chapters in
this book is a medical system that simulates the operation of the pancreas (an inter-
nal organ). I have chosen this because we all have some understanding of medical
problems and it is clear why safety and reliability are so important for this type of
system. The system chosen is intended to help people who suffer from diabetes.

Diabetes is a relatively common condition where the human pancreas is unable
to produce sufficient quantities of a hormone called insulin. Insulin metabolises glu-
cose in the blood. The conventional treatment of diabetes involves regular injec-
tions of genetically engineered insulin. Diabetics measure their blood sugar levels
using an external meter and then calculate the dose of insulin that they should inject.

The problem with this treatment is that the level of insulin in the blood does not just
depend on the blood glucose level but is a function of the time when the insulin injec-
tion was taken. This can lead to very low levels of blood glucose (if there is too much
insulin) or very high levels of blood sugar (if there is too little insulin). Low blood sugar
is, in the short term, a more serious condition, as it can result in temporary brain mal-
functioning and, ultimately, unconsciousness and death. In the long term, continual high
levels of blood sugar can lead to eye damage, kidney damage, and heart problems.

Current advances in developing miniaturised sensors have meant that it is now pos-
sible to develop automated insulin delivery systems. These systems monitor blood sugar
levels and deliver an appropriate dose of insulin when required. Insulin delivery systems

3.2 = System dependability 47

Figure 3.2 Data-flow
model of the insulin

pump

Blood
Blood parameters
M
_»| Blood sugar . (Bloodsugar Y g4 sugar
sensor | analysis evel
Insulin
requirement
computation
Pump control i
Insulin commands insulin Insulin
| Insulin delivery requirement
pump 2 controller

like this already exist for the treatment of hospital patients. In the future, it may be pos-
sible for rnany diabetics to have such systems permanently attached to their bodies.

A software-controlled insulin delivery system might work by using a micro-sensor
embedded in the patient to measure some blood parameter that is proportional to
the sugar level. This is then sent to the pump controller. This controller computes
the sugar level and the amount of insulin that is needed. It then sends signals to a
miniaturised pump to deliver the insulin via a permanently attached needle.

Figure 3.1 shows the components and organisation of the insulin pump. Figure
3.2 is a data-flow model that illustrates how an input blood sugar level is trans-
formed to a sequence of pump control commands. '

There are two high-level dependability requirements for this insulin pump system:

1. The system shall be available to deliver insulin when required.

2. The system shall perform reliably and deliver the correct amount of insulin to
counteract the current level of blood sugar.

Failure of the system could, in principle, cause excessive doses of insulin to be
delivered and this could threaten the life of the user. It is particularly important that
overdoses of insulin should not occur.

System dependability

All of us are familiar with the problem of computer system failure. For no obvious
reason, computer systems sometimes crash and fail to deliver the services that have
been requested. Programs running on these computers may not operate as expected
and, occasionally, may corrupt the cata that is managed by the system. We have

48 Chapter 3 = Critical systems

Dependability §

Availability

| | |
‘ Reliability I ‘ Safety I | Security l

The ability of the system The ability of the system The ability of the system The ability of the system

to deliver services when to deliver services as to operate without to protect itelf against
requested specified catastrophic failure accidental or deliberate
intrusion
Figure 3.3 learned to live with these failures, and few of us completely trust the personal com-
Dimensions of puters that we normally use.
dependability

The dependability of a computer system is a property of the system that equates
to its trustworthiness. Trustworthiness essentially means the degree of user confi-
dence that the system will operate as they expect and that the system will not ‘fail’
in normal use. This property cannot be expressed numerically, but we use relative
terms such as ‘not dependable’, ‘very dependable’ and ‘vltra-dependable’ to reflect

* the degrees of trust that we might have in a system.

Trustworthiness and usefulness are not, of course, the same thing. 1 don’t think
that the word processor that I used to write this book is a very dependable system,
but it is very useful. However, to reflect my lack of trust in the system I frequently
save my work and keep multiple backup copies of it. I compensate for the lack of
system dependability by acticiis that limit the damage that could be caused if the
system failed.

There are four principal dimensions to dependability, as shown in Figure 3.3:

1. Availability Informally, the availability of a system is the probability that it will
be up and running and able to deliver useful services at any given time.

2. Reliability Informally, the reliability of a system is the probability, over a given
period of time, that the system will correctly deliver services as expected by
the user.

3. Safety Informally, the safety of a system is a judgement of how likely it is that
the system will cause damage to people or its environment.

4. Security Informally, the security of a system is a judgement of how likely it is
that the system can resist accidental or deliberate intrusions.

These are complex properties that can be decomposed into a number of other,
simpler properties. For example, security includes integrity (ensuring that the

3.2 = System dependability 49

systems program and data are not camaged) and confidentiality (ensuring that infor-
mation can only be accessed by people who are authorised). Reliability includes
correctness (ensuring the system services are as specified), precision (ensuring infor-
mation is delivered at an appropriate level of detail) and timeliness (ensuring that
information is delivered when it is required).

The dependability properties of availability, security, reliability and safety are
all inte:related. Safe system operation usually depends on the system being avail-
able and operating reliability. A system may become unreliable because its data
has been corrupted by an intruder. Denial-of-service attacks on a system are intended
to compromise its availability. If a system that has been proved to be safe is infected
with a virus, safe operation can no longer be assumed. It is because of these close
links that the notion of system dependability as an encompassing property was
introduced.

As well as these four main dimensions, other system properties can also be con-
sidered under the heading of dependability:

1. Repairability System failures are inevitable, but the disruption caused by fail-
ure can be minimised if the system can be repaired quickly. In order for that
to happen, it must be possible to diagnose the problem, access the component
that has failed and make changes to fix that component. Repairability in soft-
ware is enhanced when the organisation using the system has access to the source
code and has the skills to make changes to it. Unfortunately, this is becoming
increasingly uncommon as we move towards system development using third-
party, black-box components (see Chapter 19).

2. Maintainability As systems are used, new requirements emerge. It is important
to maintain the usefulness of a system by changing it to accommodate these
new requirements. Maintainable software is software that can be adapted eco-
nomically to cope with new requirements and where there is a low probability
that making changes will introduce new errors into the system.

3. Survivability A very important attribute for Internet-based systems is surviv-
ability, which is closely related to security and availability (Ellison, et al., 1999).
Survivability is the ability of a system to continue to deliver service whilst it
is under attack and, potentially, while part of the system is disabled. Work on
survivability focuses on identifying key system components and ensuring that
they can deliver a minimal service. Three strategies are used to enhance
survivability—namely, resistance to attack, attack recognition and recovery from
the damage caused by an attack (Ellison, et al., 1999; Ellison, et al., 2002).

4. Error tolerance This property can be considered as part of usability (discussed
in Chapter 16) and reflects the extent to which the system has been designed
so that user input error are avoided and tolerated. When user errors occur, the
system should, as far as possible, detect these errors and either fix them auto-
matically or request the user ro re-input their data

50 Chapter 3 u Critical systems

Figure 3.4
Cost/dependability
curve

Cost

.

Low Medium High Very Ultra-
high high

Dependability

Because availability, reliability, safety and security are the fundamental depend-
ability properties, I concentrate on them in this chapter and in later chapters that
cover critical systems specification (Chapter 9), critical systems development
(Chapter 20) and critical systems validation (Chapter 24).

Of course, these dependability properties are not all applicable to all systems.
For the insulin pump system, introduced in Section 3.1, the most important prop-
erties are availability (it must work when required), reliability (it must deliver the
correct dose of insulin) and safety (it must never deliver a dangerous dose of insulin).
Security, in this case, is less likely to be an issue, as the pump will not maintain
confidential information and is not networked so cannot be maliciously attacked.

Designers must usually make a trade-off between system performance and sys-
tem dependability. Generally, high levels of dependability can only be achieved at
the expense of system performance. Dependable software includes extra, often redun-
dant, code to perform the necessary checking for exceptional system states and to
recover from system faults. This reduces system performance and increases the amount
of store required by the software. It also adds significantly to the costs of system
development.

Because of additional design, implementation and validation costs, increasing the
dependability of .a system can significantly increase development costs. In particu-
lar, validation costs are high for critical systems. As well as validating that the sys-
tem meets its requirements, the validation process may have to prove to an external
regulator such as the Federal Aviation Authority that the system is dependable.

Figure 3.4 shows the relationship between costs and incremental improvements
in dependability. The higher the dependability that you need, the more that you have
to spend on testing to check that you have reached that level. Because of the expo-
nential nature of this cost/dependability curve, it is not possible to demonstrate that
a system is 100% dependable, as the costs of dependability assurance would then
be infinite.

3.3 = Availability and reliability 51

3.3 Availability and reliability

System availability and reliability are closely related properties that can both be
expressed as numerical probabilities. The reliability of a system is the probability
that the system’s services will be correctly delivered as specified. The availability
of a system is the probability that the system will be up and running to deliver these
services to users when they request them.

Although they are closely related, you cannot assume that reliable systems will
always be available and vice versa. For example, some systems can have a high
availability requirement but a much lower reliability requirement. If users expect
continuous service then the availability requirements are high. However, if the con-
sequences of a failure are minimal and the system can recover quickly from these
failures then the same system can have low reliability requirements.

An example of a system where availability is more critical than reliability is a tele-
phone exchange switch. Users expect a dial tone when they pick up a phone so the sys-
tem has high availability requirements. However, if a system fault causes a connection
to fail, this is often recoverable. Exchange switches usually include repair facilities that
can reset the system and retry the connection attempt. This can be done very quickly,
and the phone user may not even notice that a failure has occurred. Therefore, avail-
ability rather than reliability is the key dependability requirement for these systems.

A further distinction between these characteristics is that availability does not
simply depend on the system itself but also on the time needed to repair the faults
that make the system unavailable. Therefore, if system A fails once per year, and
system B fails once per month, then A is clearly more reliable then B. However,
assume that system A takes three days to restart after a failure, whereas system
B takes 10 minutes to restart. The availability of system B over the year (120
minutes of down time) is much better than that of system A (4,320 minutes of
down time).

Systemn reliability and availability may be defined more precisely as follows:

1. Reliability The probability of failure-free operation over a specified time in a
given environment for a specific purpose.

2. Availability The probability that a system, at a point in time, will be opera-
tional and able to deliver the requested services.

One of the practical problems in developing reliable systems is that our intu-
itive notions of reliability and availability are sometimes broader than these lim-
ited definitions. The definition of reliability states that the environment in which
the system is used and the purpose that it is used for must be taken into account.
If you measure system reliability in one environment, you can’t assume that the
reliability will be the same in another environment where the system is used in a
different way.

52 Chapter 3 % Critical systems

For example, let’s say that you measure the reliability of a word processor in an
office environment where most users are uninterested in the operation of the soft-
ware. They follow the instructions for its use and do not try to experiment with the
system. If you measure the reliability of the same system in a university environ-
ment, then the reliability may be quite different. Here, students may explore the
boundaries of the system and use the system in unexpected ways. These may result
in system failures that did not occur in the more constrained office environment.

Human perceptions and patterns of use are also significant. For example, say a
car has a fault in its windscreen wiper system that results in intermittent failures of
the wipers to operate correctly in heavy rain. The reliability of that system as per-
ceived by a driver depends on where they live and use the car. A driver in Seattle
(wet climate) will probably be more affected by this failure than a driver in Las
Vegas (dry climate). The Seattle driver’s perception will be that the system is unre-
liable, whereas the driver in Las Vegas may never notice the problem.

A further difficulty with these definitions is that they do not take into account
the severity of failure or the consequences of unavailability. People, naturally, are
more concerned about system failures that have serious consequences, and their per-
ception of system reliability is influenced by these consequences. For example, say
a failure of initialisation in the engine management software causes a car engine to
cut out immediately after starting, but it operates correctly after a restart that cor-
rects the initialisation problem. This does not affect the normal operation of the car,
and many drivers would not think that a repair was needed. By contrast, most drivers
will think that an engine that cuts out while they are driving at high speed once per
month (say) is both unreliable and unsafe and must be repaired.

A strict definition of reliability relates the system implementation to its specifi-
cation. That is, the system is behaving reliably if its behaviour is consistent with
that defined in the specification. However, a common cause of perceived unrelia-
bility is that the system specification does not match the expectations of the sys-
tem users. Unfortunately, many specifications are incomplete or incorrect and it is
left to software engineers to interpret how the system should behave. As they are
not domain experts, they may not, therefore, implement the behaviour that users
expect.

Reliability and availability are compromised by system failures. These may be
a failure to provide a service, a failure to deliver a service as specified, or the deliv-
ery of a service in such a way that is unsafe or insecure. Some of these failures are
a consequence of specification errors or failures in associated systems such as a
telecommunications system. However, many failures are a consequence of erroneous
system behaviour that derives from faults in the system. When discussing reliabil-
ity, it is helpful to distinguish between the terms fault, error and failure. 1 have
defined these terms in Figure 3.5.

Human errors do not inevitably lead to system failures. The faults introduced
may be in parts of the system that are never used. Faults do not necessarily result
in system errors, as the faulty state may be transient and may be corrected before
erroneous behaviour occurs. System errors may not result in system failures, as the
behaviour may also be transient and have no observable effects or the system may

3.3 @ Availability and reliability 53

Term Description '

System failure An event that occurs at some point in time when the system
does not deliver a service as expected by its users

System error An erroneous system state that can lead to system behaviour
that is unexpected by system users.

System fauit A characteristic of a software system that can lead to a system
error. For example, failure to initialise a variable could lead to
that variable having the wrong value when it is used.

Human error Human behaviour that resuits in the introduction of faults into
or mistake a system.

include protection that ensures that the erroneous behaviour is discovered and cor-
rected before the system services are affected.

This distinction between the terms shown in Figure 3.5 helps us identify three
complementary approaches that are used to improve the reliability of a system:

{. Faulr avoidance Development techniques are used that either minimise the pos-
sibility of mistakes and/or that trap mistakes before they result in the introduction
of system faults. Examples of such techniques include avoiding error-prone pro-
gramming language constructs such as pointers and the use of static analysis
to detect program anomalies.

2. Faulr detection and removal The use of verification and validation techniques
that increase the chances that faults will be detected and removed before the
systern is used. Systematic system testing and debugging is an example of a
fault-detection technique.

3. Faulr tolerance Techniques that snsure that faults in a system do not result in
systera errors or that ensure that system errors do not result in system failures.
The incorporation of self-checking facilities in a system and the use of redun-
dant system modules are examples of fault tolerance techniques.

I cover the development of fault tolerant systems in Chapter 20, where I also
discuss some techniques for fault avoidance. I discuss process-based approaches to
fault avoicance in Chapter 27 and fault detection in Chapters 22 and 23.

Software faults cause software failures when the faulty code is executed with a
set of inputs that expose the software fault. The code works properly for most inputs.
Figure 3.6, derived from Littlewood (Littlewood, 1990), shows a software system
as a mapping of an input to an output set. Given an input or input sequence, the
program responds by producing a corresponding output. For example, given an input
of a URL, a web browser produces an output that is the display of the requested
web page.

54 Chapter 3 # Critical systems

Figure 3.6 A system
as an input/output
mapping

Figure 3.7 Software
usage patterns

Inputs causing
erroneous outputs

Program ﬁ

Erroneous
outputs

Output set Oe

Some of these inputs or input combinations, shown in the shaded ellipse in Figure
3.6, cause erroneous outputs to be generated. The software reliability is related to
the probability that, in a particular execution of the program, the system input will
be a member of the set of inputs, which cause an erroneous output to occur. If an
input causing an erroneous output is associated with a frequently used part of the
program, then failures will be frequent. However, if it is associated with rarely used
code, then users will hardly ever see failures.

Each user of a system uses it in different ways. Faults that affect the reliability
of the system for one user may never be revealed under someone else’s mode of
working (Figure 3.7). In Figure 3.7, the set of erroneous inputs correspond to the
shaded ellipse in Figure 3.6. The set of inputs produced by User 2 intersects with
this erroneous input set. User 2 will therefore experience some system failures. User
1 and User 3, however, never use inputs from the erroneous set. For them, the soft-
ware will always be reliable.

Possible
inputs

3.4 w Safety 55

3.4

The overall reliability of a program, therefore, mostly depends on the number of
inputs causing erroneous outputs during normal use of the system by most users. Software
faults that occur only in exceptional situations have little effect on the system’s reli-
ability. Removing software faults from parts of the system that are rarely used makes
little real difference to the reliability as seen by system users. Mills et al. (Mills, et
al., 1987) found that, in their software, removing 60% of known errors in their soft-
ware led to only a 3% reliability improvement. Adams (Adams, 1984), in a study of
IBM software products, noted that many defects in the products were only likely to
cause failures after hundreds or thousands of months of product usage.

Users in a socio-technical systern may adapt to software with known faults, and
may share information about how to get around these problems. They may avoid using
inputs that are known to cause problems so program failures never arise. Furthermore,
experierced users often ‘work around’ software faults that are known to cause fail-
ures. They deliberately avoid using system features that they know can cause prob-
lems for them. For example, 1 avoid certain features, such as automatic numbering in
the word processing system that I uszd to write this book. Repairing the faults in these
features may make no practical difference to the reliability as seen by these users.

Safety

Safety-critical systems are systems where it is essential that system operation is always
safe. That is, the system should never damage people or the system’s environment
even if the system fails. Examples of safety-critical systems are control and moni-
toring svstems in aircraft, process control systems in chemical and pharmaceutical
plants and automobile control systems.

Hardware control of safety-critical systems is simpler to implement and analyse
than software control. However, we now build systems of such complexity that they
cannot be controlled by hardware alone. Some software control is essential because
of the need to manage large numbers of sensors and actuators with complex con-
trol laws. An example of such complexity is found in advanced, aerodynamically
unstable military aircraft. They require continual software-controlled adjustment of
their flight surfaces to ensure that they do not crash.

Safety-critical software falls intc two classes:

1. Primary, safety-critical software This is software that is embedded as a con-
troller in a system. Malfunctioning of such software can cause a hardware mal-
function, which results in human injury or environmental damage. I focus on
this type of software.

2. Secondary safety-critical software This is software that can indirectly result in
injury. Examples of such systems are computer-aided engineering design
systems whose malfunctioning might result in a design fault in the object being

56 Chapter 3 # Critical systems

designed. This fault may cause injury to people if the designed system mal-
functions. Another example of a secondary safety-critical system is a medical
database holding details of drugs administered to patients. Errors in this sys-
tem might result in an incorrect drug dosage being administered.

System reliability and system safety are related but separate dependability
attributes. Of course, a safety-critical system should be reliable in that it should con-
form to its specification and operate without failures. It may incorporate fault-tol-
erant features so that it can provide continuous service even if faults occur.
However, fault-tolerant systems are not necessarily safe. The software may still mal-
function and cause system behaviour, which results in an accident.

Apart from the fact that we can never be 100% certain that a software system
is fault-free and fault-tolerant, there are several other reasons why software systems
that are reliable are not necessarily safe:

1. The specification may be incomplete in that it does not describe the required behaviour
of the system in some critical situations. A high percentage of system malfunc-
tions (Nakajb and Kume, 1991; Lutz, 1993) are the result of specification rather
than design errors. In a study of errors in embedded systems, Lutz concludes:

...difficulties with requirements are the key root cause of the safety-related soft-
ware errors which have persisted until integration and system testing.

2. Hardware malfunctions may cause the system to behave in an unpredictable
way and may present the software with an unanticipated environment. When
components are close to failure they may behave erratically and generate sig-
nals that are outside the ranges that can be handled by the software.

3. The system operators may generate inputs that are not individually incorrect but
which, in some situations, can lead to a system malfunction. An anecdotal exam-
ple of this is when a mechanic instructed the utility management software on an
aircraft to raise the undercarriage. The software carried out the mechanic’s instruc-
tion perfectly. Unfortunately, the plane was on the ground at the time——clearly, the
system should have disallowed the command unless the plane was in the air.

A specialised vocabulary has evolved to discuss safety-critical systems, and it is
important to understand the specific terms used. In Figure 3.8, I show some defi-
nitions that I have adapted from terms initially defined by Leveson (Leveson, 1985).

The key to assuring safety is to ensure either that accidents do not occur or that
the consequences of an accident are minimal. This can be achieved in three com-
plementary ways:

1. Hazard avoidance The system is designed so that hazards are avoided. For exam-
ple, a cutting system that requires the operator to press two separate buttons at
the same time to operate the machine avoids the hazard of the operator’s hands
being in the blade pathway.

34 « Safety 57

Figure 3.8 Safety
terminology

. Term Description

Accident (or mishap) An unplanned event or sequence of events which results in
human death or injury, damage to property or to the environ-
ment. A computer-controlled machine injuring its operator is an
example of an accident.

Hazard A condition with the potential for causing or contributing to an
accident. A failure of the sensor that detects an obstacte in front
of a machine is an example of a hazard.

Damage A measure of the loss resulting from a mishap. Damage can
range from many people kitled as a resuit of an accident to minor
Injury or property damage.

Hazard severity An assessment of the worst possible damage that could result

from a particular hazard. Hazard severity can range from
catastrophic where many people are killed to minor where only
minor damage results.

Hazard probability The probability of the events occurring which create a hazard.
Probability values tend to be arbitrary but range from probable
(say 1/100 chance of a hazard occurring) to implausible (no
conceivable situations are likely where the hazard could occur).

Risk This is a measure of the probability that the system will cause an
accldent. The risk is assessed by considering the hazard prob-
ability, the hatard severity and the probability that a hazard will
result in an accident.

2. Hazard detection and removal The system is designed so that hazards are detected
and removed before they result in an accident. For example, a chemical plant
system may detect excessive pressure and open a relief valve to reduce the pres-
sure before an explosion occurs.

3. Damage limitation The system may include protection features that minimise
the damage that may result from an accident. For example, an aircraft engine
normally includes automatic fire extinguishers. If a fire occurs, it can often be
conirolled before it poses a threzat to the aircraft.

Accidents generally occur when several things go wrong at the same time. An anal-
ysis of serious accidents (Perrow, 1984) suggests that they were almost all due to a
combinarion of malfunctions rather than single failures. The unanticipated combina-
tion led 1o interactions that resulted in system failure. Perrow also suggests that it is
impossible to anticipate all possible combinations of system malfunction, and that acci-
dents are an inevitable part of using complex systems. Software tends to increase sys-
tem complexity, so using software control may increase the probability of system accidents.

However, software control and monitoring can also improve the safety of systems.
Software-controlled systems can monitor a wider range of conditions than
electro-mechanical systems. They can be adapted relatively easily. They involve the

ritical systems

use of computer hardware, which has very high inherent reliability and which is phys-
ically small and lightweight. Software-controlled systems can provide sophisticated
safety interlocks. They can support control strategies that reduce the amount of time
people need to spend in hazardous environments. Therefore, although software con-
trol may introduce more ways in which a system can go wrong, it also allows better
monitoring and protection and hence may improve the safety of the system.

In all cases, it is important to maintain a sense of proportion about system safety.
It is impossible to make a system 100% safe, and society has to decide whether or
not the consequences of an occasional accident are worth the benefits that come
from the use of advanced technologies. It is also a social and political decision about
how to deploy limited national resources to reduce risk to the population as a whole.

Security

Security is a system attribute that reflects the ability of the system to protect itself
from external attacks that may be accidental or deliberate. Security has become increas-
ingly important as more and more systems are connected to the Internet. Internet
connections provide additional system functionality (e.g., customers may be able to
access their bank accounts directly), but Internet connection also means that the sys-
tem can be attacked by people with hostile intentions. The Internet connection also
means that details of specific system vulnerabilities may be easily disseminated so
that more people may be able to attack the system. Equally, however, the connec-
tion can speed up the distribution of system patches to repair these vulnerabilities.

Examples of attacks might be viruses, unauthorised use of system services and
unauthorised modification of the system or its data. Security is important for all
critical systems. Without a reasonable level of security, the availability, reliability
and safety of the system may be compromised if external attacks cause some dam-
age to the system.

The reason for this is that all methods for assuring availability, reliability and
safety rely on the fact that the operational system is the same as the system that
was originally installed. If this installed system has been compromised in some way
(for example, if the software has been modified to include a virus), then the argu-
ments for reliability and safety that were originally made can no longer hold. Th
system software may be corrupted and may behave in an unpredictable way.

Conversely, errors in the development of a system can lead to security loopholes.
If a system does not respond to unexpected inputs or if array bounds are not checked,
then attackers can exploit these weaknesses to gain access to the system. Major secu-
rity incidents such as the original Internet worm (Spafford, 1989) and the Code Red
worm more than 10 years later (Berghel, 2001) took advantage of the fact that pro-
grams in C do not include array bound checking. They overwrote part of memory
with code that allowed unauthorised access to the system.

35 ® Security 59

Figure 3.9 Security
terminology

Term Description

Exposure Possible loss or harnn in a computing system. This can be loss or
damage to data or can be a loss of time and effort if recovery is
necessary after a security breach.

Vulnerability A weakness in a computer-based system that may be exploited to
cause loss or harm.

Attack An exploitation of a system's vulnerability. Generally, this is from
outside the system and is a deliberate attempt to cause some
damage.

Threats Circumstances that have potential to cause loss or harm. You can

think of these as a system vulnerability that is subjected to an attack

Control A protective measurs that reduces a system’s vuinerability.
Encryption would be an example of a control that reduced a
vulnerability of a weak access control system.

Of course, in some critical systerns, security is the most important dimension of
system dependability. Military systems, systems for electronic commerce and sys-
tems that involve the processing and interchange of confidential information must
be designed so that they achieve a high level of security. If an airline reservation
system (say) is unavailable, this causes inconvenience and some delays in issuing
tickets. However, if the system is insecure and can accept fake bookings then the
airline that owns the system can lose a great deal of money.

There are three types of damage that may be caused through external attack:

1. Denial of service The system may be forced into a state where its normal ser-
vices become unavailable. This, obviously, then affects the availability of the
system.

2. Corruption of programs or data The software components of the system may
be altered in an unauthorised way. This may affect the system’s behaviour and
hence its reliability and safety. If damage is severe, the availability of the sys-
tem may be affected.

3. Disclosure of confidential information The information managed by the system
may be confidential, and the external attack may expose this to unauthorised peo-
ple. Depending on the type of data, this could affect the safety of the system and
may allow later attacks that affect the system availability or reliability.

As with other aspects of dependability, there is a specialised terminology asso-
ciated with security. Some important terms, as discussed by Pfleeger (Pfleeger, 1997),
are defined in Figure 3.9.

There is a clear analogy here with some of the terminology of safety so that an
exposure is analogous to an accident and a vulnerability is analogous to a hazard.

60 Chapter 3 = Critical systems

Therefore, there are comparable approaches that may be used to assure the secu-
rity of a system:

1. Vulnerability avoidance The system is designed so that vuinerabilities do not
occur. For example, if a system is not connected to an external public network
then there is no possibility of an attack from members of the public.

2. Attack detection and neutralisation The system is designed to detect vulnera-
bilities and remove them before they result in an exposure. An example of vul-
nerability detection and removal is the use of a virus checker that analyses
incoming files for viruses and modifies these files to remove the virus.

KEY POINTS

In a critical system, failure can lead to significant economic losses, physical damage or
threats to human life. Three important classes of critical systems are safety-critical systems,
mission-critical systems and business-critical systems.

The dependability of a computer system is a property of the system that reflects the user s
degree of trust in the system. The most important dimensions of dependability are
availability, reliability, safety and security.

The availability of a system is the probability that it will be able to deliver services to its

users when requested to do so. Reliability is the probability that system services will be
delivered as specified.

* Reliability and availability are usually considered to be the most important dimensions of

dependability. If a system is unreliable, it is difficult to ensure system safety or security, as
they may be compromised by system failures.

=+ Reliability is related to the probability of an error occurring in operational use. A program

may contain known faults but may still be seen as reliable by its users. They may never use
features of the system that are affected by these faults.

The safety of a system is a system attribute that reflects the system’s ability to operate,
normally or abnormally, without threatening people or the environment,

Security is important for all critical systems. Without a reasonable level of security, the
availability, reliability and safety of the system may be compromised if external attacks
cause some damage to the system.

. To improve dependability, you need to take a socio-technical approach to system design,

taking into account the humans in the system as well as the hardware and software.

Chapter 3 = Exercises 61

3. Exposure limitation The consequences of a successful attack are minimised.
Examples of exposure limitation are regular system backups and a configura-
tion management policy that allows damaged software to be recreated.

Most vulnerabilities in computer-based systems result from human rather than
technical failings. People choose easy-to-guess passwords or write them down in
places where they can be found. System administrators make mistakes when setting
up access control or configuration files. To improve security, therefore, we need to
think about how systems are actually used and not just about their technical char-
acteristics. This is discussed in more detail in Chapter 30, which covers security
engineering, in the new section on Emerging Technologies.

FURTHER READING BN NG BSS i e T D

‘The evolution of information assurance’. An excellent article discussing the need to protect critical
information in an organisation from accidents and attacks. (R. Cummings, /EEE Computer, 35 (12),
December 2002.)

Practical Design of Safety-critical Computer Systems. A general overview of safety-critical systems
design that discusses safety issues and which takes a systems and not merely a software
perspective. (W. R. Dunn, Reliability Press, 2002.)

Secrets and Lies: Digital Security in a Networked World. An excellent, very readable book on
computer security which approaches it from a socio-technical perspective. (B. Schneier, 2000,
John Wiley & Sons.)

‘Survivability: Protecting your critical systems’. An accessible introduction to the topic of
survivability and why it is important. (R. Ellison et al., IEEE Internet Computing, Nov./Dec. 1999.)

Computer-related Risks. A collection drawn from the Internet Risks Forum of incidents that have
occurred in automated systems. it shows how much can actually go wrong in safety-related
systems. (P. G. Neumann, 1995, Addison-Wesley.)

3.1 What are the three principal types of critical system? Explain the differences between these.

EXERCISES -

3.2 Suggest six reasons why dependability is important in critical systems.
3.3 What are the most important dimensions of system dependability?

3.4 Why is the cost of assuring dependability exponential?

62 Chapter 3 m Critical systems

3.5

3.6

37

38

39
3.10
3.11

3.12

Giving reasons for your answer, suggest which dependability attributes are likely to be most
critical for the following systems:

® An internet server provided by an ISP with thousands of customers
| A computer-controlled scalpel used in keyhole surgery

m A directional control system used in a satellite launch vehicle

@ An internet-based personal finance management system.

identify six consumer products that contain, or that may contain in the future, safety-critical
software systems.

Reliability and safety are related but distinct dependability attributes. Describe the most
important distinction between these attributes and explain why it is possibte for a reliable
system to be unsafe and vice versa.

In a medical system that is designed to deliver radiation to treat tumours, suggest one
hazard that may arise and propose one software feature that may be used to ensure that the
identified hazard does not result in an accident.

Explain why there is a close relationship between system availability and system security.
in computer security terms, explain the differences between an attack and a threat.

Is it ethical for an engineer to agree to deliver a software system with known faults to a
customer? Does it make any difference if the customer is told of the existence of these faults
in advance? Would it be reasonable to make claims about the reliability of the software in
such circumstances?

As an expert in computer security, you have been approached by an organisation that
campaigns for the rights of torture victims and have been asked to help the organisation gain
unauthorised access to the computer systems of an American company. This will help them
confirm or deny that this company is selling equipment that is used directly in the torture of
political prisoners. Discuss the ethical dilemmas that this request raises and how you would
react to this request.

4
Software processes

Objectives

The objective of this chapter is to introduce you to the idea of a
software process—a coherent set of activities for software production.
When you have read this chapter, you will:

® understand the concept of software processes and software process
models;

B understand three generic software process models and when they
might be used;

B understand, in outline, the activities involved in software
requirements engineering, software development, testing and
evolution;

® understand how the Rational Unified Process integrates good
software process practice to create a modern, generic process
mode!;

B have been introduced to CASE technology that is used to support
software process activities.

Contents

4.1 Software process models

4.2 Process iteration

4.3 Process activities

4.4 The Rational Unified Process

4.5 Computer-Aided Software Engineering

64 Chapter 4 = Software processes

A software process is a set of activities that leads to the production of a software
product. These activities may involve the development of software from scratch in
a standard programming language like Java or C. Increasingly, however, new soft-
ware is developed by extending and modifying existing systems and by configur-
ing and integrating off-the-shelf software or system components.

Software processes are complex and, like all intellectual and creative processes,
rely on people making decisions and judgements. Because of the need for judge-
ment and creativity, attempts to automate software processes have met with limited
success. Computer-aided software engineering (CASE) tools (discussed in Section
4.5) can support some process activities. However, there is no possibility, at least
in the next few years, of more extensive automation where software takes over cre-
ative design from the engineers involved in the software process.

One reason the effectiveness of CASE tools is limited is because of the immense
diversity of software processes. There is no ideal process, and many organisations
have developed their own approach to software development. Processes have
evolved to exploit the capabilities of the people in an organisation and the specific
characteristics of the systems that are being developed. For some systems, such as
critical systems, a very structured development process is required. For business
systems, with rapidly changing requirements, a flexible, agile process is likely to
be more effective.

Although there are many software processes, some fundamental activities are com-
mon to all software processes:

1. Software specification The functionality of the software and constraints on its
operation must be defined.

2. Software design and implementation The software to meet the specification must
be produced.

3. Software validation The software must be validated to ensure that it does what
the customer wants.

4. Software evolution The software must evolve to meet changing customer
needs.

I discuss these activities briefly in this chapter and discuss them in much more
detail in later parts of the book.

Although there is no ‘ideal’ software process, there is scope for improving the
software process in many organisations. Processes may include outdated techniques
or may not take advantage of the best practice in industrial software engineering.
Indeed, many organisations still do not take advantage of software engineering meth-
ods in their software development.

Software processes can be improved by process standardisation where the diver-
sity in software processes across an organisation is reduced. This leads to improved
communication and a reduction in training time, and makes automated process sup-
port more economical. Standardisation is also an important first step in introducing

4.1 ® Software process models 65

4.1

new software engineering methods and techniques and good software engineering
practice. [discuss software process improvement in more detail in Chapter 28.

Software process models

As I explained in Chapter 1, a software process model is an abstract representation
of a software process. Each process model represents a process from a particular
perspective, and thus provides only partial information about that process. In this
section, I introduce a number of very general process models (sometimes called pro-
cess paradigms) and present these from an architectural perspective. That is, we
see the framework of the process but not the details of specific activities.

Thes: generic models are not definitive descriptions of software processes. Rather,
they are abstractions of the process that can be used to explain different approaches
to software development. You can think of them as process frameworks that may be
extended and adapted to create more specific software engineering processes.

The process models that I cover here are:

1. The waterfall model This takes the fundamental process activities of specifi-
cation, development, validation and evolution and represents them as separate
process phases such as requirements specification, software design, imple-
mentation, testing and so on.

2. Evolutionary development This approach interleaves the activities of specifi-
cation, development and validation. An initial system is rapidly developed from
abstract specifications. This is then refined with customer input to produce a
system that satisfies the custorner s needs.

3. Component-based software engineering This approach is based on the existence
of a significant number of reusable components. The system development process
focuses on integrating these components into a system rather than developing
them from scratch.

These three generic process models are widely used in current software engi-
neering practice. They are not mutually exclusive and are often used together, espe-
cially for large systems development. Indeed, the Rational Unified Process that I
cover in Section 4.4 combines elements of all of these models. Sub-systems within
a larger system may be developed using different approaches. Therefore, although
it is corvenient to discuss these models separately, you should understand that, in
practice, they are often combined.

All sorts of variants of these generic processes have been proposed and may be
used in some organisations. The most important variant is probably formal system
development, where a formal mathematical model of a system is created. This model

66 Chapter 4 ® Software processes

Figure 4.1 [he
software life cycle

4.1.1

Requirements E
definition 3
System and

software design

implementation §
and unit testing ¥

ion and
testing |

Operation and
maintenance

is then transformed, using mathematical transformations that preserve its consistency,
into executable code.

The best-known example of a formal development process is the Cleanroom pro-
cess, which was originally developed by IBM (Mills, et al., 1987; Selby, et al., 1987,
Linger, 1994; Prowell, et al., 1999). In the Cleanroom process each software incre-
ment is formally specified and this specification is transformed into an implemen-
tation. Software correctness is demonstrated using a formal approach. There is no
testing for defects in the process, and the system testing is focused on assessing the
system’s reliability.

Both the Cleanroom approach and another approach to formal development based
on the B method (Wordsworth, 1996) are particularly suited to the development of
systems that have stringent safety, reliability or security requirements. The formal
approach simplifies the production of a safety or security case that demonstrates to
customers or certification bodies that the system does actually meet the safety or
security requirements.

Outside of these specialised domains, processes based on"formal transformations
are not widely used. They require specialised expertise and, in reality, for the major-
ity of systems this process does not offer significant cost or quality advantages over
other approaches to system development.

The waterfall model

The first published model of the software development process was derived
from more general system engineering processes (Royce, 1970). This is illustrated
in Figure 4.1. Because of the cascade from one phase to another, this model is known
as the waterfall model or software life cycle. The principal stages of the model map
onto fundamental development activities:

4.1 m Software process models 67

1. Requirements analysis and definition The system’s services, constraints and goals
are established by consultation with system users. They are then defined in detail
and serve as a system specification.

2. System and software design The systems design process partitions the require-
ments to either hardware or software systems. It establishes an overall system
architecture. Software design involves identifying and describing the fundamental
software system abstractions and their relationships.

3. Implementation and unit testing During this stage, the software design is
realised as a set of programs or program units. Unit testing involves verifying
that each unit meets its specification.

4. Integration and system testing The individual program units or programs are
integrated and tested as a complete system to ensure that the software require-
ments have been met. After testing, the software system is delivered to the
customer.

5. Operation and maintenance Normally (although not necessarily) this is the longest
life-cycle phase. The system is installed and put into practical use. Mainten-
ance involves correcting errors which were not discovered in earlier stages of
the life cycle, improving the implementation of system units and enhancing the
system’s services as new requirements are discovered.

In principle, the result of each phase is one or more documents that are approved
(‘signed off”). The following phase should not start until the previous phase has
finished. In practice, these stages overlap and feed information to each other.
During design, problems with requirements are identified; during coding design prob-
lems are found and so on. The sofiware process is not a simple linear model but
involves a sequence of iterations of the development activities.

Because of the costs of producing and approving documents, iterations are
costly ard involve significant rework. Therefore, after a small number of iterations,
it is normal to freeze parts of the development, such as the specification, and to
continue with the later development stages. Problems are left for later resolution,
ignored or programmed around. This premature freezing of requirements may mean
that the system won’t do what the user wants. It may also lead to badly structured
systems as design problems are circumvented by implementation tricks.

During the final life-cycle phase (operation and maintenance), the software is
put into use. Errors and omissions in the original software requirements are dis-
covered. Program and design errors emerge and the need for new functionality is
identified. The system must therefore evolve to remain useful. Making these
changes (software maintenance) may involve repeating previous process stages.

The advantages of the waterfall model are that documentation is produced at each
phase and that it fits with other engineering process models. Its major problem is
its inflexible partitioning of the project into distinct stages. Commitments must be
made at an early stage in the process, which makes it difficult to respond to chang-
ing customer requirements.

68 Chapter 4 = Software processes

Figure 4.2
Evolutionary
development

4.1.2

Concurrent
activities

Initial
version

——» | Intermediate
versions

Outline
description

Validation 3

Therefore, the waterfall model should only be used when the requirements are
well understood and unlikely to change radically during system development.
However, the waterfall model reflects the type of process model used in other engi-
neering projects. Consequently, software processes based on this approach are still
used for software development, particularly when the software project is part of a
larger systems engineering project.

Evolutionary development

Evolutionary development is based on the idea of developing an initial implemen-
tation, exposing this to user comment and refining it through many versions until
an adequate system has been developed (Figure 4.2). Specification, development
and validation activities are interleaved rather than separate, with rapid feedback
across activities.

There are two fundamental types of evolutionary development:

1. Exploratory development where the objective of the process is to work with
the customer to explore their requirements and deliver a final system. The devel-
opment starts with the parts of the system that are understood. The system evolves
by adding new features proposed by the customer.

2. Throwaway prototyping where the objective of the evolutionary development
process is to understand the customer’s requirements and hence develop a bet-
ter requirements definition for the system. The prototype concentrates on
experimenting with the customer requirements that are poorly understood.

An evolutionary approach to software development is often more effective than
the waterfall approach in producing systems that meet the immediate needs of cus-
tomers. The advantage of a software process that is based on an evolutionary approach

4.1 = Software process models 69

is that the specification can be developed incrementally. As users develop a better
understanding of their probiem, this can be reflected in the software system.
However, from an engineering and management perspective, the evolutionary
approach has two problems:

1. The process is not visible Managers need regular deliverables to measure
progress. If systems are developed quickly, it is not cost-effective to produce
documenits that reflect every version of the system.

2. Systems are often poorly structured Continual change tends to corrupt the soft-
ware structure. Incorporating software changes becomes increasingly difficult
and costly.

For small and medium-sized systems (up to 500,000 lines of code), I think that
the evolutionary approach is the best approach to development. The problems of
evolutionary development become particularly acute for large, complex, long-life-
time systems, where different teams develop different parts of the system. It is dif-
ficult to establish a stable system architecture using this approach, which makes it
hard to integrate contributions from the teams.

For large systems, I recommend a mixed process that incorporates the best fea-
tures of the waterfall and the evolutionary development models. This may involve
developing a throwaway prototype using an evolutionary approach to resolve
uncertainties in the system specification. You can then reimplement the system using
a more structured approach. Parts of the system that are well understood can be
specified and developed using a waterfall-based process. Other parts of the system,
such as the user interface, which are difficult to specify in advance, should always
be developed using an exploratory programming approach.

Evolutionary development processes and process support are covered in more
detail in Chapter 17, along with system prototyping and agile software development.
Evolutionary development is also incorporated in the Rational Unified Process that
I discuss later in this chapter.

Component based software engineering

In the majority of software projects, there is some software reuse. This usually hap-
pens infcrmally when people working on the project know of designs or code which
is similar to that required. They look for these, modify them as needed and incor-
porate them into their system. In the evolutionary approach, described in Section
4.1.2, reuse is often essential for rapid system development.

This informal reuse takes place irrespective of the development process that is
used. However, in the last few years, an approach to software development called
component-based software enginecring (CBSE), which relies on reuse, has
emerged and is becoming increasingly used. I briefly introduce this approach here
but cover it in more detail in Chapter 19.

70 Chapter 4 m Software processes

Requirements
specification J

Figure 4.3
Component-based
software engineering

Requirements System design '\
modification £ with reuse @
s .l s o e v L)
Development System
and integration A validation

This reuse-oriented approach relies on a large base of reusable software com-
ponents and some integrating framework for these components. Sometimes, these
components are systems in their own right (COTS or commercial off-the-shelf sys-
tems) that may provide specific functionality such as text formatting or numeric
calculation. The generic process model for CBSE is shown in Figure 4.3.

While the initial requirements specification stage and the validation stage are com-
parable with other processes, the intermediate stages in a reuse-oriented process are
different. These stages are:

Component
analysis g

1. Component analysis Given the requirements specification, a search is made for
components to implement that specification. Usually, there is no exact match,
and the components that may be used only provide some of the functionality
required.

2. Requirements modification During this stage, the requirements are analysed using
information about the components that have been discovered. They are then
modified to reflect the available components. Where modifications are impos-
sible, the component analysis activity may be re-entered to search for alterna-
tive solutions.

3. System design with reuse During this phase, the framework of the system is
designed or an existing framework is reused. The designers take into account
the components that are reused and organise the framework to cater to this.
Some new software may have to be designed if reusable components are not
available.

4. Development and integration Software that cannot be externally procured is devel-
oped, and the components and COTS systéms are integrated to create the new
system. System integration, in this model‘, may be part of the development pro-
cess rather than a separate activity.

Component-based software engineering hasthe obvious advantage of reducing
the amount of software to be developed and so\reducing cost and risks. It usually
also leads to faster delivery of the software. However, requirements compromises
are inevitable and this may lead to a system that does not meet the real needs of
users. Furthermore, some control over the system evolution is lost as new versions
of the reusable components are not under the control of the organisation using them.

4.2 m Process iteration 71

4.2.1

CBSE has much in common with an emerging approach to system development
that is based on integrating web services from a range of suppliers. I cover this service-
centric development approach in Chapter 12.

Process iteration

Change 1s inevitable in all large software projects. The system requirements change as
the business procuring the system responds to external pressures. Management prior-
ities change. As new technologies become available, designs and implementation change.
This means that the software process is not a one-off process; rather, the process activ-
ities are regularly repeated as the system is reworked in response to change requests.

Iterative development is so fundamental to software that I devote a complete chap-
ter to it later in the book (Chapter 17). In this section, I introduce the topic by describ-
ing two process models that have been explicitly designed to support process iteration:

1. Incremental delivery The software specification, design and implementation are
broken down into a series of increments that are each developed in tum.

2. Spiral development The development of the system spirals outwards from an
initial outline through to the final developed system.

The essence of iterative processes is that the specification is developed in conjunction
with the software. However, this conflicts with the procurement model of many organ-
isations where the complete system specification is part of the system development
contract. [n the incremental approach, there is no complete system specification until
the final increment is specified. This requires a new form of contract, which large
customers such as government agencies may find difficult to accommodate.

Incremental delivery

The waterfall model of development requires customers for a system to commit to
a set of requirements before design begins and the designer to commit to particu-
lar design strategies before implementation. Changes to the requirements require
rework of the requirements, design and implementation. However, the separation
of design and implementation should lead to well-documented systems that are
amenable to change. By contrast, an evolutionary approach to development allows
requirements and design decisions to be delayed but also leads to software that may
be poorly structured and difficult to understand and maintain.

Incremental delivery (Figure 4.4) is an in-between approach that combines the advan-
tages of these models. In an incremental development process, customers identify, in

72 Chapter 4 » Software processes

Define outline

requirements £

Design system
architecture £

Assign requirements
to increments

j.

Develop system }
increment J

bt v

Validate
increment A

Integrate
increment

Validate
system y

Final

Figure 4.4
incremental delivery

system
System incomplete

outline, the services to be provided by the system. They identify which of the ser-
vices are most important and which are least important to them. A number of deliv-
ery increments are then defined, with each increment providing a sub-set of the system
functionality. The allocation of services to increments depends on the service pri-
ority with the highest priority services delivered first.

Once the system increments have been identified, the requirements for the ser-
vices to be delivered in the first increment are defined in detail, and that increment
is developed. During development, further requirements analysis for later increments
can take place, but requirements changes for the current increment are not accepted.

Once an increment is completed and delivered, customers can put it into service.
This means that they take early delivery of part of the system functionality. They
can experiment with the system that helps them clarify their requirements for later
increments and for later versions of the current increment. As new increments are
completed, they are integrated with existing increments so that the system functionality
improves with each delivered increment. The common services may be implemented
early in the process or may be implemented incrementally as functionality is
required by an increment.

This incremental development process has a number of advantages:

1. Customers do not have to wait until the entire system is delivered before they
can gain value from it. The first increment satisfies their most critical require-
ments so they can use the software immediately.

2. Customers can use the early increments as prototypes and gain experience that
informs their requirements for later system increments.

3. There is a lower risk of overall project failure. Although problems may be encoun-
tered in some increments, it is likely that some will be successfully delivered
to the customer.

4. As the highest priority services are delivered first, and later increments are inte-
grated with them, it is inevitable that the most important system services
receive the most testing. This means that customers are less likely to encounter
software failures in the most important parts of the system.

4.2 . Process iteration 73

4.2.2

However, there are probiems with incremental delivery. Increments should be
relatively small (no more than 20,000 lines of code), and each increment should
deliver some system functionality. It can be difficult to map the customer s require-
ments onto increments of the right size. Furthermore, most systems require a set of
basic facilities that are used by different parts of the system. As requirements are
not defined in detail unti! an increment is to be implemented, it can be hard to iden-
tify common facilities that are needzd by all increments.

A variant of this incremental approach called extreme programming has been
developed (Beck, 2000). This is based around the development and delivery of very
small increments of functionality, customer involvement in the process, constant code
improvement and pair programming. [discuss extreme programming and other so-
called agile methods in Chapter 17.

Spiral development

The spiral model of the software process (Figure 4.5) was originally proposed by

Boehm (Boehm, 1988). Rather than represent the software process as a sequence

of activities with some backtracking from one activity to another, the process is

represented as a spiral. Each loop in the spiral represents a phase of the software

process. Thus, the innermost loop might be concerned with system feasibility, the

next loop with requirements definition, the next loop with system designand so on.
Each Joop in the spiral is split into four sectors:

1. Objective setting Specific objectives for that phase of the project are defined.
Constraints on the process and the product are identified and a detailed man-
agement plan is drawn up. Project risks are identified. Alternative strategies,
depending on these risks, may be planned.

2. Risk assessment and reduction For each of the identified project risks, a
detailed analysis is carried out. Steps are taken to reduce the risk. For exam-
ple, if there is a risk that the requirements are inappropriate, a prototype sys-
tem may be developed.

3. Development and validation After risk evaluation, a development model for the
system is chosen. For example, if user interface risks are dominant, an appro-
priate development model might be evolutionary prototyping. If safety risks are
the main consideration, development based on formal transformations may be
the most appropriate and so on. The waterfall model may be the most appro-
priate development model if the main identified risk is sub-system integration.

4. Planning The project is reviewed and a decision made whether to continue with
a further loop of the spiral. If it is decided to continue, plans are drawn up for
the next phase of the project.

The main difference between the spiral model and other software process models
is the explicit recognition of risk in the spiral model. Informally, risk simply means

74 Chapter 4 = Software processes

Determine objectives,
alternatives and
constraints

Evaluate alternatives,
identify, resolve risks

REVIEW

Plan next phase

Figure 4.5 Boehm's
spiral model of the
software process

(©IEEE, 1988)

4.3

Requirements plan
Life-cycle plan

Simulations,l models, benrchmarks
Concept of
Operation S/W

fequirements / Product
4 design / Detailed

Development | Requirement design
plan validation Code
i Unit test
Integration Design ;
and test plan vav Integration
Acceptance &t
Service test Develop, verify

next-level product

something that can go wrong. For example, if the intention is to use a new programming
language, a risk is that the available compilers are unreliable or do not produce suf-
ficiently efficient object code. Risks result in project problems such as schedule and
cost overrun so risk minimisation is a very important project management activity.
Risk management, an essential part of project management, is covered in Chapter 5.

A cycle of the spiral begins by elaborating objectives such as performance and
functionality. Alternative ways of achieving these objectives and the constraints
imposed on each of them are then enumerated. Each alternative is assessed against
each objective and sources of project risk are identified. The next step is to resolve
these risks by information-gathering activities such as more detailed analysis, pro-
totyping and simulation. Once risks have been assessed, some development is car-
ried out, followed by a planning activity for the next phase of the process.

Process activities

The four basic process activities of specification, development, validation and evo-
lution are organised differently in different development processes. In the waterfall

4.3 m Process activities 75

431

Figure 4.6 The
requirements
engineering process

model, they are organised in sequence, whereas in evolutionary development they
are interleaved. How these activities are carried out depends on the type of soft-
ware, people and organisational structures involved. There is no right or wrong way
to organise these activities and my goal in this section is simply to provide you
with an introduction to how they can be organised.

Software specification

Software specification or requirements engineering is the process of understanding
and defining what services are required from the system and identifying the con-
straints on the system'’s operation and development. Requirements engineering is a
particularly critical stage of the software process as errors at this stage inevitably
lead to later problems in the system design and implementation.

The requirements engineering process is shown in Figure 4.6. This process leads
to the production of a requirements document that is the specification for the sys-
tem. Requirements are usually presented at two levels of detail in this document.
End-users and customers need a high-level statement of the requirements; system
developers need a more detailed system specification.

There are four main phases in the requirements engineering process:

1. Feasibility study An estimate is made of whether the identified user needs may
be satisfied using current software and hardware technologies. The study con-
siders whether the proposed system will be cost-effective from a business point
of view and whether it can be developed within existing budgetary constraints.
A feasibility study should be relatively cheap and quick. The result should inform
the decision of whether to go ahead with a more detailed analysis.

2. Requirements elicitation and analysis This is the process of deriving the
system requirements through observation of existing systems, discussions with

Feasibility
(study }

Requirements
elicitation and
analysis

Requirements
specification

Feasibility E Requirements
report \ validation
System o T
models
e, L L o

User and system
requirements

R

Requirements
document ‘

76 Chapter 4 » Software processes

4.3.2

potential users and procurers, task analysis and so on. This may involve the
development of one or more system models and prototypes. These help the ana-
lyst understand the system to be specified.

3. Requirements specification The activity of translating the information gathered
during the analysis activity into a document that defines a set of requirements.
Two types of requirements may be included in this document. User require-
ments are abstract statements of the system requirements for the customer and
end-user of the system; system requirements are a more detailed description of
the functionality to be provided.

4. Requirements validation This activity checks the requirements for realism, con-
sistency and completeness. During this process, errors in the requirements doc-
ument are inevitably discovered. It must then be modified to correct these
problems.

Of course, the activities in the requirements process are not simply carried out
in a strict sequence. Requirements analysis continues during definition and speci-
fication, and new requirements come to light throughout the process. Therefore, the
activities of analysis, definition and specification are interleaved. In agile methods
such as extreme programming, requirements are developed incrementally accord-
ing to user priorities, and the elicitation of requirements comes from users who are
part of the development team.

Software design and implementation

The implementation stage of software development is the process of converting a
system specification into an executable system. It always involves processes of soft-
ware design and programming but, if an evolutionary approach to development is
used, may also involve refinement of the software specification.

A software design is a description of the structure of the software to be imple-
mented, the data which is part of the system, the interfaces between system com-
ponents and, sometimes, the algorithms used. Designers do not arrive at a finished
design immediately but develop the design iteratively through a number of versions.
The design process involves adding formality and detail as the design is developed
with constant backtracking to correct earlier designs.

The design process may involve developing several models of the system at dif-
ferent levels of abstraction. As a design is decomposed, errors and omissions in ear-
lier stages are discovered. These feed back to allow earlier design models to be
improved. Figure 4.7 is a model of this process showing the design descriptions
that may be produced at various stages of design. This diagram suggests that the
stages of the design process are sequential. In fact, design process activities are inter-
leaved. Feedback from one stage to another and consequent design rework is
inevitable in all. design processes.

4.3 = Process activities

77

Requirements
specification £

N

Architectural Abstract Interface
design & specification 7 design

y

Component
dasign

oy

System
architecture

Figure 4.7 A general
model of the design

process

Algorithm
design

/ i . [
Software Interface f Component str?:ttzre Algorithm
specification specification | specification ficati specification
Lot B CEPDTRR TR Spec ication e
Design products

A specification for the next stage is the output of each design activity. This spec-
ification may be an abstract, formal specification that is prod ced to clarify the require-
ments, or it may be a specification of how part of the system is to be realised. As
the design process continues, these specifications become more detailed. The final
results of the process are precise specifications of the algorithms and data struc-
tures to be implemented.

The specific design process activities are:

Architectural design The sub-systems making up the system and their relationships
are identified and documented. This important topic is covered in Chapters 11,
12 and 13.

Abstract specification For each sub-system, an abstract specification of its ser-
vices and the constraints under which it must operate is produced.

Interface design For each sub-system, its interface with other sub-systems is
designed and documented. This interface specification must be unambiguous
as it allows the sub-system to be used without knowledge of the sub-system
operation. Formal specification methods, as discussed in Chapter 10, may be
used at this stage.

Component design Services are allocated to components and the interfaces of
these components are designed.

Data structure design The data structures used in the system implementation
are designed in detail and specified.

Algorithm design The algorithms used to provide services are designed in detail
and specified.

78 Chapter 4 m Software processes

This is a general model of the design process and real, practical processes may
adapt it in different ways. Possible adaptations are:

1. The last two stages of design—data structure and algorithm design—may be
delayed until the implementation process.

2. If an exploratory approach to design is used, the system interfaces may be designed
after the data structures have been specified.

3. The abstract specification stage may be skipped, although it is usually an essen-
tial part of critical systems design.

Increasingly, where agile methods of development are used (see Chapter 17), the
outputs of the design process will not be separate specification documents but will
be represented in the code of the program. After the system architecture has been
designed, later stages of the design are incremental. Each increment is represented
as program code rather than as a design model.

A contrasting approach is taken by structured methods for design that rely on pro-
ducing graphical models of the system (see Chapter 8) and, in many cases, auto-
matically generating code from these models. Structured methods were invented in
the 1970s to support function-oriented design (Constantine and Yourdon, 1979; Gane
and Sarson, 1979). Various competing methods to support object-oriented design were
proposed (Robinson, 1992; Booch, 1994) and these were unified in the 1990s to cre-
ate the Unified Modeling Language (UML) and the associated unified design pro-
cess (Rumbaugh, et al., 1991; Booch, et al., 1999; Rumbaugh, et al., 1999a;
Rumbaugh, et al., 1999b). At the time of this writing, a major revision to UML (UML
2.0) is underway.

A structured method includes a design process model, notations to represent the
design, report formats, rules and design guidelines. Structured methods may sup-
port some or all of the following models of a system:

1. An object model that shows the object classes used in the system and their
dependencies.

2. A sequence model that shows how objects in the system interact when the sys-
tem is executing.

3. A state transition model that shows system states and the triggers for the tran-
sitions from one state to another.

4. A structural model where the system components and their aggregations are
documented.

5. A data flow model where the system is modelled using the data transforma-
tions that take place as it is processed. This is not normally used in object-oriented
methods but is still frequently used in real-time and business system design.

4.3 = Process activities 79

Figure 4.8 The
debugging process

Locate Design
error ; error repair 3

Retest
program £

In practice, structured ‘methods’ are really standard notations and embodiments
of good practice. Following these methods and applying the guidelines can result
in a reasonable design. Designer creativity is still required to decide on the system
decomposition and to ensure that the design adequately captures the system speci-
fication. Empirical studies of designers (Bansler and Bgdker, 1993) have shown that
they rarely follow methods slavishly. They pick and choose from the guidelines accord-
ing to local circumstances.

The development of a program to implement the system follows naturally from
the system design processes. Although some classes of programs, such as safety-
critical systems, are usvally designed in detail before any implementation begins,
it 1s more common for the later stages of design and program development to be
interleaved. CASE tools may be used to generate a skeleton program from a design.
This includes code to define and implement interfaces, and in many cases the devel-
oper need only add details of the operation of each program component.

Programming is a personal activity and there is no general process that is usu-
ally followed. Some programmers start with components that they understand,
develop them, and then move on tc less well-understood components. Others take
the opposite approach, leaving familiar components till last because they know
how to develop them. Some developers like to define data early in the process
then use this to drive the prograrn development; others leave data unspecified
for as long as possible.

Normally, programmers carry out some testing of the code they have developed.
This often reveals program defects that must be removed from the program. This
is callec debugging. Defect testing and debugging are different processes. Testing
establishes the existence of defects. Debugging is concerned with locating and cor-
recting these defects.

Figure 4.8 illustrates the stages of debugging. Defects in the code must be located
and the program modified to meet its requirements. Testing must then be repeated
to ensure that the change has been made correctly. Thus the debugging process is
part of both software development and software testing.

When debugging, you generate hypotheses about the observable behaviour of
the program then test these hypotheses in the hope of finding the fault which caused
the output anomaly. Testing the hypotheses may involve tracing the program code
manually. You may write new test cases to localise the problem. Interactive debug-
ging tools that show the intermediate values of program variables and a trace of the
statements executed may be used to help the debugging process.

80 Chapter 4 = Software processes

Figure 4.9 The
testing process

Component
testing /

4.3.3 Software validation

Software validation or, more generally, verification and validation (V & V) is intended
to show that a system conforms to its specification and that the system meets the
expectations of the customer buying the system. It involves checking processes, such
as inspections and reviews (see Chapter 22), at each stage of the software process
from user requirements definition to program development. The majority of vali-
dation costs, however, are incurred after implementation when the operational sys-
tem is tested (Chapter 23).

Except for small programs, systems should not be tested as a single, monolithic
unit. Figure 4.9 shows a three-stage testing process where system components are
tested, the integrated system is tested and, finally, the system is tested with the cus-
tomer’s data. Ideally, component defects are discovered early in the process and
interface problems when the system is integrated. However, as defects are discov-
ered the program must be debugged and this may require other stages in the test-
ing process to be repeated. Errors in program components, say, may come to light
during system testing. The process is therefore an iterative one with information
being fed back from later stages to earlier parts of the process.

The stages in the testing process are:

1. Component (or unit) testing Individual components are tested to ensure that they
operate correctly. Each component is tested independently, without other sys-
tem components. Components may be simple entities such as functions or object
classes, or may be coherent groupings of these entities.

2. System testing The components are integrated to make up the system. This pro-
cess is concerned with finding errors that result from unanticipated interactions
between components and component interface problems. It is also concerned with
validating that the system meets its functional and non-functional requirements
and testing the emergent system properties. For large systems, this may be a multi-
stage process where components are integrated to form sub-systems that are indi-
vidually tested before they are themselves integrated to form the final system.

3. Acceptance testing This is the final stage in the testing process before the sys-
tem is accepted for operational use. The system is tested with data supplied by
the system customer rather than with simulated test data. Acceptance testing may
reveal errors and omissions in the system requirements definition because the
real data exercise the system in different ways from the test data. Acceptance
testing may also reveal requirements problems where the system’s facilities do
not really meet the user s needs or the system performance is unacceptable.

4.3 - Process activities 81

Requirements '}
specification /.

Detailed
design

T

System
specification

TaCasiiia Ly

Figure 4.10 Testing
phases in the
software process

4.3.4

Acceptance
test plan

System Sub-system Module and
integration | integration unit code
test plan g test plan and test

i

-
Sub-system
integration test /

Acceptance
test

System
integration test /-

Normally, component development and testing are interleaved. Programmers make
up their own test data and incrementally test the code as it is developed. This is an
economically sensible approach, as the programmer knows the component best and
is therefore the best person to generate test cases.

If an incremental approach to development is used, each increment should be
tested as it is developed, with these tests based on the requirements for that incre-
ment. In extreme programming, tests are developed along with the requirements before
development starts. This helps the testers and developers to understand the require-
ments and ensures that there are no delays as test cases are created.

Later stages of testing involve integrating work from a number of programmers
and must be planned in advance. An independent team of testers should work from
preformulated test plans that are developed from the system specification and
design. Figure 4.10 illustrates how tzst plans are the link between testing and devel-
opment activities.

Acceptance testing is sometimes called alpha testing. Custom systems are devel-
oped for a single client. The alpha testing process continues until the system devel-
oper and the client agree that the delivered system 1s an acceptable implementation
of the system requirements.

When a system is to be marketed as a software product, a testing process called
beta testing is often used. Beta testing involves delivering a system to a number of
potential customers who agree to use that system. They report problems to the sys-
tem developers. This exposes the product to real use and detects errors that may
not have been anticipated by the system builders. After this feedback, the system
is modified and released either for further beta testing or for general sale.

Software evolution

The flexibility of software systems is one of the main reasons why more and more
software is being incorporated in large, complex systems. Once a decision has been
made to procure hardware, it is very expensive to make changes to the hardware

82 Chapter 4 = Software processes

Figure 4.11 System

evolution

-

Define system '\
requirements /Jr

Assess existing Propose system Modify
systems 4 changes 4 systems &
Existing § New A
systems | system :

design. However, changes can be made to software at any time during or after the
system development. Even extensive changes are still much cheaper than corresponding
changes to system hardware.

Historically, there has always been a split between the process of software devel-
opment and the process of software evolution (software maintenance). People think
of software development as a creative activity where a software system was devel-

ped from an initial concept through to a working system. However, they sometimes
think of software maintenance as dull and uninteresting. Although the costs of ‘main-
tenance are often several times the initial development costs, maintenance processes
are sometimes considered to be less challenging than original software development.

This distinction between development and maintenance is becoming increasingly
irrelevant. Few software systems are now completely new systems, and it makes
much more sense to see development and maintenance as a continuum. Rather than
two separate processes, it is more realistic to think of software engineering as an
evolutionary process (Figure 4.11) where software is continually changed over its
lifetime in response to changing requirements and customer needs.

The Rational Unified Process

The Rational Unified Process (RUP) is an example of a modern process model that
has been derived from work on the UML and the associated Unified Software
Development Process (Rumbaugh, et al., 1999b). I have included a description here
as it is a good example of a hybrid process model. It brings together elements from
all of the generic process models (Section 4.1), supports iteration (Section 4.2) and
illustrates good practice in specification and design (Section 4.3).

The RUP recognises that conventional process models present a single view of
the process. In contrast, the RUP is normally described from three perspectives:

1. A dynamic perspective that shows the phases of the model over time.
2. A static perspective that shows the process activities that are enacted.

3. A practice perspective that suggests good practices to be used during the process.

4.4 wm The Rational Unified Process 83

Figure 4.12 Phases
in the Rational
Unified Process

Phase iteration

-

Inception Elaboration ' Construction Transition

Most descriptions of the RUP attempt to combine the static and dynamic per-

spectives in a single diagram (Krutchen, 2000). I think that makes the process harder
to understand, so I use separate descriptions of each of these perspectives.

The RUP is a phased model that identifies four discrete phases in the software

process. However, unlike the waterfall model where phases are equated with pro-
cess activities, the phases in the RUP are more closely related to business rather
than technical concerns. Figure 4.12 shows the phases in the RUP. These are:

1.

Inception The goal of the inception phase is to establish a business case for the
system. You should identify all external entities (people and systems) that will
interact with the system and define these interactions. You then use this infor-
mation to assess the contribution that the system makes to the business. If this
contribution is minor, then the project may be cancelled after this phase.

Elaboration The goals of the elaboration phase are to develop an understand-
ing of the problem domain, establish an architectural framework for the sys-
tem, develop the project plan and identify key project risks. On completion of
this phase, you should have a requirements model for the system (UML use
cases are specified), an architectural description and a development plan for
the software.

Construction The construction phase is essentially concerned with system
design, programming and testing. Parts of the system are developed in paral-
lel and integrated during this phase. On completion of this phase, you should
have a working software system and associated documentation that is ready for
delivery to users.

Transition The final phase of the RUP is concerned with moving the system
from the development community to the user community and making it work
in a real environment. This is something that is ignored in most software pro-
cess models but is, in fact, an expensive and sometimes problematic activity.
On completion of this phase, you should have a documented software system
that is working correctly in its operational environment.

Iteration within the RUP is supported in two ways, as shown in Figure 4.12. Each

phase may be enacted in an iterative way with the results developed incrementally.
In addition, the whole set of phases may also be enacted incrementally, as shown
by the looping arrow from Transition to Inception in Figure 4.12.

84 Chapter 4 = Software processes

Workflow Description

Business modelling

Requirements

Analysis and design

implementation

Testing

Deployment

Configuration and

The business processes are modelled using business use cases.

Actors who interact with the system are identified and use cases are developed to
model the system requirements.

A design model is created and documented using architectural models, component
modeils, object models and sequence models.

The components in the system are implemented and structured into
implementation sub-systems. Automatic code generation from design models helps
accelerate this process.

Testing is an iterative process that is carried out in conjunction with
implementation. System testing follows the completion of the impiementation.

A product release is created, distributed to users and installed in their workplace.

This supporting workflow manages changes to the system (see Chapter 29).

change management

Project management

Environment

Figure 4.13 Static
workflows in
Rationa!l Unified
Process

This supporting workflow manages the system development (see Chapter 5).

This workflow is concerned with making appropriate software tools available to the
software development team.

The static view of the RUP focuses on the activities that take place during the devel-
opment process. These are called workflows in the RUP description. There are six
core process workflows identified in the process and three core supporting workflows.
The RUP has been designed in conjunction with the UML—an object-oriented mod-
elling language—so the workflow description is oriented around associated UML mod-
els. The core engineering and support workflows are described in Figure 4.13.

The advantage in presenting dynamic and static views is that phases of the devel-
opment process are not associated with specific workflows. In principle at least, all of
the RUP workflows may be active at all stages of the process. Of course, most effort
will probably be spent on workflows such as business modelling and requirements at
the early phases of the process and in testing and deployment in the later phases.

The practice perspective on the RUP describes good software engineering prac-
tices that are recommended for use in systems development. Six fundamental best
practices are recommended:

1. Develop software iteratively. Plan increments of the system based on customer
priorities and develop and deliver the highest priority system features early in
the development process.

2. Manage requirements. Explicitly document the customer s requirements and keep
track of changes to these requirements. Analyse the impact of changes on the
system before accepting them.

4.5 - Computer-Aided Software Engineering 85

4.5

3. Use component-based architectures. Structure the system architecture into
components as discussed earlier in this chapter.

4. Visually model software. Use graphical UML models to present static and dynamic
views of the software.

5. Verify software quality. Ensure that the software meets the organisational qual-
ity standard .

6. Control changes to software. Manage changes to the software using a change
management system and configuration management procedures and tools (see
Chapter 29).

The RUP is not a suitable process for all types of development but it does repre-
sent a new generation of generic processes. The most important innovations are the
separation of phases and workflows, and the recognition that deploying software in
a user s environment is part of the process. Phases are dynamic and have goals.
Workflows are static and are technical activities that are not associated with a single
phase but may be used throughout the development to achieve the goals of each phase.

Computer-Aided Software Engineering

Computer-Aided Software Engineering (CASE) is the name given to software used
to support software process activities such as requirements engineering, design, pro-
gram development and testing. CASE tools therefore include design editors, data
dictionaries, compilers, debuggers, system building tools and so on.

CASE technology provides software process support by automating some pro-
cess activities and by providing information about the software that is being devel-
oped. Examples of activities that can be automated using CASE include:

1. The development of graphical system models as part of the requirements spec-
ification or the software design.

2. Understanding a design using a data dictionary that holds information about
the entities and relations in a design.

3. The generation of user interfaces from a graphical interface description that is
created interactively by the user.

4. Program debugging through the provision of information about an executing
program.

5. The automated translation of programs from an old version of a programming
language such as COBOL to a more recent version.

86 Chapter 4 m Software processes

4.5.1

CASE technology is now available for most routine activities in the software pro-
cess. This has led to some improvements in software quality and productivity, although
these have been less than predicted by early advocates of CASE. Early advocates
suggested that orders of magnitude improvement were likely if integrated CASE
environments were used. In fact, the improvements that have been achieved are of
the order of 40% (Huff, 1992). Although this is significant, the predictions when
CASE tools were first introduced in the 1980s and 1990s were that the use of CASE
technology would generate huge savings in software process costs.

The improvements from the use of CASE are limited by two factors:

1. Software engineering is, essentially, a design activity based on creative
thought. Existing CASE systems automate routine activities but attempts to har-
ness artificial intelligence technology to provide support for design have not
been successful.

2. In most organisations, software engineering is a team activity, and software engi-
neers spend quite a lot of time interacting with other team members. CASE
technology does not provide much support for this.

CASE technology is now mature, and CASE tools and workbenches are avail-
able from a wide range of suppliers. However, rather than focus on any specific
tools, I simply present an overview of tools here with some discussion of specific
support in other chapters. In my web pages, I include links to other material on
CASE and links to CASE tool suppliers.

CASE classification

CASE classifications help us understand the types of CASE tools and their role in
supporting software process activities. There are several ways to classify CASE tools,
each of which gives us a different perspective on these tools. In this section, I dis-
cuss CASE tools from three of these perspectives:

1. A functional perspective where CASE tools are classified according to their spe-
cific function.

2. A process perspective where tools are classified according to the process activ-
ities that they support.

3. An integration perspective where CASE tools are classified according to how
they are organised into integrated units that provide support for one or more
process activities.

Figure 4.14 is a classification of CASE tools according to function. This table
lists a number of different types of CASE tools and gives specific examples of each

4.5 Computer-Aided Software Engineering 87

Figure 4.14
Functional
classification of
CASE tools

Tool type Examples ~

Planning tools PERT tools, estimation tools, spreadsheets
Editing tools Text editors, diagram editors, word processors
Change Requirements traceability tools, change contro! systems

management tools

Configuration Version management systems, system building tools
management tools

Prototyping tools Very high-level languages, user interface generators
Method-support tools Design editors, data dictionaries, code generators

Language-processing Compilers, interpreters
tools

Program analysis tools Cross reference generators, static analysers, dynamic analysers
Testing tools Test data generators, file comparators

Debuggirg tools Interactive debugging systems

Documentation tools Page layout programs, image editors

Reengineering tools Cross-reference systems, program restructuring systems

one. This is not a complete list of CASE tools. Specialised tools, such as tools to
support reuse, have not been included.

Figure 4.15 presents an alternative classification of CASE tools. It shows the pro-
cess phases supported by a number of types of CASE tools. Tools for planning
and estimating, text editing, document preparation and configuration management
may be used throughout the software process.

The breadth of support for the software process offered by CASE technology is
another possible classification dimension. Fuggetta (Fuggetta, 1993) proposes that
CASE systems should be classified in three categories:

1. Tools support individual process tasks such as checking the consistency of a design,
compiling a program and comparing test results. Tools may be general-purpose,
standalone tools (e.g., a word processor) or grouped into workbenches.

2. Workbenches support process phases or activities such as specification, design,
etc. They normally consist of a set of tools with some greater or lesser degree
of integration.

3. Environments support all or at least a substantial part of the software process.
They normally include several integrated workbenches.

88 Chapter 4 + Software processes

Figure 4.15 Activity-
based classification
of CASE tools

Re-engineering tools L4
Testing tools L ®
Debugging tools [J []
Program analysis tools ® ®
Language-processing ® ®
tools
Method support tools L L
Prototyping tools ® ®
Configuration
management tools ® o
Change management tools L4 L4 L ®
Documentation toals L4 ® L L
Editing tools ® ® ® ®
Planning tools L ° ® °
Specification Design Implementation Verification
and
Validation

Figure 4.16 illustrates this classification and shows some examples of these classes
of CASE support. Of course, this is an illustrative example; many types of tools
and workbenches have been left out of this diagram.

General-purpose tools are used at the discretion of the software engineer who
makes decisions about when to apply them for process support. Workbenches, how-
ever, usually support some method that includes a process model and a set of
rules/guidelines, which apply to the software being developed. I have classified envi-
ronments as integrated or process-centred. Integrated environments provide infras-
tructure support for data, control and presentation integration. Process-centred
environments are more general. They include software process knowledge and a
process engine which uses this process model to advise engineers on what tools or
workbenches to apply and when they should be used.

In practice, the boundaries between these classes are blurred. Tools may be sold
as a single product but may embed support for different activities. For example,
most word processors now provide a built-in diagram editor. CASE workbenches
for design usually support programming and testing, so they are more akin to
environments than specialised workbenches. It may therefore not always be easy to
position a product using a classification. Nevertheless, classification provides a use-
ful first step to help understand the extent of process support that a tool provides.

Chapter 4 Key points 89

CASE
technology
| Sovem——a—
Tools ” Workbenches " Environments
L. g o) =
l Editors ’] L Compilers File] Integrated | | Process-centred
Anzlz::z:nd .I Programmingj Testing "

L———r

comparators environments environments

| |

Multi-method Single-method General-purpase Language-specific
workbenches workbenches workbenches workbenches

Figure 4.16 Tools,
workbenches and
environments

o i "

KEY POINTS

Software processes are the activities involved in producing a software system. Software
process models are abstract representations of these processes.

All software processes inciude software specification, software design and implementation,
software validation and software evolution.

Generic process models describe the organisation of software processes. Examples of
generic models include the waterfall model, evolutionary development and component-
based software engineering.

lterative process models present the software process as a cycle of activities. The advantage
of this approach is that it avoids premature commitments to a specification or design.

90 Chapter 4 ® Software processes

Examples of iterative models include incremental development and the spiral model.

Requirements engineering is the process of developing a software specification.
Specifications are intended to communicate the system needs of the customer to the
system developers.

Design and implementation processes are concerned with transforming a requirements
specification into an executable software system. Systematic design methods may be used
as part of this transformation,

Software validation is the process of checking that the system conforms to its specification
and that it meets the real needs of the users of the system.

Software evolution is concerned with modifying existing software systems to meet new
requirements. This is becoming the normal approach to software development for small and
medium-sized systems.

The Rational Unified Process is a modern generic process model that is organised into
phases (inception, elaboration, construction and transition) but that separates activities
(requirements, analysis and design, etc.) from these phases.

CASE technology provides automated support for software processes. CASE tools support
individual process activities; workbenches support a set of related activities; environments
support all or most software process activities.

FURTHER READING i N E e

Extreme Programming Explained: Embrace Change. An evangelical book that describes the extreme
programming process and extreme programming experiences. The author was the inventor of
extreme programming and communicates his enthusiasm very well. (Kent Beck, 2000, Addison-
Wesley.)

The Rational Unified Process—An Introduction. This is the most readable book available on the
RUP at the time of this writing. Krutchen describes the process well, but | would like to have seen
more on the practical difficulties of using the process. (P. Krutchen, 2000, Addison-Wesley.)

Managing Software Quality and Business Risk. This is primarily a book about software
management but it includes an excellent chapter (Chapter 4) on process models. (M. Ould, 1999,
John Wiley & Sons)

‘A classification of CASE technology’. The classification scheme proposed in this article is used in
this chapter, but Fuggetta goes into more detail and illustrates how a number of commercial
products fit into this scheme. (A. Fuggetta, /EEE Computer, 26 (12), December 1993.)

Chapter 4 m Exercises 91

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

4.10

4.11

4.12

- ! [[T

Giving reasons for your answer based on the type of system being developed, suggest the
most appropriate generic software process model that might be used as a basis for managing
the development of the following systems:

B A system to control anti-lock braking in a ca~
® A virtual reality system to support software maintenance
m A university accounting system that replaces an existing system

m An interactive system that allows railway passengers to find train times from terminals
installed in stations.

Explain why programs that are developed using evolutionary development are likely to be
difficult to maintain.

Explain how both the waterfall model of the software process and the prototyping model can
be accommodated in the spiral process model.

What are the advantages of providing static and dynamic views of the software process as in
the Rational Unified Process?

Suggest why it is important to make a distinction between developing the user requirements
and developing system requirements in the recuirements engineering process.

Describe the main activities in the software design process and the outputs of these
activities. Using a diagram, show possible relationships between the outputs of these
activities.

What are the five components of a design method? Take any method you know and describe
its components. Assess the completeness of the method that you have chosen.

Design a process model for running system tests and recording their results. -

Explain why a software system that is used in a real-world environment must change or
become progressively less useful.

Suggest how a CASE technology classification scheme may be helpfui to managers
responsible for CASE system procurement.

Survey the tool availability in your local development environment and classify the tools
according to the parameters (function, activity, breadth of support) suggested here.

Historically, the introduction of technology has caused profound changes in the labour
market and, temporarily at least, displaced people from jobs. Discuss whether the
introduction of advanced CASE technology is likely to have the same consequences for
software engineers. If you don’t think it will, explain why not. If you think that it will reduce
job opportunities, is it ethical for the engineers affected to passively or actively resist the
introduction of this technology?

5
Project management

Objectives

The objective of this chapter is to give you an overview of softwar
project management. When you have read this chapter, you will:

& know the principal tasks of software project managers;

® understand why the nature of software makes software project
management more difficult than other engineering project
management;

® understand the need for project planning in all software projects;

m know how graphical representations (bar charts and activity
charts) can be used by project managers to represent project
schedules;

m have been introduced to the notion of risk management and
some of the risks that can arise in software projects.

Contents

5.1 Management activities
5.2 Project planning

5.3 Project scheduling
5.4 Risk management

Chapter 5 m Project management 93

Software project management is an essential part of software engineering. Good man-
agement cannot guarantee project success. However, bad management usually
results in project failure: The software is delivered late, costs more than originally
estimated and fails to meet its requirements.

Software managers are responsible for planning and scheduling project devel-
opment. They supervise the work to ensure that it is carried out to the required stan-
dards and monitor progress to check that the development is on time and within
budget. 'We need software project management because professional software engi-
neering is always subject to organisational budget and schedule constraints. The soft-
ware project manager’s job is to ensure that the software project meets these
constraints and delivers software that contributes to the goals of the company devel-
oping the software.

Software managers do the same kind of job as other engineering project man-
agers. However, software engineering is different from other types of engineering
in a number of ways. These distinctions make software management particularly
difficult. Some of the differences are:

1. The product is intangible The manager of a shipbuilding project or of a civil
engineering project can see the product being developed. If a schedule slips,
the effect on the product is visible—parts of the structure are obviously unfin-
ished. Software is intangible. It cannot be seen or touched. Software project
maragers cannot see progress. They rely on others to produce the documenta-
tion needed to review progress.

2. There are no standard software processes In engineering disciplines with a long
history, the process is tried and tested. The engineering process for some types
of system, such as bridges and buildings is well understood. However, soft-
ware processes vary dramatically from one organisation to another. Although
our understanding of these processes has developed significantly in the past few
years, we still cannot reliably predict when a particular software process is likely
to cause development problems. This is especially true when the software pro-
ject is part of a wider systems engineering project.

3. Large software projects are often one-off” projects Large software projects are
usually different in some ways from previous projects. Therefore, even man-
agers who have a large body of previous experience may find it difficult to
anticipate problems. Furthermore, rapid technological changes in computers and
communications can make a manager s experience obsolete. Lessons learned
from previous projects may not be transferable to new projects.

Because of these problems, it is not surprising that some software projects are
late, over budget and behind schedule. Software systems are often new and tech-
nically innovative. Engineering projects (such as new transport systems) that are
innovative often also have schedule problems. Given the difficulties involved, it
is perhaps remarkable that so many software projects are delivered on time and to
budget!

94 Chapter 5 m Project management

5.1

Software project management is a huge topic and cannot be covered in a single
chapter. Therefore, I simply introduce the subject here and describe three impor-
tant management activities: project planning, project scheduling and risk manage-
ment. Later chapters (in Part 6) cover other aspects of software management,
including managing people, software cost estimation and quality management.

Management activities

It is impossible to write a standard job description for a software manager. The job
varies tremendously depending on the organisation and the software product being
developed. However, most managers take responsibility at some stage for some or
all of the following activities:

* Proposal writing

* Project planning and scheduling

* Project cost

* Project monitoring and reviews

¢ Personnel selection and evaluation

* Report writing and presentations

The first stage in a software project may involve writing a proposal to win a
contract to carry out the work. The proposal describes the objectives of the project
and how it will be carried out. It usually includes cost and schedule estimates, and
justifies why the project contract should be awarded to a particular organisation or
team. Proposal writing is a critical task as the existence of many software organi-
sations depends on having enough proposals accepted and contracts awarded. Th re
can be no set guidelines for this task; proposal writing is a skill that you acquire
thr ugh practice and experience.

Project planning is concerned with identifying the activities, milestones and deliv-
erables produced by a project. A plan is drawn up to guide the development
towards the project goals. Cost estimation is a related activity that is concerned with
estimating the resources required to accomplish the project plan. I cover these in
more detail later in this chapter and in Chapter 26.

Project monitoring is a continuing project activity. The manager must keep track
of the progress of the project and compare actual and planned progress and costs.
Although most organisations have formal mechanisms for monitoring, a skilled man-

5.1 m Management activities 95

ager can often form a clear picture of what is going on through informal discus-
sions with project staff.

Informal monitoring can often predict potential project problems by revealing
difficulties as they occur. For example, daily discussions with project staff might
reveal a particular problem in finding some software fault. Rather than waiting for
a schedule slippage to be reported, the software manager might assign some expert
to the problem or might decide that it should be programmed around.

During a project, it is normal to have a number of formal project management
reviews. They are concerned with reviewing overall progress and technical devel-
opment of the project and checking whether the project and the goals of the organ-
isation paying for the software are still aligned.

The cutcome of a review may be a decision to cancel a project. The develop-
ment time for a large software project may be several years. During that time, organ-
isational objectives are almost certain to change. These changes may mean that the
software is no longer required or that the original project requirements are inap-
propriate. Management may decide to stop software development or to change the
project to accommodate the changes to the organisational objectives.

Project managers usually have to select people to work on their project. Ideally,
skilled staff with appropriate experience will be available to work on the project.
However, in most cases, managers have to settle for a less-than-ideal project team.
The reasons for this are:

1. The project budget may not cover the use of highly paid staff. Less experi-
enced, less well-paid staff may have to be used.

2. Staff with the appropriate experience may not be available either within an organ-
isation or externally. It may be impossible to recruit new staff to the project. Within
the organisation, the best people may already be allocated to other projects.

3. The organisation may wish to develop the skills of its employees. Inexperienced
staff may be assigned to a project to learn and to gain experience.

The software manager has to work within these constraints when selecting pro-
ject staff. However, problems are likely unless at least one project member has some
experience with the type of system being developed. Without this experience, many
simple mistakes are likely to be made. I discuss team building and staff selection
in Chapter 25.

Project managers are usually responsible for reporting on the project to both the
client and contractor organisations. They have to write concise, coherent documents
that abstract critical information from detailed project reports. They must be able
to present this information during progress reviews. Consequently, if you are a pro-
ject manager, you have to be able to communicate effectively both orally and in
writing.

96 Chapter 5 ® Project management

Figure 5.1 Types
of plan

Plan Description

Quality plan Describes the quality procedures and standards that
will be used in a project. See Chapter 24,

Validation plan Describes the approach, resources and schedule used
for system validation. See Chapter 19.

Configuration Describes the configuration management procedures

management plan and structures to be used. See Chapter 29.

Maintenance plan Predicts the maintenance requirements of the system,

maintenance costs and effort required. See Chapter 27.

Staff development plan Describes how the skills and experience of the project
team members will be developed. See Chapter 22.

5.2 Project planning

Effective management of a software project depends on thoroughly planning the
progress of the project. Managers must anticipate problems that might arise and pre-
pare tentative solutions to those problems. A plan, drawn up at the start of a pro-
ject, should be used as the driver for the project. This initial plan should be the best
possible plan given the available information. It evolves as the project progresses
and better information becomes available.

A structure for a software development plan is described in Section 5.2.1. As
well as a project plan, managers may also have to draw up other types of plans.
These are briefly described in Figure 5.1 and covered in more detail in the relevant
chapter elsewhere in the book.

The pseudo-code shown in Figure 5.2 sets out a project planning process for soft-
ware development. It shows that planning is an iterative process, which is only com-
plete when the project itself is complete. As project information becomes available
during the project, the plan should be regularly revised. The goals of the business
are an important factor that must be considered when formulating the project plan.
As these change, the project’s goals also change so changes to the project plan are
necessary

At the beginning of a planning process, you should assess the constraints
(required delivery date, staff available, overall budget, etc.) affecting the project. In
conjunction with this, you should estimate project parameters such as its structure,
size, and distribution of functions. You next define the progress milestones and deliv-
erables. The process then enters a loop. You draw up an estimated schedule for the
project and the activities defined in the schedule are started or given permission to
continue. After some time (usually about two to three weeks), you should review

52 = Project planning 97

Figure 5.2 Project

planning

5.2.1

Establish the project constraints
Make initial assessments of the project parameters
Define project milestones and deliverables
while project has not been completed or cancelled ioop
Draw up project schedule
Initiate activities according to schedule
Wait (for a while)
Review project progress
Revise estimates of project parameters
Update the project schedule
Renegotiate project constraints and deliverables
if (problems arise) then
Initiate technical review and possible revision
end if
end loop

progress and note discrepancies from the planned schedule. Because initial estimates
of project parameters are tentative, vou will always have to modify the original plan.

As more information becomes available, you revise your original assumptions
about the project and the project schedule. If the project is delayed, you may have
to renegotiate the project constraints and deliverables with the customer. If this rene-
gotiation is unsuccessful and the schedule cannot be met, a project technical review
may be held. The objective of this review is to find an alternative approach that
falls within the project constraints and meets the schedule.

Of course, you should never assume that everything will always go well.
Problems of some description nearly always arise during a project. Your initial assump-
tions and scheduling should be pessimistic rather than optimistic. There should be
sufficient contingency built into your plan so that the project constraints and mile-
stones need not be renegotiated every time round the planning loop.

The project plan

The project plan sets out the resources available to the project, the work breakdown
and a schedule for carrying out the work. In some organisations, the project plan
is a single document that includes the different types of plan (Figure 5.1). In other
cases, the project plan is solely concerned with the development process.
References to other plans are included but the plans themselves are separate.

The plan structure that I describe here is for this latter type of plan. The details
of the project plan vary depending on the type of project and organisation.
However, most plans should include the following sections:

1. Introduction This briefly describes the objectives of the project and sets out
the constraints (e.g., budget, tirne, etc.) that affect the project management.

98 Chapter 5 ® Project management

5.2.2

2. Project organisation This describes the way in which the development team is
organised, the people involved and their roles in the team.

3. Risk analysis This describes possible project risks, the likelihood of these risks
arising and the risk reduction strategies that are proposed. I explain the prin-
ciples of risk management in Section 5.4.

4, Hardware and software resource requirements This specifies the hardware and
the support software required to carry out the development. If hardware has to
be bought, estimates of the prices and the delivery schedule may be included.

5. Work breakdown This sets out the breakdown of the project into activities and
identifies the milestones and deliverables associated with each activity.
Milestones and deliverables.are discussed.in_Section 5.2.2

6. Project schedule This shows the dependencies between activities, the estimated
time required to reach each milestone and the allocation of people to activities.

7. Monitoring and reporting mechanisms This defines the management reports that
should be produced, when these should be produced and the project monitor-
ing mechanisms used.

You should regularly revise the project plan during the project. Some parts, such
as the project schedule, will change frequently; other parts will be more stable. To
simplify revisions, you should organise the document into separate sections that can
be individually replaced as the plan evolves.

Milestones and deliverables

Managers need information to do their job. Because software is intangible, this infor-
mation can only be provided as reports and documents that describe the state of the
software being developed. Without this information, it is impossible to assess how
well the work is progressing, and cost estimates and schedules cannot be updated.

When planning a project, you should establish a series of milestones, where a
milestone is a recognisable end-point of a software process activity. At each mile-
stone, there should be a formal output, such as a report, that can be presented to
management. Milestone reports need not be large documents. They may simply be
a short report of what has been completed. Milestones should represent the end of
a distinct, logical stage in the project. Indefinite milestones such as ‘Coding 80%
complete’ that can’t be checked are useless for project management. You can’t check
whether this state has been achieved because the amount of code that still has to
be developed is uncertain.

A deliverable is a project result that is delivered to the customer. It is usually
delivered at the end of some major project phase such as specification or design.
Deliverables are usually milestones, but milestones need not be deliverables.

5.3 = Project scheduling 99

|

ACTIVITIES

Prototype Design
development study
Requirements Evaluation Architectural System
definition report design requirements

MILESTONES

Requirements
specification

Requirements
analysis

Milestones may be internal project results that are used by the project manager to
check project progress but which are not delivered to the customer.

To establish milestones, the software process must be broken down into basic
activities with associated outputs. For example, Figure 5.3 shows possible activi-
ties involved in requirements specification when prototyping is used to help vali-
date requirements. The milestones in this case are the completion of the outputs for
each activity. The project deliverables, which are delivered to the customer, are the
requirements definition and the requirements specification.

| Project scheduling

Project scheduling is one of the most difficult jobs for a project manager. Managers
estimate the time and resources required to complete activities and organise them
into a coherent sequence. Unless the project being scheduled is similar to a previ-
ous project, previous estimates are an uncertain basis for new project scheduling.
Schedule estimation is further complicated by the fact that different projects may
use different design methods and implementation languages.

If the project is technically advanced, initial estimates will almost certainly be
optimistic even when you try to consider all eventualities. In this respect, software
scheduling is no different from scheduling any other type of large advanced pro-
ject. New aircraft, bridges and even new models of cars are frequently late because
of unanticipated problems. Schedules, therefore, must be continually updated as bet-
ter progress information becomes available.

Project scheduling (Figure 5.4) involves separating the total work involved in a
project into separate activities and judging the time required to complete these
activities. Usually, some of these activities are carried out in parallel. You have to
coordinate these parallel activities and organise the work so that the workforce is
used optimally. It’s important to avoid a situation where the whole project is
delayed hecause a critical task is unfinished.

100 Chapter 5 ® Project management

Software

requirements

Figure 5.4 The

project scheduling

process

5.3.1

Identify activity Estimate resources Allocate people Create project }
dependencies for activities to activities charts :

Activity charts
and bar charts

Project activities should normally last at least a week. Finer subdivision means that
a disproportionate amount of time must be spent on estimating and chart revision. It is
also useful to set a maximum amount of time for any activity of about 8 to 10 weeks.
If it takes longer than this, it should be subdivided for project planning and scheduling.

As I have already suggested, when you are estimating schedules, you should not
assume that every stage of the project will be problem free. People working on a
project may fall ill or may leave, hardware may break down, and essential support
software or hardware may be delivered late. If the project is new and technically
advanced, certain parts of it may turn out to be more difficult and take longer than
originally anticipated.

As well as calendar time, you also have to estimate the resources needed to com-
plete each task. The principal resource is the human effort required. Other
resources may be the disk space required on a server, the time required on spe-
cialised hardware such as a simulator, and the travel budget required for project
staff, I discuss estimation in more detail in Chapter 26.

A good rule of thumb is to estimate as if nothing will go wrong, then increase
your estimate to cover anticipated problems. A further contingency factor to cover
unanticipated problems may also be added to the estimate. This extra contingency
factor depends on the type of project, the process parameters (deadline, standards,
etc.) and the quality and experience of the software engineers working on the pro-
ject. T always add 30% to my original estimate for anticipated problems then
another 20% to cover things I hadn’t thought of.

Project schedules are usually represented as a set of charts showing the work
breakdown, activities dependencies and staff allocations. I describe these in the fol-
lowing section. Software management tools, such as Microsoft Project, are usually
used to automate chart production.

Bar charts and activity networks

Bar charts and activity networks are graphical notations that are used to illustrate
the project schedule. Bar charts show who is responsible for each activity and when
the activity is scheduled to begin and end. Activity networks show the dependen-
cies between the different activities making up a project. Bar charts and activity
charts can be generated automatically from a database of project information using
a project management tool.

5.3 = Project scheduling 101

Figure 5.5 Task
durations and
dependencies

Task Duration (days) Dependencies

T 8

T2 15

3 15 T1 (M1)

T4 10

75 10 T2, T4 (M2)

T6 5 Ti, T2 (M3)

™ 20 T1 (MY)

T8 25 T4 (M5)

T9 15 T3, T6 (M4)
Ti0 15 15, T7 (M7)
T 7 T9 (M6)
T2 10 T11 (M8)

To illustrate how these charts are used, I have created a hypothetical set of activ-
ities as shown in Figure 5.5. This table shows activities, their duration, and activ-
ity interdependencies. From Figure 3.5, you can see that Activity T3 is dependent
on Activity T1. This means that T1 must be completed before T3 starts. For exam-
ple, T1 might be the preparation of a component design and T3, the implementa-
tion of that design. Before implementation starts, the design should be complete.

Given the dependencies and estimated duration of activities, an activity chart that
shows activity sequences may be generated (Figure 5.6). This shows which activities
can be carried out in parallel and which must be executed in sequence because of a
dependency on an earlier activity. Activities are represented as rectangles; milestones
and project deliverables are shown with rounded corners. Dates in this diagram show
the start date of the activity and are written in British style, where the day precedes
the month. You should read the chart from left to right and from top to bottom

In the project management tool used to produce this chart, all activities must end
in milestones. An activity may start when its preceding milestone (which may depend
on several activities) has been reached. Therefore, the third column in Figure 5.5
shows the corresponding milestone (2.g., M5) that is reached when the tasks finish
(see Figure 5.6).

Before progress can be made from one milestone to another, all paths leading to
it must be complete. For example, when activities T3 and T6 are finished, then activ-
ity T9, shown in Figure 5.6, can start.

102 Chapter 5 # Project management

Figure 5.6 An activity
network

18/7/03

19/9/03

The minimum time required to finish the project can be estimated by consider-
ing the longest path in the activity graph (the critical path). In this case, it is 11
weeks of elapsed time or 55 working days. In Figure 5.6, the critical path is shown
as a sequence of emboldened boxes. The critical path is the sequence of dependent
activities that defines the time required to complete the project. The overall sched-
ule of the project depends on the critical path. Any slippage in the completion in
any critical activity causes project delays because the following activities cannot
start until the delayed activity has been completed.

However, delays in activities that do not lie on the critical path do not neces-
sarily cause an overall schedule slippage. So long as these delays do not extend
these activities so much that the total time for that activity plus future dependent
activities does not exceed the critical path, the project schedule will not be affected.
For example, if T8 is delayed by two weeks, it will not affect the final completion
date of the project because it does not lie on the critical path. Most project man-
agement tools compute the allowed delays, as shown in the project bar chart.

Managers also use activity charts when allocating project work. They can pro-
vide insights into activity dependencies that are not intuitively obvious. It may be
possible to modify the system design so that the critical path is shortened. The pro-
ject schedule may be shortened because of the reduced amount of time spent wait-
ing for activities to finish.

Inevitably, initial project schedules will be incorrect. As a project develops, esti-
mates should be compared with actual elapsed time. This comparison can be used
as a basis for revising the schedule for later parts of the project. When actual figures

5.3 =® Project scheduling 103

Figure 5.7 Activity
bar chart

4/7 1/7 8/7 25/7 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9

] [] T]

L

msq] | |

p M8

Finish

are known, the activity chart should be reviewed. Later project activities may then
be reorganised to reduce the length of the critical path.

Figure 5.7 is a complementary way of representing project schedule information.
It is a bar chart showing a project calendar and the start and finish dates of activ-
ities. Sometimes these are called Gantt charts, after their inventor. Reading from
left to right, the bar chart clearly shows when activities start and end.

Some of the activities shown in the bar chart in Figure 5.7 are followed by a
shaded bar whose length is computed by the scheduling tool. This highlights the
flexibility in the completion date of these activities. If an activity does not com-
plete on time, the critical path will not be affected until the end of the period marked
by the shaded bar. Activities that lie on the critical path have no margin of error
and can be identified because they have no associated shaded bar.

In addition to considering schedules, as a project manager you must also con-
sider resource allocation and, in particular, the allocation of staff to project activi-
ties. This allocation can also be input to project management tools and a bar chart
generated that shows when staff are employed on the project (Figure 5.8). People
don’t have to be assigned to a project. at all times. During intervening periods they
may be on holiday, working on other projects, attending training courses or engag-
ing in some other activity.

Large organisations usually employ a number of specialists who work on a pro-
ject when needed. In Figure 5.8, you can see that Mary and Jim are specialists who

104 Chapter 5 « Project management

Figure 5.8 Staff
allocation vs. time
chart

4/7 11/7 18/7 25/7 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9}
I L i

T8 [T11

Fred |T4

Ti2

Jane |T1

T3

Anne |T2 T]

76 [T10 |

fim |T7 |

Mary 15 l

work on only a single task in the project. This can cause scheduling problems. If
one project is delayed while a specialist is working on it, this may have a knock-
on effect on other projects. They may also be delayed because the specialist is not
available.

Risk management

Risk management is increasingly seen as one of the main jobs of project managers.
It involves anticipating risks that might affect the project schedule or the quality of
the software being developed and taking action to avoid these risks (Hall, 1998)
(Ould, 1999). The results of the risk analysis should be documented in the project
plan along with an analysis of the consequences of a risk occurring. Effective risk
management makes it easier to cope with problems and to ensure that these do not
lead to unacceptable budget or schedule slippage.

Simplistically, you can think of a risk as something that you’d prefer not to have
happen. Risks may threaten the project, the software that is being developed or the
organisation. There are, therefore, three related categories of risk:

1. Project risks are risks that affect the project schedule or resources. An exam-
ple might be the loss of an experienced designer.

5.4 Risk management 105

Figure 5.9 Possible
software risks

2. Product risks are risks that affect the quality or performance of the software
being developed. An example might be the failure of a purchased component
to perform as expected.

3. Businress risks are risks that affect the organisation developing or procuring the
software. For example, a competitor introducing a new product is a business risk.

Of course, these risk types overlap. If an experienced programmer leaves a pro-
ject, this can be a project risk because the delivery of the system may be delayed.
It can also be a product risk because a replacement may not be as experienced and
so may make programming errors. Finally, it can be a business risk because the
programmer s experience is not available for bidding for future business.

The risks that may affect a project depend on the project and the organisational
environment where the software is being developed. However, many risks are uni-
versal—some of the most common risks are shown in Figure 5.9.

Risk management is particularly important for software projects because of the
inherent uncertainties that most projects face. These stem from loosely defined
requirements, difficulties in estimating the time and resources required for

Risk Risk type Description

Staff turnover Project Experienced staff will leave the project
before it is finished.

Management change Project There will be a change of organisational
management with different priorities.

Hardware unavailability Project Hardware which is essential for the project
will not be delivered on schedule.

Requirements change Project and There will be a larger number of changes

product to the requirements than anticipated.
Specification delays Project and Specifications of essential interfaces are
product not available on schedule.
Size underestimate Project and The size of the system has been
product underestimated.
CASE taol under- Product CASE tools which support the project do
performance not perform as anticipated.
Technology change Business The underlying technology on which the system
is built is superseded by new technology.
Product competition Business A competitive product is marketed before

the system is completed.

106 Chapter 5 -

Project management

Figure 5.10 The risk
management process

5.4.1

Risk Risk '
identification- J: monitoring £
. b NS = Risk avoidance §& .

List of_potentxal J Prioritised risk and contingency | Risk
risks] list : plans ; assessment

software development, dependence on individual skills and requirements changes
due to changes in customer needs. You have to anticipate risks, understand the
impact of these risks on the project, the product and the business, and take steps
to avoid these risks. You may need to draw up contingency plans so that, if the
risks do occur, you can take immediate recovery action,

The process of risk management is illustrated in Figure 5.10. It involves sev-
eral stages:

1. Risk identification Possible project, product and business risks are identified.
2. Risk analysis The likelihood and consequences of these risks are assessed.

3. Risk planning Plans to address the risk either by avoiding it or minimising
its effects on the project are drawn up.

4. Risk monitoring The risk is constantly assessed and plans for risk mitigation
are revised as more information about the risk becomes available.

The risk management process, like all other project planning, is an iterative
process which continues throughout the project. Once an initial set of plans are
drawn up, the situation is monitored. As more information about the risks
becomes available, the risks have to be reanalysed and new priorities established.
The risk avoidance and contingency plans may be modified as new risk infor-
mation emerges.

You should document the outcomes of the risk management process in a risk
management plan. This should include a discussion of the risks faced by the pro-
ject, an analysis of these risks and the plans that are required to manage these risks.
Where appropriate, you should also include in the plan results of the risk manage-
ment process such as specific contingency plans to be activated if the risk occurs.

Risk identification

Risk identification is the first stage of risk management. It is concerned with dis-
covering possible risks to the project. In principle, these should not be assessed or
prioritised at this stage, although, in practice, risks with very minor consequences
or very low probability risks are not usually considered.

5.4 & Risk management 107

5.4.2

Risk identification may be carried out as a team process using a brainstorming
approach or may simply be based on experience. To help the process, a checklist
of different types of risk may be used. There are at least six types of risk that can
arise:

1. Technology risks Risks that derive from the software or hardware technologies
that are used to develop the system.

2. People risks Risks that are associated with the people in the development team.

3. Organisational risks Risks that derive from the organisational environment where
the software is being developed.

4. Tools risks Risks that derive from the CASE tools and other support software
used to develop the system.

5. Requirements risks Risks that derive from changes to the customer requirements
and the process of managing the requirements change.

6. Estimation risks Risks that derive from the management estimates of the sys-
tem characteristics and the resources required to build the system.

Figure 5.11 gives some examples of possible risks in each of these categories. When
you have finished the risk identification process, you should have a long list of risks
that could occur and which could affect the product, the process and the business.

Risk analysis

During the risk analysis process, you have to consider each identified risk and make
a judgement about the probability and the seriousness of it. There is no easy way
to do this—you must rely on your own judgement and experience, which is why
experienced project managers are generally the best people to help with risk man-
agement. These risk estimates should not generally be precise numeric assessments
but should be based around a number of bands:

¢ The probability of the risk might be assessed as very low (<10%), low
(10-25%), moderate (25-50%), high-(50-75%) or very high (>75%).

¢ The effects of the risk might be assessed as catastrophic, serious, tolerable or
insignificant.

You should then tabulate the results of this analysis process using a table ordered
according to the seriousness of the risk. Figure 5.12 illustrates this for the risks iden-
tified in Figure 5.11. Obviously, the assessment of probability and seriousness is arbi-
trary here. In practice, to make this assessment you need detailed information about
the project, the process, the development team and the organisation.

Project management

Risk type Possible risks (b

Technology The database used in the system cannot process as many
transactions per second as expected.
Software components which should be reused contain defects
which limit their functionality.

People It is impossible to recruit staff with the skills required.
Key staff are ill and unavailable at critical times.
Required training for staff is not available.

Organisational The organisation is restructured so that different management are
responsible for the project.
Organisational financial problems force reductions in the project
budget.

Tools The code generated by CASE tools is inefficient.
CASE tools cannot be integrated.

Requirements Changes to requirements which require major design rework are
proposed.
Customers fail to understand the impact of requirements changes.

Estimation The time required to develop the saftware is underestimated.
The rate of defect repair is underestimated
The size of the software is underestimated.

Of course, both the probability and the assessment of the effects of a risk may
change as more information about the risk becomes available and as risk manage-
ment plans are implemented. Therefore, you should update this table during each
iteration of the risk process.

Once the risks have been analysed and ranked, you should assess which are most
significant. Your judgement must depend on a combination of the probability of
the risk arising and the effects of that risk. In general, catastrophic risks should always
be considered, as should all serious risks that have more than a moderate proba-
bility of occurrence.

Boehm (Boehm, 1988) recommends identify and monitoring the ‘top 10’ risks,
but I think that this figure is rather arbitrary. The right number of risks to monitor
must depend on the project. It might be 5 or it might be 15. However, the number
of risks chosen for monitoring should be manageable. A very large number of risks
would simply require too much information to be collected. From the risks identi-
fied in Figure 5.12, it is appropriate to consider all 8 risks that have catastrophic
Of serious consequences.

Risk planning

The risk planning process considers each of the key risks that have been identified
and identifies strategies to manage the risk. Again, there is no simple process that

Risk management 109

Figure 5.12 Risk
analysis

Risk

Organisational financial problems force reductions

in the project budget.

It is impossible to recruit staff with the skilis
required for the project.

Key staff are ill at critical times in the project.

Software components which should be reused
contain defects which limit their functionality.

Changes to requirements which require major
design rework are proposed.

The organisation is restructured so that different
management are responsible for the project.

The database used in the system cannot
process as many transactions per second
as expected.

The time required to develop the software is
underestimated.

CASE tools cannot be integrated

Customers fail to understand the impact of
requirements changes.

Required training for staff is not available
The rate of defect repair is underestirnated
The size of the software is underestimated

The code generated by CASE tools is inefficient.

These strategies fall into three caregories:

A OLELIY

Low

High

Moderate

Moderate

Moderate

High

Moderate

High

High

Moderate

Moderate
Moderate
High

Moderate

Effects

Catastrophic

Catastrophic

Serious

Serious

Serious

Serious

Serious

Serious

Tolerable

Tolerable

Tolerable
Tolerable
Tolerable

Insignificant

can be followed to establish risk management plans. It relies on the judgement and
experience of the project manager. Figure 5.13 shows possible strategies that have
been identified for the key risks frorn Figure 5.12.

Avoidance strategies Following these strategies means that the probability that
the risk will arise will be reduced. An example of a risk avoidance strategy is
the strategy for dealing with defective components shown in Figure 5.13.

Minimisation strategies Following these strategies means that the impact of the
risk will be reduced. An example of a risk minimisation strategy is that for staff

illness shown in Figure 5.13

110 Chapter 5 & Project management

Figure 5.13 Risk

management
strategies

5:4.4

Organisational financial Prepare a briefing document for senior management
problems showing how the project is making a very important
contribution to the goals of the business.

Recruitment problems Alert customer of potential difficulties and the possibility
of delays, investigate buying-in components.

Staff illness Reorganise team so that there is more overlap of work
and people therefore understand each other’s jobs.

Defective components Replace potentially defective components with bought-in
components of known reliability.

Requirements changes Derive traceability information to assess requirements
change impact, maximise information hiding in the design.

Organisational Prepare a briefing document for senior management
restructuring showing how the project is making a vety important
contribution to the goals of the business.

Database performance | vestigate the possibility of buying a higher-performance

database.
Underestimated Investigate buying-in components, investigate the use of a
development time program generator.

3. Contingency plans Following these strategies means that you are prepared for the
worst and have a strategy in place to deal with it. An example of a contingency
strategy is the strategy for organisational financial problems in Figure 5.13.

You can see here the analogy with the strategies used in critical systems to ensure
reliability, security and safety. Essentially, it is best to use a strategy that avoids
the risk. If this is not possible, use one that reduces the chances that the risk will
have serious effects. Finally, have strategies in place that reduce the overall impact
of a risk on the project or product.

Risk monitoring

Risk monitoring involves regularly assessing each of the identified risks to decide
whether or not that risk is becoming more or less probable and whether the effects
of the risk have changed. Of course, this cannot usually be observed directly, so
you have to look at other factors that give you clues about the risk probability and
its effects. These factors are obviously dependent on the types of risk. Figure 5.14
gives some examples of factors that may be helpful in assessing these risk types.

Risk monitoring should be a continuous process, and, at every management progress
review, you should consider and discuss each of the key risks separately.

Chapter 5 Key points 111

fFa'g:::res 5.14 Risk Risk type Potential indicators

Technology Late delivery of hardware or support software, many reported
technology problems

People Poor staff morale, poor relationships amongst team members,
job availability

Organisational Organisational gossip, lack of action by senior management

Tools Reluctance by team members to use tools, complaints about
CASE tools, demands for higher-powered workstations

Requirements Many requirements change requests, customer complaints

Estimation Failure to meet agreed schedule, failure to clear reported defects

KEY POINTS

Good software project management is essential if software engineering projects are to be
developed on schedule and within budget.

Software management is distinct from other engineering management. Software is
intangible. Projects may be novel or innovative so there is no body of experience to guide
their management. Software processes are not well understood.

Software managers have diverse roles. Their most significant activities are project planning,
estimating and scheduling. Planning and estimating are iterative processes. They continue
throughout a project. As more information becomes available, plans and schedules must be
revised.

A project milestone is a predictable outcome of an activity where some formal report of
progress should be presented to management. Milestones should occur regularly
throughout a software project. A deliverable is a milestone that is delivered to the project
customer,

Project scheduling involves the creation of various graphical plan representations of part of
the project plan, These include activity charts showing the interrelationships of project
activities and bar charts showing activity durations.

Major project risks should be identified and assessed to establish their probability and the
consequences for the project. You should make plans to avoid, manage or deal with likely
risks if or when they arise. Risks should be explicitly discussed at each project progress
meeting.

112 Chapter 5 Project management

FURTHER READING NI s IR D D D

Waltzing with Bears: Managing Risk on Software Projects. A very practical and easy-to-read
introduction to risks and risk management. (T. DeMarco and T. Lister, 2003, Dorset House.)

Managing Software Quality and Business Risk. Chapter 3 of this book is simply the best discussion
of risk that | have seen anywhere, The book is oriented around risk and | think it is probably the
best book on this topic currently available. (M. Ould, 1999, John Wiley & Sons.)

The Mythical Man Month (Anniversary Edition). The problems of software management have been
unchanged since the 1960s and this is one of the best books on the topic. An interesting and
readable account of the management of one of the first very large software projects, the IBM
0S/360 operating system. The anniversary edition (published 20 years after the original edition in
1975) includes other classic papers by Brooks. (F. P. Brooks, 1995, Addison-Wesley.)

Software Project Survival Guide. This is a very pragmatic account of software management, but it
contains good practical advice. It is easy to read and understand. (S. McConnell, 1998, Microsoft
Press.)

See Part 6 for other readings on management.

5.1 Explain why the intangibility of software systems poses special problems for software project
management.

EXERCISES

5.2 Explain why the best programmers do not always make the best software managers. You may
find it helpful to base your answer on the list of management activities in Section 5.1.

5.3 Explain why the process of project planning is iterative and why a plan must be continually
reviewed during a software project.

5.4 Briefly explain the purpose of each of the sections in a software project plan.
5.5 What is the critical distinction between a milestone and a deliverable?

5.6 Figure 5.15 sets out a number of activities, durations and dependencies. Draw an activity
chart and a bar chart showing the project schedule.

5.7 Figure 5.5 gives task durations for software project activities. Assume that a serious,
unanticipated setback occurs and instead of taking 10 days, task Ts takes 40 days. Revise
the activity chart accordingly, highlighting the new critical path. Draw up new bar charts
showing how the project might be reorganised.

5.8 Using reported instances of project problems in the literature, list management difficuities
that occurred in these failed programming projects. (I suggest that you start with Brooks's
book, as suggested in Further Reading.)

Chapter 5 Exercises 113

Figure 5.15 Task Tack

durations and Duration (days) * Dependencies
dependencies) 10
T2 15 ii
T3 10 Ti, T2
T4 20
15 10
T6 15 T3, T4
7 20 T3
T8 35 7
18 15 T6
Ti0 5 15, T9
™ 10 T9
T2 20 T10
T3 35 13, T4
Ti4 10 T8, T9
75 20 T12, T4
Ti6 10 TS

5.9 In addition to the risks shown in Figure 5.11, identify six other possible risks that could arise
in software projects.

5.10 Fixed-price contracts, where the contractor bids a fixed price to complete a system
development, may be used to move project risk from client to contractor. if anything goes
wrong, the contractor has to pay. Suggest how the use of such contracts may increase the
likelihood that product risks will arise.

5.11 You are asked by your manager to deliver software to a schedule that you know can only be
met by asking your project team to work unpaid overtime. All team members have young
children, Discuss whether you should accept this demand from your manager or whether you
should persuade your team to give their time to the organisation rather than to their families.
What factors might be significant in your decision?

5.12 As a programmer, you are offered a promotion to project management but you feel that you

can make a more effective contribution in a technical rather than a managerial role. Discuss
whether you should accept the promotion.

4 e

%V;h# .
] ,n |
i%g@w -

.

’% .

o ’zw
.

iy

=
6’”";;'

Perhaps the major problem that we face in developing large and complex soft-
ware systems is that of requirements engineering. Requirements engineering
is concemned with establishing what the system should do, its desired and essen-
tial emergent properties, and the constraints on system operation and the soft-
ware development processes. You can therefore think of requirements
engineering as the communications process between the software customers
and users and the software developers.

Requirements engineering is not simply a technical process. The system require-
ments are influenced by users’ likes, dislikes and prejudices, and by political
and organisational issues. These are fundamental human characteristics, and
new technologies, such as use-cases, scenarios and formal methods don't help
us much in resolving these thorny problems.

The chapters in this section fall into two classes~in Chapters 6 and 7 | intro-
duce the basics of requirements engineering, and in Chapters 8 to 10 1
describe models and techniques that are used in the requirements engineer-
ing process. More specifically:

1. The topic of Chapter 6 is software requirements and requirements documents.
| discuss what is meant by a requirement, different types of requirements
and how these requirements are organised into a requirements specifica-
tion document. | introduce the second running case study—a library system—
in this chapter.

2. In Chapter 7, | focus on the activities in the requirements engineering pro-
cess. | discuss how feasibility studies should always be part of requirements
engineering, techniques for requirements elicitation and analysis, and
requirements validation. Because requirements inevitably change, | also
cover the important topic of requirements management.

3. Chapter 8 describes types of system models that may be developed in the
requirements engineering process. These provide a more detailed descrip-
tion for system developers. The emphasis here is on object-oriented mod-
elling but I also include a description of data-flow diagrams. I find these are
intuitive and helpful, especially for giving you an end-to-end picture of how
information is processed by a system.

4. The emphasis in Chapters 9 and 10 is on critical systems specification. In Chapter
9 | discuss the specification of emergent dependability properties. | describe
risk-driven approaches and specific issues of safety, reliability and security spec-
ffication. In Chapter 10, | introduce formal specification techniques. Formal meth-
ods have had less impact than was once predicted but they are being
increasingly used in the specification of safety and mission-critical systems. |
cover both algebraic and model-based approaches in this chapter.

6
Software requirements

Objectives

The objectives of this chapter are to introduce software system
requirements and to explain different ways of expressing software
requirements. When you have read the chapter, you will:

m understand the concepts of user requirements and system
requirements and why these requirements should be written in
different ways;

B understand the differences between functional and non-functional
software requirements;

m understand how requirements may be organised in a software
requirements document.

Contents

6.1 Functional and non-functional requirements
6.2 User requirements

6.3 System requirements

6.4 interface specification

6.5 The software requirements document

118 Chapter 6 W Software requirements

The requirements for a system are the descriptions of the services provided by the
system and its operational constraints. These requirements reflect the needs of cus-
tomers for a system that helps solve some problem such as controlling a device,
placing an order or finding information. The process of finding out, analysing, doc-
umenting and checking these services and constraints is called requirements engi-
neering (RE). In this chapter, I concentrate on the requirements themselves and how
to describe them. I introduced the requirements engineering process in Chapter 4
and I discuss the RE process in more detail in Chapter 7.

The term requirement is not used in the software industry in a consistent way.
In some cases, a requirement is simply a high-level, abstract statement of a service
that the system should provide or a constraint on the system. At the other extreme,
it is a detailed, formal definition of a system function. Davis (Davis, 1993) explains
why these differences exist:

If a company wishes to let a contract for a large software development project,
it must define its needs in a sufficiently abstract way that a solution is not pre-
defined. The requirements must be written so that several contractors can bid for
the contract, offering, perhaps, different ways of meeting the client organisation’s
needs. Once a contract has been awarded, the contractor must write a system
definition for the client in more detail so that the client understands and can val-
idate what the software will do. Both of these documents may be called the require-
ments document for the system.

Some of the problems that arise during the requirements engineering process are a result
of failing to make a clear separation between these different levels of description. I dis-
tinguish between them by using the term user requirements to mean the high-level abstract
requirements and system requirements to mean the detailed description of what the sys-
tem should do. User requirements and system requirements may be defined as follows:

1. User requirements are statements, in a natural language plus diagrams, of what
services the system is expected to provide and the constraints under which it
must operate.

2. System requirements set out the system’s functions, services and operational
constraints in detail. The system requirements document (sometimes called a
functional specification) should be precise. It should define exactly what is to
be implemented. It may be part of the contract between the system buyer and
the software developers.

Different levels of system specification are useful because they communicate infor
mation about the system to different types of readers. Figure 6.1 illustrates the dis-
tinction between user and system requirements. This example from a library system
shows how a user requirement may be expanded into several system requirements.
You can see from Figure 6.1 that the user requirement is more abstract, and the
system requirements add detail, explaining the services and functions that should
be provided by the system to be developed.

6.1 - Functional and non-functional requirements 119

User requirement definition

1. LIBSYS shall keep track of all data required by copyright licensing
agencies in the UK and elsewhere
T Ty i

System requirements specification

1.1 On making a request for a document from LIBSYS, the requestor shall
be presented with a form that records details of the user and the request
made.

1.2 LIBSYS request forms shall be stored on the system for five years from
the date of the request.

1.3 All LIBSYS request forms must be indexed by user, by the name of the
material requested and by the supplier of the request.

1.4 LIBSYS shall maintain a log of all requests that have been made to the
system.

1.5 For material where authors’ lending rights apply, loan details shall be
sent monthly to copyright licensing agencies that have registered

with LIBSYS.

o o i o ot

You need to write requirements at different levels of detail because different types
of readers use them in different ways. Figure 6.2 shows the types of readers for the
user and system requirements. The readers of the user requirements are not usually
concerned with how the system will be implemented and may be managers who
are not interested in the detailed facilities of the system. The readers of the system
requirements need to know more precisely what the system will do because they
are concermned with how it will support the business processes or because they are
involved in the system implementation.

L Functional and non-functional requirements

Software system requirements are often classified as functional requirements, non-
functional requirements or domain requirements:

1. Functional requirements These are statements of services the system should
provide, how the system should react to particular inputs and how the system
should behave in particular situations. In some cases, the functional require-
ments may also explicitly state what the system should not do.

2. Non-functional requirements These: are constraints on the services or functions offered
by the system. They include timing constraints, constraints on the development
process and standards. Non-functional requirements often apply to the system as
a whole. They do not usually just apply to individual system features or services.

120 Chapter 6

Software requirements

Figure 6.2 Readers of
different types of

specification

6.1.1

Client managers
System end-users
Client engineers
Contractor managers
System architects

User
requirements

System end-users
System Client engineers
requirements System architects
T Software developers

T " TR

3. Domain requirements These are requirements that come from the application
domain of the system and that reflect characteristics and constraints of that domain.
They may be functional or non-functional requirements

In reality, the distinction between different types of requirements is not as clear-cut
as these simple definitions suggest. A user requirement concerned with security, say,
may appear to be a non-functional requirement. However, when developed in more
detail, this requirement may generate other requirements that are clearly functional,
such as the need to include user authentication facilities in the system.

Functional requirements

The functional requirements for a system describe what the system should do. These
requirements depend on the type of software being developed, the expected users
of the software and the general approach taken by the organisation when writing
requirements. When expressed as user requirements, the requirements are usually
described in a fairly abstract way. However, functional system requirements
describe the system function in detail, its inputs and outputs, exceptions, and so on.

Functional requirements for a software system may be expressed in a number of
ways. For example, here are examples of functional requirements for a university
library system called LiBSYS, used by students and faculty to order books and doc-
uments from other libraries.

1. The user shall be able to search either all of the initial set of databases or select
a subset from it.

2. The system shall provide appropriate viewers for the user to read documents
in the document store.

3. Every order shall be allocated a unique identifier (ORDER_ID), which the user
shall be able to copy to the account’s permanent storage area.

These functional user requirements define specific facilities to be provided by
the system. These have been taken from the user requirements document, and they

6.1 = Functional and non-functional requirements 121

6.1.2

illustrate that functional requirements may be written at different levels of detail
(contrast requirements 1 and 3).

The LIBSYS system is a single interface to a range of article databases. It allows
users to download copies of published articles in magazines, newspapers and sci-
entific journals. I give a more detailed description of the requirements for the sys-
tem on which LIBSYS is based in my book with Gerald Kotonya on requirements
engineer:ng (Kotonya and Sommerville, 1998).

Imprecision in the requirements specification is the cause of many software engi-
neering problems. It is natural for a system developer to interpret an ambiguous
requirement to simplify its implementation. Often, however, this is not what the cus-
tomer wants, New requirements have to be established and changes made to the
system. Of course, this delays system delivery and increases costs.

Consider the second example requirement for the library system that refers to

appropriate viewers provided by the system. The library system can deliver doc-

uments in a range of formats; the intention of this requirement is that viewers for
all of these formats should be available. However, the requirement is worded
ambiguously; it does not make clear that viewers for each document format should
be provided. A developer under schedule pressure might simply provide a text viewer
and claim that the requirement had been met.

In principle, the functional requirements specification of a system should be both
complete and consistent. Completeness means that all services required by the user
should be defined. Consistency means that requirements should not have contra-
dictory clefinitions. In practice, for Jarge, complex systems, it is practically impos-
sible to achieve requirements consistency and completeness.

One reason for this is that it is easy to make mistakes and omissions when writ-
ing specifications for large, complex systems. Another reason is that different sys-
tem stakeholders (see Chapter 7) have different—and often inconsistent—needs. These
inconsistencies may not be obvious when the requirements are first specified, so
inconsistent requirements are included in the specification. The problems may only
emerge after deeper analysis or, sornetimes, after development is complete and the
system is delivered to the customer.

Non-functional requirements

Non-functional requirements, as the name suggests, are requirements that are not
directly concerned with the specific functions delivered by the system. They may
relate to emergent system properties such as reliability, response time and store occu-
pancy. Alternatively, they may define constraints on the system such as the capa-
bilities of 1/0 devices and the data representations used in system interfaces.
Non-functional requirements are rarely associated with individual system features.
Rather, these requirements specify or constrain the emergent properties of the sys-
tem, as discussed in Chapter 2. Therefore, they may specify system performance
security, availability, and other emergent properties. This means that they are often

122 Chapter 6 = Software requirements

Non-functional
requirements
VIR
Product Organisational ‘ External
requirements requirements requirements

| | | l

Efficiency Reliability Portability Interoperability Ethical
requirements requirements requirements requirements requirements

7 Delivery Iimplementation Standards Legislative
requirements requirements requirements requirements

—

Usability
requirements

Performance Space Privacy Safety
requirements requirements requirements requirements
Figure 6.3 Types of) o
non-functional more critical than individual functional requirements. System users can usually find
requirements ways to work around a system function that doesn’t really nreet their needs.

However, failing to meet a non-functional requirement can mean that the whole sys-
tem is unusable. For example, if an aircraft system does not meet its reliability require-
ments, it will not be certified as safe for operation; if a real-time control system
fails to meet its performance requirements, the control functions will not operate
correctly.

Non-functional requirements are not just concerned with the software system to
be developed. Some non-functional requirements may constrain the process that should
be used to develop the system. Examples of process requirements include a speci-
fication of the quality standards that should be used in the process, a specification
that the design must be produced with a particular CASE toolset and a description
of the process that should be followed.

Non-functional requirements arise through user needs, because of budget con-
straints, because of organisational policies, because of the need for interoperability
with other software or hardware systems, or because of external factors such as safety
regulations or privacy legislation. Figure 6.3 is a classification of non-functional
requirements. You can see from this diagram that the non-functional requirements
may come from required characteristics of the software (product requirements), the
organization developing the software (organizational requirements) or from exter-
nal sources.

6.1 ® Functional and non-functional requirements 123

e —

Product requirement
8.1 The user interface for LIBSYS shall be implemented as simple HTML without
frames or Java applets.

Organisational requirement
9.3.2 The system development process and deliverable documents shall conform to
the process and deliverables defined in XYZCo-SP-STAN-95.

External requirement
10.6 The system shall not disclose any personal information about system users
apart from their name and library reference number fo the library staff who use the

system,

The types of non-functional requirements are:

1. Product requirements These requirements specify product behaviour.
Examples include performance requirements on how fast the system must exe-
cute and how much memory it requires; reliability requirements that set out the
acceptable failure rate; portability requirements; and usability requirements.

2. Organisational requirements These requirements are derived from policies and
procedures in the customer s and developer s organisation. Examples include
process standards that must be used; implementation requirements such as the
programming language or design method used; and delivery requirements that
specify when the product and its documentation are to be delivered.

3. External requirements This broad heading covers all requirements that are derived
from factors external to the system and its development process. These may
include interoperability requirements that define how the system interacts with
systems in other organisations; legislative requirements that must be followed
to ensure that the system operates within the law; and ethical requirements. Ethical
requirements are requirements placed on a system to ensure that it will be accept-
able to its users and the general public.

Figure 6.4 shows examples of product, organisational and external requirements
taken from the library system LIBSYS whose user requirements were discussed in
Section 6.1.1. The product requirement restricts the freedom of the LIBSYS
designers in the implementation of the system user interface. It says nothing about
the functionality of LIBSYS and clearly identifies a system constraint rather than
a function. This requirement has been included because it simplifies the problem
of ensuring the system works with different browsers.

The organisational requirement specifies that the system must be developed accord-
ing to a company standard process defined as XYZCo-SP-STAN-95. The external
requirernent is derived from the need for the system to conform to privacy legisla-
tion. It specifies that library staff should not be allowed access to data, such as the
addresses of system users, which they do not need to do their job.

Software requirements

A system goal
The system should be easy to use by experienced controflers and should be
organised in such a way that user errors are minimised.

A verifiable non-functional requirement

Expersienced controllers shall be able to use all the system functions after a total of
two hours' training. After this training, the average number of errors made by
experienced users shall not exceed two per day.

A common problem with non-functional requirements is that they can be diffi-
cult to verify. Users or customers often state these requirements as general goals
such as ease of use, the ability of the system to recover from failure or rapid user
response. These vague goals cause problems for system developers as they leave
scope for interpretation and subsequent dispute once the system is delivered. As an
illustration of this problem, consider Figure 6.5. This shows a system goal relating
to the usability of a traffic control system and is typical of how a user might express
usability requirements. I have rewritten it to show how the goal can be expressed
as a ‘testable’ non-functional requirement. While it is impossible to objectively ver-
ify the system goal, you can design system tests to count the errors made by con-
trollers using a system simulator.

Whenever possible, you should write non-functional requirements quantitatively
so that they can be objectively tested. Figure 6.6 shows a number of possible met-
rics that you can use to specify non-functional system properties. You can measure
these characteristics when the system is being tested to check whether or not the
system has met its non-functional requirements.

In practice, however, customers for a system may find it practically impossible
to translate their goals into quantitative requirements. For some goals, such as main-
tainability, there are no metrics that can be used. In other cases, even when quan-
titative specification is possible, customers may not be able to relate their needs to
these specifications. They don’t understand what some number defining the
required reliability (say) means in terms of their everyday experience with com-
puter systems. Furthermore, the cost of objectively verifying quantitative non-
functional requirements may be very high, and the customers paying for the system
may not think these costs are justified.

Therefore, requirements documents often include statements of goals mixed with
requirements. These goals may be useful to developers because they give indica-
tions of customer priorities. However, you should always tell customers that they
are open to misinterpretation and cannot be objectively verified.

Non-functional requirements often conflict and interact with other functional or
non-functional requirements. For example, it may be a requirement that the
maximum memory used by a system should be no more than 4 Mbytes. Memory
constraints are common for embedded systems where space or weight is limited
and the number of ROM chips storing the system software must be minimised. Another
requirement might be that the system should be written using Ada, a programming

6.1 - Functional and non-functional requirements 125

Figure 6.6 Metrics

for specifying
non-functional
requirements

6.1.3

Property Measure

Speec| Processed transactions/second
User/Event response time
Screen refresh time
Size K bytes
Number of RAM chips
Ease of use Training time
Number of help frames
Reliability Mean time to failure

Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target-dependent statements
Number of target systems

language for critical, real-time software development. However, it may not be pos-
sible to compile an Ada program with the required functionality into less that 4 Mbytes.
There therefore has to be a trade-off between these requirements: an alternative devel-
opment language or increased memory added to the system.

It is helpful if you can differentiate functional and non-functional requirements
in the requirements document. In practice, this is difficult to do. If the non-func-
tional requirements are stated separately from the functional requirements, it is some-
times difficult to see the relationships between them. If they are stated with the
functiorial requirements, you may find it difficult to separate functional and non-
functional considerations and to identify requirements that relate to the system as
a whole. However, you should explicitly highlight requirements that are clearly related
to emergent system properties, such as performance or reliability. You can do this
by putting them in a separate section of the requirements document or by distin-
guishing them, in some way, from other system requirements.

Non-functional requirements such as safety and security requirements are par-
ticularly important for critical systems. I therefore discuss dependability require-
ments in more detail in Chapter 9, which covers critical systems specification.

Domain requirements

Domain requirements are derived from the application domain of the system rather
than from the specific needs of system users. They usually include specialised domain
terminology or reference to domain concepts. They may be new functional require-

Software requirements

The deceleration of the train shall be computed as:

Dein ® Doontret + D' aciont

where Dgygen is 9.81 ms* « compensated gradient/alpha and where the values of
9.81 ms?/alpha are known for different types of train.

ments in their own right, constrain existing functional requirements or set out how
particular computations must be carried out. Because these requirements are spe-
cialised, software engineers often find it difficult to understand how they are related
to other system requirements.

Domain requirements are important because they often reflect fundamentals of
the application domain. If these requirements are not satisfied, it may be impossi-
ble to make the system work satisfactorily. The LIBSYS system includes a num-
ber of domain requirements:

1. There shall be a standard user interface to all databases that shall be based on
the Z39.50 standard.

2. Because of copyright restrictions, some documents must be deleted immedi-
ately on arrival. Depending on the user s requirements, these documents will
either be printed locally on the system server for manual forwarding to the user
or routed to a network printer.

The first requirement is a design constraint. It specifies that the user interface to
the database must be implemented according to a specific library standard. The devel-
opers therefore have to find out about that standard before starting the interface design.
The second requirement has been introduced because of copyright laws that apply
to material used in libraries. It specifies that the system must include an automatic
delete-on-print facility for some classes of document. This means that users of the
library system cannot have their own electronic copy of the document.

To illustrate domain requirements that specify how a computation is carried out,
consider Figure 6.7, taken from the requirements specification for an automated train
protection system. This system automatically stops a train if it goes through a red
signal. This requirement states how the train deceleration is computed by the sys-
tem. It uses domain-specific terminology. To understand it, you need some under-
standing of the operation of railway systems and train characteristics.

The requirement for the train system illustrates a major problem with domain require-
ments. They are written in the language of the application domain (mathematical equa-
tions in this case), and it is often difficult for software engineers to understand them.
Domain experts may leave information out of a requirement simply because it is so
obvious to them. However, it may not be obvious to the developers of the system,
and they may therefore implement the requirement in the wrong way.

6.2 m User requirements 127

Figure 6.8 A user
requirement for an
accounting system
in LIBSYS

4.5 LIBSYS shall provide a financial accounting system that maintains records of alf
payments made by users of the system. System managers may configure this system
so that regular users may receive discounted rates.

6.2 User requirements

The user requirements for a system should describe the functional and non-
functional requirements so that they are understandable by system users without detailed
technical knowledge. They should only specify the external behaviour of the sys-
tem and should avoid, as far as possible, system design characteristics.
Consequently, if you are writing user requirements, you should not use software
jargon, structured notations or formal notations, or describe the requirement by describ-
ing the system implementation. You should write user requirements in simple lan-
guage, with simple tables and forms and intuitive diagrams.

However, various problems can arise when requirements are written in natural
language sentences in a text document:

1. Lack of clarity 1t is sometimes difficult to use language in a precise and unam-
biguous way without making the document wordy and difficult to read.

2. Requirements confusion Functional requirements, non-functional requirements,
sysiem goals and design information may not be clearly distinguished.

3. Reguirements amalgamation Several different requirements may be expressed
together as a single requirement.

As an illustration of some of these problems, consider one of the requirements
for the library shown in Figure 6.8.

This requirement includes both conceptual and detailed information. It expresses
the concept that there should be an accounting system as an inherent part of LIB-
SYS. However, it also includes the detail that the accounting system should sup-
port discounts for regular LIBSYS users. This detail would have been better left to
the system requirements specification.

It is good practice to separate user requirements from more detailed system require-
ments in a requirements document. Otherwise, non-technical readers of the user require-
ments rmay be overwhelmed by details that are really only relevant for technicians.
Figure 5.9 illustrates this confusion. This example is taken from an actual require-
ments cocument for a CASE tool for editing software design models. The user may
specify that a grid should be displayed so that entities may be accurately positioned
in a diagram.

Software requirements

2.6 Grid facilities To assist in the positioning of entities on a diagram, the user
may tum on a grid in either centimetres or inches, via an option on the control
panel. Initially, the grid is off. The grid may be tumed on and off at any time during
an editing session and can be toggled between inches and centimetres at any time.
A grid option will be provided on the reduce-to-fit view but the number of grid lines
shown will be reduced to avoid filling the smaller diagram with grid lines.

The first sentence mixes up three kinds of requirements.

1. A conceptual, functional requirement states that the editing system should pro-
vide a grid. It presents a rationale for this.

2. A non-functional requirement giving detailed information about the grid units
(centimetres or inches).

3. A non-functional user interface requirement that defines how the grid is
switched on and off by the user.

The requirement in Figure 6.9 also gives some but not all initialisation infor-
mation. It defines that the grid is initially off. However, it does not define its units
when tumned on. It provides some detailed information—namely, that the user may
toggle between units—but not the spacing between grid lines.

User requirements that include too much information constrain the freedom of
the system developer to provide innovative solutions to user problems and are dif-
ficult to understand. The user requirement should simply focus on the key facili-
ties to be provided. I have rewritten the editor grid requirement (Figure 6.10) to
focus only on the essential system features.

Whenever possible, you should try to associate a rationale with each user
requirement. The rationale should explain why the requirement has been included
and is particularly useful when requirements are changed. For example, the ratio-
nale in Figure 6.10 recognises that an active grid where positioned objects auto-
matically ‘snap’ to a grid line can be useful. However, this has been deliberately
rejected in favour of manual positioning. If a change to this is proposed at some
later stage, it will be clear that the use of a passive grid was deliberate rather than
an implementation decision.

To minimise misunderstandings when writing user requirements, I recommend
that you follow some simple guidelines:

1. Invent a standard format and ensure that all requirement definitions adhere to
that format. Standardising the format makes omissions less likely and require-
ments easier to check. The format I use shows the initial requirement in bold-
face, including a statement of rationale with each user requirement and a
reference to the more detailed system requirement specification. You may also

6.3 ® System requirements 129

Figure 6.10
A definition of an 2.6.1 Grid facilities
ditor grid facili
editor gnd facllity The editor shall provide a grid facility where a matrix of horizontal and vertics!

{ines provide a background to the editor window. This grid shall be a passive grid
where the alignment of entities is the user's responsibility.

Rationale: A grid helps the user to create a tidy diagram with well-spaced
entities. Although an active grid, where entities ‘snap-to’ grid lines can be
useful, the positioning is imprecise. The user is the best person to decide
where entities should be positioned.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6
Source: Ray Wilson, Glasgow Office

include information on who proposed the requirement (the requirement source)
so that you know whom to consult if the requirement has to be changed.

2. Use language consistently. You should always distinguish between mandatory
and desirable requirements. Mandatory requirements are requirements that the
system must support and are usually written using ‘shall’. Desirable require-
ments are not essential and are written using ‘should’.

3. Use text highlighting (bold, italic or colour) to pick out key parts of the
requirement.

4. Avcid, as far as possible, the use of computer jargon. Inevitably, however, detailed
technical terms will creep into the user requirements.

The Robertsons (Robertson and Robertson, 1999), in their book that covers the
VOLERE requirements engineering method, recommend that user requirements be
initially written on cards, one requircment per card. They suggest a number of fields
on each card, such as the requirements rationale, the dependencies on other require-
ments, the source of the requirements, supporting materials, and so on. This
extends the format that I have used in Figure 6.10, and it can be used for both user
and system requirements.

6.3 System requirements

System requirements are expanded versions of the user requirements that are used
by software engineers as the starting point for the system design. They add detail
and explain how the user requiremenits should be provided by the system. They may

130 Chapter 6 Software requirements

be used as part of the contract for the implementation of the system and should
therefore be a complete and consistent specification of the whole system.

Ideally, the system requirements should simply describe the external behaviour
of the system and its operational constraints. They should not be concerned with
how the system should be designed or implemented. However, at the level of detail
required to completely specify a complex software system, it is impossible, in prac-
tice, to exclude all design information. There are several reasons for this:

1. You may have to design an initial architecture of the system to help structure
the requirements specification. The system requirements are organised accord-
ing to the different sub-systems that make up the system. As I discuss in Chapter
7 and Chapter 18, this architectural definition is essential if you want to reuse
software components when implementing the system.

2. In most cases, systems must interoperate with other existing systems. These con-
strain the design, and these constraints impose requirements on the new system.

3. The use of a specific architecture to satisfy non-functional requirements (such
as N-version programming to achieve reliability, discussed in Chapter 20) may
be necessary. An external regulator who needs to certify that the system is safe
may specify that an architectural design that has already been certified be used.

Natural language is often used to write system requirements specifications as
well as user requirements. However, because system requirements are more
detailed than user requirements, natural language specifications can be confusing
and hard to understand:

1. Natural language understanding relies on the specification readers and writers
using the same words for the same concept. This leads to misunderstandings
because of the ambiguity of natural language. Jackson (Jackson, 1995) gives
an excellent example of this when he discusses signs displayed by an escala-
tor. These said ‘Shoes must be worn’ and ‘Dogs must be carried’. I leave it to
you to work out the conflicting interpretations of these phrases.

2. A natural language requirements specification is overflexible. You can say the
same thing in completely different ways. It is up to the reader to find out when
requirements are the same and when they are distinct.

3. There is no easy way to modularise natural language requirements. It may be
difficult to find all related requirements. To discover the consequence of a change,
you may have to look at every requirement rather than at just a group of related
requirements.

Because of these problems, requirements specifications written in natural Ian-
guage are prone to misunderstandings. These are often not discovered until later
phases of the software process and may then be very expensive to resolve.

6.3 m System requirements 131

Figure 6.11
Notations for
requirements
specification

6.3.1

Notation Description

Structured natural This approach depends on defining standard forms or
language templates to express the requirements specification.

Design description This approach uses a language like a programming language

languages but with more abstract features to specify the requirements by
defining an operational model of the system. This approach is
not now widely used although it can be useful for interface
specifications.

Graphical notations A graphical language, supplemented by text annotations is
used to define the functional requirements for the system. An
early example of such a graphical language was SADT (Ross,
1977) (Schoman and Ross, 1977). Now, use-case descriptions
{Jacobsen, et al, 1993) and sequence diagrams are commonly
used (Stevens and Pooley, 1999).

Mathematical These are notations based on mathematical concepts such as

specifications finite-state machines or sets. These unambiguous specifications
reduce the arguments between customer and contractor about
system functionality. However, most customers don't
understand formal specifications and are reluctant to accept it
as a system contract.

It is essential to write user requirements in a language that non-specialists can
understand. However, you can write system requirements in more specialised nota-
tions (Figure 6.11). These include stylised, structured natural language, graphical
models of the requirements such as use-cases to formal mathematical specifications.
In this chapter, I discuss how structured natural language supplemented by simple
graphical models may be used to write system requirements. I discuss graphical sys-
tem modelling in Chapter 8 and formal system specification in Chapter 10.

Structured language specifications

Structured natural language is a way of writing system requirements where the free-
dom of the requirements writer is limited and all requirements are written in a stan-
dard way. The advantage of this approach is that it maintains most of the
expressiveness and understandability of natural language but ensures that some degree
of uniformity is imposed on the specification. Structured language notations limit
the terminology that can be used and use templates to specify system requirements.
They may incorporate control constructs derived from programming languages and
graphical highlighting to partition the specification.

An early project that used structured natural language for specifying system require-
ments is described by Heninger (Heninger, 1980). Special-purpose forms were designed
to describe the input, output and functions of an aircraft software system. The sys-
tem requirements were specified using these forms.

132 Chapter 6 & Software requirements

Figure 6.12 System
requirements
specification using a
standard form

insulin Pump/Control Software/SRS/3.3.2

Compute insulin dose: Safe sugar level

Computes the dose of insulin to be delivered when the current
measured sugar level is in the safe zone between 3 and 7 units

Current sugar reading (r2), the previous two readings (10 and r1)
Current sugar reading from sensor. Other readings from memory.

CompDose—the dose in insulin to be delivered

g

Main control loop

Action: CompDose is zero if the sugar level is stable or falling or if the level is
increasing but the rate of increase is decreasing. If the level is increasing and the
rate of increase is increasing, then CompDose is computed by dividing the difference
between the current sugar fevel and the previous level by 4 and rounding the resuilt.
If the result, is rounded to zero then CompDose is set to the minimum dose that
can be delivered.

Requires Two previous readings so that the rate of change of sugar level can
be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed single
dose of insulin.

Post-condition 10 is replaced by r1 then r1 is replaced by r2
Side offects None

To use a form-based approach to specifying system requirements, you must define
one or more standard forms or templates to express the requirements. The specifi-
cation may be structured around the objects manipulated by the system, the func-
tions performed by the system or the events processed by the system. An example
of such a form-based specification is shown in Figure 6.12. I have taken this exam-
ple from the insulin pump system that was introduced in Chapter 3.

The insulin pump bases its computations of the user’s insulin requirement on the
rate of change of blood sugar levels. These rates of change computed using the cur-
rent and previous readings. You can download a complete version of the specifi-
cation for the insulin pump from the book’s web pages.

When a standard form is used for specifying functional requirements, the fol-
lowing information should be included:

1. Description of the function or entity being specified

2. Description of its inputs and where these come from

6.3 = System requirements 133

3. Description of its outputs and where these go to
4. Indication of what other entities are used (the requires part)

5. Description of the action to be raken

6. If a functional approach is used, a pre-condition setting out what must be true
before the function is called and a post-condition specifying what is true after
the function is called

7. Description of the side effects (if any) of the operation.

Using formatted specifications removes some of the problems of natural language
specification. Variability in the specification is reduced and requirements are
organised more effectively. However, it is difficult to write requirements in an unam-
biguous way, particularly when complex computations are required. You can see
this in the description shown in Figure 6.12, where it isn’t made clear what hap-
pens if the pre-condition is not satisfied.

To address this problem, you can add extra information to natural language require-
ments using tables or graphical models of the system. These can show how com-
putations proceed, how the system state changes, how users interact with the
system and how sequences of actions are performed.

Tables are particularly useful when there are a number of possible alternative
situations and you need to describe the actions to be taken for each of these. Figure
6.13 is a revised description of the computation of the insulin dose.

Graphical models are most useful when you need to show how state changes
(see Chapter 8) or where you need to describe a sequence of actions. Figure 6.14
illustrates the sequence of actions when a user wishes to withdraw cash from an
automatec teller machine (ATM).

You should read a sequence diagram from top to bottom to see the order of the
actions that take place. In Figure 6.14, there are three basic sub-sequences:

1. Validate card The user s card is validated by checking the card number and
user s PIN.

2. Handle request The user s request is handled by the system. For a withdrawal,
the database must be queried to check the user’s balance and to debit the amount
withdrawn. Notice the exception here if the requestor does not have enough
money in their account.

3. Complete transaction The user s card is returned and, when it is removed, the
cash and receipt are delivered.

You will see sequence diagrams again in Chapter 8, which covers system mod-
els, and in Chapter 14, which covers object-oriented design.

134 Chapter 6 m Software requirements

Figure 6.13 Tabular
specification of
computation

/

Figure 6.14
Sequence diagram of
ATM withdrawal

Condition

Sugar level falling (r2 <r1)
Sugar level stable (12 = r1)

Sugar level increasing and rate of increase

Action

CompDose = 0

CompDose = 0

decreasing ((r2 ~ 11) < (11 - 10))

Sugar level increasing and rate of increase
stable or increasing. ((r2 - r1) > (11 - 10))

X

]

CompDose = 0

CompDose = round ((r2 - r1)/4)
If rounded result = 0 then

CompDose = MinimumDose

ATM

Database

Card

PIN request

Card number

le Card OK

PIN

Option menu

<<exception>>
invalid card

:L Withdraw request |

Amount request

Amount

|__Balance request

Balance

>

<<exception>>
insufficient cash

Debit (amount)

Card

B

Card removed

Cash

Cash removed

Receipt
T

Validate card

Handle request

Complete
transaction

6.4 » Interface specification 135

6.4 Interface specification

Almost all software systems must operate with existing systems that have already
been implemented and installed in an environment. If the new system and the exist-
ing systems must work together, the interfaces of existing systems have to be pre-
cisely specified. These specifications should be defined early in the process and
included (perhaps as an appendix) in the requirements document.

There are three types of interface that may have to be defined:

1. Procedural interfaces where existing programs or sub-systems offer a range of
services that are accessed by calling interface procedures. These interfaces are
sometimes called Application Programming Interfaces (APIs).

2. Data structures that are passed from one sub-system to another. Graphical data
models (described in Chapter 8) are the best notations for this type of descrip-
tion. If necessary, program descriptions in Java or C++ can be generated auto-
matically from these descriptions.

3. Representations of data (such as the ordering of bits) that have been established
for an existing sub-system. These interfaces are most common in embedded,
real-time system. Some programining languages such as Ada (although not Java)
support this level of specification. However, the best way to describe these is
probably to use a diagram of the structure with annotations explaining the func-
tion of each group of bits.

Forma. notations, discussed in Chapter 10, allow interfaces to be defined in an
unambiguous way, but their specialised nature means that they are not understand-
able without special training. They are rarely used in practice for interface specifi-
cation although, in my view, they are ideally suited for this purpose. A
programiring language such as Java can be used to describe the syntax of the inter-
face. However, this has to be supplemented by further description explaining the
semantics of each of the defined operations.

Figure 6.15 is an example of a procedural interface definition defined in Java.
In this case, the interface is the procedural interface offered by a print server. This
manages a queue of requests to print files on different printers. Users may exam-
ine the queue associated with a printer and may remove their print jobs from that
queue. They may also switch jobs from one printer to another. The specification in
Figure 6.15 is an abstract model of the print server that does not reveal any inter-
face details. The functionality of the interface operations can be defined using struc-
tured natural language or tabular description.

136 Chapter 6 ® Software requirements

Figure 6.15 The Java
PDL description of a
print server interface

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintjob, switchPrinter

void initialize (Printer p) ;

void print (Printer p, PrintDocd) ;

void displayPrintQueue (Printer p) ;

void cancelPrintiob (Printer p, PrintDoc d) ;

void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;
} //Pri tServer

6.5

The software requirements document

The software requirements document (sometimes called the software requirements
specification or SRS} is the official statement of what the system developers should
implement. It should include both the user requirements for a system and a detailed
specification of the system requirements. In some cases, the user and system
requirements may be integrated into a single description. In other cases, the user
requirements are defined in an introduction to the system requirements specifica-
tion. If there are a large number of requirements, the detailed system requirements
may be presented in a separate document.

The requirements document has a diverse set of users, ranging from the senior
management of the organisation that is paying for the system to the engineers respon-
sible for developing the software. Figure 6.16, taken from my book with Gerald
Kotonya on requirements engineering (Kotonya and Sommerville, 1998) illustrates
possible vsers of the document and how they use it.

The diversity of possible users means that the requirements document has to be
a compromise between communicating the requirements to customers, defining the
requirements in precise detail for developers and testers, and including information
about possible system evolution. Information on anticipated changes can help sys-
tem designers avoid restrictive design decisions and help system maintenance engi-
neers who have to adapt the system to new requirements.

The level of detail that you should include in a requirements document depends
on the type of system that is being developed and the development process used.
When the system will be developed by an external contractor, critical system spec-
ifications need to be precise and very detailed. When there is more flexibility in
the requirements and where an in-house, iterative development process is used, the
requirements document can be much less detailed and any ambiguities resolved dur-
ing development of the system.

A number of large organisations, such as the US Department of Defense and the
IEEE, have defined standards for requirements documents. Davis (Davis, 1993) dis-
cusses some of these standards and compares their contents. The most widely known

6.5 m The software requirements document

137

Figure 6.16 Users of
a requirements
document

—
customers

Specify the requirements and
read them to check that they
meet their needs. Customers
specify changes to the
requirements.

_>

Use the requirements
document to plan a bid for
the system and to plan the
system development process.

System
engineers

Use the requirements to
understand what system is
to be developed.

‘ System test
engineers

Use the requirements to
develop validation tests for
the system.

System
maintenance
engineers

Use the requirements to
understand the system and
the relationships between its
parts.

standard is IEEE/ANSI 830-1998 {IEEE, 1998). This IEEE standard suggests the
following structure for requirements documents:

L.

2,

Introduction

1.1 Purpose of the requirements document
1.2 Scope of the product

1.3 Definitions, acronyms and abbreviations
1.4 References

1.5 Overview of the remainder of the document
General description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies

Specific requirements cover functional, non-functional and interface require-
ments. This is obviously the most substantial part of the document but because

Software requirements

of the wide variability in organisational practice, it is not appropriate to define
a standard structure for this section. The requirements may document external
interfaces, describe system functionality and performance, specify logical
database requirements, design constraints, emergent system properties and
quality characteristics.

4. Appendices

Index

Although the IEEE standard is not ideal, it contains a great deal of good advice
on how to write requirements and how to avoid problems. It is too general to be
an organisational standard in its own right. It is a general framework that can be
tailored and adapted to define a standard geared to the needs of a particular organ-
isation. Figure 6.17 illustrates a possible organisation for a requirements document
that is based on the IEEE standard. However, I have extended this to include infor-
mation about predicted system evolution. This was first proposed by Heninger
(Heninger, 1980) and, as I have discussed, helps the maintainers of the system and
may allow designers to include support for future system features.

Of course, the information that is included in a requirements document must depend
on the type of software being developed and the approach to development that is
used. If an evolutionary approach is adopted for a software product (say), the require-
ments document will leave out many of detailed chapters suggested above. The focus
will be on defining the user requirements and high-level, non-functional system require-
ments. In this case, the designers and programmers use their judgement to decide
how to meet the outline user requirements for the system.

By contrast, when the software is part of a large system engineering project that
includes interacting hardware and software systems, it is often essential to define
the requirements to a fine level of detail. This means that the requirements docu-
ments are likely to be very long and should include most if not all of the chapters
shown in Figure 6.17. For long documents, it is particularly important to include a
comprehensive table of contents and document index so that readers can find the
information that they need.

Requirements documents are essential when an outside contractor is developing
the software system. However, agile development methods argue that requirements
change so rapidly that a requirements document is out of date as soon as it is writ-
ten, so the effort that is largely wasted. Rather than a formal document, approaches
such as extreme programming (Beck, 1999) propose that user requirements should
be collected incrementally and written on cards. The user then prioritises require-
ments for implementation in the next increment of the system.

For business systems where requirements are unstable, I think that this approach
is a good one. However, I would argue that it is still useful to write a short sup-
porting document that defines the business and dependability requirements for the
system. It is easy to forget the requirements that apply to the system as a whole
when focusing on the functional requirements for the next system release.

6.5 The software requirements document 139

Figure 6.17

The structure

of a requirements
document

Chapter Description

Preface This should define the expected readership of the document
and describe its version history, including a rationale for the
creation of a new version and a summary of the changes
made in each version.

Introduction This should describe the need for the system. It should briefly
describe its functions and explain how it will work with other
systems. It should describe how the system fits into the
overall business or strategic objectives of the organisation
commissioning the software.

Glossary This should define the technical terms used in the document.
You should not make assumptions about the experience or
expertise of the reader.

User requirements The services provided for the user and the non-functional
defirition system requirements should be described in this section. This
description may use natural language, diagrams or other
notations that are understandable by customers. Product
and process standards which must be followed should be
specified.

System architecture This chapter should present a high-level overview of the
anticipated system architecture showing the distribution of
functions across system modules. Architectural components
that are reused should be highlighted.

System requirements This should describe the functional and non-functional

specification requirements in more detail. If necessary, further detail
may also be added to the non-functional requirements,
e.g. interfaces to other systems may be defined.

System models This should set out one or more system models showing
the relationships between the system components and the
system and its environment. These might be object models,
data-flow models and semantic data models.

System evolution This should describe the fundamental assumptions on which
the system is based and anticipated changes due to hardware
evolution, changing user needs, etc.

Appendices These should provide detailed, specific information which
is related to the application which is being developed.
Examples of appendices that may be included are hardware
and database descriptions. Hardware requirements define the
minimal and optimal configurations for the system. Database
requirements define the logical organisation of the data used
by the system and the relationships between data.

Index Several indexes to the docurnent may be included. As well
as a normal alphabetic index, there may be an index of
diagrams, an index of functions, etc.

140 Chapter 6 m Software requirements

e

KEY POINTS

Requirements for a software system set out what the system should do and define
constraints on its operation and implementation,

Functional requirements are statements of the services that the system must provide or are
descriptions of how some computations must be carried out. Domain requirements are
functional requirements that are derived from characteristics of the application domain,

< Non-functional requirements constrain the system being developed and the development
process that should be used. They may be product requirements, organisational
requirements or external requirements. They often relate to the emergent properties of the
system and therefore apply to the system as a whole.

User requirements are intended for use by people involved in using and procuring the
system. They should be written using in natural language, with tables and diagrams that
are easily understood.

System requirements are intended to communicate, in a precise way, the functions that the
system must provide, To reduce ambiguity, they may be written in a structured form of
natural language supplemented by tables and system models.

The software requirements document is the agreed statement of the system requirements.
it should be organised so that both system customers and software developers can use it.

The IEEE standard for requirements documents is a useful starting point for more specific
requirements specification standards.

FURTHER READING I NG

S ftware Requirements, 2nd ed. This book, designed for writers and users of requirements,
discusses good requirements engineering practice. (K. M. Weigers, 2003, Microsoft Press.)

Mastering the Requirements Process. A well-written, easy-to-read book that is based on a
particular method (VOLERE) but which also includes lots of good general advice about
requirements engineering. (5. Robertson and J. Robertson, 1999, Addison-Wesley.)

Requirements Engineering: Processes and Techniques. This book covers all aspects of the
requirements engineering process and discusses specific requirements specification techniques.
(G. Kotonya and |. Sommerville, 1999, John Wiley & Sons.)

Software Requirements Engineering. This collection of papers on requirements engineering
includes several relevant articles such as ‘Recommended Practice for Software Requirements
Specification’, a discussion of the IEEE standard for requirements documents. (R. H. Thayer and M.
Dorfman (eds.), 1997, IEEE Computer Society Press.)

Chapter 6 m Exercises 141

EXERCISES

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

Identify and briefly describe four types of requirements that may be defined for a computer-
based system

Discuss the problems of using natural language for defining user and system requirements,
and show, using small examples, how structuring natural language into forms can help avoid
some of these difficulties.

Discover ambiguities or omissions in the following statement of requirements for part of a
ticket-issuing system.

An automated ticket-issuing system sells rail tickets, Users select their destination and input
a credit card and a personal identification number. The rail ticket is issued and their credit
card account charged. When the user presses the start button, a menu display of potential
destinations is activated, along with a message to the user to select a destination. Once a
destination has been selected, users are requested to input their credit card. Its validity is
checked and the Lser is then requested to input a personal identifier. When the credit
transaction has been validated, the ticket is issued.

Rewrite the above description using the structured approach described in this chapter.
Resolve the identified ambiguities in some appropriate way.

Draw a sequence diagram showing the actions performed in the ticket-issuing system. You
may make any reasonable assumptions abou: the system. Pay particular attention to
specifying user errors.

Using the technique suggested here, where natural language is presented in a standard way,
write plausible user requirements for the following functions:

W The cash-dispensing function in a bank ATM
& The spelling-chack and correcting function in a word processor

W An unattended petrol (gas) pump system that includes a credit card reader. The customer
swipes the card through the reader and then specifies the amount of fuel required. The
fuel is delivered and the customer s account debited.

Describe four types of non-functional requirements that may be placed on a system. Give
examples of each of these types of requirement.

Write a set of non-functional requirements for the ticket-issuing system, setting out its
expected reliability and its response time.

Suggest how an engineer responsible for drawing up a system requirements specification
might keep track of the relationships between functional and non-functional requirements.

You have taken a job with a software user who has contracted your previous employer to
develop a system for them. You discover that your company’s interpretation of the
requirements is different from the interpretation taken by your previous employer. Discuss
what you should do in such a situation. You know that the costs to your current employer
will increase if the ambiguities are not resolved. You have also a responsibility of
confidentiality to your previous employer.

ko R

7

[Requirements

engineering processes

Objectives

The objective of this chapter is to discuss the activities involved in
the requirements engineering process, When you have read this
chapter, you will:

m understand the principal requirements of engineering activities
and their relationships;

m have been introduced to several techniques of requirements
elicitation and analysis;

m understand the importance of requirements validation and how
requirements reviews are used in this process;

m understand why requirements management is necessary and how
it supports other requirements engineering activities.

Contents

7.1 Feasibility studies

7.2 Requirements elicitation and analysis
7.3 Requirements validation

7.4 Requirements management

Chapter 7 # Requirements engineering processes 143

Figure 7.1 The
requirements

engineering process

The goal of the requirements engineering process is to create and maintain a sys-
tem requirements document. The overall process includes four high-level require-
ments engineering sub-processes. These are concerned with assessing whether the
system is useful to the business (feasibility study); discovering requirements (elic-
itation and analysis); converting these requirements into some standard form (spec-
ification); and checking that the requirements actually define the system that the
customer wants (validation). Figure 7.1 illustrates the relationship between these activ-
ities. It also shows the documents produced at each stage of the requirements engi-
neering process. Specification and documentation are covered in Chapter 6; this chapter
concentrates on the other requirements engineering activities.

The activities shown in Figure 7.1 are concerned with the discovery, documen-
tation and checking of requirements. In virtually all systems, however, requirements
change. The pecple involved develop a better understanding of what they want the
software to do; the organisation buying the system changes; modifications are made
to the system’s hardware, software and organisational environment. The process of
managing these changing requirements is called requirements management, which
is covered in the final section of this chapter.

I present an alternative perspective on the requirements engineering process in
Figure 7.2. This presents the process as a three-stage activity where the activities
are organised as an iterative process around a spiral. The amount of time and effort
devoted to each activity in an iteration depends on the stage of the overall process
and the type of system being developed. Early in the process, most effort will be
spent on understanding high-level business and non-functional requirements and the
user requirements. Later in the process, in the outer rings of the spiral, more effort
will be devoted to system requirements engineering and system modeiling.

This spiral model accommodates approaches to development in which the require-
ments are developed to different levels of detail. The number of iterations around the
spiral can vary, so the spiral can be exited after some or all of the user requirements
have been elicited. If the prototyping activity shown under requirements validation

— Requirements
< Feasibility elicitation and
study analysis
prsceyme Requirements
Y specification
Feasibility [Requirements
report validation
Y
System “<
models
Y

User and system
requirements

Y

I—* Requirements

»{ document

Requirements engineering processes

T T
7 System requirements .. Requirements
- spedification and \‘\ specification
y yd modeling . J
e T B
/ /ﬁquirements \\\ \
Ve specification . N

2N

Business requirements

Feasibility i i
sudy / ! /
/ / !t
AN / m7¢, .
e /
\\ | / ya /
N] / /
Requirements AN o y
elicitation NG /// Reviews Requirements
___J,,/ /./ validation
System requirements //
document
™ -

is extended to include iterative development, as discussed in Chapter 17, this model
allows the requirements and the system implementation to be developed together.

Some people consider requirements engineering to be the process of applying a
structured analysis method such as object-oriented analysis (Larman, 2002). This
involves analysing the system and developing a set of graphical system models, such
as use-case models, that then serve as a system specification. The set of models
describes the behaviour of the system and are annotated with additional informa-
tion describing, for example, its required performance or reliability.

Although structured methods have a role to play in the requirements engineering pro-
cess, there is much more to requirements engineering than is covered by these meth-
ods. Requirements elicitation, in particular, is a human-centred activity and people dislike
the constraints imposed by rigid system models. I focus on general approaches to require-
ments engineering here and cover structured methods and system models in Chapter 8.

Feasibility studies

For all new systems, the requirements engineering process should start with a fea-
sibility study. The input to the feasibility study is a set of preliminary business require-
ments, an outline description of the system and how the system is intended to support

7.1 ®m Feasibility studies 145

business processes. The results of the feasibility study should be a report that rec-
ommends whether or not it is worth carrying on with the requirements engineering
and system development process.

A feasibility study is a short, focused study that aims to answer a number of
questions:

1. Does the system contribute to the overall objectives of the organisation?

2. Can the system be implemented using current technology and within given cost
and schedule constraints?

3. Can the system be integrated with other systems which are already in place?

The issue of whether or not the system contributes to business objectives is crit-
ical. If a system does not support these objectives, it has no real value to the busi-
ness. While this may seem obvious, many organisations develop systems which do
not contribute to their objectives because they don’t have a clear statement of these
objectives, because they fail to define the business requirements for the system or
because other political or organisation factors influence the system procurement.
Although this is not discussed explicitly, a feasibility study should be part of the
Inception phase in the Rational Unified Process, as discussed in Chapter 4.

Carrying out a feasibility study involves information assessment, information col-
lection and report writing. The information assessment phase identifies the infor-
mation that is required to answer the three questions set out above. Once the
information has been identified, you should talk with information sources to dis-
cover the answers to these questions. Some examples of possible questions that may
be put are:

1. How would the organisation cope if this systern were not implemented?

2. What are the problems with current processes and how would a new system
help alleviate these problems?

3. What direct contribution will the system make to the business objectives and
requirements?

4. Can information be transferred to and from other organisational systems?

5. Does the system require technology that has not previously been used in the
organisation?

6. What must be supported by the system and what need not be supported?

In a feasibility study, you may consult information sources such as the managers
of the departments where the system will be used, software engineers who are famil-
iar with the type of system that is proposed, technology experts and end-users of
the systern. Normally, you should try to complete a feasibility study in two or three
weeks.

146 Chapter 7 » Requirements engineering processes

7.2

Once you have the information, you write the feasibility study report. You should
make a recommendation about whether or not the system development should con-
tinue. In the report, you may propose changes to the scope, budget and schedule of
the system and suggest further high-level requirements for the system.

Requirements elicitation and analysis

The next stage of the requirements engineering process is requirements elicitation
and analysis. In this activity, software engineers work with customers and system
end-users to find out about the application domain, what services the system should
provide, the required performance of the system, hardware constraints, and so on.
Requirements elicitation and analysis may involve a variety of people in an organ-
isation. The term stakeholder is used to refer to any person or group who will be affected
by the system, directly or indirectly. Stakeholders include end-users who interact with
the system and everyone else in an organisation that may be affected by its installa-
tion. Other system stakeholders may be engineers who are developing or maintaining
related systems, business managers, domain experts and trade union representatives.
Eliciting and understanding stakeholder requirements is difficult for several reasons:

1. Stakeholders often don’t know what they want from the computer system except
in the most general terms. They may find it difficult to articulate what they
want the system to do or make unrealistic demands because they are unaware
of the cost of their requests.

2. Stakeholders naturally express requirements in their own terms and with
implicit knowledge of their own work. Requirements engineers, without expe-
rience in the customer’s domain, must understand these requirements.

3. Different stakeholders have different requirements, which they may express in
different ways. Requirements engineers have to consider all potential sources
of requirements and discover commonalities and conflict.

4. Political factors may influence the requirements of the system. For example,
managers may demand specific system requirements that will increase their influ-
ence in the organisation.

5. The economic and business environment in which the analysis takes place is
dynamic. It inevitably changes during the analysis process. Hence the impor-
tance of particular requirements may change. New requirements may emerge
from new stakeholders who were not originally consulted.

A very general process model of the elicitation and analysis process is shown in
Figure 7.3. Each organisation will have its own version or instantiation of this

7.2 m Requirements elicitation and analysis

147

Figure 7.3 The
requirements
elicitation and
analysis process

/ ol T e
e ~
- -
S~
I /‘ﬂ'm"”'\\\\%
// -~ -~ e
e .
1/ Requirements Requirements
. dassification and /.Tm N prioritization and
/ organisation / ™. negotiation
'/ / / g "\\
{ {
i a/ I T
{ | | \ A |
S NN]
\ \\ \ /{,/ “
‘\\ Requirements _4/”’ Requirements
\ discovery documentation
N,
\\\ 7
\\\ ______,_ /.,«/ -
\
\\.. e
~..
~ |-

general model, depending on local factors such as the expertise of the staff, the type .

of system being developed and the standards used. Again, you can think of these
activities within a spiral so that the activities are interleaved as the process pro-

ceeds from the inner to the outer rings of the spiral.

The process activities are:

1. Requirements discovery This is the process of interacting with stakeholders in
the system to collect their requirements. Domain requirements from stakeholders

and documentation are also discovered during this activity.

2. Requirements classification and organisation This activity takes the unstruc-
tured collection of requirements, groups related requirernents and organises them

into coherent clusters.

3. Requirements prioritisation and negotiation Inevitably, where multiple stake-
holders are involved, requirements will conflict. This activity is concerned with

148 Chapter 7 m Requirements engineering processes

7.21

prioritising requirements, and finding and resolving requirements conflicts
through negotiation.

4. Requirements documentation The requirements are documented and input into
the next round of the spiral, Formal or informal requirements documents may
be produced.

Figure 7.3 shows that requirements elicitation and analysis is an iterative pro-
cess with continual feedback from each activity to other activities. The process cycle
starts with requirements discovery and ends with requirements documentation. Th
analyst’s understanding of the requirements improves with each round of the cycle.

In this chapter, I focus primarily on requirements discovery and the various tech-
niques that have been developed to support this. Requirements classification and orga-
nization is primarily concerned with identifying overlapping requirements from
different stakeholders and grouping related requirements. The most common way of
grouping requirements is to use a model of the system architecture to identify sub-
systems and to associate requirements with each sub-system. This emphasises that
requirements engineering and architectural design cannot always be separated.

Inevitably, stakeholders have different views on the importance and priority of
requirements, and sometimes these views conflict. During the process, you should
organise regular stakeholder negotiations so that compromises can be reached. It is
impossible to completely satisfy every stakeholder, but if some stakeholders feel
that their views have not been properly considered, they may deliberately attempt
to undermine the RE process.

In the requirements documentation stage, the requirements that have been
elicited are documented in such a way that they can be used to help with further
requirements discovery. At this stage, an early version of the system requirements
document may be produced, but it will have missing sections and incomplete
requirements. Alternatively, the requirements may be documented as tables in a doc-
ument or on cards. Writing requirements on cards (the approach used in extreme
programming) can be very effective, as these are easy for stakeholders to handle,
change and organise.

Requirements discovery

Requirements discovery is the process of gathering information about the proposed
and existing systems and distilling the user and system requirements from this infor-
mation. Sources of information during the requirements discovery phase include doc-
umentation, system stakeholders and specifications of similar systems. You interact
with stakeholders through interviews and observation, and may use scenarios and
prototypes to help with the requirements discovery. In this section, I discuss an
approach that helps ensure you get broad stakeholder coverage when discovering
requirements, and I describe techniques of requirements discovery including inter-
viewing, scenarios and ethnography. Other requirements discovery techniques that

7.2 m Requirements elicitation and analysis 149

may be used include structured analysis methods covered in Chapter 8, and sys-
tem prototyping, covered in Chapter 17.

Stakeholders range from system end-users through managers and external stake-
holders such as regulators who certify the acceptability of the system. For exam-
ple, systemn stakeholders for a bank ATM include:

1. Current bank customers who receive services from the system

[]

Representatives from other banks who have reciprocal agreements that allow
each other’s ATMs to be used

3. Managers of bank branches who obtain management information from the system

4, Counter staff at bank branches who are involved in the day-to-day running of
the system

5. Database administrators who are responsible for integrating the system with
the bank’s customer database

6. Bank security managers who must ensure that the system will not pose a secu-
rity hazard

1. The bank’s marketing department who are likely be interested in using the sys-
tem as a means of marketing the bank

8. Hardware and software maintenance engineers who are responsible for main-
taining and upgrading the hardware and software

9. National banking regulators who are responsible for ensuring that the system
conforms to banking regulations

In addition to system stakeholders. we have already seen that requirements may
come from the application domain and from other systems that interact with the
system being specified. All of these must be considered during the requirements
elicitation process.

These requirements sources (stakeholders, domain, systems) can all be represented
as system viewpoints, where each viewpoint presents a sub-set of the requirements
for the system. Each viewpoint provides a fresh perspective on the system, but these
perspectives are not completely independent——they usually overlap so that they have
common requirements.

Viewpoints

Viewpoint-oriented approaches to requirements engineering (Mullery, 1979;
Finkelstein et al., 1992; Kotonya and Sommerville, 1992; Kotonya and Sommerville,
1996) organise both the elicitation process and the requirements themselves using view-
points. A key strength of viewpoint-oriented analysis is that it recognises multiple per-
spectives and provides a framework for discovering conflicts in the requirements proposed
by different stakeholders.

150 Chapter7

Requirements engineering processes

Viewpoints can be used as a way of classifying stakeholders and other sources
of requirements. There are three generic types of viewpoint:

1. Interactor viewpoints represent people or other systems that interact directly
with the system. In the bank ATM system, examples of interactor viewpoints
are the bank’s customers and the bank’s account database.

2. Indirect viewpoints represent stakeholders who do not use the system themselves
but who influence the requirements in some way. In the bank ATM system,
examples of indirect viewpoints are the management of the bank and the bank
security staff.

3. Domain viewpoints represent domain characteristics and constraints that influ-
ence the system requirements. In the bank ATM system, an example of a domain
viewpoint would be the standards that have been developed for interbank com-
munications.

Typically, these viewpoints provide different types of requirements. Interactor
viewpoints provide detailed system requirements covering the system features and
interfaces. Indirect viewpoints are more likely to provide higher-level organisational
requirements and constraints. Domain viewpoints normally provide domain constraints
that apply to the system.

The initial identification of viewpoints that are relevant to a system can some-
times be difficult. To help with this process, you should try to identify more spe-
cific viewpoint types:

1. Providers of services to the system and receivers of system services
Systems that should interface directly with the system being specified

Regulations and standards that apply to the system

The sources of system business and non-functional requirements

A O

Engineering viewpoints reflecting the requirements of people who have to develop,
manage and maintain the system

6. Marketing and other viewpoints that generate requirements on the product fea-
tures expected by customers and how the systern should reflect the external image
of the organisation

Almost all organisational systems must interoperate with other systems in the
organisation. When a new system is planned, the interactions with other systems
must be planned. The interfaces offered by these other systems have already been
designed. These may place requirements and constraints on the new system.
Furthermore, new systems may have to conform to existing regulations and stan-
dards, and these constrain the system requirements.

7.2 m Requirements elicitation and analysis 151

All VPs
Indirect interactor Domain
Library . Article Library ut Classification
manageJ Finance providers Users staff standards system
// \
System
Students Staff External managers Cataloguers
— | ——————
Figure 7.4 As 1 discussed earlier in the chapter, you should identify high-level business and

Viewpoints in LIBSYS

non-functional requirements early in the RE process. The sources of these require-
ments may be useful viewpoints in a more detailed process. They may be able to expand
and develop the high-level requirements into more specific system requirements.

Engineering viewpoints may be important for two reasons. Firstly, the engineers
developing the system may have experience with similar systems and may be able
to suggest requirements from that experience. Secondly, technical staff who have
to manage and maintain the system may have requirements that will help simplify
system support. System management requirements are increasingly important
because system management costs are an increasing proportion of the total lifetime
costs for a system.

Finally, viewpoints that provide requirements may come from the marketing and
external affairs departments in an organisation. This is especially true for web-based
systems, particularly e-commerce systems and shrink-wrapped software products.
‘Web-based systems must present a favourable image of the organisation as well as deliver
functionality to the user. For software products, the marketing department should know
what system features will make the system more marketable to potential buyers.

For any non-trivial system, there are a huge number of possible viewpoints, and
1t is practically impossible to elicit requirements from all of them. Therefore, it is
important that you organise and structure the viewpoints into a hierarchy.
Viewpoints in the same branch are likely to share common requirements.

As an illustration, consider the viewpoint hierarchy shown in Figure 7.4, This is
a relatively simple diagram of the viewpoints that may be consulted in deriving the
requirements for the LIBSYS system. You can see that the classification of inter-
actor, indirect and domain viewpoints helps identify sources of requirements apart
from the immediate users of the system.

152 Chapter 7 ® Requirements engineering processes

Once viewpoints have been identified and structured, you should try to identify
the most important viewpoints and start with them when discovering system
requirements.

Interviewing

Formal or informal interviews with system stakeholders are part of most requirements
engineering processes. In these interviews, the requirements engineering team puts
questions to stakeholders about the system that they use and the system to be devel-

ped. Requirements are derived from the answers to these questions. Interviews may
be of two types:

1. Closed interviews where the stakeholder answers a predefined set of questions.

2. Open interviews where there is no predefined agenda. The requirements engi-
neering team explores a range of issues with system stakeholders and hence
develops a better understanding of their needs.

In practice, interviews with stakeholders are normally a mix of these. Th
answers to some questions may lead to other issues that are discussed in a less struc-
tured way. Completely open-ended discussions rarely work well; most interviews
require some questions to get started and to keep the interview focused on the sys-
tem to be developed.

Interviews are good for getting an overall understanding of what stakeholders
do, how they might interact with the system and the difficulties that they face with
current systems. People like talking about their work and are usually happy to get
involved in interviews. However, interviews are not so good for understanding the
requirements from the application domain.

It is hard to elicit domain knowledge during interviews for two reasons:

1. All application specialists use terminology and jargon that is specific to a domain.
It is impossible for them to discuss domain requirements without using this ter-
minology. They normally use terminology in a precise and subtle way that is
easy for requirements engineers to misunderstand.

2. Some domain knowledge is so familiar to stakeholders that they either find it
difficult to explain or they think it is so fundamental that it isn’t worth men-
tioning. For example, for a librarian, it goes without saying that all acquisitions
are catalogued before they are added to the library. However, this may not be
obvious to the interviewer so it isn’t taken into account in the requirements.

Interviews are not an effective technique for eliciting knowledge about organi-
sational requirements and constraints because there are subtle power and influence
relationships between the stakeholders in the organisation. Published organisational
structures rarely match the reality of decision making in an organisation, but

7.2 % Requirements elicitation and analysis 153

interviewees may not wish to reveal the actual rather than the theoretical structure
to a stranger. In general, most people are reluctant to discuss political and organi-
sational issues that may affect the requirements.

Effective interviewers have two characteristics:

1. They are open-minded, avoid preconceived ideas about the requirements and
are willing to listen to stakeholders. If the stakeholder comes up with surpris-
ing requirements, they are willing to change their mind about the system.

2. They prompt the interviewee to start discussions with a question, a requirements
proposal or by suggesting working together on a prototype system. Saying to
people ‘tell me what you want’ is unlikely to result in useful information. Most
people find it much easier to talk in a defined context rather than in general
terms.

Information from interviews supplements other information about the system
from documents, user observations, and so on. Sometimes, apart from informa-
tion from documents, interviews may be the only source of information about the
system requirements. However, interviewing on its own is liable to miss essen-
tial information, so it should be used alongside other requirements elicitation
techniques.

Scenarios

People usually find it easier to relate to real-life examples than to abstract descrip-
tions. They can understand and critique a scenario of how they might interact with
a software system. Requirements engineers can use the information gained from this
discussion to formulate the actual system requirements.

Scenarios can be particularly useful for adding detail to an outline requirements
description. They are descriptions of example interaction sessions. Each scenario
covers one or more possible interactions. Several forms of scenarios have been devel-
oped, each of which provides different types of information at different levels of
detail about the system. Using scenarios to describe requirements is an integral part
of agile methods, such as extreme programming, that I discuss in Chapter 17.

The scenario starts with an outline of the interaction, and, during elicitation, details
are added to create a complete description of that interaction. At its most general,
a scenario may include:

1. A description of what the system and users expect when the scenario starts
A description of the normal flow of eveats in the scenario
A description of what can go wrong and how this is handled

Information about other activities that might be going on at the same time

LR W N

A description of the system state when the scenario finishes.

154 Chapter 7 ® Requirements engineering processes

Figure 7.5 Scenario
for article
downloading in
LIBSYS

initial assumption: The user has logged on to the LIBSYS system and has located
the journal containing the copy of the article.

Normal: The user selects the article to be copied. The system prompts the user to

provide subscriber information for the journal or to indicate a method of payment

for the article. Payment can be made by credit card or by quoting an organisational
account number.

The user is then asked to fill in a copyright form that maintains details of the
transaction and submit it to the LIBSYS system.

The copyright form is checked and, if it is approved, the PDF version of the article is
downloaded to the LIBSYS working area on the user's computer and the user is
informed that it is available. The user is asked to select a printer and a copy of the
article is printed. if the article has been flagged as ‘print-only it is deleted from the
user's system once the user has confirmed that printing is complete.

What can go wrong: The user may fail to fill in the copyright form correctly. In this
case, the form should be re-presented to the user for correction. If the resubmitted
form is still incorrect, then the user's request for the article is rejected.

The payment may be rejected by the system, in which case the user's request for the
article is rejected.

The article download may fail, causing the system to retry until successful or the user
terminates the session.

It may not be possible to print the article. If the article is not flagged as ‘print-only’ it
is held in the LIBSYS workspace. Otherwise, the article is deleted and the user's
account credited with the cost of the article.

Other activitles: Simultaneous downloads of other articles.

System state on completion: User is logged on. The downloaded article has been
deleted from LIBSYS workspace if it has been flagged as print-only.

Scenario-based elicitation can be carried out informally, where the requirements
engineer works with stakeholders to identify scenarios and to capture details of these
scenarios. Scenarios may be written as text, supplemented by diagrams, screen shots,
and so on. Alternatively, a more structured approach such as event scenarios or use-
cases may be adopted.

As an example of a simple text scenario, consider how a user of the LIBSYS
library system may use the system. This scenario is shown in Figure 7.5. The user
wishes to print a personal copy of an article in a medical journal. This journal makes
copies of articles available free to subscribers, but nonsubscribers have to pay a fee
per article. The user knows the article, title and date of publication.

Use-cases

Use-cases are a scenario-based technique for requirements elicitation which were
first introduced in the Objectory method (Jacobsen, et al., 1993). They have now

7.2 ® Requirements elicitation and analysis 155

Figure 7.6 A simple
use-case for article
printing

T—

Article printing

become a fundamental feature of the UML notation for describing object-oriented
system models. In their simplest form, a use-case 1dentifies the type of interaction
and the actors involved . For example, Figure 7.6 shows the high-level use-case of
the article printing facility in LIBSYS described in Figure 7.5.

Figure 7.6 illustrates the essentials of the use-case notation. Actors in the pro-
cess are represented as stick figures, and each class of interaction is represented as
a named ellipse. The set of use-cases represents all of the possible interactions to
be represented in the system requirements. Figure 7.7 develops the LIBSYS exam-
ple and shows other use-cases in that environment.

There is sometimes confusion about whether a use-case is a scenario on its own
or, as suggested by Fowler (Fowler and Scott, 1997), a use-case encapsulates a set
of scenarios, and each scenario is a single thread through the use-case. If a scenario
includes multiple threads, there would be a scenario for the normal interaction plus
scenarios for each possible exception.

Use-cases identify the individual interactions with the system. They can be doc-
umented with text or linked to UML models that develop the scenario in more detail.
Sequence diagrams (introduced in Chapter 6) are often used to add information to
a use-case. These sequence diagrams show the actors involved in the interaction,
the objects they interact with and the operations associated with these objects.

As an illustration of this, Figure 7.8 shows the interactions involved in using
LIBSYS for downloading and printing an article. In Figure 7.8, there are four objects
of classes—Article, Form, Workspace and Printer—involved in this interaction. The
sequence of actions is from top to bottom, and the labels on the arrows between
the actors and objects indicate the names of operations. Essentially, a user request
for an article triggers a request for a copyright form. Once the user has completed
the form, the article is downloaded and sent to the printer. Once printing is com-
plete, the article is deleted from the LIBSYS workspace.

The UML is a de facto standard for object-oriented modelling, so use-cases and
use-case-based elicitation is increasingly used for requirements elicitation. Other
types of UML models are discussed in Chapter 8, which covers system modelling,
and in Chapter 14, which covers object-oriented design.

Scenarios and use-cases are effective techniques for eliciting requirements for
interactor viewpoints, where each type of interaction can be represented as a use-
case. They can also be used in conjunction with some indirect viewpoints where
these viewpoints receive some results (such as a management report) from the sys-
tem. However, because they focus on interactions, they are not as effective for elic-
iting constraints or high-level business and non-functional requirements from
indirect viewpoints or for discovering domain requirements.

156 Chapter 7 m Requirements engineering processes

Figure 7.7 Use cases

for the library system O
Article search

%

Library Amde printing
User
%

User admlmstratlon Library
Staff
T — O
Supplier Catalogue services
Figure 7.8 System
interactions for - - - o
N e item: 0| m: myWorkspace: nter:
article printing Article Bmm Workspace Printer
User
request
Ll I request
complete
retum
[J copyright OK |]
L
deliver i
article OK
print o send]
inform confirm |

delete

7.2 m Requirements elicitation and analysis 157

7.2.2 Ethnography

Software systems do not exist in isolation—they are used in a social and organisa-
tional context, and software system requirements may be derived or constrained by
that context. Satisfying these social and organisational requirements is often criti-
cal for the success of the system. One reason why many software systems are deliv-
ered but never used is that they do not take proper account of the importance of
these requirements.

Ethnography is an observational technique that can be used to understand social
and organisational requirements. Ar; analyst immerses him or herself in the work-
ing environment where the system will be used. He or she observes the day-to-day
work and notes made of the actual tasks in which participants are involved. The value
of ethnography is that it helps analysts discover implicit system requirements that
reflect the actual rather than the formal processes in which people are involved.

People often find it very difficult to articulate details of their work because it is
second nature to them. They understand their own work but may not understand its
relationship with other work in the organisation. Social and organisational factors
that affect the work but that are not obvious to individuals may only become clear
when noticed by an unbiased observer.

Suchman (Suchman, 1987) used ethnography to study office work and found that
the actuel work practices were far richer, more complex and more dynamic than the
simple models assumed by office automation systems. The difference between the assumed
and the actval work was the most important reason why these office systems have had
no significant effect on productivity. Other ethnographic studies for system require-
ments understanding have included work on air traffic control (Bentley, et al., 1992;
Hughes, et al., 1993), underground railway control rooms (Heath and Luff, 1992), finan-
cial systems and various design activities (Heath, et al., 1993; Hughes, et al., 1994).
In my own research, I have investigated methods of integrating ethnography into the
software engineering process by linking it to requirements engineering methods (Viller
and Sommerville, 1999; Viller and Sommerville, 1998; Viller and Sommerville, 2000)
and by documenting patterns of interaction in cooperative systems (Martin, et al., 2001;
Martin, et al., 2002; Martin and Sommerville, 2004).

Ethnography is particularly effective at discovering two types of requirements:

1. Requirements that are derived from the way in which people actually work rather
than the way in which process definitions say they ought to work. For exam-
ple, air traffic controllers may switch off an aircraft conflict alert system that
detects aircraft with intersecting flight paths even though normal control pro-
cedures specify that it should be used. Their control strategy is designed to ensure
that these aircraft are moved apart before problems occur and they find that
the conflict alert alarm distracts them from their work.

2. Requirements that are derived from cooperation and awareness of other peo-
ple’s activities. For example, air traffic controllers may use an awareness of
other controllers’ work to predict the number of aircraft that will be entering

158 Chapter 7 m Requirements engineering processes

Figure 7.9
Ethnography and
prototyping for
requirements
analysis

73

Focused
ethnography
System ‘
prototyping

their control sector. They then modify their control strategies depending on that
predicted workload. Therefore, an automated ATC system should allow con-
trollers in a sector to have some visibility of the work in adjacent sectors.

Debriefing
meetings

Ethnographic
analysis
Generic system
development

Ethnography may be combined with prototyping (Figure 7.9). The ethnography
informs the development of the prototype so that fewer prototype refinement cycles
are required. Furthermore, the prototyping focuses the ethnography by identifying
problems and questions that can then be discussed with the ethnographer. He or she
should then look for the answers to these questions during the next phase of the
system study (Sommerville, et al., 1993).

Ethnographic studies can reveal critical process details that are often missed by
other requirements elicitation techniques. However, because of its focus on the end-
user, this approach is not appropriate for discovering organisational or domain
requirements. Ethnographic studies cannot always identify new features that should
be added to a system. Ethnography is not, therefore, a complete approach to elici-
tation on its own, and it should be used to complement other approaches, such as
use-case analysis.

Requirements validation

Requirements validation is concerned with showing that the requirements actu-
ally define the system that the customer wants. Requirements validation overlaps
analysis in that it is concerned with finding problems with the requirements.
Requirements validation is important because errors in a requirements document
can lead to extensive rework costs when they are discovered during development
or after the system is in service. The cost of fixing a requirements problem by
making a system change is much greater than repairing design or coding errors.
The reason for this is that a change to the requirements usually means that the
system design and implementation must also be changed and then the system must
be tested again.

7.3 m Requirements validation 159

During the requirements validation process, checks should be carried out on the
requirements in the requirements document. These checks include:

1. Validity checks A user may think that a systern is needed to perform certain
functions. However, further thought and analysis may identify additional or dif-
ferent functions that are required. Systems have diverse stakeholders with dis-
tinct needs, and any set of requirements is inevitably a compromise across the
stakeholder community.

2. Consistency checks Requirements in the document should not conflict. That is,
there should be no contradictory constraints or descriptions of the same sys-
tem function.

3. Completeness checks The requirements document should include requirements,
which define all functions, and constraints intended by the system user.

4, Realism checks Using knowledge of existing technology, the requirements shouid
be checked to ensure that they could actually be implemented. These checks
shouid also take account of the budget and schedule for the system develop-
men:.

5. Verifiability To reduce the potential for dispute between customer and contractor,
system requirements should always be written so that they are verifiable. This
means that you should be able to write a set of tests that can demonstrate that
the delivered system meets each specified requirement.

A number of requirements validation techniques can be used in conjunction or
individually:

1. Regquirements reviews The requirements are analysed systematically by a team
of reviewers. This process is discussed in the following section.

2. Proiotyping In this approach to validation, an executable model of the system
is demonstrated to end-users and customers. They can experiment with this model
to see if it meets their real needs. I discuss prototyping and prototyping tech-
niques in Chapter 17.

3. Test-case generation Requirements should be testable. If the tests for the
requirements are devised as part of the validation process, this often reveals
requirements problems. If a test is difficult or impossible to design, this usu-
ally means that the requirements will be difficult to implement and should be
reccnsidered. Developing tests from the user requirements before any code is
written is an integral part of extreme programming.

You should not underestimate the problems of requirements validation. It is dif-
ficult to show that a set of requirernents meets a user s needs. Users must picture

160 Chapter 7 ® Requirements engineering processes

7.3.1

the system in operation and imagine how that system would fit into their work. It
1s hard for skilled computer professionals to perform this type of abstract analysis
and even harder for system users. As a result, you rarely find all requirements prob-
lems during the requirements validation process. It is inevitable that there will be
further requirements changes to correct omissions and misunderstandings after the
requirements document has been agreed upon.

Requirements reviews

A requirements review is a manual process that involves people from both client
and contractor organisations. They check the requirements document for anomalies
and omissions. The review process may be managed in the same way as program
inspections (see Chapter 22). Alternatively, it may be organised as a broader activ-
ity with different people checking different parts of the document.

Requirements reviews can be informal or formal. Informal reviews simply
involve contractors discussing requirements with as many system stakeholders as
possible. It is surprising how often communication between system developers and
stakeholders ends after elicitation and there is no confirmation that the documented
requirements are what the stakeholders really said they wanted. Many problems can
be detected simply by talking about the system to stakeholders before making a com-
mitment to a formal review.

In a formal requirements review, the development team should ‘walk’ the client
through the system requirements, explaining the implications of each requirement.
The review team should check each requirement for consistency as well as check
the requirements as a whole for completeness. Reviewers may also check for:

1. Verifiability Is the requirement as stated realistically testable?

2. Comprehensibility Do the procurers or end-users of the system properly under-
stand the requirement?

3. Traceability Is the origin of the requirement clearly stated? You may have to
go back to the source of the requirement to assess the impact of a change
Traceability is important as it allows the impact of change on the rest of the
system to be assessed. I discuss it in more detail in the following section.

4. Adaprability Is the requirement adaptable? That is, can the requirement be changed
without large-scale effects on other system requirements?

Conflicts, contradictions, errors and omissions in the requirements should be pointed
out by reviewers and formally recorded in the review report. It is then up to the
users, the system procurer and the system developer to negotiate a solution to these
identified problems.

7.4 & Requirements management 161

7-4

7.4.1

Requirements management

The requirements for large software systems are always changing. One reason for
this is that these systems are usually developed to address ‘wicked’ problems (as
discussed in Chapter 2). Because the problem cannot be fully defined, the software
requirements are bound to be incomplete. During the software process, the stake-
holders’ understanding of the problem is constantly changing. These requirements
must then evolve to reflect this changed problem view.

Furthermore, once a system has been installed, new requirements inevitably emerge.
It is hard for users and system customers to anticipate what effects the new system
will have on the organisation. Once end-users have experience of a system, they
discover new needs and priorities:

1. Large systems usually have a diverse user community where users have dif-
ferent requirements and priorities. These may be conflicting or contradictory.
The final system requirements are inevitably a compromise between them and,
with experience, it is often discovered that the balance of support given to dif-
ferent users has to be changed.

2. The people who pay for a system and the users of a system are rarely the same peo-
ple. System customers impose requirements because of organisational and budgetary
constraints. These may conflict with end-user requirements and, after delivery, new
features may have to be added for user support if the system is to meet its goals.

3. The business and technical environment of the system changes after installation, and
these changes must be reflected in the system. New hardware may be introduced,
it may be necessary to interface the system with other systems, business priorities
may change with consequent changes in the system support, and new legislation
and regulations may be introduced which must be implemented by the system.

Requirements management is the process of understanding and controlling
changes to system requirements. You need to keep track of individual requirements
and maintain links between dependent requirements so that you can assess the impact
of requirements changes. You need to establish a formal process for making change
proposals and linking these to system requirements. The process of requirements
management should start as soon as a draft version of the requirements document
is available, but you should start planning how to manage changing requirements
during the requirements elicitation process.

Enduring and volatile requirements

Requirements evolution during the RE process and after a system has gone into ser-
vice is inevitable. Developing software requirements focuses attention on software

162 Chapter 7 ® Requirements engineering processes

anurg 7.10 Initial Changed
Requirements understanding understanding
evolution

of problem of problem

Initial
requirements

Changed
requirements

VI

capabilities, business objectives and other business systems. As the requirements
definition is developed, you normally develop a better understanding of users needs.
This feeds information back to the user, who may then propose a change to the
requirements (Figure 7.10). Furthermore, it may take several years to specify and
develop a large system. Over that time, the system’s environment and the business

objectives change, and the requirements evolve to reflect this.

From an evolution perspective, requirements fall into two classes:

1. Enduring requirements These are relatively stable requirements that derive from
the core activity of the organisation and which relate directly to the domain of
the system. For example, in a hospital, there will always be requirements con-
cerned with patients, doctors, nurses and treatments. These requirements may
be derived from domain models that show the entities and relations that char-
acterise an application domain (Easterbrook, 1993; Prieto-Diaz and Arango, 1991).

2. Volatile requirements These are requirements that are likely to change during the
system development process or after the system has been become operational. An
example would be requirements resulting from government healthcare policies.

Harker and others (Harker, et al., 1993) have suggested that volatile requirements
fall into five classes. Using these as a base, I have developed the classification shown

in Figure 7.11.

7.4.2 Requirements management planning

Planning is an essential first stage in the requirements management process.
Requirements management is very expensive. For each project, the planning stage
establishes the level of requirements management detail that is required. During the

requirements management stage, you have to decide on:

1. Requirements identification Each requirement must be uniquely identified so
that it can be cross-referenced by other requirements and so that it may be used

in traceability assessments.

7.4 m Requirements management 163

Figure 7.11
Classification of
volatile requirements

Reauirement Descrintion
Type

Mutable Requirements which change because of changes to the

requirements environment in which the organisation is operating. For example,
in hospital systems, the funding of patient care may change and
thus require different treatment information to be coliected.

Emergent Requirements which emerge as the customer’s understanding of
requirements the system develops during the system development. The design
process may reveal new emergent requirements.

Consequential Requirements which result from the introduction of the computer

requirements system. Introducing the computer system may change the
organisation's processes and open up new ways of working which
generate new system requirements.

Compatibility = Requirements which depend on the particular systems or business

requirements processes within an organisation. As these change, the compatibility
requirements on the commissioned or delivered system may also
have to evolve.

2. A change management process This is the set of activities that assess the

impact and cost of changes. I discuss this process in more detail in the fol-
lowing section.

Traceability policies These policies define the relationships between require-
ments, and between the requirements and the system design that should be
recorded and how these records should be maintained.

CASE ool support Requirements management involves the processing of large
amounts of information about the requirements. Tools that may be used range
from: specialist requirements management systems to spreadsheets and simple
database systems.

There are many relationships among requirements and between the requirements

and the system design. There are also links between requirements and the underly-
ing reascns why these requirements were proposed. When changes are proposed,
you have to trace the impact of these changes on other requirements and the sys-
tem design. Traceability is the property of a requirements specification that reflects
the ease of finding related requirements.

There are three types of traceability information that may be maintained:

Source traceability information links the requirements to the stakeholders who
proposed the requirements and to the rationale for these requirements. When a
change is proposed, you use this information to find and consult the stakeholders
about the change.

164 Chapter 7 m Requirements engineering processes

Figure 7.12
A traceability matrix

1.2 D R D
13 R R

2.1 R D D
22 D
23 R D

3.1 R
32 R

2. Requirements traceability information links dependent requirements within the
requirements document. You use this information to assess how many require-
ments are likely to be affected by a proposed change and the extent of conse-
quential requirements changes that may be necessary.

3. Design traceability information links the requirements to the design modules
where these requirements are implemented. You use this information to assess
the impact of proposed requirements changes on the system design and imple-
mentation.

Traceability information is often represented using traceability matrices, which
relate requirements to stakeholders, each other or design modules. In a requirements
traceability matrix, each requirement is entered in a row and in a column in the
matrix. Where dependencies between different requirements exist, these are
recorded in the cell at the row/column intersection.

Figure 7.12 shows a simple traceability matrix that records the dependencies
between requirements. A ‘D’ in the row/column intersection illustrates that the require-
ment in the row depends on the requirement named in the column; an ‘R’ means
that there is some other, weaker relationship between the requirements. For exam-
ple, they may both define the requirements for parts of the same subsystem.

Traceability matrices may be used when a small number of requirements have
to be managed, but they become unwieldy and expensive to maintain for large
systems with many requirements. For these systems, you should capture trace-
ability information in a requirements database where each requirement is explic-
itly linked to related requirements. You can then assess the impact of changes
by using the database browsing facilities. Traceability matrices can be generated
automatically from the database.

7.4 ® Requirements management 165

Identified Revised
problem | p/ohiem analysis and Change analysis Change requirements
change spexification and costing > implementation

Figure 7.13
Requirements
change management

7:4.3

Requirements management needs automated support; the CASE tools for this should
be chosen during the planning phase. You need tool support for:

1. Requirements storage The requirements should be maintained in a secure, man-
aged data store that is accessible to everyone involved in the requirements engi-
neering process.

2. Change management The process of change management (Figure 7.13) is sim-
plified if active tool support is available.

3. Traceability management As discussed above, tool support for traceability allows
related requirements to be discovered. Some tools use natural language pro-
cessing techniques to help you discover possible relationships between the
requirements.

For srnall systems, it may not be necessary to use specialised requirements man-
agement tools. The requirements management process may be supported using the
facilities available in word processors, spreadsheets and PC databases. However,
for larger systems, more specialised tool support is required. I have included links
to information about requirements management tools such as DOORS and
RequisitePro in the book’s web pages.

Requirements change management

Requirements change management (Figure 7.13) should be applied to all proposed
changes 1o the requirements. The advantage of using a formal process for change
management is that all change proposals are treated consistently and that changes
to the requirements document are made in a controlied way. There are three prin-
cipal stages to a change management process:

1. Problem analysis and change specification The process starts with an identi-
fied requirements problem or, sometimes, with a specific change proposal. During
this stage, the problem or the change proposal is analysed to check that it is
valid. The results of the analysis are fed back to the change requestor, and some-
times a more specific requirements change proposal is then made.

2. Charnge analysis and costing The effect of the proposed change is assessed using
traceability information and general knowledge of the system requirements. The
cost of making the change is estimated in terms of modifications to the

166 Chapter 7 m Requirements engineering processes

requirements document and, if appropriate, to the system design and imple-
mentation. Once this analysis is completed, a decision is made whether to pro-
ceed with the requirements change.

3. Change implementation The requirements document and, where necessary, the
system design and implementation are modified. You should organise the
requirements document so that you can make changes to it without extensive
rewriting or reorganisation. As with programs, changeability in documents is
achieved by minimising external references and making the document sections
as modular as possible. Thus, individual sections can be changed and replaced
without affecting other parts of the document.

If a requirements change to a system is urgently required, there is always a temp-
tation to make that change to the system and then retrospectively modify the

-+ The requirements engineering process includes a feasibility study, requirements elicitation
and analysis, requirements specification, requirements validation and requirements
management.

KEY POINTS

Requirements elicitation and analysis is an iterative process that can be represented as a
spiral of activities—requirements discovery, requirements classification and organisation,
requirements negotiation and requirements documentation.

Different stakeholders in the system have different requirements. All complex systems
should therefore be analysed from a number of viewpoints. Viewpaints can be people or
other systems that interact with the system being specified, stakeholders who are affected
by the system, or domain viewpoints that constrain the requirements.

Social and organisational factors have a strong influence on system requirements and may
determine whether the software is actually used.

Requirements validation is the process of checking the requirements for validity,
consistency, completeness, realism and verifiability. Requirements reviews and prototyping
are the principal techniques used for requirements validation.

Business, organisational and technical changes inevitably lead to changes to the
requirements for a software system. Requirements management is the process of managing
and controliing these changes.

The requirements management process includes management plahning, where policies and
procedures for requirements management are designed, and change management, where
you analyse proposed requirements changes and assess their impact.

Chapter 7 & Exercises 167

requirements document. This almost inevitably leads to the requirements specifica-
tion and the system implementation getting out of step. Once system changes have
been made, requirements document changes may be forgotten or made in a way that
is not consistent with the system changes.

Iterative development processes, such as extreme programming, have been
designed to cope with requirements that change during the development process.
In these processes, when a user proposes a requirements change, this does not go
through a formal change management process. Rather, the user has to prioritise that
change and, if it is high priority, decide what systemn features that were planned for
the next iteration should be dropped.

FURTHER READING il i

‘Requirements engineering'. This special issue includes two papers that focus on requirements
engineering for particular domains (cars and medical devices) that offer interesting perspectives on
the RE processes in these areas. (/EEE Software, 20 (1), January/February 2003.)

Mastering the Requirements Process. A readable book that is intended for practising requirements
engineers, It gives specific guidance on developing an effective requirements engineering process.
(S. Robertson and J. Robertson, 1999, Addison-Wesley.)

Requirements Engineering: Processes and Technigues. This book includes a more detailed look at
the activities in the requirements engineering process and discusses the VORD method and its
application. (G. Kotonya and |. Sommerville, 1999, John Wiley & Sons.)

EXERCISES

7.1 Suggest who might be stakeholders in a university student records system. Explain why it is
almost inevitable that the requirements of different stakeholders will conflict in some way.

7.2 A software system is to be developed to manage the records of patients who enter a clinic for
treatment. The records include records of all regular patient monitoring (temperature, blood
pressure, efc.), treatments given, patient reactions and so on. After treatment, the records of
their stay are sent to the patient’s doctor who maintains their complete medical record.
Identify the principal viewpoints which might be taken into account in the specification of this
system and organise these using a viewpoint hierarchy diagram.

7.3 For three of the viewpoints identified in the tibrary system, LIBSYS (Figure 7.4), suggest three
requirements that could be suggested by stakeholders associated with that viewpoint.

7.4 The LIBSYS system has to include support for cataloguing new documents where the system
catalog may be distributed across several machines. What are likely to be the most important
types of non-functional requirements associated with the cataloguing facilities?

168 Chapter 7 m Requirements engineering processes

7.5

7.6

7.7

78

7.9

Using your knowledge of how an ATM is used, develop a set of use-cases that could serve as
a basis for understanding the requirements for an ATM system,

Discuss an example of a type of system where social and political factors might strongly
influence the system requirements. Explain why these factors are important in your example.

Who should be involved in a requirements review? Draw a process model showing how a
requirements review might be organised.

Why do traceability matrices become difficult to manage when there are many system
requirements? Design a requirements structuring mechanism, based on viewpoints, which
might help reduce the scale of this problem.

When emergency changes have to be made to systems, the system software may have to be
modified before changes to the requirements have been approved. Suggest a process model
for making these modifications that ensures that the requirements document and the system
implementation do not become inconsistent.

7.10 Your company uses a standard analysis method that is normally applied in all requirements

analyses. In your work, you find that this method cannot represent social factors that are
significant in the system you are analysing. You point this out to your manager, who makes it
clear that the standard should be followed. Discuss what you should do in such a situation.

8
System models

Objectives

The objective of this chapter is to introduce a number of system models
that may be developed during the requirements engineering process.
When you have read the chapter, you will:

B understand why it is important to establish the boundaries of a
system and model its context;

W understand the concepts of behavioural modelling, data modelting
and object modelling;

® have been introduced to some of the notations defined in the Unified
Modeling Language (UML) and how these notations may be used to
develop system models.

Contents

8.1 Context models
8.2 Behavioural models
8.3 Data models

8.4 Object models

8.5 Structured methods

System models

User requirements should be written in natural language because they have to be
understood by people who are not technical experts. However, more detailed sys-
tem requirements may be expressed in a more technical way. One widely used tech-
nique is to document the system specification as a set of system models. These models
are graphical representations that describe business processes, the problem to be solved
and the system that is to be developed. Because of the graphical representations
used, models are often more understandable than detailed natural language descrip-
tions of the system requirements. They are also an important bridge between the
analysis and design processes.

You can use models in the analysis process to develop an understanding of the
existing system that is to be replaced or improved or to specify the new system that
is required. You may develop different models to represent the system from dif-
ferent perspectives. For example:

1. An external perspective, where the context or environment of the system is
modelled

2. A behavioural perspective, where the behaviour of the system is modelled

3. A structural perspective, where the architecture of the system or the structure
of the data processed by the system is modelled

I cover these three perspectives in this chapter and also discuss object modelling,
which combines, to some extent, behavioural and structural modelling.

The most important aspect of a system model is that it leaves out detail. A sys-
tem model is an abstraction of the system being studied rather than an alternative
representation of that system. Ideally, a representation of a system should maintain
all the information about the entity being represented. An abstraction deliberately
simplifies and picks out the most salient characteristics. For example, in the very
unlikely event of this book being serialised in a newspaper, the presentation there
would be an abstraction of the book’s key points. If it were translated from English
into Italian, this would be an alternative representation. The translator’s intention
would be to maintain all the information as it is‘presented in English.

Different types of system models are based on different approaches to abstrac-
tion. A data-flow model (for example) concentrates on the flow of data and the func-
tional transformations on that data. It leaves out details of the data structures. By
contrast, a model of data entities and their relationships documents the system data
structures rather than its functionality.

Examples of the types of system models that you might create during the anal-
ysis process are:

1. A data- flow model Data-flow models show how data is processed at different
stages in the system.

2. A composition model A composition or aggregation model shows how entities
in the system are composed of other entities.

8.1 m Context models 171

8.1

3. An architectural model Architectural models show the principal sub-systems
that make up a system.

4. A classification model Object class/inheritance diagrams show how entities have
common characteristics.

5. A stimulus-response model A stimulus-response model, or state transition dia-
gram, shows how the system reacts to internal and external events.

All these types of models are covered in this chapter. Wherever possible, I use
notations from the Unified Modeling Language (UML), which has become a stan-
dard modelling language for object-oriented modelling (Booch, et al, 1999;
Rumbaugh, et al., 1999a). Where UML does not include appropriate notations, I use
simple intuitive notations for model description. A new version of UML (UML 2.0)
is under development but was not available when I wrote this chapter. However, I
understand that the UML notation that I have used here is likely to be compatible
with UML 2.0.

Context models

At an early stage in the requirements elicitation and analysis process you should
decide on the boundaries of the system. This involves working with system stake-
holders to distinguish what is the system and what is the system’s environment.
You should make these decisions early in the process to limit the system costs and
the time needed for analysis.

In some cases, the boundary between a system and its environment is relatively
clear, For example, where an automated system is replacing an existing manual or
computerised system, the environment of the new system is usually the same as the
existing system’s environment. In other cases, there is more flexibility, and you decide
what constitutes the boundary between the system and its environment during the
requirements engineering process.

For example, say you are developing the specification for the library system LIB-
SYS. Recall that this system is intended to deliver electronic versions of copyrighted
material to users computers. The users may then print personal copies of the mate-
rial. In developing the specification for this system, you have to decide whether
other library database systems such as library catalogues are within the system bound-
ary. If they are, then you may have to allow access to the system through the cat-
alogue user interface; if they are not, then users may be inconvenienced by having
to move from one system to another.

The definition of a system boundary is not a value-free judgement. Social and
organisational concems may mean that the position of a system boundary may be
determined by non-technical factors. For example, a system boundary may be posi-

System models

Security
system

Branch
accounting

system

Account
database

Auto-teller
system

Maintenance
system

tioned so that the analysis process can all be carried out on one site; it may be cho-
sen so that a particularly difficult manager need not be consulted; it may be posi-
tioned so that the system cost is increased, and the system development division
must therefore expand to design and implement the system.

Once some decisions on the boundaries of the system have been made, part of
the analysis activity is the definition of that context and the dependencies that a
system has on its environment. Normally, producing a simple architectural model
is the first step in this activity

Figure 8.1 is an architectural model that illustrates the structure of the information
system that includes a bank auto-teller network. High-level architectural models are
usually expressed as simple block diagrams where each sub-system is represented by
a named rectangle, and lines indicate associations between sub-systems.

From Figure 8.1, we see that each ATM is connected to an account database, a
local branch accounting system, a security system and a system to support machine
maintenance. The system is also connected to a usage database that monitors how
the network of ATMs is used and to a local branch counter system. This counter
system provides services such as backup and printing. These, therefore, need not
be included in the ATM system itself.

Architectural models describe the environment of a system. However, they do
not show the relationships between the other systems in the environment and the
system that is being specified. External systems might produce data for or consume
data from the system. They might share data with the system, or they might be con-
nected directly, through a network or not at all. They might be physically co-located
or located in separate buildings. All of these relations might affect the requirements
of the system being defined and must be taken into account.

Therefore, simple architectural models are normaily supplemented by other mod-
els, such as process models, that show the process activities supported by the system.
Data-flow models (described in the following section) may also be used to show the
data that is transferred between the system and other systems in its environment.

Branch
counter

system

Usage
database

[[

8.2 = Behavioural models 173
Delivery
note
Equipment - 1Checked] Di';‘:'y
~ spec. i spec. . :
Specify Validate "\ ! Accept ; d
equipment >{ specification delivery of) delivered
required ! equipment g 1 items
----------------------------------- : supplier + ; .
- estimate Order ' _lnstallapon
: g : instructions
5 spec. Supplier list notification :
S Place E
: Su lier Find Choose , : Install
i | database (suppliers) equipment § . equipment
: Order order :
5 g,e::;:so‘,’,',‘f, Installation
: form acceptance
Accept
delivered
Checked and .
signed order form gquipment
Equipment

Figure 8.2 Process
mode! of equipment
procurement

8.2

details
Equipment
database

Figure 8.2 illustrates a process model for the process of procuring equipment in
an organisation. This involves specifying the equipment required, finding and
choosing suppliers, ordering the equipment, taking delivery of the equipment and
testing it after delivery. When specifying computer support for this process, you
have to decide which of these activities will actually be supported. The other activ-
ities are outside the boundary of the system. In Figure 8.2, the dotted line encloses
the activities that are within the system boundary.

Behavioural models

Behavioural models are used to describe the overall behaviour of the system. I dis-
cuss two types of behavioural model here: data-flow models, which model the data
processing in the system, and state machine models, which model how the system
reacts tc events. These models may be used separately or together, depending on
the type of system that is being developed.

174 Chapter 8 m System models

Order
details +
blank
order form

Figure 8.3 Data-flow
diagram of order

processing

8.2.1

Complete
order form

) . Checked and

Completed Signed Signed Send to signed order

order form order form order form supplier + order
notification

Adjust
available
budget

Order

details Signed

order form

Order
amount
+ account

details

Orders Budget
file file

Most business systems are primarily driven by data. They are controlled by the
data inputs to the system with relatively little external event processing. A data-
flow model may be all that is needed to represent the behaviour of these systems.
By contrast, real-time systems are often event-driven with minimal data process-
ing. A state machine model (discussed in Section 8.2.2) is the most effective way
to represent their behaviour. Other classes of system may be both data and event
driven. In these cases, you may develop both types of model.

Data flow models

Data-flow models are an intuitive way of showing how data is processed by a sys-
tem. At the analysis level, they should be used to model the way in which data is
processed in the existing system. The use of data-flow models for analysis became
widespread after the publication of DeMarco’s book (DeMarco, 1978) on structured
systems analysis. They are an intrinsic part of structured methods that have been
developed from this work. The notation used in these models represents functional
processing (rounded rectangles), data stores (rectangles) and data movements
between functions (labelled arrows).

Data-flow models are used to show how data flows through a sequence of pro-
cessing steps. For example, a processing step could be to filter duplicate records in
a customer database. The data is transformed at each step before moving on to the
next stage. These processing steps or transformations represent software processes
or functions when data-flow diagrams are used to document a software design.
However, in an analysis model, people or computers may carry out the processing.

A data-flow model, which shows the steps involved in processing an order for
goods (such as computer equipment) in an organisation, is illustrated in Figure 8.3.
This particular model describes the data processing in the Place equipment order

8.2 = Behavioural models 175

Blood
Blood parameters
Blood sugar /" Blood sugar \
| sensor [T >\ analysis Blood sugar
. / level
Insulin
requirement |}
computation /-
Pump control . e
Insulin ' commands VT IR insulin
DR I;::."I‘:‘ delivery requirement
controller
e \

activity in the overall process model shown in Figure 8.2. The model shows how
the order for the goods moves from process to process. It also shows the data stores
(Orders file and Budget file) that are involved in this process.

Data-flow models are valuable because tracking and documenting how the data asso-
ciated with a particular process moves through the system helps analysts understand
what is going on. Data-flow diagrams have the advantage that, unlike some other mod-
elling notations, they are simple and intuitive. It is usually possible to explain them to
potential system users who can then participate in validating the analysis.

In principle, the development of models such as data-flow models should be a
‘top-down process. In this example, this would imply that you should start by analysing
the overall procurement process. You then move on to the analysis of sub-processes
such as ordering. In practice, analysis is never like that. You learn about several
levels at the same time. Lower-level models may be developed first and then abstracted
to create a more general model.

Data-flow models show a functional perspective where each transformation rep-
resents a single function or process. They are particularly useful during the analysis
of requirements as they can be used to show end-to-end processing in a system.
That is, they show the entire sequence of actions that take place from an input being
processed to the corresponding output that is the system’s response. Figure 8.4 illus-
trates this use of data flow diagrams. It is a diagram of the processing that takes
place in the insulin pump system introduced in Chapter 3.

State machine models

A state machine mode! describes how a system responds to intemal or external events.
The state machine model shows system states and events that cause transitions from
one state to another. It does not show the flow of data within the system. This type
of model is often used for modelling real-time systems because these systems are
often driven by stimuli from the system’s environment. For example, the real-time

176 Chapter 8 m System models

Full
power

Figure 8.5 State
machine model of a
simple microwave
oven

" do: set power

Full power

{ do: set power

= 600

Timer

Operation

do: operate
oven

do: get number
exit: set time

Set time _

Door

closed Cancel

Timer

Start

do: display
'Ready’

Door
open

Door

Waiting
open

do: display
time

=300

do: display
"Waiting'

-k

alarm system discussed in Chapter 13 responds to stimuli from movement sensors,
door opening sensors, and so on.

State machine models are an integral part of real-time design methods such as
that proposed by Ward and Mellor (Ward and Mellor, 1985) and Harel (Harel, 1987,
Harel, 1988). Harel’s method uses a notation called Statecharts and these were the
basis for the state machine-modelling notation in the UML.

A state machine model of a system assumes that, at any time, the system is in
one of a number of possible states. When a stimulus is received, this may trigger
a transition to a different state. For example, a system controlling a valve may move
from a state ‘Valve open’ to a state ‘Valve closed’ when an operator command (the
stimulus) is received.

This approach to system modelling is illustrated in Figure 8.5. This diagram shows
a state machine model of a simple microwave oven equipped with buttons to set
the power and the timer and to start the system. Real microwave ovens are actually
much more complex than the system described here. However, this model includes
the essential features of the system. To simplify the model, I have assumed that the
sequence of actions in using the microwave is:

1. Select the power level (either half-power or full-power).

2. Input the cooking time.

8.2 » Behavioural models 177

8.3

3. Press Start, and the food is cooked for the given time.

For safety reasons, the oven should not operate when the door is open and, on
completion of cooking, a buzzer is sounded. The oven has a very simple alphanu-
meric display that is used to display various alerts and warning messages.

The UML notation that I use to describe state machine models is designed for
modelling the behaviour of objects. However, it is a general-purpose notation that
can be used for any type of state machine modelling. The rounded rectangles in a
model represent system states. They include a brief description (following ‘do’) of
the actions taken in that state. The labelled arrows represent stimuli that force a
transition from one state to another.

Therefore, from Figure 8.5, we can see that the system responds initially to either
the full-power or the half-power button. Users can change their mind after select-
ing one of these and press the other button. The time is set and, if the door is closed,
the Start button is enabled. Pushing this button starts the oven operation and cook-
ing takes place for the specified time.

The UML notation lets you indicate the activity that takes place in a state. In a
detailed system specification, you have to provide more detail about both the stim-
uli and the system states (Figure 8.6). This information may be maintained in a data
dictionary or encyclopaedia (covered in Section 8.3) that is maintained by the CASE
tools used to create the system model.

The problem with the state machine approach is that the number of possible states
increases rapidly. For large system models, therefore, some structuring of these state
models is necessary. One way to do this is by using the notion of a superstate that
encapsulates a number of separate states. This superstate looks like a single state
on a high-level model but is then expanded in more detail on a separate diagram.
To illusirate this concept, consider the Operation state in Figure 8.5. This is a super-
state that can be expanded, as illustrated in Figure 8.7.

The Operation state includes a number of sub-states. It shows that operation starts
with a status check, and that if any problems are discovered, an alarm is indicated
and operation is disabled. Cooking involves running the microwave generator for
the specified time; on completion, a buzzer is sounded. If the door is opened dur-
ing operation, the system moves to the disabled state, as shown in Figure 8.5.

Data models

Most large software systems make use of a large database of information. In some
cases, this database is independent of the software system. In others, it is created
for the system being developed. An important part of systems modelling is defin-

178 Chapter 8 : System models

Figure 8.6 State and
stimulus description
for the microwave
oven

State Description

Waiting The oven is waiting for input. The display shows the current time.
Half power The oven power is set to 300 watts. The display shows ‘Half power .
Full power The oven power is set to 600 watts. The display shows ‘Full power .

Set time The cooking time is set to the user's input value. The display shows
the cooking time selected and is updated as the time is set.

Disabled ©Oven operation is disabled for safety. interior oven light is on. Display
shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook’.

Operation Oven in operation, Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for
5 seconds. Oven light is on. Display shows ‘Cooking complete’ while
buzzer is sounding.

Stimulus Description

Half power The user has pressed the half power button.
Full power The user has pressed the full power button.
Timer The user has pressed one of the timer buttons.
Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the start button.

Cancel The user has pressed the cancel button.

ing the logical form of the data processed by the system. These are sometimes called
semantic data models.

The most widely used data modelling technique is Entity-Relation-Attribute mod-
elling (ERA modelling), which shows the data entities, their associated attributes
and the relations between these entities. This approach to modelling was first pro-
posed in the mid-1970s by Chen (Chen, 1976); several variants have been devel-
oped since then (Codd, 1979; Hammer and McLeod, 1981; Hull and King, 1987),
all with the same basic form.

8.3 m Data models 179

Figure 8.7 Microwave
oven operation

Operation \
peratio! Time

Checking

do: check
status

oK _/_ Cook
> do: run
__generator

Emitter
fault

Turntable Timeout

fault

do: buzzer on
for 5 secs

do: display
event

_J

Door open }

| _

Disabled <@<—

Entity-relationship models have been widely used in database design. The rela-
tional database schemas derived from these models are naturally in third normal
form, which is a desirable characteristic (Barker, 1989). Because of the explicit typ-
ing and the recognition of sub- and super-types, it is also straightforward to imple-
ment these models using object-oriented databases.

The UML does not include a specific notation for this database modelling, as it
assumes an object-oriented development process and models data using objects and
their relationships. However, you can use the UML to represent a semantic data
model. You can think of entities in an ERA model as simplified object classes (they
have no operations), attributes as class attributes and named associations between
the classes as relations.

Figure 8.8 is an example of a data model that is part of the library system LIBSYS
introduced in earlier chapters. Recall that LIBSYS is designed to deliver copies of copy-
righted articles that have been published in magazines and journals and to collect pay-
ments for these articles. Therefore, the data model must include information about the
article, the copyright holder and the buyer of the article. I have assumed that payments
for articles are not made directly but through national copyright agencies.

Figure 8.8 shows that an Article has attributes representing the title, the authors,
the name of the PDF file of the article and the fee payable. This is linked to the
Source, where the article was published, and to the Copyright Agency for the coun-
try of publication. Both Copyright Agency and Source are linked to Country. The
country of publication is important because copyright laws vary by country. The
diagram also shows that Buyers place Orders for Articles.

Like all graphical models, data models lack detail, and you should maintain more
detailed descriptions of the entities, relationships and attributes that are included in

Cancel

180 Chapter 8 m System models

Figure 8.8 Semantic
data model for the
LIBSYS system

published-in
m n

title
publisher
issue
date
pages

fee-payable-to 1

delivers

n

Order

order number
total payment
date

tax status

copyright form
| tax rate

name
address
e-mail
billing info

the model. You may collect these more detailed descriptions in a repository or data
dictionary. Data dictionaries are generally useful when developing system models
and may be used to manage all information from all types of system models.

A data dictionary is, simplistically, an alphabetic list of the names included in
the system models. As well as the name, the dictionary should include an associ-
ated description of the named entity and, if the name represents a composite object,
a description of the composition. Other information such as the date of creation,
the creator and the representation of the entity may also be included depending on
the type of model being developed.

The advantages of using a data dictionary are:

1. It is a mechanism for name management. Many people may have to invent names
for entities and relationships when developing a large system model. These names
should be used consistently and should not clash. The data dictionary software
can check for name uniqueness where necessary and warn requirements ana-
lysts of name duplications.

2. It serves as a store of organisational information. As the system is developed,
information that can link analysis, design, implementation and evolution is added
to the data dictionary, so that all information about an entity is in one place.

8.4 = Object models 181

Figure 8.9 Examples
of data dictionary

entries

8.4

Name Description Type Date
Article Details of the published article that Entity 30.12.2002
may be ordered by people using
LIBSYS.
authers The names of the authors of the artide Attribute 30.12.2002

who may be due a share of the fee.

Buyer The person or organisation that orders a Entity 30.12.2002
copy of the article.
fee-payable-to A 1:1 relationship between Article and Relation 29.12.2002
the Copyright Agency who should be
paid the copyright fee.
Address The address of the buyer. This is used to Attribute 31,12.2002
(Buyer) any paper billing information that is
required.

The data dictionary entries shown in Figure 8.9 define the names in the
semantic data model for LIBSYS (Figure 8.8). I have simplified the presenta-
tion of this example by leaving out some names and by shortening the associ-
ated information.

All system names, whether they are names of entities, relations, attributes
or services, should be entered in the dictionary. Software is normally used to
create, maintain and interrogate the dictionary. This software might be inte-
grated with other tools so that dictionary creation is partially automated. For
example, CASE tools that support system modelling generally include support
for data dictionaries and enter the names in the dictionary when they are first
used in the model.

Object models

An object-oriented approach to the whole software development process is now
commonly used, particularly for interactive systems development. This means express-
ing the systems requirements using an object model, designing using objects and

182 Chapter 8 ®m System models

developing the system in an object-oriented programming language such as Java
or C++.

Object models that you develop during requirements analysis may be used
to represent both system data and its processing. In this respect, they combine
some of the uses of data-flow and semantic data models. They are also useful
for showing how entities in the system may be classified and composed of other
entities.

For some classes of system, object models are natural ways of reflecting the real-
world entities that are manipulated by the system. This is particularly true when the
system processes information about tangible entities, such as cars, aircraft or books,
which have clearly identifiable attributes. More abstract, higher-level entities, such
as the concept of a library, a medical record system or a word processor, are harder
to model as object classes. They do not necessarily have a simple interface con-
sisting of independent attributes and operations.

Developing object models during requirements analysis usually simplifies the tran-
sition to object-oriented design and programming. However, I have found that end-
users of a system often find object models unnatural and difficult to understand.
They may prefer to adopt a more functional, data-processing view. Therefore, it is
sometimes helpful to supplement object models with data-flow models that show
the end-to-end data processing in the system.

An object class is an abstraction over a set of objects that identifies common
attributes (as in a semantic data model) and the services or operations that are pro-
vided by each object. Objects are executable entities with the attributes and ser-
vices of the object class. Objects are instantiations of the object class, and many
objects may be created from a class. Generally, the models developed using anal-
ysis focus on object classes and their relationships.

In object-oriented requirements analysis, you should model real-world entities
using object classes. You should not include details of the individual objects
(instantiations of the class) in the system. You may create different types of object
models, showing how object classes are related to each other, how objects, are aggre-
gated to form other objects, how objects interact with other objects and so on. These
each present unique information about the system that is being specified.

The analysis process for identifying objects and object classes is recognised as
one of the most difficult areas of object-oriented development. Object identifica-
tion is basically the same for analysis and design. The methods of object identifi-
cation covered in Chapter 14, which discusses object-oriented design, may be used.
I concentrate here on some of the object models that might be generated during the
analysis process.

Various methods of object-oriented analysis were proposed in the 1990s (Coad and
Yourdon, 1990; Rumbaugh, et al., 1991; Jacobsen, et al., 1993; Booch, 1994). These
methods had a great deal in common, and three of the key developers (Booch,
Rumbaugh, and Jacobsen) decided to integrate their approaches to produce a unified
method (Rumbaugh et al., 1999b). The Unified Modeling Language (UML) used in this
unified method has become a standard for object modelling. The UML includes

8.4 - Object models 183

8.4.1

notations for different types of system models. We have already seen use-case models
and sequence diagrams in earlier chapters and state machine models earlier in this chapter.

An object class in UML, as illustrated in the examples in Figure 8.10, is repre-
sented as a vertically oriented rectangle with three sections:

1. The name of the object class is in the top section.
2. The class attributes are in the middle section.

3. The operations associated with the object class are in the lower section of the
rectangle.

I don't have space to cover all of the UML, so I focus here on object models
that show how objects can be classified and can inherit attributes and operations
from other objects, aggregation models that show how objects are composed, and
simple behavioural models, which show object interactions.

Inheritance models

Object-oriented modelling involves identifying the classes of object that are impor-
tant in the domain being studied. These are then organised into a taxonomy. A tax-
onomy is a classification scheme that shows how an object class is related to other
classes through common attributes and services.

To display this taxonomy, the classes are organised into an inheritance hierar-
chy with the most general object classes at the top of the hierarchy. More specialised
objects inherit their attributes and services. These specialised objects may have their
own attributes and services.

Figure 8.10 illustrates part of a simplified class hierarchy for a model of a library.
This hierarchy gives information about the items held in the library. The library
holds various items, such as books, music, recordings of films, magazines and news-
papers. In Figure 8.10, the most general item is at the top of the tree and has a set
of attributes and services that are common to all library items. These are inherited
by the classes Published item and Recorded item, which add their own attributes
that are then inherited by lower-level items.

Figure 8.11 is an example of another inheritance hierarchy that might be part of
the library model. In this case, the users of a library are shown. There are two classes
of user: those who are allowed to borrow books, and those who may only read books
in the library without taking them away.

In the UML notation, inheritance is shown upwards’ rather than ‘downwards’
as it is in some other object-oriented notations or in languages such as Java, where
sub-classes inherit from super-classes. That is, the arrowhead (shown as a triangle)
points from the classes that inherit attributes and operations to the super-class. Rather
than use the term inheritance, UML refers to the generalisation relationship.

184 Chapter 8 ® System models

Figure 8.10 Part of
a class hierarchy for
a library

Figure 8.11 User
class hierarchy

Library item

Cost

Type
Status

Catalogue number
Acquisition date

Number of copies

Issue ()

Acquire O
Catalogue ()
Dispose ()

Return (

o

l

Published item Recorded item
Title Title
Publisher Medium
[| [|
Book Magazine Film Computer
- program
Author Year Director -
Edition Issue Date of release Version
Publication date Distributor Platform
ISBN
Library user

Name

Address

Phone

Registration #

ister
g?regist% 0
[1
Reader Borrower
Affiliation Items on loan
Max. loans
[|
Staff Student
Department Major subject
Department phone Home address

8 4 « Object models 185

8.4.2

Figure 8.12 Multiple
inheritance

The design of class hierarchies is not easy, so the analyst needs to understand,
in detail, the domain in which the system is to be installed. As an example of the
subtlety of the problems that arise in practice, consider the library item hierarchy.
It would seem that the attribute Title could be held in the most general item, then
inherited by lower-level items.

However, while everything in a library must have some kind of identifier or reg-
istration number, it does not follow that everything must have a title. For example,
a library may hold the personal papers of a retired politician. Many of these items,
such as letters, may not be explicitly titled. These will be classified using some other
class (not shown here) that has a different set of attributes.

Figure 8.10 and Figure 8.11 show class inheritance hierarchies where every object
class inherits its attributes and operations from a single parent class. Multiple inher-
itance models may also be constructed where a class has several parents. Its inher-
ited attributes and services are a conjunction of those inherited from each
super-class. Figure 8.12 shows an example of a multiple inheritance model that may
also be part of the library model.

The main problem with multiple inheritance is designing an inheritance graph
where objects do not inherit unnecessary attributes. Other problems include the dif-
ficulty of reorganising the inheritance graph when changes are required and resolv-
ing name clashes where attributes of two or more super-classes have the same name
but different meanings. At the system modelling level, such clashes are relatively
easy to resolve by manually altering the object model. They cause more problems
in object-oriented programming.

Object aggregation

As well. as acquiring attributes and services through an inheritance relationship with
other objects, some objects are groupings of other objects. That is, an object is an

Book Voice recording
Author Speaker
Edition Duration
Publication date Recording date
ISBN
Talking book

Tapes

186 Chapter 8 & System models

Figure 8.13
Aggregate object
representing a
course

8.4.3

Study pack
Course title
Number
Year
instructor
Assignment OHP slides Lecture Videotape
notes
Credits Slides Text Tape ids.
\i T
Exercises Solutions
#Problems Text
Description Diagrams

aggregate of a set of other objects. The classes representing these objects may be
modelled using an object aggregation model, as shown in Figure 8.13. In this exam-
ple, I have modelled a library item, which is a study pack for a university course.
This study pack includes lecture notes, exercises, sample solutions, copies of trans-
parencies used in lectures, and videotapes.

The UML notation for aggregation is to represent the composition by including
a diamond shape on the source of the link. Therefore, Figure 8.13 can be read as
‘A study pack is composed of one of more assignments, OHP slide packages, lec-
ture notes and videotapes.

Object behaviour modelling

To model the behaviour of objects, you have to show how the operations provided
by the objects are used. In the UML, you model behaviours using scenarios that
are represented as UML use-cases (discussed in Chapter 7). One way to model
behaviour is to use UML sequence diagrams that show the sequence of actions involved
in a use-case. As well as sequence diagrams, the UML also includes collaboration
diagrams that show the sequence of messages exchanged by objects. These are sim-
ilar to sequence diagrams so I do not cover them here.

You can see how sequence diagrams can be used for behaviour modelling in
Figure 8.14 that expands a use-case from the LIBSYS system where users with-

8.5 ® Structured methods 187

Figure 8.14 The issue
of electronic items

(Lib1:
Ecat: T :
- Catalog Library ltem NetServer
‘Library User
[Lookup
[Display

[Issue
[Issue licence
[ﬂ Accept licence

E‘ Compress
Iy

Deliver

2 R

draw items from the library in electronic form. For example, imagine a situation
where the study packs shown in Figure 8.13 could be maintained electronically and
downloaded to the student’s computer.

In a sequence diagram, objects and actors are aligned along the top of the diagram.
Labelled arrows indicate operations; the sequence of operations is from top to bot
tom. In this scenario, the library user accesses the catalogue to see whether the item
required is available electronically; if it is, the user requests the electronic issue of
that item. For copyright reasons, this must be licensed so there is a transaction between
the item and the user where the license is agreed. The item to be issued is then sent
to a network server object for compression before being sent to the library user.

You can find another example of a sequence diagram that expands a LIBSYS
use-case in Figure 7.8, which shows the sequence of actions involved in printing
an article.

Structured methods

A structured method is a systematic way of producing models of an existing sys-
tem or of a system that is to be built. They were first developed in the 1970s to
support software analysis and design (Constantine and Yourdon, 1979; Gane and

188 Chapter 8 ® System models

Sarson, 1979; Jackson, 1983) and evolved in the 1980s and 1990s to support object-
oriented development (Rumbaugh, et al., 1991; Robinson, 1992; Jacobsen, et al.,
1993; Booch, 1994). These object-oriented methods coalesced, with the UML pro-
posed as a standard modelling language (Booch, et al., 1999, Rumbaugh, et al., 1999a)
and the Unified Process (Rumbaugh, et al., 1999b), and later with the Rational Unified
Process (Krutchen, 2000), as an associated structured method. Budgen (Budgen, 2003)
summarises and compares several of these structured methods.

Structured methods provide a framework for detailed system modelling as part
of requirements elicitation and analysis. Most structured methods have their own
preferred set of system models. They usually define a process that may be used to
derive these models and a set of rules and guidelines that apply to the models. Standard
documentation is produced for the system. CASE tools are usually available for method
support. These tools support model editing and code and report generation, and pro-
vide some model-checking capabilities.

Structured methods have been applied successfully in many large projects. They
can deliver significant cost reductions because they use standard notations and ensure
that standard design documentation is produced. However, structured methods suf-
fer from a number of weaknesses:

1. They do not provide effective support for understanding or modelling non-
functional system requirements.

2. They are indiscriminate in that they do not usually include guidelines to help
users decide whether a method is appropriate for a particular problem. Nor do
they normally include advice on how they may be adapted for use in a partic-
ular environment.

3. They often produce too much documentation. The essence of the system
requirements may be hidden by the mass of detail that is included.

4. The models that are produced are very detailed, and users often find them dif-
ficult to understand. These users therefore cannot check the realism of these
models.

In practice, however, requirements engineers and designers don’t restrict them-
selves to the models proposed in any particular method. For example, object-oriented
methods do not usually suggest that data-flow models should be developed.
However, in my experience, such models are often useful as part of a requirements
analysis process because can present an overall picture of the end-to-end process-
ing in the system. They may also contribute directly to object identification (the
data which flows) and the identification of operations on these objects (the trans-
formations).

Analysis and design CASE tools support the creation, editing and analysis of the
graphical notations used in structured methods. Figure 8.15 shows the components
that may be included method support environment.

8.5 ® Structured methods 189

Figure 8.15 The
components of a

structured method

Data Structured Report
dictiona diagramming generation
Ictionary tools facilities

Central Query
eﬁz:j;or information language
8 repository facilities

Forms
creation
tools

Design, analysis
and checking
tools

Import/export

facilities

Comprehensive method support tools, as illustrated in Figure 8.15, normally include:

1. Diagram editors used to create object models, data models, behavioural mod-
els, and so on. These editors are not just drawing tools but are aware of the
types of entities in the diagram. They capture information about these entities
and save this information in the central repository.

2. Design analysis and checking tools that process the design and report on error
and anomalies. These may be integrated with the editing system so that user
errors are trapped at an early stage in the process.

3. Repository query languages that allow the designer to find designs and asso-
ciated design information in the repository.

4. A data dictionary that maintains information about the entities used in a sys-
tem design.

5. Report definition and generation tools that take information from the central
store and automatically generate system documentation.

6. Forms definition rools that allow screen and document formats to be specified.

7. Import/export facilities that allow the interchange of information from the cen-
tral repository with other development tools.

8. Code generators that generate code or code skeletons automatically from the

design captured in the central store.

Most comprehensive CASE toolsets allow the user to generate a program or a
program fragment from the information provided in the system model. CASE tools

190 Chapter 8 m System models

often support different languages so the user can generate a program in C, C++ or
Java from the same design model. Because models exclude low-level details, the
code generator in a design workbench cannot usually generate the complete sys-
tem. Some hand coding is usually necessary to add detail to the generated code.

A model is an abstract view of a system that ignores some system details. Complementary
system models can be developed to present other information about the system.

KEY POINTS

Context models show how the system being modelled is positioned in an environment with
other systems and processes. They define the boundaries of the system. Architectural
models, process models and data-flow models may be used as context models.

. Data-flow diagrams may be used to model the data processing carried out by a system. The
system is modelled as a set of data transformations with functions acting on the data.

* State machine models are used to model a system’s behaviour in response to internal or
external events.

Semantic data models describe the logical structure of the data that is imported to and
exported by the system, These models show system entities, their attributes and the
relationships in which they participate.

Object models describe the logical system entities and their classification and aggregation.
They combine a data model with a processing model. Possible object models that may be
developed include inheritance models, aggregation models and behavioural models.

Sequence models that show interactions between actors and objects in a system are used
to model dynamic behaviour.

Structured methods provide a framework for supporting the development of system modets.
They normally have extensive case tool support, including model editing and checking and
code generation.

FURTHER READING I RN

Software Design, 2nd ed. Although this book is primarily focused on software design, the author
discusses a number of structured methods that can also be used in the requirements engineering
process. He does not just focus on object-oriented approaches. (D. Budgen, 2003, Addison-
Wesley.)

Chapter 8 = Exercises 191

Requirements Analysis and System Design. This book focuses on information systems analysis and
discusses how different UML models can be used in the analysis process. (L. Maciaszek, 2001,
Addison-Wesley.)

Software Engineering with Objects and Components. A short, readable introduction to the use of
the UML in system specification and design. Although much less comprehensive than the full
descriptions of the UML, this book is far better if you are trying to learn and understand the
notation. (P. Stevens with R. Pooley, 1999, Addison-Wesley.)

EXERCISES

8.1

8.2

83

8.4

8.5

8.6

8.7

8.8

I . PR D D N

Draw a context model for a patient information system in a hospital. You may make any
reasonable assumptions about the other hospital systems that are available, but your model
must include a patient admissions system and an image storage system for X-rays, as well as
other diagnostic records.

Based on your experience with a bank ATM, draw a data-flow diagram modelling the data
processing involved when a customer withdraws cash from the machine.

Model the data processing that might take place in an e-mail system. You should model the
mail-sending and mail-receiving processing separately.

Draw state machine models of the control software for:
An automatic washing machine that has different programs for different types of clothes
~ The software for a DVD player

= A telephone answering system that records incoming messages and displays the number
of accepted messages on an LED. The system should allow the telephone customer to dial
in from any location, type a sequence of numbers (identified as tones) and play the
recorded messages.

A software system model may be represented as a directed graph where nodes are the
entities in the moclel and arcs are the relationships between these entities. Entities and
relationships in the model may be labelled with a name and other information. Each entity in
the model is typec and may be ‘exploded’ into a sub-model. Draw a data model that
describes the structure of a software system model.

Model the object classes that might be used in an e-mail system. If you have tried Exercise
8.3, describe the similarities and differences between the data processing model and the
object model.

Using the information about the system data shown in Figure 8.8, draw a sequence diagram
that shows a possible sequence of actions that occur when a new article is catalogued by the
LIBSYS system.

Develop an object model, including a class hierarchy diagram and an aggregation diagram
showing the principal components of a personal computer system and its system software.

192 Chapter 8 ® System models

8.9 Develop a sequence diagram showing the interactions involved when a student registers for a
course in a university, Courses may have limited enrolment, so the registration process must
include checks that places are available. Assume that the student accesses an electronic
course catalogue to find out about available courses.

8.10 Under what circumstances would you recommend against using structured methods for
system development?

9]
Critical systems
specification

Objectives

The objective of this chapter is to explain how to specify functional and
non-functional dependability requirements for critical systems. When
you have read this chapter, you will:

m understand how dependability requirements for critical systems can
be identified by analysing the risks faced by these systems;

m understand that safety requirements are generated from the system
risk analysis rather than system stakeholders;

m understand the process of deriving security requirements and how
security requirements are generated to counter different types of
threat to the system;

m understand metrics for reliabitity specification and how these metrics
may be used to specify reliability requirements.

Contents

9.1 Risk-driven specification

9.2 Safety specification

9.3 Security specification

9.4 Software reliability specification

194 Chapter 9 # Critical systems specification

In September 1993, a plane landed at Warsaw airport in Poland during a thunder-
storm. For nine seconds after landing, the brakes on the computer-controlled brak-
ing system did not work. The plane ran off the end of the runway, hit an earth bank
and caught fire. The subsequent enquiry showed that the braking system software
had worked perfectly according to its specification. However, for reasons I won’t
go into here, the braking system did not recognise that the plane had landed. A safety
feature on the aircraft had stopped the deployment of the braking system because
this can be dangerous if the plane is in the air. The system failure was caused by
an error in the system specification.

This illustrates the importance of specification for critical systems. Because of
the high potential costs of system failure, it is important to ensure that the specifi-
cation for critical systems accurately reflects the real needs of users of the system.
If you don’t get the specification right, then, irrespective of the quality of the soft-
ware development, the system will not be dependable.

The need for dependability in critical systems generates both functional and non-
functional system requirements:

1. System functional requirements may be generated to define error checking and
recovery facilities and features that provide protection against system failures.

2. Non-functional requirements may be generated to define the required reliabil-
ity and availability of the system.

In addition to these requirements, safety and security considerations can gener-
ate a further type of requirement that is difficult to classify as a functional or a non-
functional requirement. They are high-level requirements that are perhaps best described
as ‘shall not’ requirements. By contrast with normal functional requirements that
define what the system shall do, ‘shall not’ requirements define system behaviour
that is unacceptable. Examples of ‘shall not’ requirements are:

The system shall not allow users to modify access permissions on any files that
they have not created. (security)

The system shall not allow reverse thrust mode to be selected when the air-
craft is in flight. (safety)

The system shall not allow the simultaneous activation of more than three alarm
signals. (safety)

These ‘shall not’ requirements are sometimes decomposed into more specific soft-
ware functional requirements. Alternatively, implementation decisions may be
deferred until the system is designed.

The user requirements for critical systems will always be specified using natural
language and system models. However, as 1 discuss in Chapter 10, formal specifi-
cation and associated verification are most likely to be cost-effective in critical systems
development (Hall, 1996; Hall and Chapman, 2002; Wordsworth, 1996). Formal

9.1 ® Risk-driven specification 195

9.1

specifications are not just a basis for a verification of the design and implementa-
tion. They are the most precise way of specifying systems so reduce the scope for
misunderstanding. Furthermore, constructing a formal specification forces a detailed
analysis of the requirements, which is an effective way of discovering problems in
the specification. In a natural language specification, errors can be concealed by the
imprecision of the language. This 1s not the case if the system is formally specified.

Risk-driven specification

Critical systems specification supplements the normal requirements specification pro-
cess by focusing on the dependability of the system. Its objective is to understand
the risks faced by the system and generate dependability requirements to cope with
them. Risk-driven specification has been widely used by safety and security critical
systems developers. In safety-critical systems, the risks are hazards that can result
in accidents; in security-critical systems, the risks are vuinerabilities that can lead to
a successful attack on a system. Because of the increasing importance of security,
I have included a detailed discussion of risk driven approaches in Chapter 31,
covering security engineering, in the new section on Emerging Technologies.

The risk-driven specification process involves understanding the risks faced by
the system, discovering their root causes and generating requirements to manage
these risks. Figure 9.1 shows the iterative process of risk analysis:

1. Risk identification Potential risks that might arise are identified. These are
dependent on the environment in which the system is to be used.

2. Risk analysis and classification The risks are considered separately. Those that
are potentially serious and not implausible are selected for further analysis. At
this stage, some risks may be eliminated simply because they are very unlikely
ever to arise (e.g., simultaneous lightning strike and earthquake).

3. Risk decomposition Each risk is analysed individually to discover potential root
causes of that nsk. Techniques such as fauit-tree analysis (discussed later in
this chapter) may be used.

4. Risk reduction assessment Proposals for ways in which the identified risks may
be reduced or eliminated are made. These then generate system dependability
requirements that define the defences against the risk and how the risk will be
managed if it arises.

For large systems, risk analysis may be structured into phases. Multiphase risk
analysis is necessary for large systems such as chemical plants or aircraft. The phases
of risk analysis include:

196 Chapter 9 m Critical systems specification

Figure 9.1 Risk-driven

specification

9.1.1

Risk \ Risk analysis and Risk Risk reduction
identification & classification decomposition assessment /
/ Y /
Risk Risk Root cause Dependability
description assessment analysis requirements
T < =

* Preliminary risk analysis where major risks are identified

¢ More detailed system and sub-system risk analysis
* Software risk analysis where the risks of software failure are considered

* Operational risk analysis that is concerned with the system user interface and
risks that arise from operator errors.

Leveson (Leveson, 1995) discusses this multiphase risk analysis process in her book
on safety-critical systems.

Risk identification

The objective of risk identification, the first stage of the risk analysis process, is to
identify the risks that the critical system must cope with. This can be a complex
and difficult process because risks often arise from interactions between the system
and rare environmental conditions. The Warsaw accident that I discussed earlier hap-
pened when crosswinds generated during a thunderstorm caused the plane to tilt so
that it landed on one rather than two wheels.

In safety-critical systems, the principal risks are hazards that can lead to an acci-
dent. You can tackle the hazard-identification problem by considering different classes
of hazards, such as physical hazards, electrical hazards, biological hazards, radia-
tion hazards, service failure hazards and so on. Each of these classes can then be
analysed to discover associated hazards. Possible combinations of hazards must also
be identified.

I introduced an example of an insulin pump system in Chapter 3. Like many
medical devices, this is a safety-critical system. Some of the hazards or risks that
might arise in this system are:

1. Insulin overdose (service failure)

2. Insulin underdose (service failure)

3. Power failure due to exhausted battery (electrical)

4. Electrical interference with other medical equipment such as a heart pacemaker

(electrical)

9.1 # Risk-driven specification 197

9.1.2

Poor sensor and actuator contact caused by incorrect fitting (physical)
Parts of machine breaking off in patient’s body (physical)

Infection caused by introduction of machine (biological)

®w =N w

Allergic reaction to the materials or insulin used in the machine (biological).

Software-related risks are normally concerned with failure to deliver a system ser-
vice or with the failure of monitoring and protection systems. Monitoring systems
may detect potentially hazardous conditions such as power failures.

Experienced engineers, working with domain experts and professional safety advis-
ers, should identify system risks. Group working techniques such as brainstorming
may be used to identify risks. Analysts with direct experience of previous incidents
may also be able to identify risks.

Risk analysis and classification

The risk analysis and classification process is primarily concerned with understanding
the likelihood that a risk will arise and the potential consequences if an accident or
incident associated with that risk should occur. We need to make this analysis to
understand whether a risk is a serious threat to the system or environment and to
provide a basis for deciding the resources that should be used to manage the risk.

For each risk, the outcome of the risk analysis and classification process is a
statement of acceptability. Risks can be categorised in three ways:

1. Intclerable The system must be designed in such a way so that either the risk
cannot arise or, if it does arise, it will not result in an accident. Intolerable risks
would, typically, be those that threaten human life or the financial stability of
a business and which have a significant probability of occurrence. An exam-
ple of an intolerable risk for an e-commerce system in an Internet bookstore,
say, would be a risk of the system going down for more than a day.

2. As low as reasonably practical (ALARP) The system must be designed so that
the probability of an accident arising because of the hazard is minimised, sub-
ject to other considerations such as cost and delivery. ALARP risks are those
which have less serious consequences or which have a low probability of occur-
rence. An ALARP risk for an e-commerce system might be corruption of the
web page images that presented the brand of the company. This is commer-
cially undesirable but is unlikely to have serious short-term consequences.

3. Acceptable While the system designers should take all possible steps to reduce
the probability of an ‘acceptable’ hazard arising, these should not increase costs,
delivery time or other non-functional system attributes. An example of an accept-
able risk for an e-commerce system is the risk that people using beta-release
web browsers could not successfully complete orders.

198 Chapter 9 m Critical systems specification

Figure 9.2 Levels of
risk

Unacceptable region

Risk cannot be tolerated

Risk tolerated only if
ALA.RP risk reduction is impractical
region

or grossly expensive

Acceptable
region

Negligible risk

Figure 9.2 (Brazendale and Bell, 1994), developed for safety-critical systems,
shows these three regions. The shape of the diagram reflects the costs of ensuring
risks do not result in incidents or accidents. The cost of system design to cope with
the risk is a function of the width of the triangle. The highest costs are incurred by
risks at the top of the diagram, the lowest costs by risks at the apex of the triangle.

The boundaries between the regions in Figure 9.2 tend to move over time, due
to public expectations of safety and political considerations. Although the financial
costs of accepting risks and paying for any resulting accidents may be less than the
costs of accident prevention, public opinion may demand that the additional costs
must be accepted. For example, it may be cheaper for a company to clean up pol-
lution on the rare occasion it occurs rather than install systems for pollution pre-
vention. This may have been acceptable in the 1960s and 1970s but it is not likely
to be publicly or politically acceptable now. The boundary between the intolerable
region and the ALARP region has moved downwards so that risks that may have
been accepted in the past are now intolerable.

Risk assessment involves estimating the risk probability and the risk severity.
This is usually very difficult to do in an exact way and generally depends on mak-
ing engineering judgements. Probabilities and severities are assigned using relative
terms such as probable, unlikely, and rare and high, and medium and low. Previous
system experience may allow some numeric value to be associated with these terms.
However, because accidents are relatively uncommon, it is very difficult to vali-
date the accuracy of this value.

Figure 9.3 shows a risk classification for the risks (hazards) identified in the pre-
vious section for the insulin delivery system. As I am not a physician, I have included
the estimates to illustrate the principle. They are not necessarily the actual probabil-
ities and severities that would arise in a real analysis of an insulin delivery system.
Notice that an insulin overdose is potentially more serious than an insulin underdose
in the short term. Insulin overdose can result in illness, coma and ultimately death.

9.1 = Risk-driven specification 199

Identified hazard

Hazard probability Hazard severity Estimated risk Acceptability

1. Insulin overdose Medium High High intolerable
2. Insulin underdose Medium Low Low Acceptable
3. Power failure High Low Low Acceptable
4. Machine incorrectly fitted High High High Intolerable
5. Machine breaks in patient Low High Medium ALARP
6. Machine causes infection Medium Medium Medium ALARP
7. Electrical interference Low High Medium ALARP
8, Allergic reaction Low Low Low Acceptable

Figure 9.3 Risk
analysis of identified
hazards in an insulin

pump

9.1.3

Hazards 3-8 are not software related so I do not discuss them further here. To
counter these hazards, the machine should have built-in self-checking software that
should monitor the system state and warn of some of these hazards. The warning
will often allow the hazard to be detected before it causes an accident. Examples
of hazards that might be detected are power failure and incorrect placement of the
machine. The monitoring software is, of course, safety-related as failure to detect
a hazard could result in an accident.

Risk decomposition

Risk decomposition is the process of discovering the root causes of risks in a par-
ticular system. Techniques for risk decomposition have been primarily derived from
safety-critical systems development where hazard analysis is a central part of the
safety process. Risk analysis can be either deductive or inductive. Deductive, top-
down techniques, which tend to be easier to use, start with the risk and work from
that to the possible system failure; inductive, bottom-up techniques start with a pro-
posed systzm failure and identify which hazards might arise that could lead to that
failure.

Various techniques have been proposed as possible approaches to risk decom-
position. These include reviews and checklists, as well as more formal techniques
such as Petri net analysis (Peterson, 1981), formal logic (Jahanian and Mok, 1986)
and fault-tree analysis (Leveson and Stolzy, 1987; Storey, 1996).

I cover fault-tree analysis here. This technique was developed for safety-critical
systems and is relatively easy to understand without specialist domain knowledge.
Fault-tree analysis involves identifying the undesired event and working backwards
from that event to discover the possible causes of the hazard. You put the hazard
at the root of the tree and identify the states that can lead to that hazard. For each

200 Chapter 9 & Critical systems specification

Figure 9.4 Fault tree
for insulin delivery

system

7

Incorrect
insulin dose
administered

Incorrect | Correct dose Delivery
sugar level delivered at system
measured wrong time failure
Sensor Sugar Timer Insufin Pump
failure computation failure computation signals
i error F incorrect incorrect |
Algorithm Arithmetic Algorithm Arithmetic
error error error error]

of these states, you then identify the states that can lead to that and continue this
decomposition until you identify the root causes of the risk. States can be linked
with ‘and’ and ‘or symbols. Risks that require a combination of root causes are
usually less probable than risks that can result from a single root cause.

Figure 9.4 is the fault tree for the software-related hazards in the insulin deliv-
ery system. Insulin underdose and insulin overdose really represent a single haz-
ard, namely, ‘incorrect insulin dose administered’, and a single fault tree can be
drawn. Of course, when specifying how the software should react to hazards, you
have to distinguish between an insulin underdose and an insulin overdose.

The fault tree in Figure 9.4 is incomplete. Only potential software faults have
been fully decomposed. Hardware faults such as low battery power causing a sen-
sor failure are not shown. At this level, further analysis is not possible. However,

9.1 = Risk-driven specification 201

9.1.4

as a design and implementation and developed, more detailed fault trees may be
developed. Leveson and Harvey (Leveson and Harvey, 1983) and Leveson
(Leveson, 1985) show how fault trees can be developed throughout the software
design down to the individual programming language statement level.

Fault trees are also used to identify potential hardware problems. A fault tree
may provide insights into requirements for software to detect and, perhaps, correct
these problems. For example, insulin doses are not administered at a very high fre-
quency, no more than two or three times per hour and sometimes less often than
this. Therefore, processor capacity is available to run diagnostic and self-checking
programs. Hardware errors such as sensor, pump or timer errors can be discovered
and warnings issued before they have a serious effect on the patient.

Risk reduction assessment

Once potential risks and their root causes have been identified, you should then derive
system dependability requirements that manage the risks and ensure that incidents
or accidents do not occur. There are three possible strategies that you can use:

1. Risk avoidance The system is designed so that the risk or hazard cannot arise.

2. Risk detection and removal The system is designed so that risks are detected
and neutralised before they result in an accident.

3. Damage limitation The system is designed so that the consequences of an acci-
dent are minimised.

Normally, designers of critical systems use a combination of these approaches.
In a safetv-critical system, intolerable hazards may be handled by minimising their
probability and adding a protection system that provides a safety backup. For exam-
ple, in a chemical plant control system, the system will attempt to detect and avoid
excess pressure in the reactor. However, there should also be an independent pro-
tection system that monitors the pressure and opens a relief valve if high pressure
is detected.

In the :nsulin delivery system, a safe state’ is a shutdown state where no insulin
is injected. Over a short period this will not pose a threat to the diabetic’s health.
If the potential software problems identified in Figure 9.4 are considered, the fol-
lowing ‘solutions might be developed:

1. Arithmetic error This arises when some arithmetic computation causes a rep-
resentation failure. The specification must identify all possible arithmetic
errors that may occur. These depend on the algorithm used. The specification
might state that an exception handler must be included for each identified arith-
metic error. The specification should set out the action to be taken for each of
these errors if they arise. A safe action is to shut down the delivery system and
activate a warning alarm.

202 Chapter 9 @ Critical systems specification

Figure 9.5 Examples

of safety
requirements
insulin pump

for an

e

9.2

SRI: The system shall not deliver a single dose of insulin that is greater than a
specified maximum dose for a system user.

SR2: The system shall not deliver a daily cumulative dose of insulin that is
greater than a specified maximum for a system user.

SR3: The system shall include a hardware diagnostic facility that shall be executed
at least four times per hour.

SR&: The system shall include an exception handler for all of the exceptions that
are identified in Table 3.

SR3: The audible alarm shall be sounded when any hardware or software
anomaly is discovered and a diagnostic message as defined in Table 4
should be displayed.

SRE v dhe avant of ar el it dhe pstam inuilic dalvay ahal' b suspamaar’
until the user has reset the system and cleared the alarm.

2. Algorithmic error This is a more difficult situation as no definite anomalous
situation can be detected. It might be detected by comparing the required insulin
dose computed with the previously delivered dose. If it is much higher, this
may mean that the amount has been computed incorrectly. The system may
also keep track of the dose sequence. After a number of above-average doses
have been delivered, a warning may be issued and further dosage limited.

Some of the resulting safety requirements for the insulin pump system are
shown in Figure 9.5 These are user requirements and, naturally, they would be
expressed in more detail in a final system specification. In these requirements, the
references to Tables 3 and 4 relate to tables that would be included in the require-
ments document.

Safety specification

The processes of risk management discussed so far have evolved from the processes
developed for safety-critical systems. Until relatively recently, safety-critical sys-
tems were mostly control systems where failure of the equipment being controlled
could cause injury. In the 1980s and 1990s, as computer control become
widespread, the safety engineering community developed standards for safety-
critical systems specification and development.

The process of safety specification and assurance is part of an overall safety life
cycle that is defined in an international standard for safety management IEC 61508
(IEC, 1998). This standard was developed specifically for protection systems such
as a system that stops a train if it passes a red signal. Although it can be used for

9.2 Safety specification 203

Figure 9.6 Control

system safety
requirements

System .| Control
requirements system
. Safety
Equipment requirements
Functional safety
Protection requirements
system

Safety integrity
requirements

more general safety-critical systems, such as control systems, I think that its sepa-
ration of safety specification from more general system specification is inappropri-
ate for critical information systems. Figure 9.6 illustrates the system model that is
assumed by the IEC 61508 standard.

Figure 9.7 is a simplified form of Redmill’s presentation of the safety life cycle
(Redmill, 1998). As you can see from Figure 9.7, this standard covers all aspects
of safety management from initial scope definition through planning and system
development to system decommissioning.

In this model, the control system controls some equipment that has associated high-
level safety requirements. These high-level requirements generate two types of more
detailed safety requirements that apply to the protection system for the equipment:

1. Functional safety requirements that define the safety functions of the system

2. Safety integrity requirements that define the reliability and availability of the
protection system. These are based on the expected usage of the protection sys-
tem and are intended to ensure that it will work when it is needed. Systems are
classified using a safety integrity level (SIL) from 1 to 4. Each SIL level rep-
resents a higher level of reliability; the more critical the system, the higher the
SIL required.

The first stages of the IEC 61508 safety life cycle define the scope of the sys-
tem, assess the potential system hazards and estimate the risks they pose. This is
followed by safety requirements specification and the allocation of these safety
requirements to different sub-systems. The development activity involves plan-
ning and implementation. The safety-critical system itself is designed and imple-
mented, as are related external systems that may provide additional protection. In
parallel with this, the safety validation, installation, and operation and maintenance
of the system are planned.

Safety management does not stop on delivery of the system. After delivery, the
system must be installed as planned so that the hazard analysis remains valid. Safety

204 Chapter 9 Critical systems specification

Figure 9.7 The IEC Concept and
61508 safety life scope definition |
cycle

y

Hazard and risk

analysis
Safety req. Safety req.
derivation allocation
Planning and development l
Planning Safety-related External risk
L . systems | reduction
Vélldatuon O&M Installation | | development } facilities
Safety g Installation and
validation : commissioning |

i

Operation and
maintenance

System
decommissioning

validation is then carried out before the system is put into use. Safety must also be
managed during the operation and (particularly) the maintenance of the system. Many
safety-related systems problems arise because of a poor maintenance process, so it
is particularly important that the system is designed for maintainability. Finally, safety
considerations that may apply during decommissioning (e.g., disposal of hazardous
material in circuit boards) should also be taken into account.

9.3 Security specification

The specification of security requirements for systems has something in common
with safety requirements. It is impractical to specify them quantitatively, and secu-
rity requirements are often ‘shall not’ requirements that define unacceptable

9.3 - Security specification 205

system behaviour rather than required system functionality. However, there are impor-
tant differences between these types of requirements:

The notion of a safety life cycle that covers all aspects of safety management
is well developed. The area of security specification and management is still
immature and there is no accepted equivalent of a security life cycle.

Although some security threats are system specific, many are common to all
types of system. All systems must protect themselves against intrusion, denial
of service, and so on. By contrast, hazards in safety-critical systems are
domain-specific.

Security techniques and technologies such as encryption and authentication devices
are fairly mature. However, using this technology effectively often requires a
high level of technical sophistication. It can be difficult to install, configure
and stay up to date. Consequently, system managers make mistakes leaving vul-
nerebilities in the system.

The dominance of one software supplier in world markets means that a huge
number of systems may be affected if security in their programs is breached.
There is insufficient diversity in the computing infrastructure and consequently
it is more vulnerable to external threats. Safety-critical systems are usually spe-
cialised, custom systems so this situation does not arise.

The conventional (non-computerised) approach to security analysis is based

around the assets to be protected and their value to an organisation. Therefore, a
bank wiil provide high security in an area where large amounts of money are stored
compared to other public areas (say) where the potential losses are limited. The same

approach can be used for specifying security for computer-based systems. A pos-

sible security specification process is shown in Figure 9.8.

The stages in this process are:

Asset identification and evaluation The assets (data and programs) and their
required degree of protection are identified. The required protection depends
on the asset value so that a password file (say) is normally more valuable than
a set of public web pages as a successful attack on the password file has seri-
ous system-wide consequences.

Threat analysis and risk assessment Possible security threats are identified and
the risks associated with each of these threats are estimated.

Threat assignment Identified threats are related to the assets so that, for each
identified asset, there is a list of associated threats.

Technology analysis Available security technologies and their applicability against
the identified threats are assessed.

206 Chapter9

Critical systems specification

Asset
identification

Y

System asset
list

Figure 9.8 Security
specification

Security
technology
analysis

Technology
analysis

Threat analysis and };
risk assessment /

Security req.
specification

t.

Threat
assignment

!

g.
e

Y

Threat and Security
risk matrix b

x |
5

requirements

o s

Asset and
threat
description

5. Security requirements specification The security requirements are specified. Where
appropriate, they explicitly identify the security technologies that may be used
to protect against threats to the system.

Security specification and security management are essential for ali critical sys-
tems. If a system is insecure, then it is subject to infection with viruses and worms,
corruption and unauthorised modification of data, and denial of service attacks. All
of this means that we cannot be confident that the efforts made to ensure safety and
reliability will be effective.

Different types of security requirements address the different threats faced by a
system. Firesmith (Firesmith, 2003) identifies 10 types of security requirements that
may be included in a system:

1. Identification requirements specify whether a system should identify its users
before interacting with them.

2. Authentication requirements specify how users are identified.

3. Authorisation requirements specify the privileges and access permissions of iden-
tified users.

4. Immunity requirements specify how a system should protect itself against
viruses, worms, and similar threats.

5. Integrity requirements specify how data corruption can be avoided.

6. Intrusion detection requirements specify what mechanisms should be used to
detect attacks on the system.

7. Non-repudiation requirements specify that a party in a transaction cannot deny
its involvement in that transaction.

9.4 = Software reliability specification 207

Figure 9.9 Some

security requirements

for the LIBSYS
system

s O

9.4

SECI:

SEC2:

SEC3:

SEC4:

SECS:

SEC6:

All system users shall be identified using their library card number and
personal password.

Users’ privileges shali be assigned according to the class of user (student,
staff, library staff).

Before execution of any command, LIBSYS shall check that the user has
sufficient privileges to access and execute that command.

When a user orders a document, the order request shall be logged. The log
data maintained shall include the time of order, the user's identification and
the articles ordered.

All system data shalt be backed up once per day and backups stored off-
site in a secure storage area.

Users shall not be permitted to have more than one simultaneous login
to LIBSYS.

8. Privacy requirements specify how data privacy is to be maintained.

9. Security auditing requirements specify how system use can be audited and
checked.

10. System maintenance security requirements specify how an application can pre-
vent authorised changes from accidentally defeating its security mechanisms.

Of course, not every system needs all of these security requirements. The par-
ticular requirements depend on the type of system, the situation of use and the expected
users. As an example, Figure 9.9 shows security requirements that might be
included in the LIBSYS system.

Software reliability specification

Reliability is a complex concept that should always be considered at the system
rather than the individual component level. Because the components in a system
are interdependent, a failure in one component can be propagated through the sys-
tem and affect the operation of other components. In a computer-based system, you
have to consider three dimensions when specifying the overall system reliability:

1. Hardware reliability What is the probability of a hardware component failing
and how long would it take to repair that component?

2. Software reliability How likely is it that a software component will produce an
incorrect output? Software failures are different from hardware failures in that

208 Chapter 9 = Critical systems specification

9.4.1

software does not wear out: It can continue operating correctly after produc-
ing an incorrect result.

3. Operator reliability How likely is it that the operator of a system will make an
error?

All of these are closely linked. Hardware failure can cause spurious signals to
be generated that are outside the range of inputs expected by software. The soft-
ware can then behave unpredictably. Unexpected system behaviour may confuse
the operator and result in operator stress. The operator may then act incorrectly and
choose inputs that are inappropriate for the current failure situation. These inputs
further confuse the system and more errors are generated. A single sub-system fail-
ure that is recoverable can thus rapidly develop into a serious problem requiring a
complete system shutdown.

Systems reliability should be specified as a non-functional requirement that, ide-
ally, is expressed quantitatively using one of the metrics discussed in the next sec-
tion. To meet the non-functional reliability requirements, it may be necessary to specify
additional functional and design requirements on the system that specify how fail-
ures may be avoided or tolerated. Examples of these reliability requirements are:

1. A predefined range for all values that are input by the operator shall be
defined, and the system shall check that all operator inputs fall within this pre-
defined range.

2. As part of the initialisation process, the system shall check all disks for bad
blocks.

3. N-version programming shall be used to implement the braking control system.

4, The system must be implemented in a safe subset of Ada and checked using
static analysis.

There are no simple rules for deriving functional reliability requirements. In organ-
isations that develop critical systems, there is usually organisational knowledge about
possible reliability requirements and how these impact the actual reliability of a sys-
tem. These organisations may specialise in specific types of system, such as rail-
way control systems, so the reliability requirements, once derived, are reused
across a range of systems. The higher the safety integrity level (discussed above)
required in safety-critical systems, the more stringent the reliability requirements
are likely to be.

Reliability metrics

Reliability metrics were first devised for hardware components. Hardware compo-
nent failure is inevitable due to physical factors such as mechanical abrasion and
electrical heating. Components have limited life spans, which is reflected in the most

9.4 & Software reliability specification 209

Metric Explanation

POFOD Probability of failure on demand The likelihood that the system will fail when a service request
is made. A POFOD of 0.001 means that one out of a thousand
service requests may result in failure.

ROCOF Rate of failure occurrznce The frequency of occurrence with which unexpected behaviour
is likely to occur. A ROCOF of 2/100 means that two failures
are likely to occur in each 100 operational time units. This
metric is sometimes called the failure intensity.

MTTF Mean time to failure The average time between observed system failures. An MTTF
of 500 means that one failure can be expected every 500 time
units,

AVAIL Availability The probability that the system is available for use at a given

time. Availability of 0.998 means that the system is likely to be
available for 998 of every 1,000 time units.

Figure 9.10 Reliability widely used hardware reliability metric, mean time to failure (MTTF). The MTTF

metrics is the rmean time for which a component is expected to be operational. Hardware
component failure is usually permanent, so the mean time to repair (MTTR), which
reflects the time needed to repair or replace the component, is also significant.

However, these hardware metrics are not directly applicable to software relia-
bility specification because software component failures are often transient rather
than permanent. They show up only with some inputs. If the data is undamaged,
the system can often continue in operation after a failure has occurred.

Metrics that have been used for specifying software reliability and availability are
shown in Figure 9.10. The choice of which metric should be used depends on the type
of system to which it applies and the requirements of the application domain. Some
examples of the types of system where these different metrics may be used are:

1. Probability of failure on demand This metric is most appropriate for systems where
services are demanded at unpredictable or at relatively long time intervals and where
there are serious consequences if the service is not delivered. It might be used to
specify protection systems such as the reliability of a pressure relief system in a
chemical plant or an emergency shutdown system in a power plant.

2. Rate of occurrence of failures This metric should be used where regular
demands are made on system services and where it is important that these ser-
vices are correctly delivered. It might be used in the specification of a bank teller
system that processes customer transactions or in a hotel reservation system.

3. Mean time to failure This metric should be used in systems where there are long
transactions; that is, where people use the system for a long time. The MTTF should
be longer than the average length of each transaction. Examples of systems where
this metric may be used are word processor systems and CAD systems.

210 Chapter 9 = Critical systems specification

9.4.2

4. Availability This metric should be used in non-stop systems where users expect
the system to deliver a continuous service. Examples of such systems are tele
phone switching systems and railway signalling systems.

There are three kinds of measurements that can be made when assessing the reli-
ability of a system:

1. The number of system failures given a number of requests for system services.
This is used to measure the POFOD.

2. The time (or number of transactions) between system failures. This is used to
measure ROCOF and MTTF.

3. The elapsed repair or restart time when a system failure occurs. Given that the
system must be continuously available, this is used to measure AVAIL.

Time units that may be used in these metrics are calendar time, processor time
or some discrete unit such as number of transactions. In systems that spend much
of their time waiting to respond to a service request, such as telephone switching
systems, the time unit that should be used is processor time. If you use calendar
time, then this includes the time when the system was doing nothing.

Calendar time is an appropriate time unit to use for systems that are in contin-
uous operation. For example, monitoring systems such as alarm systems and other
types of process control systems fall into this category. Systems that process trans-
actions such as bank ATMs or airline reservation systems have variable loads placed
on them depending on the time of day. In these cases, the unit of ‘time’ used should
be the number of transactions; that is., the ROCOF would be number of failed trans-
actions per N thousand transactions.

Non functional reliability requirements

In many system requirements documents, reliability requirements are not carefully
specified. The reliability specifications are subjective and unmeasurable. For exam-
ple, statements such as ‘The software shall be reliable under normal conditions of
use are meaningless. Quasi-quantitative statements such as ‘The software shall exhibit
no more than N faults/1000 lines’ are equally useless. It is impossible to measure
the number of faults/1000 lines of code as you can’t tell when all faults have been
discovered. Furthermore, the statement means nothing in terms of the dynamic
behaviour of the system. It is software failures, not software faults, that affect the
reliability of a system.

The types of failure that can occur are system specific, and the consequences of
a system failure depend on the nature of that failure. When writing a reliability spec-
ification, you should identify different types of failure and think about whether these
should be treated differently in the specification. Examples of different types of failure

9.4 . Software reliability specification 211

Figure 9.11 Failure
classification

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable System can recover without operator intervention
Unrecoverable Operator intervention needed to recover from failure
Non-corrupting Failure does not corrupt system state or data
Corrupting Failure corrupts system state or data

are shown in Figure 9.11. Obviously combinations of these, such as a failure that
is transient, recoverable and corrupting, can occur.

Most large systems are composed of several sub-systems with different reliabil-
ity requirements. Because very high-reliability software is expensive, you should
assess the reliability requirements of each sub-system separately rather than impose
the same reliability requirement on all sub-systems. This avoids placing needlessly
high demands for reliability on those sub-systems where it is unnecessary.

The steps involved in establishing a reliability specification are:

1. For cach sub-system, identify the types of system failure that may occur and
analyse the consequences of these failures.

2. From the system failure analysis, partition failures into appropriate classes. A
reasonable starting point is to use the failure types shown in Figure 9.11.

3. For each failure class identified, define the reliability requirement using an appro-
priate reliability metric. It is not necessary to use the same metric for different
classes of failure. If a failure requires some intervention to recover from it, the
probability of that failure occurring on demand might be the most appropriate
metric. When automatic recovery is possibie and the effect of the failure is user
inconvenience, ROCOF might be more appropriate.

4, Where appropriate, identify functional reliability requirements that define sys-
tem functionality to reduce the probability of critical failures.

As an zxample, consider the reliability requirements for a bank ATM. Assume that
each machine in the network is used about 300 times per day. The lifetime of the sys-
tem hardware is 5 vears and the software is normally upgraded every yeat. Therefore,
during the lifetime of a software release, each machine will handle about 100,000
transactions. A bank has 1,000 machines in its network. This means that there are
300,000 transactions on the central database per day (say 100 million per year).

212 Chapter 9 . Critical systems specification

Figure 9.12 Reliability Failure class FETT Reliability metric
specification for an
ATM Permanent, The system fails to operate with any ROCOF

non-corrupting. card that is input. Software must be 1 occurrence/1,000 days
restarted to correct failure.

Transient, The magnetic stripe data cannot be ROCOF
non-corrupting read on an undamaged card that is 1 in 1,000 transactions
input.
Transient, A pattern of transactions across the Unquantifiable! Should
corrupting network causes database corruption. never happen in the
lifetime of the system,

Figure 9.12 shows possible failure classes and possible reliability specifications
for different types of system failure. The reliability requirements state that it is
acceptable for a permanent failure to occur in a machine roughly once per three
years. This means that, on average, one machine in the banking network might
be affected each day. By contrast, faults that mean a transaction has to be can-
celled can occur relatively frequently. Their only effect is to cause minor user
inconvenience.

Ideally, faults that corrupt the database should never occur in the lifetime of the
software. Therefore, the reliability requirement that might be placed on this is that
the probability of a corrupting failure occurring when a demand is made is less than
1 in 200 million transactions. That is, in the lifetime of an ATM software release,
there should never be an error that causes database corruption.

However, a reliability requirement like this cannot actually be tested. Say each
transaction takes one second of machine time and a simulator can be built for the
ATM network. Simulating the transactions which take place in a single day across
the network will take 300,000 seconds. This is approximately 3.5 days. Clearly this
period could be reduced by reducing the transaction time and using multiple sim-
ulators. Nevertheless, it is still very difficult to test the system to validate the reli-
ability specification.

It is impossible to validate qualitative requirements that demand a very high level
of reliability. For example, say a system was intended for use in a safety-critical
application so it should never fai! over the total lifetime of the system. Assume that
1,000 copies of the system are to be installed, and the system is ‘executed’ 1,000
times per second. The projected lifetime of the system is 10 years. The total esti-
mated number of system executions is therefore approximately 3 * 10' . There is
no point in specifying that the rate of occurrence of failure should be 1/10" exe-
cutions (this allows for some safety factor) as you cannot test the system for long
enough to validate this level of reliability.

As a further example, consider the reliability requirements for the insulin pump
system, This system delivers insulin a number of times per day and monitors the

Chapter 9 Key Points 213

}@ user s blood glucose several times per hour. Because the use of the system is inter-
mittent and failure consequences are serious, the most appropriate reliability met-
ric is POFOD (probability of failure on demand).
Failure to deliver insulin does not have immediate safety implications, so com-
mercial factors rather than the safety factors govern the level of reliability required.
Service costs are high because users need fast repair and replacement. It is in the man-
ufacturer’s interest to limit the number of permanent failures that require repair.
Again, two types of failure can be identified:

1. Transient failures that can be repaired by user actions such as resetting or recal-
ibrating the machine. For these types of failures, a relatively low value of POFOD
(say 0.002) may be acceptable. This means that one failure may occur in every
500 demands made on the machine. This is approximately once every 3.5 days.

2. Permanent failures that require the machine to be repaired by the manufacturer.
The probability of this type of failure should be much lower. Roughly once a
year is the minimum figure, so POFOD should be no more than 0.00002.

KEY POINTS

Risk analysis is a key activity in the critical systems specification process. it involves
identifying risks that can result in accidents or incidents. System requirements are then
generated to ensure that these risks do not arise or, if they occur, they do not result in an
incident.

Risk analysis is the process of assessing the likelihood that a risk will result in an accident.
Risk analysis identifies critical risks that must be avoided in the system and classifying
risks according to their seriousness.

To specify security requirements, you should identify the assets that are to be protected
and define how security techniques and technology should be used to protect these assets.

Reliability requirements should be defined quantitatively in the system requirements
specification.

There are several reliability metrics, such as probability of faillure on demand (POFOD), rate
of occurrence of failurz, mean time to failure (MTTF) and availability. The most appropriate
metric for a specific system depends on the type of system and application domain.
Different metrics may be used for different sub-systems.

Non-functional reliability specifications can lead to functional system requirements that
define system features whose function is to reduce the number of system failures and
hence increase reliability.

214 Chapter 9 Critical systems specification

FURTHER READING N ENEREE

The cost of developing and validating a system reliability specification can be
very high. Organisations must be realistic about whether these costs are worthwhile.
They are clearly justified in systems where reliable operation is critical, such as tele-
phone switching systems or where system failure may result in large economic losses.
They are probably not justified for many types of business or scientific systems. These
have modest reliability requirements, as the costs of failure are simply processing
delays, and it is straightforward and relatively inexpensive to recover from these.

‘Security use cases.’ A good article, available on the web, that focuses on how use-cases can be
used in security specification. The author also has a number of good articles on security
specification that are referenced in this article. (D. G. Firesmith, Journal of Object Technology, 2 (3),
May-june 2003.)

‘Requirements Definition for survivable network systems.’ Discusses the problems of defining
requirements for survivable systems where survivability relates to both available and security.
(R. C. Linger, et al., Proc. ICRE’ 98, IEEE Press, 1998.)

Requirements Engineering: A Good Practice Guide. This book includes a section on the
specification of critical systems and a discussion of the use of formal methods in critical systems
specification (I. Sommerville and P. Sawyer, 1997, John Wiley & Sons.)

Safeware: System Safety and Computers. This is a thorough discussion of all aspects of safety-
critical systems, It is particularly strong in its description of hazard analysis and the derivation of
requirements from this. (N. Leveson, 1995, Addison-Wesley.)

%'

EXERCISES

9.1 Explain why the boundaries in the risk triangle shown in Figure 9.2 are liable to change with
time and with changing social attitudes.

9.2 In the insulin pump system, the user has to change the needle and insulin supply at regular
intervals and may also change the maximum single dose and the maximum daily dose that
may be administered. Suggest three user errors that might occur and propose safety
requirements that would avoid these errors resulting in an accident.

9.3 A safety-critical software system for treating cancer patients has two principal components:

A radiation therapy machine that delivers controlled doses of radiation to tumour sites.
This machine is controlled by an embedded software system.

Chapter 9 = Exercises 215

7 A treatment database that includes details of the treatment given to each patient.
Treatment requirements are entered in this database and are automatically downloaded to
the radiation therapy machine.

Identify three hazards that may arise in this system. For each hazard, suggest a defensive
requirement that will reduce the probability that these hazards will result in an accident.
Explain why your suggested defence is likely to reduce the risk associated with the hazard.

Describe three important differences between the processes of safety specification and
security specification.

Suggest how fault-tree analysis could be modified for use in security specification. Threats in
a security-critical system are analogous to hazards in a safety-critical system.

What is the fundamental difference between hardware and software failures? Given this
difference, explain why hardware reliability metrics are often inappropriate for measuring
software reliability.

Explain why it is practically impossible to validate reliability specifications when these are
expressed in terms of a very small number of failures over the total lifetime of a system.

Suggest appropriate reliability metrics for the following classes of software system. Give
reasons for your choice of metric. Predict the usage of these systems and suggest
appropriate values for the reliability metrics:

A system that monitors patients in a hospital intensive care unit
& A word processor

An automated vending machine control system

% A system to control braking in a car

A system to control a refrigeration unit

A management report generator.

You are responsible for writing the specification for a software system that controls a
network of EPOS (electronic point of sale) terminals in a store. The system accepts bar code
information from & terminal, queries a product database and returns the item name and its
price to the termiral for display. The system must be continually available during the store’s
opening hours.

Giving reasons for your choice, choose appropriate metrics for specifying the reliability of
such a system anc write a plausible reliability specification that takes into account the fact
that some faults are more serious than others.

Suggest four functional requirements that might be generated for this store system to help
improve system reliability.

A train protection system automatically applies the brakes of a train if the speed limit for a
segment of track is exceeded or if the train enters a track segment that is currently signalled
with a red light (i.e., the segment should not be entered). Giving reasons for your answer, chose
a reliability metric that might be used to specify the required reliability for such a system.

216 Chapter 9 .. Critical systems specification

9.11

9.12

There are two essential safety requirements for such a system:
The train shall not enter a segment of track that is signalled with a red light.
% The train shall not exceed the specified speed limit for a section of track.

Assuming that the signal status and the speed limit for the track segment are transmitted to
on-board software on the train before it enters that track segment, propose five possible
functional system requirements for the on-board software that may be generated from the
system safety requirements,

Should software engineers working on the specification and development of safety-related
systems be professionally certified in some way? Explain your reasoning.

As an expert in computer security, you have been approached by an organisation that
campaigns for the rights of torture victims and have been asked to help them gain
unauthorised access to the computer systems of a British company. This will help them
confirm or deny that this company is selling equipment used directly in the torture of political
prisoners. Discuss the ethical dilemmas that this request raises and how you would react to
this request.

10
Formal specification

Objectives

The objective of this chapter is to introduce formal specification
techniques that can be used to add detail to a system requirements
specification. When you have read this chapter, you will:

B understand why formal specification techniques help discover
problems in system requirements;

® understand the use of algebraic techniques of formal specification to
define interface specifications;

® understand how formal, model-based formal techniques are used for
behavioural specification.

Contents

10.1 Format specification in the software process
10.2 Sub-system interface specification
106.3 Behavioural specification

218 Chapter 10 w Formal specification

In ‘traditional’ engineering disciplines, such as electrical and civil engineering, progress
has usually involved the development of better mathematical techniques. The engi-
neering industry has had no difficulty accepting the need for mathematical analy-
sis and in incorporating mathematical analysis into its processes. Mathematical analysis
is a routine part of the process of developing and validating a product design.

However, software engineering has not followed the same path. Although there
has now been more than 30 years of research into the use of mathematical tech-
niques in the software process, these techniques have had a limited impact. So-called
formal methods of software development are not widely used in industrial software
development. Most software development companies do not consider it cost-
effective to apply them in their software development processes.

The term formal methods is used to refer to any activities that rely on mathe-
matical representations of software including formal system specification, specifica-
tion analysis and proof, transformational development, and program verification. All
of these activities are dependent on a formal specification of the software. A formal
software specification is a specification expressed in a language whose vocabulary,
syntax and semantics are formally defined. This need for a formal definition means
that the specification languages must be based on mathematical concepts whose prop-
erties are well understood. The branch of mathematics used is discrete mathematics,
and the mathematical concepts are drawn from set theory, logic and algebra.

In the 1980s, many software engineering researchers proposed that using formal
development methods was the best way to improve software quality. They argued
that the rigour and detailed analysis that are an essential part of formal methods
would lead to programs with fewer errors and which were more suited to users
needs. They predicted that, by the 21st century, a large proportion of software would
be developed using formal methods.

Clearly, this prediction has not come true. There are four main reasons for this:

1. Successful software engineering The use of other software engineering meth-
ods such as structured methods, configuration management and information hid-
ing in software design and development processes have resulted in
improvements in software quality. People who suggested that the only way to
improve software quality was by using formal methods were clearly wrong.

2. Market changes In the 1980s, software quality was seen as the key software
engineering prablem. However, since then, the critical issue for many classes
of software development is not quality but time to market. Software must be
developed quickly, and customers are sometimes willing to accept software with
some faults if rapid delivery can be achieved. Techniques for rapid software
development do not work effectively with formal specifications. Of course, quai-
ity is still an important factor, but it must be achieved in the context of rapid

delivery.

3. Limited scope of formal methods Formal methods are not well suited to spec-
ifying user interfaces and user interaction. The user interface component has

10.1 ® Formal specification in the software process 219

10.1

become a greater and greater part of most systems, so you can only really use
formal methods when developing the other parts of the system.

4. Limited scalability of formal methods Formal methods still do not scale up well.
Successful projects that have used these techniques have mostly been concerned
with relatively small, critical kernel systems. As systems increase in size, the
time and effort required to develop a formal specification grows disproportionately.

These factors mean that most software development companies have been
unwilling to risk using formal methods in their development process. However, for-
mal specification is an excellent way of discovering specification errors and pre-
senting “he system specification in an unambiguous way. Organisations that have
made the investment in formal methods have reported fewer errors in the delivered
software without an increase in development costs. It seems that formal methods
can be cost-effective if their use is limited to core parts of the system and if com-
panies are willing to make the high initial investment in this technology.

The use of formal methods is increasing in the area of critical systems develop-
ment, where emergent system properties such as safety, reliability and security are
very important. The high cost of failure in these systems means that companies are
willing to accept the high introductory costs of formal methods to ensure that their
software is as dependable as possible. As I discuss in Chapter 24, critical systems
have very high validation costs, and the costs of system failure are large and increas-
ing. Formal methods can reduce these costs.

Critical systems where formal methods have been applied successfully include
an air traffic control information system (Hall, 1996), railway signalling systems
(Dehbonei and Mejia, 1995), spacecraft systems (Easterbrook, et al., 1998) and med-
ical control systems (Jacky, et al. 1997; Jacky, 1995). They have also been used
for software tool specification (Neil, et al., 1998), the specification of part of IBM’s
CICS system (Wordsworth, 1991) and a real-time system kernel (Spivey, 1990).
The Cleanroom method of software development (Prowell, et al., 1999) relies on
formally based arguments that code conforms to its specification. Because reason-
ing about the security of a system is also possible if a formal specification is devel-
oped, it is likely that secure systems will be an important area for formal methods
use (Hall and Chapman, 2002).

Formal specification in the software process

Critical svstems development usually involves a plan-based software process that
is based on the waterfall model of development discussed in Chapter 4. Both the
system requirements and the system design are expressed in detail and carefully
analysed and checked before implementation begins. If a formal specification of

220 Chapter 10 ® Formal specification

Increasing contractor involvement

——-

User
requirements
definition

Decreasing client involvement

e Architectural Formal High-level
requiremen design specification design

specification

L
—

Figure 10.1
Specification and
design

Figure 10.2 Formal
specification in the
software process

1

Specification

——

Design

the software is developed, this usually comes after the system requirements have
been specified but before the detailed system design. There is a tight feedback loop
between the detailed requirements specification and the formal specification. As I
discuss later, one of the main benefits of formal specification is its ability to uncover
problems and ambiguities in the system requirements.

The involvement of the client decreases and the involvement of the contractor
increases as more detail is added to the system specification. In the early stages of
the process, the specification should be ‘customer-oriented’. You should write the
specification so that the client can understand it, and you should make as few assump-
tions as possible about the software design. However, the final stage of the process,
which is the construction of a complete, consistent and precise specification, is prin-
cipally intended for the software contractor. It specifies the details of the system
implementation. You may use a formal language at this stage to avoid ambiguity
in the software specification.

Figure 10.1 shows the stages of software specification and its interface with the
design process. The specification stages shown in Figure 10.1 are not independent
nor are they necessarily developed in the sequence shown. Figure 10.2 shows spec-
ification and design activities that may be carried out in parallel streams. There is
a two-way relationship between each stage in the process. Information is fed from
the specification to the design process and vice versa.

System
requirements §
specification

Formal '
specification &

User
requirements
definition

High-level
design 5

Architectural
design);

System
modelling

10 1 = Formal specification in the software process 221

Figure 10.3 Software
development costs
with formal
specification

Cost Validation

Design and
implementation Validation

Design and
implementation
Specification

Specification

As you develop the specification in detail, your understanding of that specifica-
tion increases. Creating a formal specification forces you to make a detailed sys-
tems analysis that usually reveals errors and inconsistencies in the informal
requirements specification. This error detection is probably the most potent argu-
ment for developing a formal specification (Hall, 1990). It helps you discover require-
ments problems that can be very expensive to correct later.

Depending on the process used, specification problems discovered during for-
mal analysis might influence changes to the requirements specification if this has
not already been agreed. If the requirements specification has been agreed and is
included in the systern development contract, you should raise the problems that
you have found with the customer. It is then up to the customer to decide how they
should be resolved before you start the system design process.

Developing and analysing a formal specification front loads software development
costs. Figure 10.3 shows how software process costs are likely to be affected by the
use of formal specification. When a conventional process is used, validation costs are
about 50% of development costs, and implementation and design costs are about twice
the costs of specification. With formal specification, specification and implementa-
tion costs are comparable, and systern validation costs are significantly reduced. As
the development of the formal specification uncovers requirements problems, rework
to correct these problems after the system has been designed is avoided.

Two fundamental approaches to formal specification have been used to write
detailed specifications for industrial software systems. These are:

1. An algebraic approach where the system is described in terms of operations
and their relationships

222 Chapter 10 m Formal specification

Figure 10.4 Formal

specification
languages

10.2

Sequential Concurrent -

Algebraic Larch (Guttag et al,, 1993) Lotos (Bolognesi and

OB} (Futatsugi et al., 1985) Brinksma, 1987)
Model-based Z (Spivey, 1992) CSP (Hoare, 1985)

VDM (Jones, 1980) Petri Nets (Peterson, 1981)

B (Wordsworth, 1996)

2. A model-based approach where a model of the system is built using mathe-
matical constructs such as sets and sequences, and the system operations are
defined by how they modify the system state

Different languages in these families have been developed to specify sequential
and concurrent systems. Figure 10.4 shows examples of the languages in each of
these classes: You can see from this table that most of these languages were devel-
oped in the 1980s. It takes several years to refine a formal specification language,
so most formal specification research is now based on these languages and is not
concerned with inventing new notations.

In this chapter, my aim is to introduce both algebraic and model-based
approaches. The examples here should give you an idea of how formal specifica-
tion results in a precise, detailed specification, but I don’t discuss specification lan-
guage details, specification techniques or methods of program verification. You can
download a more detailed description of both algebraic and model-based techniques
from the book’s web site.

Sub-system interface specification

Large systems are usually decomposed into sub-systems that are developed inde-
pendently. Sub-systems make use of other sub-systems, so an essential part of the
specification process is to define sub-system interfaces. Once the interfaces are agreed
and defined, the sub-systems can then be designed and implemented independently.
Sub-system interfaces are often defined as a set of objects or components
(Figure 10.5). These describe the data and operations that can be accessed through
the sub-system interface. You can therefore define a sub-system interface specifi-
cation by combining the specifications of the objects that make up the interface.
Precise sub-system interface specifications are irportant because sub-system devel-
opers must write code that uses the services of other sub-systems before these have
been implemented. The interface specification provides information for sub-system
developers so that they know what services will be available in other sub-systems

10 2 = Sub-system interface specification 223

Figure 10.5 Sub-
system interface
objects

Interface
objects

Sub-system
A

Sub-system
B

T

and how these can be accessed. Clear and unambiguous sub-system interface spec-
ifications reduce the chances of misunderstandings between a sub-system provid-
ing some service and the sub-systems using that service.

The algebraic approach was originally designed for the definition of abstract data
type interfaces. In an abstract data type, the type is defined by specifying the type
operations rather than the type representation. Therefore, it is similar to an object
class. The algebraic method of formal specification defines the abstract data type
in terms of the relationships between the type operations.

Guttag (Guttag, 1977) first discussed this approach in the specification of
abstract data types. Cohen et al. (Cohen, et al., 1986) show how the technique can
be extended to complete system specification using an example of a document retrieval
system. Liskov and Guttag (Liskov and Guttag, 1986) also cover the algebraic spec-
ification of abstract data types.

The structure of an object specification is shown in Figure 10.6. The body of
the specification has four components.

1. An introduction that declares the sort (the type name) of the entity being spec-
ified. A sort is the name of a set of objects with common characteristics. It is
similar to a type in a programming language. The introduction may also
include an ‘imports’ declaration, where the names of specifications defining other
sorts are declared. Importing a specification makes these sorts available for use.

2. A description part, where the operations are described informally. This makes
the formal specification easier to understand. The formal specification com-
plements this description by providing an unambiguous syntax and semantics
for the type operations.

3. The signature part defines the syntax of the interface to the object class or abstract
data type. The names of the operations that are defined, the number and sorts
of their parameters, and the sort of operation results are described in the sig-
nature.

4. The axioms part defines the semantics of the operations by defining a set of
axtoms that characterise the behaviour of the abstract data type. These axioms
relate the operations used to construct entities of the defined sort with opera-
tions used to inspect its values.

224 Chapter 10 m Formal specification

Figure 10.6 The
structure of an
algebraic
specification

s < SPECIFICATION NAME > w

sort < name >
Imports < LIST OF SPECIFICATION NAMES >

Informal description of the sort and its operations

Operation signatures setting out the names and the types of
the parameters to the operations defined over the sort

kAxioms defining the operations over the sort)

The process of developing a formal specification of a sub-system interface
includes the following activities:

1. Specification structuring Organise the informal interface specification into a set
of abstract data types or object classes. You should informally define the oper-
ations associated with each class.

2. Specification naming Establish a name for each abstract type specification, decide
whether they require generic parameters and decide on names for the sorts
identified.

3. Operation selection Choose a set of operations for each specification based on
the identified interface functionality. You should include operations to create
instances of the sort, to modify the value of instances and to inspect the instance
values. You may have to add functions to those initially identified in the infor-
mal interface definition.

4. Informal operation specification Write an informal specification of each oper-
ation. You should describe how the operations affect the defined sort.

5. Syntax definition Define the syntax of the operations and the parameters to each.
This is the signature part of the formal specification. You should update the
informal specification at this stage if necessary.

6. Axiom definition Define the semantics of the operations by describing what con-
ditions are always true for different operation combinations.

To explain the technique of algebraic specification, I use an example of a sim-
ple data structure (a linked list), as shown in Figure 10.7. Linked lists are ordered
data structures where each element includes a link to the following element in the
structure. I have used a simple list with only a few associated operations so that the
discussion here is not too long. In practice, object classes defining a list would prob-
ably have more operations

Assume that the first stage of the specification process, namely specification struc-
turing, has been carried out and that the need for a list has been identified. The
name of the specification and the name of the sort can be the same, although it is

10.2 & Sub-system interface specification 225

Figure 10.7 A simple
list specification

~~LIST (Elem) w

sort List
imports INTEGER

Defines a list where elements are added at the end and removed

from the front. The operations are Create, which brings an empty list

into existence, Cons, which creates a new list with an added member,
Length, which evaluates the list size, Head, which evaluates the front
element of the list, and Tail, which creates a list by removing the head
from its input list. Undefined represents an undefined value of type Elem.

Create — List

Cons (List, Elem) — List
Head (List) — Elem
Length (List) = Integer
Tail (List) — List

Head (Create) = Undefined exception (empty list)

Head (Cons (L, v)) = if L = Create then v else Head (L)

Length (Create) = 0

Length (Cons (L, v)) = Length (L) + 1

Tail (Create) = Create

Tail (Cons (L, v)) = if L = Create then Create else Cons (Tail (L), v))

useful to distinguish between these by using some convention. I use uppercase for
the specification name (LIST) and lowercase with an initial capital for the sort name
(List). As lists are collections of other types, the specification has a generic param-
eter (Elem). The name Elem can represent any type: integer, string, list, and so on.

In general, for each abstract data type, the required operations should include an
operation to bring instances of the type into existence (Create) and to construct the
type from its basic elements (Cons). In the case of lists, there should be an opera-
tion to evaluate the first list element (Head), an operation that returns the list cre-
ated by removing the first element (Tail), and an operation to count the number of
list elements (Length).

To define the syntax of each of these operations, you must decide which param-
eters are required for the operation and the results of the operation. In general, input
parameters are either the sort being defined (List) or the generic sort (Elem). The
results of operations may be either of those sorts or some other sort such as Integer
or Boolean. In the list example, the Length operation returns an integer. Therefore,
you must include an ‘imports’ declaration, declaring that the specification of inte-
ger is used in the specification.

To create the specification, you define a set of axioms that apply to the abstract
type and these specify its semantics. You define the axioms using the operations
defined :n the signature part. These axioms specify the semantics by setting out what
is always true about the behaviour of entities with that abstract type.

Operations on an abstract data type usually fall into two classes.

1. Corstructor operations that create or modify entities of the sort defined in the
specification. Typically. these are given names such as Create, Update, Add or,
in this case, Cons, meaning construct.

226 Chapter 10 ® Formal specification

2. Inspection operations that evaluate attributes of the sort defined in the speci-
fication. Typically, these are given names such as Eval or Get.

A good rule of thumb for writing an algebraic specification is to establish the
constructor operations and write down an axiom for each inspection operation over
each constructor. This suggests that if there are m constructor operations and n inspec-
tion operations, there should be m * n axioms defined.

However, the constructor operations associated with an abstract type may not all
be primitive constructors. That is, it may be possible to define them using other
constructors and inspection operations. If you define a constructor operation using
other constructors, then you need only to define the inspection operations using the
primitive constructors.

In the list specification, the constructor operations that build lists are Create, Cons
and Tail. The inspection operations are Head (return the value of the first element
in the list) and Length (return the number of elements in the list), which are used
to discover list attributes. The Tail operation, however, is not a primitive construc-
tor. There is therefore no need to define axioms over the Tail operation for Head
and Length operations, but you do have to define Tail using the primitive construc-
tor operations.

Evaluating the head of an empty list results in an undefined value. The specifi-
cations of Head and Tail show that Head evaluates the front of the list and Tail eval-
uates to the input list with its head removed. The specification of Head states that
the head of a list created using Cons is either the value added to the list (if the ini-
tial list is empty) or is the same as the head of the initial list parameter to Cons.
Adding an element to a list does not affect its head unless the list is empty.

Recursion is commonly used when writing algebraic specifications. The value
of the Tail operation is the list that is formed by taking the input list and removing
its head. The definition of Tail shows how recursion is used in constructing alge-
braic specifications. The operation is defined on empty lists, then recursively on
non-empty lists with the recursion terminating when the empty list results.

It is sometimes easier to understand recursive specifications by developing a short
example. Say we have a list [5, 7] where 5 is the front of the list and 7 the end of
the list. The operation Cons ([5, 7], 9) should return a list [5, 7, 9] and a Tail oper-
ation applied to this should return the list {7, 9]. The sequence of equations that
results from substituting the parameters in the above specification with these val-
ues is:

Tail ([5, 7, 9]) =
Tail (Cons ([5, 7], 9)) = Cons (Tail ({5, 7}), 9) =
Cons (Tail (Cons ([5], 7)). 9) = Cons (Cons (Tail ([5)), 7), 9) =
Cons (Cons (Tail (Cons ([l, 5)), 7), 9) = Cons (Cons ([Create], 7), 9) =
Cons ([7},9) = [7, 9}
The systematic rewriting of the axiom for Tail illustrates that it does indeed pro-
duce the anticipated result. You can check that axiom for Head is correct using the
same rewriting technique.

10 2 w Sub-system interface specification 227

Now let us look at how you can use algebraic specification of an interface in a
critical system specification. Assume that, in an air traffic control system, an object
has been designed to represent a controlled sector of airspace. Each controlled sec-
tor may include a number of aircraft, each of which has a unique aircraft identifier.
For safety reasons, all aircraft must be separated by at least 300 metres in height.
The system warns the controller if an attempt is made to position an aircraft so that
this corstraint is breached.

To simplify the description, I have only defined a limited number of operations
on the sector object. In a practical system, there are likely to be many more oper-
ations and more complex safety conditions related to the horizontal separation of
the aircraft. The critical operations on the object are:

1. Enter This operation adds an aircraft (represented by an identifier) to the
airspace at a specified height. There must not be other aircraft at that height or
within 300 metres of it.

2. Leave This operation removes the specified aircraft from the controlled sector.
This operation is used when the aircraft moves to an adjacent sector.

3. Move This operation moves an aircraft from one height to another. Again, the
safety constraint that vertical separation of aircraft must be at least 300 metres
is checked.

4. Lookup Given an aircraft identifier, this operation returns the current height of
that aircraft in the sector.

It makes it easier to specify these operations if some other interface operations
are defined. These are:

1. Create This 1s a standard operation for an abstract data type. It causes an empty
instance of the type to be created. In this case, it represents a sector that has
no aircraft in it.

2. Put This is a simpler version of the Enter operation. It adds an aircraft to the
sector without any associated constraint checking.

3. In-space Given an aircraft call sign, this Boolean operation returns true if the
aircraft is in the controlled sector, false otherwise.

4. Occupied Given a height, this Boolean operation returns true if there is an air-
craft within 300 metres of that height, false otherwise.

The advantage of defining these simpler operations is that you can then use them
as building blocks to define the more complex operations on the Sector sort. The
algebraic specification of this sort is shown in Figure 10.8.

Essentially, the basic constructor operations are Create and Put, and I use these
in the specification of the other operations. Occupied and in-space are checking oper-

Formal specification

/- SECTOR ~

sort Sector
imports INTEGER, BOOLEAN

Enter - adds an aircraft to the sector if safety conditions are satisfed

Leave - removes an aircraft from the sector

Move - moves an aircraft from one height to another if safe to do so

Lookup - finds the height of an aircraft in the sector

Create -~ creates an empty sector

Put - adds an aircraft to a sector with no constraint checks

In-space - checks if an aircraft is already in a sector
Occupied - checks if a specified height is available

Enter (Sector, Call-sign, Height) — Sector
Leave (Sector, Call-sign) — Sector
Move (Sector, Call-sign, Height) — Sector
Lookup (Sector, Call-sign) — Height

Create -~ Sector

Put (Sector, Call-sign, Height) — Sector
In-space (Sector, Call-sign) — Boolean
Occupied (Sector, Height) — Boolean

Enter (S, CS, H) =
if In-space (S, CS) then S exception (Aircraft already in sector}
elsif Occupied (S, H) then S exception (Height conflict)
else Put(S, CS H)

Leave §Create, CS) = Create exception (Aircraft not in sector)
Leave (Put (S, CS1, H1),CS) =
if CS = CS1 then S else Put (Leave (S, CS), CS1, H1)

Move (S, CS, H) =
if S=Create then Create exceptlon (No aircraft in sector)
elsif not In-space (S, CS) then S exception (Aircraft not in sector)
elsif Occupied (S, H) then S exception (Height conflict)
else Put (Leave (S, CS), CS, H)

-- NO-HEIGHT is a constant indicating that a valid height cannot be returned

Lookup (Create, CS) = NO-HEIGHT exception (Aircraft not in sector)
Lookup (Put (S, CS1, H1), CS) =
if CS =CS1 then H1 eise Lookup (S, CS)

Occupied (Create, H) = false

Occupied (Put (S, CS1, H1), H) =
if (H1>HandH1-H=<300)or(H>H1and H-H1<300) then true
else Occupied (S, H)

In-space (Create, CS) = false
In-space (Put (S, CS1,H1),CS) =
_ ICS =CS1 then true eise In-space (S, CS))

ations that I have defined using Create and Put, and I then use them in other spec-
ifications. I don’t have space to explain all operations in detail here but I discuss
two of them (Occupied and Move). With this information, you should be able to
understand the other operation specifications.

10.3 ® Behavioural specification 229

1. The Occupied operation takes a sector and a parameter representing the height
and checks whether any aircraft have been assigned to that height. Its specifi-
cation states that:

m In an empty sector (one that has been create by a Create operation), every
level is vacant. The operation returns false irrespective of the value of the
height parameter.

& In a non-empty sector (one where there has been previous Put operations),
the Occupied operation checks whether the specified height (parameter H) is
within 300 metres of the height of aircraft that was last added to the sector
by a Put operation. If so, that height is already occupied so the value of Occupied
is true.

m If it is not occupied, the operation checks the sector recursively. You can
think of this check being carried out on the last aircraft put into the sector.
If the height is not within range of the height of that aircraft, the operation
then checks against the previous aircraft that has been put into the sector and
so on. Eventually, if there are no aircraft within range of the specified height,
the check is carried out against an empty sector and so retumns false.

2. The Move operation moves an aircraft in a sector from one height to another.
Its specification states that:

m If a Move operation is applied to an empty airspace (the result of Create),
the airspace is unchanged and an exception is raised to indicate that the spec-
ified aircraft is not in the airspace.

® In a non-empty sector, the operation first checks (using In-space) whether
the given aircraft is in the sector. If it is not, an exception is raised. If it
is, the operation checks that the specified height is available (using
Cccupied), raising an exception if there is already an aircraft at that
height.

m If the specified height is available, the Move operation is equivalent to the
specified aircraft leaving the airspace (so the operation Leave is used) and
being put into the sector at the new height.

10.3 Behavioural specification

The simple algebraic techniques described in the previous section can be used to
describe interfaces where the object operations are independent of the object state.
That is, the results of applying an operation should not depend on the results of
previous operations. Where this condition does not hold, algebraic techniques can

Formal specification

become cumbersome. Furthermore, as they increase in size, I find that algebraic
descriptions of system behaviour become increasingly difficult to understand.

An alternative approach to formal specification that has been more widely used
in industrial projects is model-based specification. Model-based specification is an
approach to formal specification where the system specification is expressed as a
system state model. You can specify the system operations by defining how they
affect the state of the system model. The combination of these specifications
defines the overall behaviour of the system.

Mature notations for developing model-based specifications are VDM (Jones, 1980;
Jones, 1986), B (Wordsworth, 1996) and Z (Hayes, 1987; Spivey, 1992). I use Z
{(pronounced Zed, not Zee) here. In Z, systems are modelied using sets and rela-
tions between sets. However, Z has augmented these mathematical concepts with
constructs that specifically support software specification.

In an introduction to model-based specification, 1 can only give an overview of how
a specification can be developed. A complete description of the Z notation would be
longer than this chapter. Rather, I present some small examples to illustrate the tech-
nique and introduce notation as it is required. A full description of the Z notation is
given in textbooks such as those by Diller (Potter, et al., 1996) and Jacky (Jacky, 1997).

Formal specifications can be difficult and tedious to read especially when they
are presented as large mathematical formulae. The designers of Z have paid par-
ticular attention to this problem. Specifications are presented as informal text sup-
plemented with formal descriptions. The formal description is included as small,
easy-to-read chunks (called schemas) that are distinguished from associated text using
graphical highlighting. Schemas are used to introduce state variables and to define
constraints and operations on the state. Schemas can themselves be manipulated using
operations such as schema composition, schema renaming and schema hiding.

To be most effective, a formal specification must be supplemented by support-
ing, informal description. The Z schema presentation has been designed so that it
stands out from surrounding text (Figure 10.9).

The schema signature defines the entities that make up the state of the system
and the schema predicate sets out conditions that must always be true for these enti-
ties. Where a schema defines an operation, the predicate may set out pre- and post-
conditions. These define the state before and after the operation. The difference between
these pre- and post-conditions defines the action specified in the operation schema.

Schema name Schema signature Schema predicate

/

Container
r contents:
capacity: i

contents £ capacity

10.3 ® Behavioural specification 231

P

To illustrate the use of Z in the specification of a critical system, I have devel-
oped a formal specification of the control system of the insulin pump that I intro-
duced in Chapter 3.

Recall that this system monitors the blood glucose level of diabetics and auto-
matically injects insulin as required. Even for a small system like the insulin pump,
the formal specification is fairly long. Although the basic operation of the system
is simple. there are many possible alarm conditions that have to be considered. 1
include only some of the schemas defining the system here; the complete specifi-
cation can be downloaded from the book’s web site.

To develop a model-based specification, you have to define state variables and
predicates that model the state of the system that you are specifying as well as define
invariants (conditions that are always true) over these state variables.

The Z state schema that models the insulin pump state is shown in Figure 10.10.
You can see how the two basic parts of the schema are used. In the top part, names
and types are declared, and in the bottom part, the invariants are declared.

The names declared in the schema are used to represent system inputs, system
outputs and internal state variables:

1. System inputs where the convention in Z is for all input variable names to be fol-
lowed by a ? symbol. I have declared names to model the on/off switch on the
pumg (switch?), a button for manual delivery of insulin (ManualDeliveryButton?),
the reading from the blood sugar sensor (Reading?), the result of running a hard-
ware test program (HardwareTest?), sensors that detect the presence of the insulin
reservoir and the needle (InsulinReservoir?, Needle?), and the value of the current
time clock?).

2. System outputs where the convention in Z is for all output variable names to
be followed by a . symbol. I have declared names to model the pump alarm
(alarr!), two alphanumeric displays (display1! and display2!), a display of the
curreat time (clock!), and the dose of insulin to be delivered (dose!).

3. State variables used for dose computation I have declared variables to represent
the status of the device (status), to hold previous values of the blood sugar level
(ro, 11 and r2), the capacity of the insulin reservoir and the amount of insulin
currently available (capacity, insulin_available), several variables used to impose
limits on the dose of insulin delivered (max_daily_dose, max_single_dose, mini-
mum_dose, safemin, safemax), and two variables used in the dose computation
(CompDose and cumulative_dose). The type N means a non-negative number.

The schema predicate defines invariants that are always true. There is an
umplicit ‘and’ between each line of the predicate so all predicates must hold at ail
times. Some of these predicates simply set limits on the system, but others define
fundamental operating conditions of the system. These include:

1. The dose must be less than or equal to the capacity of the insulin reservoir.
That :s, it is impossible to deliver more insulin than is in the reservoir.

232 Chapter 10 ® Formal specification

Figure 10.10 State
schema for the
insulin pump

INSULIN_PUMP_STATE

//Input device definition

switch?: (off, manual, auto)

ManualDeliveryButton?: N

Reading?: N

HardwareTest?: (OK, batterylow, pumpfail, sensorfail, deliveryfail)
InsulinReservoir?: (present, notpresent)

Needle?: (present, notpresent)

clock?: TIME

//Output device definition
alarm! = (on, off)
display1!: string

display2!: string

clock!: TIME

dosel: N

// State variables used for dose computation

status: (running, warning, error)

0,11, r2: N

capacity, insulin_available : N

max_daily_dose, max_single_dose, minimum_dose: N
safemin, safemax: N

CompDose, cumulative_dose: N

12 = Reading?
dosel < insulin_available
insulin_available < capacity

// The cumulative dose of insulin delivered is set to zero once every 24
hours
clock? = 000000 = cumulative_dose = 0

// If the cumulative dose exceeds the limit then operation is suspended
cumulative_dose = max_daily_dose A status = error =
display1! = “Daily dose exceeded”

// Pump configuration parameters
capacity = 100 A safemin = 6 A safemax = 14
max_daily_dose = 25 A max_single_dose = 4 A minimum_dose = 1

display2! = nat_to_string (dose!)
clock! = clock?

10.3 & Behavioural specification 233

2. The cumulative dose is reset at midnight each day. You can think of the Z
phrase <logical expression 1> => <logical expression 2> as being the same
as if <logical expression 1> then <logical expression 2>. In this case, <log-
ical expression 1> is ‘clock? = 000000’ and <logical expression 2> is ‘cumu-
lative_dose = 0.

3. The cumulative dose delivered over a 24-hour period may not exceed
max_daily_dose. If this condition is false, then an error message is output.

4. dispiay2! always shows the value of the last dose of insulin delivered and clock!
always shows the current clock time.

The insulin pump operates by checking the blood glucose every 10 minutes, and
(simplistically) insulin is delivered if the rate of change of blood glucose is increas-
ing. The RUN schema, shown in Figure 10.11, models the normal operating condi-
tion of the pump.

If a schema name is included in the declarations part, this is equivalent to includ-
ing all the names declared in that schema in the declaration and the conditions
in the predicate part. The delta schema (A) in the first line in Figure 10.11 illustrates
this. The delta means that the state variables defined in INSULIN_PUMP_STATE are
in scope as are a set of other variables that represent state values before and after
some operation. These are indicated by ‘priming’ the name defined in
INSULIN_PUMP_STATE. Therefore, insulin_available represents the amount of insulin
available before some operation, and insulin_available” represents the amount of insulin
available after some operation.

The RUN schema defines the operation of the system by specifying a set of pred-
icates that are true in normal system use. Of course, these are in addition to the
predicates defined in the INSULIN_PUMP_STATE schema that are invariant (always
true). This schema also shows the use of a Z feature—schema composition—where
the schernas SUGAR_LOW, SUGAR_OK and SUGAR_HIGH are included by giving their
names. Notice that these schemas are ‘ored’ so that there is a schema for each of
three possible conditions. The ability to compose schemas means that you can break
down a specification into smaller parts in the same way that you can define func-
tions and methods in a program.

[won’t go into the details of the RUN schema here but, in essence, it starts by
defining predicates that are true for normal operation. For example, it states that
normal operation is only possible when the amount of insulin available is greater
than the maximum single dose that may be delivered. Three schemas that represent
different blood sugar levels are then ored and, as we shall see later, these define a
value for the state variable CompDose.

The value of CompDose represents the amount of insulin that has been com-
puted for delivery, based on the blood sugar level. The remainder of the predicates
in this schema define various checks to be applied to ensure that the dose actually
delivered (dose!) follows safety rules defined for the system. For example, one safety
rule is that no single dose of insulin may exceed some defined maximum value.

234 Chapter 10 m Formal specification

Figure 10.11 The
RUN schema

RUN
AINSULIN_PUMP_STATE

switch? = auto _

status = running \/ status = warning

insulin_available = max_single_dose

cumulative_dose < max_daily_dose

// The dose of insulin is computed depending on the blood sugar level
(SUGAR_LOW Vv SUGAR_OK Vv SUGAR_HIGH)

// 1. If the computed insulin dose is zero, don't deliver any insulin
CompDose =0 = dose! =0

%

// 2. The maximum daily dose would be exceeded if the computed dose was

delivered so the insulin dose is set to the difference between the maximum
allowed daily dose and the cumulative dose delivered so far

CompDose + cumulative_dose > max_daily_dose = alarm! = on A status’
warning A dose! = max_daily_dose—cumulative_dose

\
// 3. The normal situation. If maximum single dose is not exceeded then

deliver the computed dose. If the single dose computed is too high, restrict
the dose delivered to the maximum single dose

CompDose + cumulative_dose < max_daily_dose =

(CompDose < max_single_dose => dose! = CompDose

Y

CompDose > max_single_dose = dose! = max_single_dose)
insufin_available’ = insulin_available—dose!
cumulative_dose’ = cumulative_dose + dose!

insulin_available = max_single_dose * 4 = status’ = warning A
display1! = “Insulin low”

rn’'=r
0’ =11

Finally, the last two predicates define the changes to the value of insulin_available
and cumulative_dose. Notice how I have used the primed version of the names here.
The final schema example given in Figure 10.12 defines how the dose of insulin
is computed assuming that the level of sugar in the diabetic’s blood lies within some
safe zone. In these circumstances, insulin is only delivered if the blood sugar level
is rising and the rate of change of blood sugar level is increasing. The other schemas,

10 3 & Behavioural specification 235

Figure 10.12 The
SUGAR_OK schema

SUGAR_DK
12 = safemin V r2 A safemax

// sugar level stable or falling

12 = 11 => CompDose = 0

v

// sugar level increasing but rate of increase falling

2> 11 A (r2-11) < (r1-r0) = CompDose = 0

N

// sugar level increasing and rate of increase increasing compute dose
// a minimum dose must be delivered if rounded to zero

r2>r1 A (r2-r1) = (r1-r0) A (round ((r2-r1)/4) = 0) =
CompDose = minimum_dose

o/

r2 > 11 A (r2-r1) = (r1-10) A (round ((r2-r1)/4) > 0) =
CompDose = round ((r2-r1)/4)

SUGAR_LOW and SUGAR_HIGH define the dose to be delivered if the sugar level is
outside the safe zone. The predicates in the schema are as follows:

1. The initial predicate defines the safe zone; that is, r2 must lie between safemin
and safemax.

2. If the sugar leve] is stable or falling, indicated by r2 (the later reading) being
equal to or less than r1 (an earlier reading), then the dose of insulin to be deliv-
ered is zero.

3. If the sugar level is increasing (r2 > r1) but the rate of increase is falling, then
the dose to be delivered is zero.

4. If the sugar level is increasing and the rate of increase is stable, then a mini-
mum dose of insulin is delivered.

5. If the sugar level is increasing and the rate of increase is increasing, then the
dose of insulin to be delivered is derived by applying a simple formula to the
computed values.

! don’t model the temporal behaviour of the system (i.e., the fact that the glu-
cose sensor is checked every 10 minutes) using Z. Although this is certainly pos-
sible, it is rather clumsy, and, in my view, an informal description actually
communicates the specification more concisely than a formal specification.

236 Chapter 10 ® Formal specification

KEY POINTS

Methods of formal system specification complement informal requirements specification
techniques. They may be used with a natural language requirements definition to clarify
any areas of potential ambiguity in the specification.

Formal specifications are precise and unambiguous. They remove areas of doubt in a
specification and avoid some of the probiems of language misinterpretation. However, non-
specialists may find formal specifications difficult to understand.

The principal value of using formal methods in the software process is that it forces an
analysis of the system requirements at an early stage. Correcting errors at this stage is
cheaper than modifying a delivered system.

Formal specification techniques are most cost-effective in the development of critical
systems where safety, reliability and security are particularly important. They may also be
used to specify standards.

Algebraic techniques of formal specification are particularly suited to specifying interfaces
where the interface is defined as a set of object classes or abstract data types. These
techniques conceal the system state and specify the system in terms of relationships
between the interface operations.

Model-based techniques model the system using mathematical constructs such as sets and
functions. They may expose the system state, which simplifies some types of behavioural
specification.

You define the operations in a model-based specification by defining pre- and post-
conditions on the system state,

FURTHER READING RN CERE I 2

‘Correctness by construction: Developing a commercially secure system’. A good description of how
formal methods can be used in the development of a security-critical system. (A. Halt and R.
Chapman, /EEE Software, 19(1), January 2002.)

IEEE Transactions on Software Engineering, January 1998. This issue of the journal includes a
special section on the practical uses of formal methods in software engineering. It includes papers
on both Z and LARCH.

‘Formal methods: Promises and problems’. This article is a realistic discussion of the potential
gains from using formal methods and the difficulties of integrating the use of formal methods into
practical software development (Lugi and }. Goguen. IEEE Software, 14 (1), January 1997.)

Chapter 10 ®» Exercises 237

EXERCISES

101

10.2

103

10.4

105

10.6

10.7

10.8

10.9

10.10

Suggest why the architectural design of a system should precede the development of a
formal specification.

You have been given the task of ‘selling’ formal specification techniques to a software
development organisation. Outline how you would go about explaining the advantages of
formal specifications to sceptical, practising software engineers.

Explain why it is particularly important to define sub-system interfaces in a precise way and
why algebraic specification is particularly appropriate for sub-system interface specification.

An abstract data type representing a stack has the following operations associated with it:

New: Bring a stack into existence.

Push: Add an element to the top of the stack.

Top: Evaluate the element on top of the stack.

Retract: Remove the top element from the stack and return the modified stack.
Empty: True if there are no elements on the stack.

Define this abstract data type using an algebraic specification.

In the example of a controlled airspace sector, the safety condition is that aircraft may not be
within 300 m of height in the same sector. Modify the specification shown in Figure 10.8 to allow
aircraft to occupy the same height in the sector so long as they are separated by at least 8 km of
horizontal difference. You may ignore aircraft in adjacent sectors. Hint: You have to modify the
constructor operations so that they include the aircraft position as well as its height. You also
have to define an operation that, given two positions, returns the separation between them.

Bank teller machines rely on using information on the user s card giving the bank identifier,
the account number and the user’s personal identifier. They also derive account information
from a central database and update that database on completion of a transaction. Using your
knowledge of ATM operation, write Z schemas defining the state of the system, card
validation (where the user’s identifier is checked) and cash withdrawal.

Modify the insulin pump schema, shown in Figure 10.10, to add a further safety condition that
the ManualDeliveryButton? can only have a non-zero value if the pump switch is in the
manual position.

Write a Z schema called SELF_TEST that tests the hardware components of the insulin pump
and sets the value of the state variable HardwareTest?. Then modify the RUN schema to
check that the hardware is operating successfully before any insulin is delivered. If not, the
dose delivered should be zero and an error should be indicated on the insulin pump display.

Z supports the notion of sequences where a sequence is like an array. For example, for a
sequence S, you can refer to its elements as S[1], S[2], and so on. it also allows you to
determine the number of elements in a sequence using the # operator. That is, if a sequence
Sis[a, b, ¢, d] then #S is 4. You can add an element to the end of a sequence S by writing S
+ a, and to the beginning of the sequence by writing a + S. Using these constructs, write a Z
specification of the LIST that is specified algebraically in Figure 10.7.

You are a systems engineer and are asked to suggest the best way to develop the safety-
critical software for a heart pacemaker. You suggest formally specifying the system, but your
manager rejects your suggestion. You think his reasons are weak and based on prejudice. Is
it ethical to develop the system using methods that you think are inadequate?

The essence of software design is making decisions about the logical organisa-
tion of the software. Sometimes, you represent this logical organisation as a model
in a defined modelling language such as the UML and sometimes you simply use
informal notations and sketches to represent the design. Of course, you rarely start
from scratch when making decisions about the software organisation but base
your design on previous design experience.

Some authors think that the best way to encapsulate this design experience
is in structured methods where you follow a defined design process and describe
your design using different types of model. | have never been a great fan of
structured methods as | have always found that they are too constraining. Design
is a creative process and | strongly believe that we each tackle such creative
processes in individual ways. There is no right or wrong way to design soft-
ware and neither | nor anyone else can give you a ‘recipe’ for software design.
You learn how to design by looking at examples of existing designs and by dis-
cussing your design with others.

Rather than represent experience as a ‘design method’, | prefer a more loosely
structured approach. The chapters in this part encapsulate knowledge about soft-
ware structures that have been successfully used in other systems, present some
examples and give you some advice on design processes:

Chapters 11 to 13 are about the abstract structures of software. Chapter 11
discusses structural perspectives that have been found to be useful when design-
ing software, Chapter 12 is about structuring software for distributed execution
and Chapter 13 is about generic structures for various types of application. Chapter
13 is a new chapter that 1 have included in this edition because | have found
many students of software engineering have no experience of applications soft-
ware apart from the interactive systems that they use on an everyday basis on
their own computers.

Chapters 14 to 16 are concerned with more specific software design issues.
Chapter 14, which covers object-oriented design, concerns a way of thinking
about software structures. Chapter 15, on real-time systems design, discusses
the software structures that you need in systems where timely response is a
critical requirement. Chapter 16 is a bit different because it focuses on the user
interface design rather than on software structures. As an engineer, you have
to think about systems—not just software—and the people in the system are
an essential component. Design doesn't stop with the software structures but
continues through to how the software is used.

11
Architectural design

Objectives

The objective of this chapter is to introduce the concepts of software
architecture and architectural design. When you have read the chapte ,
you will;

B understand why the architectural design of software is important;

® understand the decisions that have to be made about the system
architecture during the architectural design process;

B have been introduced to three complementary architectural styles
covering the overall system organisation, modular decomposition
and control;

B understand how reference architectures are used to communicate
architectural concepts and to assess system architectures.

Contents

11.1 Architectural design decisions
11.2 System organisation

11.3 Modular decomposition styles
11.4 Control styles

11.5 Reference architectures

242 Chapter 11 = Architectural design

Large systems are always decomposed into sub-systems that provide some related
set of services. The initial design process of identifying these sub-systems and estab-
lishing a framework for sub-system control and communication is called architec-
tural design. The output of this design process is a description of the software
architecture.

In the model presented in Chapter 4, architectural design is the first stage in the
design process and represents a critical link between the design and requirements
engineering processes. The architectural design process is concerned with establishing
a basic structural framework that identifies the major components of a system and
the communications between these components.

Bass et al. (Bass, et al., 2003) discuss three advantages of explicitly designing
and documenting a software architecture:

1. Stakeholder communication The architecture is a high-level presentation of the
system that may be used as a focus for discussion by a range of different stake-
holders.

2. System analysis Making the system architecture explicit at an early stage in the
system development requires some analysis. Architectural design decisions have
a profound effect on whether the system can meet critical requirements such
as performance, reliability and maintainability.

3. Large-scale reuse A system architecture model is a compact, manageable
description of how a system is organised and how the components interoper-
ate. The system architecture is often the same for systems with similar require-
ments and so can support large-scale software reuse. As I discuss in Chapter
18, it may be possible to develop product-line architectures where the same
architecture is used across a range of related systems.

Hofmeister et al. (Hofmeister, et al., 2000) discuss how the architectural design
stage forces software designers to consider key design aspects early in the process.
They suggest that the software architecture can serve as a design plan that is used
to negotiate system requirements and as a means of structuring discussions with
clients, developers and managers. They also suggest that it is an essential tool for
complexity management. It hides details and allows the designers to focus on the
key system abstractions.

The system architecture affects the performance, robustness, distributability and main-
tainability of a system (Bosch, 2000). The particular style and structure chosen for an
application may therefore depend on the non-functional system requirements:

1. Performance If performance is a critical requirement, the architecture should
be designed to localise critical operations within a small number of sub-
systems, with as little communication as possible between these sub-systems.
This may mean using relatively large-grain rather than fine-grain components
to reduce component communications.

Chapter 11 & Architectural design 243

2. Security If security is a critical requirement, a layered structure for the archi-
tecture should be used, with the most critical assets protected in the innermost
layers and with a high level of security validation applied to these layers.

3. Safety If safety is a critical requirement, the architecture should be designed
so that safety-related operations are all located in either a single sub-system
or in a small number of sub-systems. This reduces the costs and problems
of safety validation and makes it possible to provide related protection
systems.

4, Availability If availability is a critical requirement, the architecture should be
designed to include redundant components and so that it is possible to replace
and update components without stopping the system. Fault-tolerant system archi-
tectures for high-availability systems are covered in Chapter 20.

5. Maintainability If maintainability is a critical requirement, the system archi-
tecture should be designed using fine-grain, self-contained components that may
readily be changed. Producers of data should be separated from consumers and
shared data structures should be avoided.

Obviously there is potential conflict between some of these architectures. For
example, using large-grain components improves performance, and using fine-grain
components improves maintainability. If both of these are important system
requirements, then some compromise solution must be found. As I discuss later,
this can sometimes be achieved by using different architectural styles for different
parts of the system.

There is a significant overlap between the processes of requirements engineer-
ing and architectural design. Ideally, a system specification should not include any
design information. In practice, this is unrealistic except for very small systems.
Architectural decomposition is necessary to structure and organise the specification.
An example of this was introduced in Chapter 2, where Figure 2.8 shows the archi-
tecture of an air traffic control system. You can use such an architectural model as
the starting point for sub-system specification.

A sub-system design is an abstract decomposition of a system into large-grain
components, each of which may be a substantial system in its own right. Block dia-
grams are often used to describe sub-system designs where each box in the diagram
represents a sub-system. Boxes within boxes indicate that the sub-system has itself
been decomposed to sub-systems. Arrows mean that data and or control signals are
passed from sub-system to sub-system in the direction of the arrows. Block dia-
grams present a high-level picture of the system structure, which people from dif-
ferent disciplines who are involved in the system development process can readily
understand.

For example, Figure 11.1 is an abstract model of the architecture for a packing
robot system that shows the sub-systems that have to be developed. This robotic
system can pack different kinds of object. It uses a vision sub-system to pick out

Architecturat design

Vision i

system I l
Object Arm Gripper
controller controller

identification
A

system

Packaging
selection
system

Conveyor
controller

objects on a conveyor, identify the type of object and select the right kind of pack-
aging. The system then moves objects from the delivery conveyor to be packaged.
It places packaged objects on another conveyor. Other examples of architectural designs
at this level are shown in Chapter 2 (Figures 2.6 and 2.8).

Bass et al. (Bass, et al., 2003) claim that simple box-and-line diagrams are not
useful architectural representations because they do not show the nature of the rela-
tionships among system components nor do they show components’ externally vis-
ible properties. From a software designer s perspective, this is absolutely correct.
However, this type of model is effective for communication with system stakeholders
and for project planning because it is not cluttered with detail. Stakeholders can
relate to it and understand an abstract view of the system. The model identifies the
key sub-systems that are to be independently developed so managers can start assign-
ing people to plan the development of these systems. Box-and-line diagrams should
certainly not be the only architectural representation that are used; however, they
are one of a number of useful architectural models.

The general problem of deciding how to decompose a system into sub-systems
is a difficult one. Of course, the system requirements are a major factor and you
should try to create a design where there is a close match between requirements
and sub-systems. This means that, if the requirements change, this change is likely
to be localised rather than distributed across several sub-systems. In Chapter 13, I
describe a number of generic application architectures that can be used as a start-
ing point for sub-system identification.

111 = Architectural design decisions 245

11.1 Architectural design decisions

Architectural design is a creative process where you try to establish a system organ-
isation that will satisfy the functional and non-functional system requirements. Because
it is a creative process, the activities within the process differ radicaily depending
on the type of system being developed, the background and experience of the sys-
tem architect, and the specific requirements for the system. It is therefore more use-
ful to think of the architectural design process from a decision perspective rather
than from an activity perspective. During the architectural design process, system
architects have to make a number of fundamental decisions that profoundly affect
the system and its development process. Based on their knowledge and experience,
they have to answer the following fundamental questions:

1. Is there a generic application architecture that can act as a template for the sys-
tem: that is being designed?

How will the system be distributed across a number of processors?

What architectural style or styles are appropriate for the system?

What will be the fundamental approach used to structure the system?

How will the structural units in the system be decomposed into modules?
What strategy will be used to control the operation of the units in the system?

How will the architectural design be evaluated?

© NN e W

How should the architecture of the system be documented?

Although each software system is unique, systems in the same application
domain often have similar architectures that reflect the fundamental domain con-
cepts. These application architectures can be fairly generic, such as the architecture
of information management systems, or much more specific. For example, appli-
cation product lines are applications that are built around a core architecture with
variants that satisfy specific customer requirements. When designing a system
architecture, you have to decide what your system and broader application classes
have in common, and decide how much knowledge from these application archi-
tectures you can reuse. I discuss generic application architectures in Chapter 13 and
application product lines in Chapter 18.

For embedded systems and systems designed for personal computers, there is usu-
ally only a single processor, and you will not have to design a distributed architecture
for the system. However, most large systems are now distributed systems where the
system software is distributed across many different computers. The choice of distri-
bution architecture is a key decision that affects the performance and reliability of the
system. This is a major topic in its own right and I cover it separately in Chapter 12.

246 Chapter 11 # Architectural design

The architecture of a software system may be based on a particular architectural
model or style. An architectural style is a pattern of system organisation (Garlan
and Shaw, 1993) such as a client-server organisation or a layered architecture. An
awareness of these styles, their applications, and their strengths and weaknesses is
important. However, the architectures of most large systems do not conform to a
single style. Different parts of the system may be designed using different archi-
tectural styles. In some cases, the overall system architecture may be a composite
architecture that is created by combining different architectural styles

Garlan and Shaw’s notion of an architectural style covers the next three design ques-
tions. You have to choose the most appropriate structure, such as client—server or lay-
ered structuring, that will allow you to meet the system requirements. To decompose
structural system units into modules, you decide on the strategy for decomposing sub-
systems into their components or modules. The approaches that you can use allow dif-
ferent types of architecture to be implemented. Finally, in the control modelling
process, you make decisions about how the execution of sub-systems is controlled. You
develop a general model of the control relationships between the parts of the system
established. I cover these three topics in Sections 11.2 through 11.4.

Evaluating an architectural design is difficult because the true test of an archi-
tecture is in how well it meets its functional and non-functional requirements after
it has been deployed. However, in some cases, you can do some evaluation by com-
paring your design against reference or generic architectural models. I cover refer-
ence architectures in Section 11.5 and other generic architectures in Chapter 13.

The product of the architectural design process is an architectural design docu-
ment. This may include a number of graphical representations of the system along
with associated descriptive text. It should describe how the system is structured into
sub-systems, the approach adopted and how each sub-system is structured into mod-
ules. The graphical models of the system present different perspectives on the archi-
tecture. Architectural models that may be developed may include:

1. A static structural model that shows the sub-systems or components that are
to be developed as separate units.

2. A dynamic process model that shows how the system is organised into pro-
cesses at run-time. This may be different from the static model.

3. An interface model that defines the services offered by each sub-system
through its public interface.

4. Relationship models that shows relationships, such as data flow, between the
sub-systems.

5. A distribution model that shows how sub-systems may be distributed across
computers.

A number of researchers have proposed the use of architectural description lan-
guages (ADLs) to describe system architectures. Bass et al. (Bass, et al., 2003) describe

11 2 & System organisation 247

the main features of these languages. The basic elements of ADLs are components
and connectors, and they include rules and guidelines for well-formed architectures.
However, like all specialised languages, ADLs can only be understood by language
experts and are inaccessible to domain and application specialists. This makes them
difficult to analyse from a practical perspective. I think that they will only be used
in a small number of applications. Informal models and notations such as the UML
(Clements, et al., 2002) will remain the most commonly used notatior: for archi-
tectural description.

System organisation

The organisation of a system reflects the basic strategy that is used to structure a
system. You have to make decisions on the overall organisational model of a sys-
tem early in the architectural design process. The system organisation may be directly
reflected in the sub-system structure. However, it is often the case that the sub-system
model includes more detail than the organisational model, and there is not always
a simple mapping from sub-systems to organisational structure.

In this section, 1 discuss three organisational styles that are very widely used.
These are a shared data repository style, a shared services and servers style and an
abstract machine or layered style where the system is organised as a tier of func-
tional layers. These styles can be used separately or together. For example, a sys-
tem may be organised around a shared data repository but may construct layers around
this to present a more abstract view of the data.

The repository model

Sub-systems making up a system must exchange information so that they can work
together effectively. There are two fundamental ways in which this can be done.

1. All shared data is held in a central database that can be accessed by all sub-
systems. A system model based on a shared database is sometimes called a repos-
itorv model.

2. Each sub-system maintains its own database. Data is interchanged with other
sub-systems by passing messages to them.

The majority of systems that use large amounts of data are organised around a
shared database or repository. This model is therefore suited to applications where
data is generated by one sub-system and used by another. Examples of this type of

248 Chapter 11 a Architectural design

Figure 11.2 The
architecture of an
integrated CASE
toolset

Design ; Code
editor generator

Design Project . | Program }
translator repository | editor [

"y,

E

Design Report E
analyser | generator |

system include command and control systems, management information systems,
CAD systems and CASE toolsets.

Figure 11.2 is an example of a CASE toolset architecture based on a shared repos-

itory. The first shared repository for CASE tools was probably developed in the
early 1970s by a UK company called ICL to support their operating system devel-
opment (McGuffin, et al., 1979). This model became more widely known when Buxton
(Buxton, 1980) made proposals for the Stoneman environment to support the devel-
opment of systems written in Ada. Since then, many CASE toolsets have been devel-
oped around a shared repository.

The advantages and disadvantages of a shared repository are as follows:

It is an efficient way to share large amounts of data. There is no need to trans-
mit data explicitly from one sub-system to another.

However, sub-systems must agree on the repository data model. Inevitably, this
is a compromise between the specific needs of each tool. Performance may be
adversely affected by this compromise. It may be difficult or impossible to inte-
grate new sub-systems if their data models do not fit the agreed schema.

Sub-systems that produce data need not be concerned with how that data is used
by other sub-systems.

However, evolution may be difficult as a large volume of information is gen-
erated according to an agreed data model. Translating this to a new model will
certainly be expensive; it may be difficult or even impossible.

Activities such as backup, security, access control and recovery from error are
centralised. They are the responsibility of the repository manager. Tools can
focus on their principal function rather than be concerned with these issues.

However, different sub-systems may have different requirements for security,
recovery and backup policies. The repository model forces the same policy on
all sub-systems.

112 » System organisation 249

11.2.2

7. The model of sharing is visible through the repository schema. It is straight-
forward to integrate new tools given that they are compatible with the agreed
data model.

8. However, it may be difficult to distribute the repository over a number of
machines. Although it is possible to distribute a logically centralised reposi-
tory, there may be problems with data redundancy and inconsistency.

In the above model, the repository is passive and control is the responsibility of
the sub-systems using the repository. An alternative approach has been derived for
Al systems that use a ‘blackboard’ model, which triggers sub-systems when par-
ticular data become available. This is appropriate when the form of the repository
data is less well structured. Decisions about which tool to activate can only be made
when the data has been analysed. This model is described by Nii (Nii, 1986), and
Bosch (Bosch, 2000) includes a good discussion of how this style relates to system
quality attributes.

The client-server model

The client—server architectural model is a system model where the system is organ-
ised as z set of services and associated servers and clients that access and use the
services. The major components of this model are:

1. A set of servers that offer services to other sub-systems. Examples of servers
are print servers that offer printing services, file servers that offer file man-
agement services and a compile server, which offers programming language
compilation services.

2. A set of clients that call on the services offered by servers. These are normally
sub-systems in their own right. There may be several instances of a client pro-
grarn executing concurrently.

3. A network that allows the clients to access these services. This is not strictly nec-
essary as both the clients and the servers could run on a single machine. In prac-
tice, however, most client—server systems are implemented as distributed systems.

Clients may have to know the names of the available servers and the services
that they provide. However, servers need not know either the identity of clients or
how many clients there are. Clients access the services provided by a server
through remote procedure calls using a request-reply protocol such as the http pro-
tocol used in the WWW. Essentially, a client makes a request to a server and waits
until it recerves a reply.

Figurz 11.3 shows an example of a system that is based on the client-server model.
This is a multi-user, web-based system to provide a film and photograph library. In this

250 Chapter 11 m Architectural design

Figure 11.3 The
architecture of a film
and picture library

system

(Client1 b Client 2 Client 3 Client 4

Internet

Y
Y
Catalogue Video Picture Web
server server server server]
Library Film dlip Digitised Filmand [
catalogue files photographs photo info.

system, several servers manage and display the different types of media. Video frames

eed to be transmitted quickly and in synchrony but at relatively low resolution. Th y
may be compressed in a store, so the video server may handle video compression and
decompression into different formats. Still pictures, however, must be maintained at a
high resolution, so it is appropriate to maintain them on a separate server.

The catalogue must be able to deal with a variety of queries and provide links
into the web information system that includes data about the film and video clip,
and an e-commerce system that supports the sale of film and video clips. The client
program is simply an integrated user interface, constructed using a web browser, to
these services.

The most important advantage of the client-server model is that it is a distributed
architecture. Effective use can be made of networked systems with many distributed
processors. It is easy to add a new server and integrate it with the rest of the sys-
tem or to upgrade servers transparently without affecting other parts of the system.
I discuss distributed architectures, including client-server architectures and distributed
object architectures, in more detail in Chapter 12.

However, changes to existing clients and servers may be required to gain the
full benefits of integrating a new server. There may be no shared data model across
servers and sub-systems may organise their data in different ways. This means that
specific data models may be established on each server to allow its performance to
be optimised. Of course, if an XML-based representation of data is used, it may be
relatively simple to convert from one schema to another. However, XML is an inef-
ficient way to represent data, so performance problems can arise if this is used.

11.2.3 The layered model

The layered model of an architecture (sometimes called an abstract machine model)
organises a system into layers, each of which provide a set of services. Each layer

11 2 ® System organisation 251

Figure 11.4 Layered
model of a version
management system

l Configuration management system layer |
I Object management system layer l

Database system layer l

Operating system layer

can be thought of as an abstract machine whose machine language is defined by
the services provided by the layer. This ‘language’ is used to implement the next
level of abstract machine. For example, a common way to implement a language
is to define an-ideal ‘language machine’ and compile the language into code for
this machine. A further translation step then converts this abstract machine code to
real machine code.

An example of a layered model is the OSI reference model of network proto-
cols (Zimmermann, 1980), discussed in Section 11.5. Another influential example
was proposed by Buxton (Buxton, 1980), who suggested a three-layer model for an
Ada Programming Support Environment (APSE). Figure 11.4 reflects the APSE struc-
ture and shows how a configuration management system might be integrated using
this abstract machine approach.

The configuration management system manages versions of objects and provides
general configuration management facilities, as discussed in Chapter 29. To sup-
port these configuration management facilities, it uses an object management sys-
tem thar provides information storage and management services for configuration
items or objects. This system is built on top of a database system to provide basic
data storage and services such as transaction management, rollback and recovery,
and access control. The database management uses the underlying operating sys-
tem facilities and filestore in its implementation. You can see other examples of
layered architectural models in Chapter 13.

The layered approach supports the incremental development of systems. As a
layer is developed, some of the services provided by that layer may be made avail-
able to users. This architecture is also changeable and portable. So long as its inter-
face is unchanged, a layer can be replaced by another, equivalent layer.
Furthermore, when layer interfaces change or new facilities are added to a layer,
only the adjacent layer is affected. As layered systems localise machine dependen-
cies in inner layers, this makes it easier to provide multi-platform implementations

Architectural design

of an application system. Only the inner, machine-dependent layers need be reim-
plemented to take account of the facilities of a different operating system or
database.

A disadvantage of the layered approach is that structuring systems in this way
can be difficult. Inner layers may provide basic facilities, such as file management,
that are required at all levels. Services required by a user of the top level may there-
fore have to ‘punch through’ adjacent layers to get access to services that are pro-
vided several levels beneath it. This subverts the model, as the outer layer in the
system does not just depend on its immediate predecessor.

Performance can also be a problem because of the muitiple levels of command
interpretation that are sometimes required. If there are many layers, a service request
from a top layer may have to be interpreted several times in different layers before
it is processed. To avoid these problems, applications may have to communicate directly
with inner layers rather than use the services provided by the adjacent layer.

Modular decomposition styles

After an overall system organisation has been chosen, you need to make a decision
on the approach to be used in decomposing sub-systems into modules. There is not
a rigid distinction between system organisation and modular decomposition. The
styles discussed in Section 11.2 could be applied at this level. However, the com-
ponents in modules are usually smaller than sub-systems, which allows alternative
decomposition styles to be used.

There is no clear distinction between sub-systems and modules, but I find it use-
ful to think of them as follows:

1. A sub-system is a system in its own right whose operation does not depend on
the services provided by other sub-systems. Sub-systems are composed of mod-
ules and have defined interfaces, which are used for communication with other
sub-systems.

2. A module is normally a system component that provides one or more services
to other modules. It makes use of services provided by other modules. It is not
normally considered to be an independent system. Modules are usually com-
posed from a number of other simpler system components.

There are two main strategies that you can use when decomposing a sub-system
into modules:

1. Object-oriented decomposition where you decompose a system into a set of com-
municating objects.

Figure 11.5 An object
model of an invoice
processing system

11.3.1

11 3 m Modular decomposition styles 253
Customer Receipt
customer# invoice#
name - »| date
address Invoice amount
credit period customer#
invoice#
date
amount
customer
Payment - - issue O
invoice#] sendReminder ()
dat - 1 acceptPayment ()
amount sendReceipt ()
customer#

2. Function-oriented pipelining where you decompose a system into functional
modules that accept input data and transform it into output data.

In the object-oriented approach, modules are objects with private state and
defined operations on that state. In the pipelining model, modules are functional
transtormations. In both cases, modules may be implemented as sequential com-
ponents or as processes.

You should avoid making premature commitments to concurrency in a system.
The advantage of avoiding a concurrent system design is that sequential programs
are easier to design, implement, verify and test than parallel systems. Time depen-
dencies between processes are hard to formalise, control and verify. It is best to
decompose systems into modules, then decide during implementation whether
these need to execute in sequence or in parallel.

Object-oriented decomposition

An object-oriented, architectural model structures the system into a set of loosely
coupled objects with well-defined interfaces. Objects call on the services offered
by other objects. I have already introduced object models in Chapter 8, and I dis-
cuss object-oriented design in more detail in Chapter 14.

Figure 11.5 is an example of an object-oriented architectural model of an
invoice processing system. This system can issue invoices to customers, receive pay-
ments, and issue receipts for these payments and reminders for unpaid invoices. 1
use the UML notation introduced in Chapter 8 where object classes have names
and a set of associated attributes. Operations, if any, are defined in the lower part
of the rectangle representing the object. Dashed arrows indicate that an object uses
the attributes or services provided by another object.

254 Chapter 11 = Architectural design

11.3.2

An object-oriented decomposition is concerned with object classes, their
attributes and their operations. When implemented, objects are created from these
classes and some control model is used to coordinate object operations. In this par-
ticular example, the Invoice class has various associated operations that implement
the system functionality. This class makes use of other classes representing cus-
tomers, payments and receipts.

The advantages of the object-oriented approach are well known. Because objects
are loosely coupled, the implementation of objects can be modified without affect-
ing other objects. Objects are often representations of real-world entities so the struc-
ture of the system is readily understandable. Because these real-world entities are
used in different systems, objects can be reused. Object-oriented programming lan-
guages have been developed that provide direct implementations of architectural com-
ponents.

However, the object-oriented approach does have disadvantages. To use services,
objects must explicitly reference the name and the interface of other objects. If an
interface change is required to satisfy proposed system changes, the effect of that
change on all users of the changed object must be evaluated. While objects may
map cleanly to small-scale real-world entities, more complex entities are sometimes
difficult to represent as objects.

Function-oriented pipelining

In a function-oriented pipeline or data-flow model, functional transformations pro-
cess their inputs and produce outputs. Data flows from one to another and is trans-
formed as it moves through the sequence. Each processing step is implemented as
a transform. Input data flows through these transforms until converted to output.
The transformations may execute sequentially or in parallel. The data can be pro-
cessed by each transform item by item or in a single batch.

When the transformations are represented as separate processes, this model is
sometimes called the pipe and filter style after the terminology used in the Unix
system. The Unix system provides pipes that act as data conduits and a set of com-
mands that are functional transformations. Systems that conform to this model can
be implemented by combining Unix commands using pipes and the control facili-
ties of the Unix shell. The term filter is used because a transformation ‘filters out
the data it can process from its input data stream.

Variants of this pipelining model have been in use since computers were first
used for automatic data processing. When transformations are sequential with data
processed in batches, this architectural model is a batch sequential model. As I dis-
cuss in Chapter 13, this is a common architecture for data-processing systems such
as billing systems. Data-processing systems usually generate many output reports
that are derived from simple computations on a large number of input records.

An example of this type of system architecture is shown in Figure 11.6. An organ-
isation has issued invoices to customers. Once a week, payments that have been

11 3 = Modular decomposition styles 255

Read s
invoices

sued

et

Issue

i 1
receipts Receipts ¢

o it

dentify
payments j—

| Find Issue
—— payments payment Reminders
due

Invoices

reminder g

Payments

T

Figure

116 A

pipeline model of

an invoice processing

system

made are reconciled with the invoices. For those invoices that have been paid, a
receipt is issued. For those invoices that have not been paid within the allowed pay-
ment time, a reminder is issued.

This i3 a model of only part of the invoice processing system, alternative trans-
formations would be used for the issue of invoices. Notice the difference
between this and its object-oriented equivalent discussed in the previous section.
The object model is more abstract as it does not include information about the
sequence of operations.

The advantages of this architecture are:

1. Tt supports the reuse of transformations.

2. Itis tntuitive in that many people think of their work in terms of input and out-
put processing.

3. Evolving the system by adding new transformations is usually straightforward.

4. It is simple to implement either as a concurrent or a sequential system.

The principal problem with this style is that there has to be a common format
for data transfer that can be recognised by all transformations. Each transformation
must either agree with its communicating transformations on the format of the data
that will be processed or with a standard format for all data communicated must be
imposed. The latter is the only feasible approach when transformations are stan-
dalone and reusable. In Unix, the standard format is simply a character sequence.
Each transformation must parse its input and unparse its output to the agreed form.
This increases system overhead and may mean that it is impossible to integrate trans-
formations that use incompatible data formats.

Interactive systems are difficult to write using the pipelining model because of
the need for a stream of data to be processed. While simple textual input and out-
put can te modelled in this way, graphical user interfaces have more complex /O
formats and control, which is based on events such as mouse clicks or menu selec-
tions. It is difficult to translate this into a form compatible with the pipelining model.

Architectural design

Control styles

The models for structuring a system are concerned with how a system is decom-
posed into sub-systems. To work as a system, sub-systems must be controlled so
that their services are delivered to the right place at the right time. Structural mod-
els do not (and should not) include control information. Rather, the architect should
organise the sub-systems according to some control mode] that supplements the struc-
ture model that is used. Control models at the architectural level are concerned with
the control flow between sub-systems.
There are two generic control styles that are used in software systems:

1. Centralised control One sub-system has overall responsibility for control and
starts and stops other sub-systems. It may also devolve control to another sub-
system but will expect to have this control responsibility returned to it.

2. Event-based control Rather than control information being embedded in a sub-
system, each sub-system can respond to externally generated events. These events
might come from other sub-systems or from the environment of the system.

Control styles are used in conjunction with structural styles. All the structural
styles that I have discussed may be realised using centralised or event-based
control.

Centralised control

In a centralised control model, one sub-system is designated as the system controller
and has responsibility for managing the execution of other sub-systems. Centralised
control models fall into two classes, depending on whether the controlled sub-systems
execute sequentially or in parallel.

1. The call-return model This is the familiar top-down subroutine model where
control starts at the top of a subroutine hierarchy and, through subroutine calls,
passes to lower levels in the tree. The subroutine model is only applicable to
sequential systems.

2. The manager model This is applicable to concurrent systems. One system com-
ponent is designated as a system manager and controls the starting, stopping
and coordination of other system processes. A process is a sub-system or mod-
ule that can execute in parallel with other processes. A form of this model may
also be applied in sequential systems where a management routine calls par-
ticular sub-systems depending on the values of some state variables. This is
usually implemented as a case statement.

11.4 = Control styles 257

Figure 11.7 The
call-return model of
control

Main
program

N

Routine 1 Routine 2 Routine 3

Routine 1.1 Routine 1.2 E Routine 3.1 ' Routine 3.2 E
e ot ; " T "

The call-return model is illustrated in Figure 11.7. The main program can call
Routines 1, 2 and 3; Routine 1 can call Routines 1.2 or 1.2; Routine 3 can cail Routines
3.1 or 3.2; and so on. This is a model of the program dynamics. It is not a struc-
tural model; there 1s no need for Routine 1.1, for example, to be part of Routine 1.

This familiar model is embedded in programming languages such as C, Ada and
Pascal. Control passes from a higher-level routine in the hierarchy to a lower-level
routine. It then retumns to the point where the routine was called. The currently exe-
cuting subroutine has responsibility for control and can either call other routines or
return control to its parent. It is poor programming style to return to some other
point in the program.

This call-return model may be used at the module level to control functions or
objects. Subroutines in a programming language that are called by other subrou-
tines are naturally functional. However, in many object-oriented systems, operations
on objects (methods}) are implemented as procedures or functions. For example, when
a Java object requests a service from another object, it does so by calling an asso-
ciated method.

The rigid and restricted nature of this model is both a strength and a weakaess.
It is a strength because it is relatively simple to analyse control flows and work out
how the system will respond to particular inputs. It is a weakness because excep-
tions to normal operation are awkward to handle.

Figure 11.8 is an illustration of a centralised management model of control for
a concurrent system. This model is often used in ‘soft’ real-time systems which do
not have very tight time constraints. The central controller manages the execution
of a set of processes associated with sensors and actuators. The building monitor-
ing system discussed in Chapter 15 uses this model of control.

The system controller process decides when processes should be started or
stopped depending on system state variables. It checks whether other processes have
produced information to be processed or to pass information to them for process-
ing. The controller usually loops continuously, polling sensors and other processes
for events or state changes. For this reason, this model is sometimes called an event-
loop model.

258 Chapter 11 # Architectural design

Figure 11.8 A
centralised control
model for a real-time
system

11.4.2

‘Q Actuator

processes

processes

&)

System
controller

X

/

(Computation User Fault
processes /- interface /- handler /

Event driven systems

In centralised control models, control decisions are usually determined by the val-
ues of some system state variables. By contrast, event-driven control models are
driven by externally generated events. The term event in this context does not just
mean a binary signal. It may be a signal that can take a range of values or a com-
mand input from a menu. The distinction between an event and a simple input is
that the timing of the event is outside the control of the process that handles that
event.

There are many types of event-driven systems. These include editors where user
interface events signify editing commands, rule-based production systems as used
in Al where a condition becoming true causes an action to be triggered, and active
objects where changing a value of an object’s attribute triggers some actions.
Garlan et al. (Garlan, et al., 1992) discuss these different types of system.

In this section, I discuss two event-driven control models:

1. Broadcast models In these models, an event is broadcast to all sub-systems.
Any sub-system that has been programmed to handle that event can respond
to it.

2. Interrupt-driven models These are exclusively used in real-time systems where
external interrupts are detected by an interrupt handler. They are then passed
to some other component for processing.

Broadcast models are effective in integrating sub-systems distributed across dif-
ferent computers on a network. Interrupt-driven models are used in real-time sys-
tems with stringent timing requirements.

In a broadcast model (Figure 11.9), sub-systems register an interest in specific
events. When these events occur, control is transferred to the sub-system that can
handle the event. The distinction between this model and the centralised model shown

11.4 = Control styles 259

Figure 11.9 A control
model based on
selective
broadcasting

CSub-system Sub-system Sub-system Sub-systern
1 2 3 4

|.- Event and message handler

in Figure 11.8 is that the control policy is not embedded in the event and message
handler. Sub-systems decide which events they require, and the event and message
handler ensures that these events are sent to them.

All events could be broadcast to all sub-systems, but this imposes a great deal
of processing overhead. More often, the event and message handler maintains a reg-
ister of sub-systems and the events of interest to them. Sub-systems generate events
indicating, perhaps, that some data 1s available for processing. The event handler
detects the events, consults the event register and passes the event to those sub-
systems who have declared an interest. In simpler systems, such as PC-based sys-
tems driven by user interface events, there are explicit event-listener sub-systems
that lister: for events from the mouse, the keyboard, and so on, and translate these
into more specific commands.

The event handler also usually supports point-to-point communication. A sub-
system can explicitly send a message to another sub-system. There have been a num-
ber of variations of this model, such as the Field environment (Reiss, 1990) and
Hewlett-Packard’s Softbench (Fromme and Walker, 1993). Both of these have been
used to contro!l tool interactions in software engineering environments. Object
Request Brokers (ORBs), discussed in Chapter 12, also support this model of con-
trol for distributed object communications.

The advantage of this broadcast approach is that evolution is relatively simple.
A new sub-system to handle particular classes of events can be integrated by reg-
istering its events with the event handler. Any sub-system can activate any other
sub-system without knowing its name or location. The sub-systems can be imple-
mented on distributed machines. This distribution is transparent to other sub-
systems.

The disadvantage of this model is that sub-systems don’t know if or when events
will be handled. When a sub-system generates an event it does not know which
other sub-systems have registered an interest in that event. It is quite possible for
different sub-systems to register for the same events. This may cause conflicts when
the results of handling the event are made available.

Real-time systems that require externally generated events to be handled very
quickly must be event-driven. For example, if a real-time system is used to control
the safety systems in a car, it must detect a possible crash and, perhaps, inflate an
airbag before the driver’s head hits the steering wheel. To provide this rapid
response 0 events, you have to use interrupt-driven control.

260 Chapter 11 ®m Architectural design

Figure 11.10 An
interrupt-driven
control model

11.5

Interrupts

L4

Interrupt
vector

Handler Handler Handler Handier
1 2 3 4

An interrupt-driven control model is illustrated in Figure 11.10. There are a known
number of interrupt types with a handler defined for each type. Each type of inter-
rupt is associated with the memory location where its handler’s address is stored.
When an interrupt of a particular type is received, a hardware switch causes con-
trol to be transferred immediately to its handler. This interrupt handler may then
start or stop other processes in response to the event signalled by the interrupt.

This model is mostly used in real-time systems where an immediate response to
some event is necessary. It may be combined with the centralised management model.
The central manager handles the normal running of the system with interrupt-based
control for emergencies.

The advantage of this approach is that it allows very fast responses to events to
be implemented. Its disadvantages are that it is complex to program and difficult
to validate. It may be impossible to replicate patterns of interrupt timing during sys-
tem testing. It can be difficult to change systems developed using this model if the
number of interrupts is limited by the hardware. Once this limit is reached, no other
types of events can be handled. You can sometimes get around this limitation by
mapping several types of events onto a single interrupt. The handler then works out
which event has occurred. However, interrupt mapping may be impractical if a very
fast response to individual interrupts is required.

Reference architectures

The above architectural models are general models: They can be applied to many
classes of application. As well as these general models, architectural models that

11.5 m Reference architectures 261

Figure 11.11 The OSI
reference model
architecture

7 Application Application

6 Presentation Presentation

5 Session Session

4 Transport Transport

3 Network Network Network

2 Data link Data fink Data link

1 Physical Physical Physical
Communications medium

are specific to a particular application domain may also be used. Although
instances of these systems differ in detail, the common architectural structure can
be reused when developing new systems. These architectural models are called domain-
specific architectures.

There are two types of domain-specific architectural model:

1. Generic models are abstractions from a number of real systems. They encap-
sulate the principal characteristics of these systems. For example, in real-time
systems, there might be generic architectural models of different system types
such as data collection systems or monitoring systems. I discuss a range of generic
models in Chapter 13, which covers application architectures. In this section,
I focus on architectural reference models.

2. Reference models are more abstract and describe a larger class of systems. They
are a way of informing designers about the general structure of that class of
system. Reference models are usually derived from a study of the application
domain. They represent an idealised architecture that includes all the features
that systems might incorporate.

There is not, of course, a rigid distinction between these types of model. Generic
models can also serve as reference models. 1 distinguish between them here because
generic models may be reused directly in a design. Reference models are normally
used to communicate domain concepts and compare or evaluate possible architectures.

Reference architectures are not normally considered a route to implementation. Rather,
their principal function is a means of discussing domain-specific architectures and com-
paring different systems in a domain. A reference model provides a vocabulary for
comparison. [t acts as a base, against which systems can be evaluated.

The OSI model is a seven-layer model for open systems interconnection. The model
is illustrated in Figure 11.11. The exact functions of the layers are not important here.

262 Chapter 11 @& Architectural design

Figure 11.12 The
ECMA reference
architecture for CASE
environments

Data repository senvices
Data integration services

Tool / /

slots / .

/ Task management services
- - Message
User interface services services

EE

In essence, the lower layers are concerned with physical interconnection, the mid-
dle layers with data transfer and the upper layers with the transfer of semantically
meaningful application information such as standardised documents.

The designers of the OSI model had the very practical objective of defining an
implementation standard so that conformant systems could communicate with each
other. Each layer should only depend on the layer beneath it. As technology devel-
oped, a layer could be transparently reimplemented without affecting the systems
using other layers.

In practice, however, the performance problems of the layered approach to
architectural modelling have compromised this objective. Because of the vast dif-
ferences between networks, simple interconnection may be impossible. Although
the functional characteristics of each layer are well defined, the non-functional char-
acteristics are not defined. System developers have to implement their own higher-
level facilities and skip layers in the model. Alternatively, they have to design
non-standard features to improve system performance.

Consequently, the transparent replacement of a layer in the model is hardly ever
possible. However, this does not negate the usefulness of the model as it provides
a basis for the abstract structuring and the systematic implementation of commu-
nications between systems.

Another proposed reference model is a reference model for CASE environments
(ECMA, 1991; Brown et al., 1992) that identifies five sets of services that a CASE
environment should provide. It should also provide ‘plug-in’ facilities for individ-
ual CASE tools that use these services. The CASE reference model is illustrated in
Figure 11.12. The five levels of service in the CASE reference model are:

1. Data repository services These provide facilities for the storage and manage-
ment of data items and their relationships.

2. Data integration services These provide facilities for managing groups or the
establishment of relationships between them. These services and data reposi-
tory services are the basis of data integration in the environment.

Chapter 11 = Key Points 263

3. Task management services These provide facilities for the definition and enact-
ment of process models. They support process integration.

4. Me:sage services These provide facilities for tool-tool, environment-tool and
environment-environment communications. They support control integration.

5. User interface services These provide facilities for user interface development.
They support presentation integration.

This reference model tells us what might be included in any particular CASE
environment, although it is important to emphasise that not every feature of a ref-
erence architecture will be included in actual architectural designs. It means that
we can ask questions of a system design such as ‘how are the data repository ser-
vices provided? and ‘does the system provide task management?’

KEY POINTS

The software architecture is the fundamental framework for structuring the system.
Properties of a system such as performance, security and availability are influenced by the
architecture used.

Architectural design decisions include decisions on the type of application, the distribution
of the system, the architectural styles to be used and the ways in which the architecture
should be documented and evaluated.

Different architectural models such as a structural model, a control model and a
decomposition model may be developed during the architectural design process.

Organisational models of a system include repository models, client-server models and
abstract machine models. Repository models share data through a common store.
Client-server models usuaily distribute data. Abstract machine models are layered, with
each layer implemented using the facilities provided by its foundation layer.

Decomposition styles include object-oriented and function-oriented decomposition.
Pipelining models are functional, and object models are based on loosely coupled entities
that maintain their owr: state and operations.

Control styles include centralised control and event-based control. In centralised models of
control, control decisions are made depending on the system state; in event models,
external events control the system,

Reference architectures may be used as a vehicle to discuss domain-specific architectures
and to assess and compare architectural designs.

264 Chapter 11 = Architectural design

FURTHER READING S S

Again, the principal value of this reference architecture is as a means of classi-
fying and comparing integrated CASE tools and environments. In addition, it can
also be used in education to highlight the key features of these environments and
to discuss them in a generic way.

RO e Be e

Software Architecture in Practice, 2nd ed. This is a practical discussion of software architectures
that does not oversell the approach and that provides a clear business rationale why architectures
are important. (L. Bass, et al,, 2003, Addison-Wesley.)

Design and Use of Software Architectures. Although this book focuses on product-line
architectures, the first few chapters are an excellent introduction to general issues in software
architecture design. (). Bosch, 2000, Addison-Wesley.)

Software Architecture: Perspectives on an Emerging Discipline. This was the first book on software
architecture and has a good discussion on different architectural styles. (M. Shaw and D. Garlan,
1996, Prentice-Hall.)

EXERCISES"

111

11.2

113

11.4

115

Explain why it may be necessary to design the system architecture before the specifications
are written.

Explain why design conflicts might arise when designing an architecture where availability
and security requirements are the most important functional requirements.

Construct a table showing the advantages and disadvantages of the structural models
discussed in this chapter.

Giving reasons for your answer, suggest an appropriate structural model for the following
systems:

® An automated ticket-issuing system used by passengers at a railway station

B A computer-controlled video conferencing system that allows video, audio and computer
data to be visible to several participants at the same time

H A robot floor-cleaner that is intended to clean relatively clear spaces such as corridors. The
cleaner must be able to sense walls and other obstructions.

Design an architecture for the above systems based on your choice of model. Make
reasonable assumptions about the system requirements.

Chapter 11 = Exercises 265

Real-time systems usually use event-driven models of control. Under what circumstances
would you recommend the use of a call-return control model for a real-time system?

Giving reasons for your answer, suggest an appropriate control model for the following
systems:

B A batch processing system that takes information about hours worked and pay rates and
prints salary slips and bark credit transfer information

| A set of software tools that are produced by different vendors, but which must work
together

B A television controller that responds to signals from a remote control unit.

Discuss their advantages and disadvantages as far as distributability is concerned of the
data-flow model and the object model. Assume that both single machine and distributed
versions of an application are required.

You are given two integrated CASE toolsets and are asked to compare them. Explain how you
could use a reference model for CASE (Brown, et al., 1992) to make this comparison.

Should there be a separate profession of ‘software architect’ whose role is to work
independently with a customer to design a software system architecture? This system would
then be implemented by some software company. What might be the difficulties of
establishing such a profession?

12

Distributed systems
architectures

Objectives

The objective of this chapter is to discuss models of the software
architecture for distributed systems. When you have read this
chapter, you will:

8 know the advantages and disadvantages of distributed systems
architectures;

understand the two principal models of distributed systems
architecture, namely client-server systems and distributed object
systems;

@ understand the concept of an object request broker and the
principles underlying the CORBA standards;

® have been introduced to peer-to-peer and service-ariented
architectures as ways to implement interorganisational
distributed systems.

Contents

12.1 Multiprocessor architectures

12.2 Client-server architectures

12.3 Distributed object architectures

12.4 Inter-organisational distributed computing

Chapter 12 Distributed Systems Architectures 267

Virtually all large computer-based systems are now distributed systems. A distributed
system is a system where the information processing is distributed over several com-
puters rather than confined to a single machine. Obviously, the engineering of dis-
tributed systems has a great deal in common with the engineering of any other software,
but there are specific issues that have to be taken into account when designing this
type of system. I already introduced some of these issues in the introduction to
client—server architectures in Chapter 11 and I cover them in more detail here.

Coulouris et al. (Coulouris, et al., 2001) discuss the important characteristics of
distributed systems. They identify the following advantages of using a distributed
approach to systems development:

1. Resource sharing A distributed system allows the sharing of hardware and soft-
ware resources——such as disks, printers, files and compilers-—that are associ-
ated with computers on a network.

2. Openness Distributed systems are normally open systems, which means they
are designed around standard protocols that allow equipment and software from
different vendors to be combined.

3. Concurrency In a distributed system, several processes may operate at the same
time on separate computers on the network. These processes may (but need
not) communicate with each other during their normal operation.

4. Scalability In principle at least, distributed systems are scalable in that the capa-
bilities of the system can be increased by adding new resources to cope with
new demands on the system. In practice, the network linking the individual com-
puters in the system may limit the system scalability. If many new computers
are added, then the network capacity may be inadequate.

5. Fault tolerance The availability of several computers and the potential for repli-
cafing information means that distributed systems can be tolerant of some hard-
ware and software failures (see Chapter 20). In most distributed systems, a
degraded service can be provided when failures occur; complete loss of ser-
vice only tends to occur when there is a network failure.

For large-scale organisational systems, these advantages mean that distributed
systems have largely replaced the centralised legacy systems that were developed
in the 1980s and 1990s. However, compared to systems that run on a single pro-
cessor or processor cluster, distributed systems have a number of disadvantages:

1. Complexity Distributed systems are more complex than centralised systems. This
makes it more difficult to understand their emergent properties and to test these
systems. For example, rather than the performance of the system being depen-
dent on the execution speed of one processor, it depends on the network band-
width and the speed of the processors on the network. Moving resources from
one part of the system to another can radically affect the system’s performance.

Distributed systems architectures

2. Security The system may be accessed from several different computers, and
the traffic on the network may be subject to eavesdropping. This makes it more
difficult to ensure that the integrity of the data in the system is maintained and
that the system services are not degraded by denial-of-service attacks.

3. Manageability The computers in a system may be of different types and may
run different versions of the operating system. Faults in one machine may prop-
agate to other machines with unexpected consequences. This means that more
effort is required to manage and maintain the system in operation.

4. Unpredictability As all users of the WWW know, distributed systems are
unpredictable in their response. The response depends on the overall load on
the system, its organisation and the network load. As all of these may change
over a short period, the time taken to respond to a user request may vary dra-
matically from one request to another.

The design challenge is to design the software and hardware to provide desir-
able distributed system characteristics and, at the same time, minimise the prob-
lems that are inherent in these systems. To do so, you need to understand the advantages
and disadvantages of different distributed systems architectures. I cover two
generic types of distributed systems architecture here:

1. Client—server architectures In this approach, the system may be thought of as
a set of services that are provided to clients that make use of these services.
Servers and clients are treated differently in these systems.

2. Distributed object architectures In this case, there is no distinction between servers
and clients, and the system may be thought of as a set of interacting objects
whose location is irrelevant. There is no distinction between a service provider
and a user of these services.

Both client-server and distributed object architectures are widely used in indus-
try, but the distribution of the applications is generally within a single organisation.
The distribution supported is therefore intra-organisational. I also discuss two other
types of distributed architecture that are more suited to inter-organisational distri-
bution: peer-to-peer (p2p) system architectures and service-oriented architectures.
Peer-to-peer systems have mostly been used for personal systems but are starting
to be used for business applications. At the time of this writing, service-oriented
systems are just being introduced, but the service-oriented approach is likely to become
a very significant distribution model by 2005.

The components in a distributed system may be implemented in different pro-
gramming languages and may execute on completely different types of processors.
Models of data, information representation and protocols for communication may
all be different. A distributed system therefore requires software that can manage
these diverse parts, and ensure that they can communicate and exchange data. The

121 Multiprocessor architectures 269

12.1

term middleware is used to refer to this software—it sits in the middle between the
different distributed components of the system.

Bernstein (Bernstein, 1996) summarises types of middleware that are available
to suppert distributed computing. Middleware is general-purpose software that is
usually bought off-the-shelf rather than written specially by application developers.
Examples of middleware are software for managing communications with
databases, transaction managers, data converters and communication controllers. 1
describe object request brokers, a very important class of middieware for distributed
systems, later in this chapter.

Distributed systems are usually developed using an object-oriented approach. These
systems are made up of loosely integrated, independent parts, each of which may
interact directly with users or with other parts of the system. Parts of the system
may have to respond to independent events. Software objects reflect these charac-
teristics, so are natural abstractions for distributed systems components.

Multiprocessor architectures

The simplest model of a distributed system is a multiprocessor system where the
software system consists of a number of processes that may (but need not) execute
on separate processors. This model is common in large real-time systems. As I dis-
cuss 1n Chapter 15, these systems collect information, make decisions using this
information and send signals to actuators that modify the system’s environment.

Logically, the processes concerned with information collection, decision making
and actuator control could all run on a single processor under the control of a sched-
uler. Using multiple processors improves the performance and resilience of the sys-
tem. The distribution of processes to processors may be pre-determined (this is common
in critical systems) or may be under the control of a dispatcher that decides which
process to allocate to each processor.

An example of this type of system is shown in Figure 12.1. This is a simplified
model ot a traffic control system. A set of distributed sensors collects information on
the traffic flow and processes this locally before sending it to a control room. Operators
make decisions using this information and give instructions to a separate traffic light
control process. In this example, there are separate logical processes for managing the
sensors, the control room and the traffic lights. These logical processes may be single
processes or a group of processes. In this example, they run on separate processors.

Software systems composed of multiple processes are not necessarily distributed
systems. If more than one processor is available, then distribution can be imple-
mented, but the system designers need not always consider distribution issues dur-
ing the design process. The design approach for this type of system is essentially
that for real-time systems, as discussed in Chapter 15.

270 Chapter 12

Distributed systems architectures

Wi

Traffic flow sensors and
cameras

Figure 12.1 A
multiprocessor traffic
control system

12.2

51
3l
Sensor Traffic flow Traffic light control | Of;
processor processor processor "
oF
Sensor] Light (Of
control Display control
process | |. process process —
\ 8
=gt
or:
O B :
of
Traffic lights

Operator consoles

Client-server architectures

I have already introduced the concept of client—server architectures in Chapter 11. In
a client—server architecture, an application is modelled as a set of services that are pro-
vided by servers and a set of clients that use these services (Orfali and Harkey, 1998).
Clients need to be aware of the servers that are available but usually do not know of
the existence of other clients. Clients and servers are separate processes, as shown in
Figure 12.2, which is a logical model of a distributed client—server architecture.

Several server processes can run on a single server processor so there is not nec-
essarily a 1:1 mapping between processes and processors in the system. Figure 12.3
shows the physical architecture of a system with six client computers and two server
computers. These can run the client and server processes shown in Figure 12.2. When
I refer to clients and servers, 1 mean these logical processes rather than the physi-
cal computers on which they execute.

The design of client-server systems should reflect the logical structure of the
application that is being developed. One way to look at an application is illustrated
in Figure 12.4, which shows an application structured into three layers. The pre-
sentation layer is concerned with presenting information to the user and with all
user interaction. The application processing layer is concerned with implementing
the logic of the application, and the data management layer is concerned with all
database operations. In centralised systems, these need not be clearly separated.
However, when you are designing a distributed system, you should make a clear
distinction between them, as it then becomes possible to distribute each layer to a
different computer.

12.2 (lient-server architectures 271

age oo O

T Qo

oG

Figure 12.2 A The simplest client—server architecture is called a two-tier client—server archi-

dlient-server system secryre, where an application is organised as a server (or multiple identical servers)
and a set of clients. As illustrated in Figure 12.5, two-tier client-server architec-
tures can take two forms:

s3

‘é\e

1. Thin-client model In a thin-client model, all of the application processing and
data management is carried out on the server. The client is simply responsible
for running the presentation software.

2. Fai-client model In this model, the server is only responsible for data management.
The software on the client implements the application logic and the interac-
tions with the system user.

A thin-client, two-tier architecture is the simplest approach to use when centralised

Figure 12.3
'8 legacy systems, as discussed in Chapter 2, are evolved to a client-server architecture.

Computers in a
client-server network

cl c3,c4
(cci
> Network -
s1,s2 etwor e, Server
P’ s3, 4 computer
sc2 ——f ——1 sc1
LY ¥
\ O
o= Client
computer
c5, ¢6, ¢7 cl10,c11, c12 P

CCa

272 Chapter 12 =« Distributed systems architectures

Figure 12.4
Application layers

Figure 12.5 Thin and
fat clients

Presentation layer

y
Application processing
layer

Y

Data management
layer

The user interface for these systems is migrated to PCs, and the application itself
acts as a server and handles all application processing and data management. A thin-
client model may also be implemented when the clients are simple network devices
rather than PCs or workstations. The network device runs an Internet browser and
the user interface implemented through that system.

A major disadvantage of the thin-client model is that it places a heavy process-
ing load on both the server and the network. The server is responsible for all com-
putation, and this may involve the generation of significant network traffic between
the client and the server. There is a lot of processing power available in modern
computing devices, which is largely unused in the thin-client approach.

The fat-client model makes use of this available processing power and distributes
both the application logic processing and the presentation to the client. The server
is essentially a transaction server that manages all database transactions. An exam-
ple of this type of architecture is banking ATM systems, where the ATM is the
client and the server is a mainframe running the customer account database. The
hardware in the teller machine carries out a lot of the customer-related processing
associated with a transaction.

Presentation

Server

Thin-client

Data management
model

Application processing

Presentation
Application processing

Server

Fat-client

model Data management

12.2 = Client-server architectures 273

ATM
ATM - Account server
\ Tele_. customer
processing | account
monitor | database
ATM [

ATM

This ATM distributed system is illustrated in Figure 12.6. Notice that the ATMs
do not connect directly to the customer database but to a teleprocessing monitor. A
teleprocessing monitor or transaction manager is a middleware system that organ-
ises communications with remote clients and serialises client transactions for pro-
cessing by the database. Using serial transactions means that the system can
recover from faults without corrupting the system data.

While the fat-client model distributes processing more effectively than a thin-
client model, system management is more complex. Application functionality is spread
across many computers. When the application software has to be changed, this involves
reinstallation on every client computer. This can be a major cost if there are hun-
dreds of clients in the system.

The advent of mobile code (such as Java applets and Active X controls), which
can be downloaded from a server to a client, has allowed the development of
client-server systems that are somewhere between the thin- and the fat-client
model. Some of the application processing software may be downloaded to the client
as mobile code, thus relieving the load on the server. The user interface is created
using a web browser that has built-in facilities to run the downloaded code.

The problem with a two-tier client-server approach is that the three logical lay-
ers—presentation, application processing and data management—must be mapped
onto two computer systems—the client and the server. There may either be prob-
lems with scalability and performance if the thin-client model is chosen, or prob-
lems of system management if the fat-client model is used. To avoid these issues,
an alternative approach is to use a three-tier client—server architecture (Figure 12.7).
In this architecture, the presentation, the application processing and the data man-
agement are logically separate processes that execute on different processors.

An Internet banking system (Figure 12.8) is an example of the three-tier
client-server architecture. The bank’s customer database (usually hosted on a main-
frame computer) provides data management services; a web server provides the appli-
cation services such as facilities to transfer cash, generate statements, pay bills and
so on; and the user s own computer with an Internet browser is the client. This sys-

274 Chapter 12

Distributed systems architectures

Figure 12.7 A three-
tier client-server
architecture

Figure 12.8 The
distribution
architecture of an
internet banking

system

Presentation
Server Server
Application - > Data
processing management
Client HTTP interaction
Client Web server Database server
SQL query c
Account service sqL aucstomtir
provision coun
database
Client

tem is scalable because it is relatively easy to add new web servers as the number
of customers increase.

The use of a three-tier architecture in this case allows the information transfer
between the web server and the database server to be optimised. The communica-
tions between these systems can use fast, low-level communications protocols. Efficient
middleware that supports database queries in SQL (Structured Query Language) is
used to handle information retrieval from the database.

In some cases, it is appropriate to extend the three-tier client-server model to a
multi-tier variant where additional servers are added to the system. Multi-tier sys-
tems may be used where applications need to access and use data from different
databases. In this case, an integration server is positioned between the application
server and the database servers. The integration server collects the distributed data
and presents it to the application as if it were from a single database.

Three-tier client-server architectures and multi-tier variants that distribute the appli-
cation processing across several servers are inherently more scalable than two-tier
architectures. Network traffic is reduced in contrast with thin-client two-tier archi-
tectures. The application processing is the most volatile part of the system, and it
can be easily updated because it is centrally located. Processing, in some cases, may
be distributed between the application logic and the data management servers, thus
leading to more rapid response to client requests.

Designers of client-server architectures must take a number of factors into
account when choosing the most appropriate architecture. Situations where the

123 Distributed object architectures 275

Figure 12.9 Use of
different client-~server

architectures

12.3

Architecture Applications

Two-tier C/S Legacy system applications where separating appiication processing

architecture with and data management is impractical.

thin clients Computationally-intensive applications such as compilers with little
or no data management.
Data-intensive applications (browsing and querying) with littie or
no application processing.

Two-tier C/S Applications where application processing is provided by off-the-

architecture shelf software (e.g. Microsoft Excel) on the client,

with fat clients Applications where computationally-intensive processing of data
(e.g. data visualisation) is required.
Applications with relatively stable end-user functionality used in an
environment with well-established system management.

Three-tier or Large-scale applications with hundreds or thousands of clients.

multi-tier C/S Applications where both the data and the application are volatile.
architecture Applications where data from multiple sources are integrated.

client—server architectures that I have discussed are likely to be appropriate are shown
in Figure 12.9.

Distributed object architectures

In the client-server model of a distributed system, clients and servers are different.
Clients receive services from servers and not from other clients; servers may act as
clients by receiving services from other servers but they do not request services from
clients: clients must know the services that are offered by specific servers and must
know how to contact these servers. This model works well for many types of appli-
cations. However, it limits the flexibility of system designers in that they must decide
where services are to be provided. They must also plan for scalability and so pro-
vide some: means for the load on servers to be distributed as more clients are added
to the system.

A more general approach to distributed system design is to remove the distinc-
tion between client and server and to design the system architecture as a distributed
object architecture. In a distributed object architecture (Figure 12.10), the funda-
mental system components are objects that provide an interface to a set of services
that they provide. Other objects call on these services with no logical distinction
between a client (a receiver of a service) and a server (a provider of a service).

Objects may be distributed across a number of computers on a network and com-
municate through middleware. This middleware is called an object request broker.

276 Chapter 12

Distributed systems architectures

Figure 12.10
Distributed object
architecture

ol 02 03 04

S (o1) S (02) S (03) S (04)

Software bus

05 06

S (05) S (06)

Its role is to provide a seamless interface between objects. It provides a set of ser-
vices that allow objects to communicate and to be added to and removed from the
system. I discuss object request brokers in Section 12.3.1.

The advantages of the distributed object model are:

o It allows the system designer to delay decisions on where and how services
should be provided. Service-providing objects may execute on any node of the
network. Therefore, the distinction between fat- and thin-client models
becomes irrelevant, as there is no need to decide in advance where application
logic objects are located.

* Itis a very open system architecture that allows new resources to be added to
it as required. As I discuss in the following section, object communication stan-
dards have been developed and implemented that allow objects written in dif-
ferent programming languages to communicate and to provide services to each
other.

¢ The system is flexible and scalable. Different instances of the system with the
same service provided by different objects or by replicated objects can be cre-
ated to cope with different system loads. New objects can be added as the load
on the system increases without disrupting other system objects.

+ Itis possible to reconfigure the system dynamically with objects migrating across
the network as required. This may be important where there are fluctuating pat-
terns of demand on services. A service-providing object can migrate to the same
processor as service-requesting objects, thus improving the performance of the
system.

A distributed object architecture can be used as a logical model that allows you
to structure and organise the system. In this case, you think about how to provide
application functionality solely in terms of services and combinations of services.

123 Distributed object architectures 277
Figure 12.11 The Database 1]
distribution — - Integrator 1
architecture of a data L] —
s B L
mining system C]
L T]
rDatabase 2 Visualiser
: -
L T Integratar 2 i -
—_—]
Database 3
E]: Display
L1 =
I — 53 “

You then work out how to provide these services using a number of distributed objects.
At this level, the objects that you design are usually large-grain objects (sometimes
called business objects) that provide domain-specific services. For example, in a
retail application, there may be business objects concerned with stock control, cus-
tomer communications, goods ordering and so on. This logical model can, of
course, then be realised as an implementation model.

Alternatively, you can use a distributed object approach to implement
client-server systems. In this case, the logical model of the system is a
client-server model, but both clients and servers are realised as distributed objects
communicating through a software bus. This makes it possible to change the sys-
tem easily, for example, from a two-tier to a multi-tier system. In this case, the server
or the client may not be implemented as a single distributed object but may be com-
posed from smaller objects that provide specialised services.

An example of a type of system where a distributed object architecture might be
appropriate is a data mining system that looks for relationships between the data
that is stored in a number of databases (Figure 12.11). An example of a data min-
ing application might be where a retail business has, say, food stores and hardware
stores, and wants to find relationships between a customer’s food and hardware pur-
chases. For instance, people who buy baby food may also buy particular types of
wallpaper. With this knowledge, the business can then specifically target baby-food
customers with combined offers.

In this example, each database can be encapsulated as a distributed object with
an interface that provides read-only access to its data. Integrator objects are each
concerned with specific types of relationships, and they collect information from
all of the databases to try to deduce the relationships. There might be an integrator
object that is concerned with seasonal variations in goods sold and another that is
concerned with relationships between different types of goods.

278 Chapter12 -

Distributed systems architectures

12.3.1

Visualiser objects interact with integrator objects to produce a visualisation or a
report on the relationships that have been discovered. Because of the large volumes
of data that are handled, visualiser objects will normally use graphical presentations
of the relationships that have been discovered. I discuss graphical information pre-
sentation in Chapter 16.

A distributed object architecture rather than a client~server architecture is appro-
priate for this type of application for three reasons:

1. Unlike a bank ATM system (say), the logical model of the system is not one
of service provision where there are distinguished data management services.

2. You can add databases to the system without major disruption. Each database
is simply another distributed object. The database objects can provide a sim-
plified interface that controls access to the data. The databases that are
accessed may reside on different machines.

3. It allows new types of relationships to be mined by adding new integrator objects.
Parts of the business that are interested in specific relationships can extend the
system by adding integrator objects that operate on their computers without requir-
ing knowledge of any other integrators that are used elsewhere.

The major disadvantage of distributed object architectures is that they are more
complex to design than client-server systems. Client~server systems appear to be
a fairly natural way to think about systems. They reflect many human transactions
where people request and receive services from other people who specialise in pro-
viding these services. It is more difficult to think about general service provision,
and we do not yet have a great deal of experience with the design and development
of large-grain business objects.

CORBA

As I indicated in the previous section, the implementation of a distributed object
architecture requires middleware (object request brokers) to handle communications
between the distributed objects. In principle, the objects in the system may be imple-
mented using different programming languages, the objects may run on different
platforms and their names need not be known to all other objects in the system.
The middleware ‘glue’ therefore has to do a lot of work to ensure seamless object
communications,
Middleware to support distributed object computing is required at two levels:

1. At the logical communication level, the middleware provides functionality that
allows objects on different computers to exchange data and control informa-
tion. Standards such as CORBA and COM (Pritchard, 1999) have been devel-
oped to facilitate logical object communications on different platforms.

123 Distributed object architectures 279

Figure 12,12 The
structure of a
CORBA-based
distributed
application

Application Domain Horizontal CORBA
objects facilities facilities

000 QO O

[Object request broker I

(CORBA services)

2. At the component level, the middleware provides a basis for developing com-
patible components. Standards such as EJB, CORBA components or Active X
(Szyperski, 2002) provide a basis for implementing components with standard
methods that can be queried and used by other components. I cover compo-
nenl standards in Chapter 19.

In this section, I focus on the middleware for logical object communication and
discuss how this is supported by the CORBA standards. These were defined by the
Object Management Group (OMG), which defines standards for object-oriented devel-
opment. The OMG standards are available, free of charge, from their web site.

The OMG’s vision of a distributed application is shown in Figure 12.12, which
I have adapted from Siegel’s diagram of the Object Management Architecture (Siegal,
1998). This proposes that a distributed application should be made up of a number
of components:

1. Apglication objects that are designed and implemented for this application.

2. Standard objects that are defined by the OMG for a specific domain. These
domain object standards cover finance/insurance, electronic commerce, health-
care, and a number of other areas.

3. Fundamental CORBA services that provide basic distributed computing services
such as directories and security management.

4. Horizontal CORBA facilities such as user interface facilities, system manage-
ment facilities, and so on. The term horizontal facilities suggests that these facil-
ities are common to many application domains and the facilities are therefore
used in many different applications.

The CORBA standards cover all aspects of this vision. There are four major ele-
ments to these standards:

. Distributed systems architectures

1. An object model for application objects where a CORBA object is an encap-
sulation of state with a well-defined, language-neutral interface described in an
IDL (Interface Definition Language).

2. An object request broker (ORB) that manages requests for object services. The
ORB locates the object providing the service, prepares it for the request, sends
the service request and returns the results to the requester.

3. A set of object services that are general services likely to be required by many
distributed applications. Examples of services are directory services, transac-
tion services and persistence services.

4. A set of common components built on top of these basic services that may be
required by applications. These may be vertical domain-specific components
or horizontal, general-purpose components that are used by many applications.

The CORBA object model considers an object to be an encapsulation of
attributes and services, as is normal for objects. However, CORBA objects must
have a separate interface definition that defines the public attributes and operations
of the object. CORBA object interfaces are defined using a standard, language-
independent interface definition language. If an object wishes to use services pro-
vided by another object, then it accesses these services through the IDL interface.
CORBA objects have a unique identifier called an Interoperable Object Reference
(IOR). This IOR is used when one object requests services from another.

The object request broker knows about the objects that are requesting services
and their interfaces. The ORB handles the communication between the objects. The
communicating objects do not need to know the location of other objects nor do
they need to know anything about their implementation. As the IDL interface insu-
lates the objects from the ORB, it is possible to change the object implementation
in a completely transparent way. The object location can change between invoca-
tions, which is transparent to other objects in the system.

For example, in Figure 12.13, two objects ol and 02 communicate through an
ORB. The calling object (01) has an associated IDL stub that defines the interface
of the object providing the required service. The implementer of ol embeds calls
to this stub in their object implementation when a service is required. The IDL is
a superset of C++, s0 it is very easy to access this stub if you are programming in
C++, and it is fairly easy in C or Java. Language mappings to IDL have also been
defined for other languages such as Ada and COBOL.

The object providing the service has an associated IDL skeleton that links the
interface to the implementation of the services. In simple terms, when a service is
called through the interface, the IDL skeleton translates this into a call to the ser-
vice in whatever implementation language has been used. When the method or pro-
cedure has been executed, the IDL skeleton translates the results into IDL so that
it can be accessed by the calling object. Where an object both provides services to
other objects and uses services that are provided elsewhere, it needs both an IDL
skeleton and IDL stubs. An IDL stub is required for every object that is used.

12 3 . Distributed object architectures 281

Figure 12.13 Object
communications
through an ORB

ol 02
sqon | s(2) [
IDL iDL k
stub skeleton
Object Request Broker

Object request brokers are not usually implemented as separate processes but are
a set of libraries that can be linked with object implementations. Therefore, in a
distributed system, each computer that is running distributed objects will have its
own object request broker. This will handle all local invocations of objects.
However, a request made for a service that is to be provided by a remote object
requires inter-ORB communications.

This situation is illustrated in Figure 12.14. In this example, when object o1 or
02 requests a service from 03 or o4, the associated ORBs must communicate. A
CORBA implementation supports ORB-to-ORB communication by providing all ORBs
with access to IDL interface definitions and by implementing the OMG’s standards
Generic Inter-ORB Protocol (GIOP). This protocol defines standard messages that
ORBs can exchange to implement remote object invocation and information trans-
fer. When combined with lower-level Internet TCP/IP protocols, the GIOP allows
ORBs to communicate across the Internet.

The CORBA initiative has been underway since the 1980s, and the early versions
of CORBA were simply concerned with supporting distributed objects. However, as
the standards have evolved they have become more extensive. As well as a mechanism
for distributed object communications, the CORBA standards now define some stan-
dard services that may be provided to support distributed object-oriented applications.

You can think of CORBA services as facilities that are likely to be required by
many distributed systems. The standards define approximately 15 common services.
Some exampies of these generic services are:

1. Naming and trading services that allow objects to refer to and discover other
objects on the network. The naming service is a directory service that aliows
objzcts to be named and discovered by other objects. This is like the white pages
of a phone directory. The trading services are like the yellow pages. Objects
can find out what other objects have registered with the trader service and can
access the specification of these objects.

2. Notification services that allow objects to notify other objects that some event
has occurred. Objects may register their interest in a particular event with the

282 Chapter 12 = Distributed systems architectures

Figure 12.14
Inter-ORB

communications

12.4

ol . 02 : 03 o4
s | 5(02) | s (03) S (04)
iDL | oL | IbL DL
stub skeleton stub skeleton
Object Request Broker Object Request Broker
i 4 > o e

Network

service and, when that event occurs, they are automatically notified. For exam-
ple, say the system includes a print spooler that queues documents to be
printed and a number of printer objects. The print spooler registers that it is
interested in an ‘end-of-printing’ event from a printer object. The notification
service informs it when printing is complete. It can then schedule the next doc-
ument on that printer.

3. Transaction services that support atomic transactions and rollback on failure.
Transactions are a fault-tolerance facility that supports recovery from errors dur-
ing an update operation. If an object update operation fails, then the object state
can be rolled back to its state before the update was started.

The CORBA standards include interface definitions for a wide range of hori-
zontal and vertical components that may be used by distributed application
builders. Vertical components are components that are specific to an application
domain. Horizontal components are general-purpose components such as user inter-
face components. The development of specifications for horizontal and vertical CORBA
components is a long-term activity, and currently available specifications are pub-
lished on the OMG website.

Inter-organisational distributed computing

For reasons of security and inter-operability, distributed computing has been pri-
marily implemented at the organisational level. An organisation has a number of
servers and spreads its computational load across these. Because these are all
located within the same organisation, local standards and operational processes
can be applied. Although, for web-based systems, client computers are often outside

12 4 - Inter-organisational distributed computing 283

the organisational boundary, their functionality is limited to running user inter-
face software.

Newer models of distributed computing, however, are now available that allow
inter-organisational rather than intra-organisational distributed computing. I discuss
two of these approaches in this section. Peer-to-peer computing is based around com-
putations carried out by individual network nodes. Service-oriented systems rely on
distributed services rather than distributed objects, and rely on XML-based stan-
dards for data exchange.

Peer-to-peer architectures

Peer-to-pe:r (p2p) systems are decentralised systems where computations may be
carried out by any node on the network and, in principle at least, no distinctions
are made between clients and servers. In peer-to-peer applications, the overall sys-
tem is designed to take advantage of the computational power and storage avail-
able across a potentially huge network of computers. The standards and protocols
that enable communications across the nodes are embedded in the application itself,
and each node must run a copy of that application.

At the time of writing, peer-to-peer technologies have mostly been used for
personal systems (Oram, 2001). For example, file-sharing systems based on the
Gnutella and Kazaa protocols are used to share files on users PCs, and instant mes-
saging systems such as ICQ and Jabber provide direct communications between users
without ar intermediate server. SETI@home is a long-running project to process
data from radio telescopes on home PCs to search for indications of extraterrestrial
life, and Freenet is a decentralised database that has been designed to make it eas-
ier to publish information anonymously and to make it difficult for authorities to
suppress this information.

However, there are indications that this technology is being increasingly used by
businesses to harness the power in their PC networks (McDougall, 2000). Intel and
Boeing have both implemented p2p systems for computationally intensive applica-
tions. For cooperative applications that support distributed working, this seems to
be the most effective technology.

You can look at the architecture of p2p applications from two perspectives. The
logical network architecture is the distribution architecture of the system, whereas
the application architecture is the generic organisation of components in each appli-
cation type. In this chapter, I focus on the two principal types of logical network
architecture that may be used—decentralised architectures and semi-centralised
architectures.

In principle, in peer-to-peer systems every node in the network could be aware
of every other node, could make connections to it, and could exchange data with
it. In practice, of course, this is impossible, so nodes are organised into ‘localities’
with some nodes acting as bridges to other node localities. Figure 12.15 shows this
decentralised p2p architecture.

284 Chapter 12 - Distributed systems architectures

Figure 12.15
Decentralised
p2p architecture

In a decentralised architecture, the nodes in the network are not simply func-
tional elements but are also communications switches that can route data and con-
trol signals from one node to another. For example, assume that Figure 12.15 represents
a decentralised, document-management system. This system is used by a consor-
tium of researchers to share documents, and each member of the consortium main-
tains his or her own document store. However, when a document is retrieved, the
node retrieving that document also makes it available to other nodes. Someone who
needs a document issues a search command that is sent to nodes in that ‘locality’.
These nodes check whether they have the document and, if so, return it to the requestor.
If they do not have it, they route the search to other nodes; when the document is
finally discovered, the node can route the document back to the original requestor.
Therefore, if n1 issues a search for a document that is stored at n10, this search is
routed through nodes n3, n6, and n9 to n10.

This decentralised architecture has obvious advantages in that it is highly redun-
dant, and so is fault-tolerant and tolerant of nodes disconnecting from the network.
However, there are obvious overheads in the system in that the same search may
be processed by many different nodes and there is significant overhead in repli-
cated peer communications. An alternative p2p architectural model that departs from
a pure p2p architecture is a semi-centralised architecture where, within the network,
one or more nodes act as servers to facilitate node communications. Figure 12.16
illustrates this model.

In a semi-centralised architecture, the role of a server is to help establish con-
tact between peers in the network or to coordinate the results of a computation. For
example, if Figure 12.16 represents an instant messaging system, then network nodes
communicate with the server (indicated by dashed lines) to find out what other nodes
are available. Once these are discovered, direct communications can be established
and the connection to the server is unnecessary. Therefore nodes n2, n3, n5 and n6
are in direct communication.

In a computational p2p system where a processor-intensive computation is dis-
tributed across a large number of nodes, it is normal for some nodes to be

12,4 Inter-organisational distributed computing 285

Discovery}
server p~

distinguishzd nodes whose role is to distribute work to other nodes and to collate
and check the results of the computation.

Although there are obvious overheads in peer-to-peer systems, it is a much more
efficient approach to inter-organisational computing than the service-based
approach that I discuss in the next section. There are still problems with using p2p
approaches for inter-organisational computing, as issues such as security and trust
are still unresolved. This means that p2p systems are most likely to be used either
for non-crizical information systems or where there are already working relation-
ships between organisations.

Service-criented system architecture

The development of the WWW meant that client computers had access to remote
servers outside their own organisations. If these organisations converted their infor-
mation to HTML, then this could be accessed by these computers. However, access
was solely through a web browser, and direct access to the information stores by
other programs was not practical. This meant that opportunistic connections
between servers where, for example, a program queried a number of catalogues,
was not possible.

To get around this problem, the notion of a web service was proposed. Using a
web service, organisations that want to make their information accessible to other
programs can do so by defining and publishing a web service interface. This inter-
face defines the data available and how it can be accessed. More generally, a web
service is a standard representation for some computational or information resource
that can be used by other programs. Therefore, you could define a tax filing ser-
vice where users could fill in their tax forms and have these automatically checked
and submitted to the tax authorities.

A web service is an instance of a more general notion of a service, which is
defined by (Lovelock, et al., 1996) as:

286 Chapter 12 = Distributed systems architectures

Figure 12.17 The
conceptual
architecture of a
service-oriented

system

Service
registry 4

Publish

Service
provider

Qlenice)

Service
requestor 4

an act or performance offered by one party to another. Although the process
may be tied to a physical product, the performance is essentially intangible
and does not normally result in ownership of any of the factors of production.

The essence of a service, therefore, is that the provision of the service is inde-
pendent of the application using the service (Turner, et al., 2003). Service providers
can develop specialised services and offer these to a range of service users from
different organisations. Applications may be constructed by linking services from
various providers using either a standard programming language or a specialised
service orchestration language such as BPELAWS.

There are various service models, from the JINI model (Kumaran, 2001)
through web services (Stal, 2002) and grid services (Foster, et al., 2002).
Conceptually, all of these operate according to the model shown in Figure 12.17,
which is a generalisation of the conceptual web service model described by Kreger
(Kreger, 2001). A service provider offers a service by defining its interface and imple-
menting the service functionality. A service requestor binds that service into its appli-
cation. This means that the requestor’s application includes code to call that service
and process the results of the service call. To ensure that the service can be
accessed by external service users, the service provider makes an entry in a service
registry that includes information about the service and what it does.

The differences between this service model and the distributed object approach
to distributed systems architectures are:

* Services can be offered by any service provider inside or outside of an organ-
isation. Assuming these conform to certain standards (discussed below), organ-
isations can create applications by integrating services from a range of
providers. For example, a manufacturing company can link directly to services
provided by its suppliers.

e The service provider makes information about the service public so that any
authorised user can use it. The service provider and the service user do not need
to negotiate about what the service does before it can be incorporated in an
application program.

12 4 - Inter-organisational distributed computing 287

e Applications can delay the binding of services until they are deployed or until
execution. Therefore, an application using a stock price service (say) could dynam-
ically change service providers while the system was executing.

* Opportunistic construction of new services is possible. A service provider may
recognise new services that can be created by linking existing services in inno-
vative ways.

» Service users can pay for services according to their use rather than their pro-
vision. Therefore, instead of buying an expensive component that is rarely used,
the application writer can use an external service that will be paid for only when
required.

« Applications can be made smaller (which is important if they are to be embed-
ded in other devices) because they can implement exception handling as exter-
nal services.

* Agplications can be reactive and adapt their operation according to their envi-
ronment by binding to different services as their environment changes.

At the time of this writing, these advantages have sparked immense interest in
web services as a basis for constructing loosely coupled, distributed applications.
However, there is still limited practical experience with service-oriented architec-
tures so we do not yet know that practical implications of this approach.

Software reuse has been a topic of research for many years; yet, as I discuss in
Chapters 18 and 19, there remain many practical difficulties in reusing software.
One of the major problems has been that standards for reusable components have
been developed only relatively recently, and several standards are in use. However,
the web services initiative has been driven by standards from its inception, and stan-
dards covering many aspects of web services are under development. The three fun-
damental standards that enable communications between web services are:

1. SCAP (Simple Object Access Protocol) This protocol defines an organisation
for structured data exchange between web services.

2. WSDL (Web Services Description Language) This protocol defines how the inter-
faces of web services can be represented.

3. UDDI (Universal Description, Discovery and Integration) This is a discovery
standard that defines how service description information, used by service
requestors to discover services, can be organised.

All of these standards are based on XML—a human- and machine-readable markup
languaze (Skonnard and Gudgin, 2002). You don’t, however, need to know details
of these standards to understand the web services concept.

Wehb service application architectures are loosely coupled architectures where ser-
vice bindings can change during execution. Some systems will be solely built nsing

288 Chapter 12 = Distributed systems architectures

Figure 12.18 A
service-based in-car
information system

Weather
info &

Facilities
info 4

Collates information
command
gps coord

Sends position and ‘: Receives request

sefvice

- Language
info

Receives

information stream | [information requestf from user
from services to service ,

Translates digital Discovers car
info streamto position
radio signal

In-car software system

web services and others will mix web services with locally developed components.
To illustrate how applications may be organised, consider the following scenario:

An in-car information system provides drivers with information on weather,
road traffic conditions, local information and so forth. This is linked to the
car radio so that information is delivered as a signal on a specific radio chan-
nel. The car is equipped with GPS receiver to discover its position and, based
on that position, the system accesses a range of information services.
Information may be delivered in the driver’s specified language.

Figure 12.18 illustrates a possible organisation for such a system. The in-car soft-
ware includes five modules. These handle communications with the driver, with a
GPS receiver that reports the car s position and with the car radio. The Transmitter
and Receiver modules handle all communications with external services.

The car communicates with an externally provided mobile information service
which aggregates information from a range of other services that provide informa-
tion on weather, traffic information and local facilities. Different providers in

Chapter 12 % Key Points 289

different places provide this service, and the in-car system uses a discovery service
to locate the appropriate information service and bind to it. The discovery service
is also used by the mobile information service to bind to the appropriate weather,
traffic and facilities services. Services exchange SOAP messages that include GPS
position information used, by the services, to select the appropriate information. The
aggregated information is passed back to the car through a service that translates
the information language into the driver’s language.

KEY POINTS

-; Distributed systems can support resource sharing, openness, concurrency, scalability, fault
tolerance and transparency.

Client-server systems are distributed systems where the system is modelled as a set of
services provided by servers to client processes.

In a client-server system, the user interface always runs on a client, and data management
is always provided by a shared server. Application functionality may be implemented on the
client computer or on the server.

In a distributed object architecture, there is no distinction between clients and servers.
Objects provide general services that may be called on by other objects. This approach may
be used for implementing client-server systems.

Distributed object systems require middleware to handle object communications and to
allow objects to be added to and removed from the system.

The CORBA standards are a set of standards for middleware that supports distributed
object architectures. They include object model definitions, definitions of an object request
broker and common service definitions. Various implementations of the CORBA standards
are available.

Peer-to-peer architectures are decentralised architectures where there are no distinguished
clients and servers. Computations can be distributed over many systems in different
organisations.

Service-oriented systems are created by linking software services provided by various
service suppliers. An important aspect of service-oriented architectures is that binding of
services to the architectural components can be delayed until the system is deployed or is
executing.

290 Chapter 12 # Distributed systems architectures

This example illustrates one of the key advantages of the service-oriented
approach. It is not necessary to decide when the system is programmed or deployed
what service provider should be used and what specific services could be accessed.
As the car moves around, the in-car software uses the service discovery service to
find the most appropriate information service and binds to that. Because of the use
of a translation service, it can move across borders and therefore make local infor-
mation available to people who don’t speak the local language.

This vision of service-oriented computing is not yet realisable with current web
services, where the binding of services to applications is still fairly static. However,
in future, we will see more dynamic binding and application architectures and the
realisation of the vision of dynamic, service-oriented systems. Because of the
importance of this topic, I have discussed it more fully in Chapter 31, in the new
section on Emerging Technologies.

FURTHER READING TN U . I N I s

‘Turning software into a service’. A good overview paper that discusses the principles of service-
oriented computing. Unlike many papers on this topic, it does not conceal these principles behind
a discussion of the standards involved. (M. Turner, et al., /EEE Computer, 36 (10), October 2003.)

Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Although this book does not have
a lot on p2p architectures, it is an excellent introduction to p2p computing and discusses the
organisation and approach used in a number of p2p systems. (A. Oram (ed), 2001, O'Reilly and
Associates, Inc.)

Distributed Systems: Concepts and Design, 3rd ed, A comprehensive textbook that discusses all
aspects of distributed systems design and implementation. The first two chapters are particularly
relevant to the material here. (G. Couloris, et al., 2001, Addison-Wesley.)

‘Middleware: A model for distributed systems services’, This is an excellent overview paper that
summarises the role of middleware in distributed systems and discusses the range of middleware
services that may be provided. (P. A. Bernstein, Comm. ACM, 39 (2), February 1996.)

EXERCISES = D

12.1 Explain why distributed systems are inherently more scalable than centralised systems. What
are the likely limits on the scalability of the system?

12.2 What is the fundamental difference between a fat-client and a thin-client approach to
client-server systems development? Explain why the use of Java as an implementation
language blurs the distinction between these approaches.

Chapter 12 ® Exercises 291

Your customer wants to develop a system for stock information where dealers can access
information abou! companies and can evaluate various investment scenarios using a
simulation systern. Each dealer uses this simulation in a different way, according to his or her
experience and the type of stocks in question. Suggest a client-server architecture for this
system that shows where functionality is located. Justify the client-server system model that
you have chosen

By making reference to the application model shown in Figure 12.4, discuss problems that
might arise when converting a 1980s mainframe legacy system for insurance policy
processing to a client~server architecture.

What are the basic facilities that must be provided by an object request broker?

Explain why the use of distributed objects with an object request broker simplifies the
implementation of scalable client-server systems. Illustrate your answer with an example.

How is the CORBA IDL used to support communications between objects that have been
implemented in different programming languages? Explain why this approach may cause
performance problems if there are radical differences between the languages used for object
implementation.

Using a distributed object approach, propose an architecture for a national theatre booking
system where users can check seat availability and book seats at a group of theatres. The
system should support ticket returns so that people may return their tickets for last-minute
resale to other customers.

Give two advantages and two disadvantages of decentralised and semi-centralised peer-to-
peer architectures.

What are the advantages of dynamic binding in a service-oriented system?

For the in-car information system, explain why it is best that the in-car software
communicates with an aggregation service rather than directly with the information services.
You should consider issues such as communication reliability in formulating your answer.

The development of service-oriented computing has been based on the early specification
and adoption of standards. Discuss the general role of standardisation in supporting and
restricting compsatition and innovation in the software market.

13

Application
architectures

Objectives

The objective of this chapter is to introduce architectural models for
specific classes of application software systems. When you have
read this chapter, you will:

| be aware of two fundamental architectural organisations of
business systems, namely batch and transaction-processing;

@ understand the abstract architecture of information and resource
management systems;

® understand how command-driven systems, such as editors, can
be structured as event-processing systems;

® know the structure and organisation of language-processing
systems.

Contents

13.1 Data-processing systems

13.2 Transaction-processing systems
13.3 Event-processing systems

13.4 Language-processing systems

Chapter 13 = Application architectures 293

As I explained in Chapter 11, you can look at system architectures from a range of
perspectives. So far, the discussions of system architectures in Chapters 11 and 12
have concentrated on architectural perspectives and issues such as control, distri-
bution and system structuring. In this chapter, however, 1 take an alternative
approach and look at architectures from an application perspective.

Application systems are intended to meet some business or organisational need.
All businesses have much in common—they need to hire people, issue invoices,
keep accounts and so forth—and this is especially true of businesses operating in
the same sector. Therefore, as well as general business functions, all phone com-
panies need systems to connect calls, manage their network, issue bills to customers,
etc. Consequently, the application systems that these businesses use also have much
in common.

Usually, systems of the same type have similar architectures, and the differences
between these systems are in the detailed functionality that is provided. This can
be illustrated by the growth of Enterprise Resource Planning (ERP) systems such
as the SAP/R3 system (Appeirath and Ritter, 2000) and vertical software packages
for particular applications. In these systems, which I discuss briefly in Chapter 18,
a generic system is configured and adapted to create a specific business applica-
tion. For example, a system for supply chain management can be adapted for dif-
ferent types of suppliers, goods and contractual arrangements.

In the discussion of application architectures here, I present generic structural
models of several types of application. I discuss the basic organisation of these appli-
catior: types and, where appropriate, break down the high-level architecture to show
sub-systems that are normally included in applications.

As a software designer, you can use these generic application architectures in a
number of ways:

1. As a starting point for the architectural design process If you are unfamiliar
with this type of application, you can base your initial designs on the generic
architectures. Of course, these will have to be specialised for specific systems,
but they are a good starting point for your design.

2. As a design checklist If you have developed a system architectural design, you
can check this against the generic application architecture to see whether you
have missed any important design components.

3. Asaway of organising the work of the development team The application archi-
tectures identify stable structural features of the system architectures and, in
many cases, it is possible to develop these in parallel. You can assign work to
group members to implement different sub-systems within the architecture.

4. Ay a means of assessing components for reuse If you have components you
might be able to reuse, you can compare these with the generic structures to
see whether reuse is likely in the application that you are developing.

5. As a vocabulary for talking about types of applications If you are discussing
a specific application or trying to compare applications of the same types, then

294 Chapter 13 » Application architectures

you can use the concepts identified in the generic architecture to talk about the
applications.

There are many types of application system and, on the surface, they may seem to
be very different. However, when you examine the architectural organisation of appli-
cations, many of these superficially dissimilar applications have much in common. I
illustrate this here by describing the architectures of four broad types of applica-
tions:

1. Data-processing applications Data-processing applications are applications
that are data-driven. They process data in batches without explicit user inter-
ventions during the processing. The specific actions taken by the application
depend on the data that it is processing. Batch-processing systems are com-
monly used in business applications where similar operations are carried out
on a large amount of data. They handle a wide range of administrative func-
tions such as payroll, billing, accounting, and publicity.

2. Transaction-processing applications Transaction-processing applications are
database-centred applications that process user requests for information and that
update the information in a database. These are the most common type of inter-
active business systems. They are organised in such a way that user actions
can’t interfere with each other and the integrity of the database is maintained.
This class of system includes interactive banking systems, e-commerce systems,
information systems and booking systems.

3. Event-processing systems This is a very large class of application where the
actions of the system depend on interpreting events in the system s environ-
ment. These events might be the input of a command by a system user or a
change in variables that are monitored by the system. Many PC-based appli-
cations, including games, editing systems such as word processors, spreadsheets,
image editors and presentation systems are event-processing systems. Real-time
systems, discussed in Chapter 15, also fall into this category.

4. Language-processing systems Language-processing systems are systems where
the user’s intentions are expressed in a formal language (such as Java). The
language-processing system processes this language into some internal format
and then interprets this internal representation. The best-known language-pro-
cessing systems are compilers, which translate high-level language programs
to machine code. However, language-processing systems are also used to inter-
pret command languages for databases, information systems and markup lan-
guages such as XML (Harold and Means, 2002), which is extensively used to
describe structured data items.

I have chosen these particular types of systems because they represent the
majority of systems in use today. Business systems are generally either data- or

13.1 » Data-processing systems 295

13.1

transaction-processing systems, and most personal computer software is built around
an event-processing architecture. Real-time systems are also event-processing systems;
1 cover these architectures in Chapter 15. All software development relies on language-
processing systems such as compilers.

Batch-processing systems and transaction-processing systems are both database cen-
tric. Because of the central importance of data, it is common for applications of dif-
ferent types to share the same database. For example, a business data-processing system
that prints bank statements uses the same customer account database as a transaction-
processing system that provides web-based access to account information.

Of course, as I discussed in Chapter 11, complex applications rarely follow a sin-
gle, simple architectural model. Rather, their architecture is more often a hybrid, with
different parts of the application structured in different ways. When designing these
systems, you therefore have to consider the architectures of individual sub-systems
as well as how these are integrated within an overall system architecture.

Data-processing systems

Businesses rely on data-processing systems (o support many aspects of their busi-
ness such as paying salaries, calculating and printing invoices, maintaining
accounts and issuing renewals for insurance policies. As the name implies, these
systems focus on data and the databases that they rely on are usually orders of mag-
nitude larger than the systems themselves. Data-processing systems are batch-pro-
cessing systems where data is input and output in batches from a file or database
rather than input from and output to a user terminal. These systems select data from
the input records and, depending on the value of fields in the records, take some
actions specified in the program. They may then write back the result of the com-
putation to the database and format the input and computed output for printing.

The architecture of batch-processing systems has three major components, as illus-
trated in Figure 13.1. An input component collects inputs from one or more
sources; a processing component makes computations using these inputs; and an
output component generates outputs to be written back to the database and printed.
For example, a telephone billing system takes customer records and telephone meter
readings (inputs) from an exchange switch, computes the costs for each customer
(process) and then prints bills (outputs) for each customer.

The input, processing and output components may themselves be further decom-
posed into an input-process-output structure. For example:

1. An input component may read some data (input) from a file or database, check
the validity of that data and correct some errors (process), then queue the valid
data for processing (output).

» Application architectures

System
Input ‘: Process ; Output >
r ki I : S 1,]
Database

2. A processing component may take a transaction from a queue (input), perform
some computations on the data and create a new data record recording the results
of the computation (process), then queue this new record for printing (output).
Sometimes the processing is done within the system database and sometimes
it is a separate program.

3. An output component may read records from a queue (input), format these accord-
ing to the output form (process), then send them to a printer or write new records
back to the database (output).

The nature of data-processing systems where records or transactions are processed
serially with no need to maintain state across transactions means that these systems
are naturally function-oriented rather than object-oriented. Functions are components
that do not maintain internal state information from one invocation to another. Data-
flow diagrams, introduced in Chapter 8, are a good way to describe the architec-
ture of business data-processing systems.

Data-flow diagrams are a way of representing function-oriented systems where
each round-edged rectangle in the data flow represents a function that implements
some data transformation, and each arrow represents a data item that is processed
by the function. Files or data stores are represented as rectangles. The advantage
of data-flow diagrams is that they show end-to-end processing. That is, you can see
all of the functions that act on data as it moves through the stages of the system.
The fundamental data-flow structure consists of an input function that passes data
to a processing function and then to an output function.

Figure 13.2 illustrates how data-flow diagrams can be used to show a more detailed
view of the architecture of a data-processing system. This figure shows the design
of a salary payment system. In this system, information about employees in the organ-
isation is read into the system, monthly salary and deductions are computed, and

13.1 ;= Data-processing systems 297
Write tax [Ta:t.
) . ransactions
=— Tax deduction + 55§ lransactions g
mployee number + tax office
records
s S l'ite ension .
Monthly pay | Pension data
rates S
Decoded Pension
Read employee®) employee Valid deduction +
record record employee record SS number
) A X Valida&? - Compute Print i
o rint paysli >
employez data sdlay £ Empoyee data PP E T oRITER
o ; o + deductions

Monthly pay
data

Figure 13.2 Data-
flow diagram of a

payroll system

Net payment + bank
account info.

Pay information

Tax Write bank Bank
tables transaction transactions
" 4 T

Social security

deducdtion + $S number | Write social Social security
security data data

payments are made. You can see how this system follows the basic input-process-
output structure:

1. The functions on the left of the diagram Read employee record, Read monthly
pay data and Validate employee data input the data for each employee and check
that Jata.

3. The Compute salary function works out the total gross salary for each
employee and the various deductions that are made from that salary. The net
monthly salary is then computed.

4. The output functions write a series of files that hold details of the deductions
made¢: and the salary to be paid. These files are processed by other programs
once details for all employees have been computed. A payslip for the
employee, recording the net pay and the deductions made, is printed by the
system,

The architectural model of data-processing programs is relatively simple.
However. in those systems the complexity of the application is often reflected in
the data teing processed. Designing the system architecture therefore involves think-
ing about the data architecture (Bracket, 1994) as well as the program architecture.
The design of data architectures is outside the scope of this book.

298 Chapter 13 » Application architectures

Figure 13.3 The
structure of
transaction
processing
applications

13.2

/0 Application Transaction

processing logic || manager Database

)

Transaction-processing systems

Transaction-processing systems are designed to process user requests for infor-
mation from a database or requests to update the database (Lewis et al., 2003).
Technically, a database transaction is sequence of operations that is treated as a
single unit (an atomic unit). All of the operations in a transaction have to be com-
pleted before the database changes are made permanent. This means that failure
of operations within the transaction do not lead to inconsistencies in the
database.

An example of a transaction is a customer request to withdraw money from a
bank account using an ATM. This involves getting details of the customer s
account, checking the balance, modifying the balance by the amount withdrawn and
sending commands to the ATM to deliver the cash. Until all of these steps have
been completed, the transaction is incomplete and the customer accounts database
is not changed.

From a user perspective, a transaction is any coherent sequence of operations
that satisfies a goal, such as ‘find the times of flights from London to Paris’. If the
user transaction does not require the database to be changed then it may not be nec-
essary to package this as a technical database transaction.

Transaction-processing systems are usually interactive systems where users make
asynchronous requests for service. Figure 13.3 illustrates the high-level architectural
structure of these applications. First a user makes a request to the system through
an 1/O processing component. The request is processed by some application-specific
logic. A transaction is created and passed to a transaction manager, which is usu-
ally embedded in the database management system. After the transaction manager
has ensured that the transaction is properly completed, it signals to the application
that processing has finished.

The input-process-output structure that we can see in data-processing applica-
tions also applies to many transaction-processing systems. Some of these systems
are interactive versions of batch-processing systems. For example, at one time banks
input all customer transactions off-line then ran these transactions in a batch against
their accounts database every evening. This approach has mostly been replaced by
interactive, transaction-based systems that update accounts in real time.

An example of a transaction-processing system is a banking system that allows
customers to query their accounts and withdraw cash from an ATM. The system is
composed of two cooperating software sub-systems—the ATM software and the
account processing software in the bank’s database server. The input and output

132 Transaction-processing systems 299

Input

Process Output

Get customer

accountid /-
< Validate card }
(Select service >

]

Print details

Query account }:

Update account}:

Return card

ATM

Figure 13.4 The
software architecture
of an ATM

13.2.1

Database ATM

sub-systems are implemented as software in the ATM, whereas the processing sub-
system is in the bank’s database server. Figure 13.4 shows the architecture of this
system. | have added some detail to the basic input-process-output diagram to show
components that may be involved in the input, processing and output activities. I
have deliberately not suggested how these internal components interact, as the sequence
of operation may differ from one machine to another.

In systems such as a bank customer accounting systems, there may be different
ways to interact with the system. Many customers will interact through ATMs, but
bank staff will use counter terminals to access the system. There may be several
types of ATMs and counter terminals used, and some customers and staff may access
the account data through web browsers.

To simplify the management of different terminal communication protocols, large-
scale trnsaction-processing systems may include middleware that communicates
with all types of terminal, organises and serialises the data from terminals, and sends
that date for processing. This middleware, which I briefly discussed in Chapter 12,
may be called a teleprocessing monitor or a transaction management system. IBM’s
CICS (Horswill and Miller, 2000} is a very widely used example of such a system.

Figurs 13.5 shows another view of the architecture of a customer accounting system
that handles personal account transactions from ATMs and counter terminals in a bank.
The teleprocessing monitor handles the input and serialises transactions, which it con-
verts to database queries. The query processing takes place in the database management
systern. Results are passed back to the teleprocessing monitor, which keeps track of ter-
minals making the request. This system then organises the data into a form that can be
handled by the terminal software and returns the results of the transaction to it.

Information and resource management systems

All systems that involve interaction with a shared database can be considered to be
transaction-based information systems. An information system allows controlled access
to a large base of information, such as a library catalogue, a flight timetable or the

300 Chapter 13 # Application architectures

Figure 135
Middleware for
transaction
management

Figure 13.6 A layered
model of an
information system

Account queries
and updates

Serialised
transactions
Teleprocessing \

monitor

Accounts
database /.

ATMs and terminals

records of patients in a hospital. The development of the WWW meant that a huge
number of information systems moved from being specialist organisational systems
to universally accessible general-purpose systems.

Figure 13.6 is a very general model of an information system. The system is
modelled using a layered or abstract machine approach (discussed in Section
11.2.3), where the top layer supports the user interface and the bottom layer the
system database, The user communications layer handles all input and output from
the user interface, and the information retrieval layer includes application-specific
logic for accessing and updating the database. As we shall see later, the layers in
this model can map directly onto servers in an Internet-based system.

As an example of an instantiation of this layered model, Figure 13.7 presents
the architecture of the LIBSYS system. Recall that this system allows users to access
documents in remote libraries and download these for printing. I have added detail
to each layer in the model by identifying the components that support user com-
munications and information retrieval and access. You should also notice that the
database is a distributed database. Users actually connect, through the system, to
the databases of the libraries that provide documents.

User interface

Transaction management i
Database

13.2 « Transaction-processing systems

301

Figure 13.7 The
architecture of the
LIBSYS system

Web browser interface

LIBSYS
login

Forms and
query manager

TR

Manger

Print

Distributed

Document
retrieval

Rights

Accounting

search

manger

R i e

|Da4§ [Dsn

T

The user communication layer in Figure 13.7 includes three major components:

The LIBSYS login component identifies and authenticates users. All informa-
tion systems that restrict access to a known set of users need to have user authen-
tication as a fundamental part of their user communication systems. User
authentication can be personal but, in e-commerce systems, may also require
credit card details to be provided.

The form and query manager component manages the forms that may be pre-
sented to the user and provides query facilities allowing the user to request infor-
mation from the system. Again, all information systems must include a
component that provides these facilities.

The print manager component is specific to LIBSYS. It controls the printing
of documents that, for copyright reasons, may be restricted. For example, some
documents may only be printed once on printers of the registered library.

The information retrieval and modification layer in the LIBSYS system includes

application-specific components that implement the system’s functionality. These
components are:

Distributed search This component searches for documents in response to user
queries across all of the libraries that have registered with the system. The list
of known libraries is maintained in the library index.

Dociiment retrieval This component retrieves the document or documents that
are required by the user to the server where the LIBSYS system is running.

302 Chapter 13 ® Application architectures

3.

4.

Rights manager This component handles all aspects of digital rights manage-
ment and copyright. It keeps track of who has requested documents and, for
example, ensures that multiple requests for the same document cannot be made
by the same person.

Accounting This component logs all requests and, if necessary, handles any charges
that are made by the libraries in the system. It also produces management reports
on the use of the system.

We can see the same, four-layer generic structure in another type of information

system, namely systems that are designed to support resource allocation. Resource
allocation systems manage a fixed amount of some given resource, such as tickets
for a concert or a football game. These are allocated to users who request that resource
from the supplier. Ticketing systems are an obvious example of a resource alloca-
tion system, but a large number of apparently dissimilar programs are also actually
resource allocation systems. Some examples of this class of system are:

Timetabling systems that allocate classes to timetable slots. The resource being
allocated here is a time period, and there are usually a large number of con-
straints associated with each demand for the resource.

Library systems that manage the lending and withdrawal of books or other items.
In this case, the resources being allocated are the items that may be borrowed.
In this type of system, the resources are not simply allocated but must some-
times be deallocated from the user of the resource.

Air traffic management systems where the resource that is being allocated is a
segment of airspace so that separation is maintained between the planes that
are being managed by the system. Again, this involves dynamic allocation and
reallocation of resource, but the resource is a virtual rather than a physical resource.

Resource allocation systems are a very widely used class of application. If we

look at their architecture in detail, we can see how it is aligned with the informa-
tion system model shown in Figure 13.6. The components of a resource allocation
system (shown in Figure 13.8) include:

L

A resource database that holds details of the resources being allocated.
Resources may be added or removed from this database. For example, in a library
system, the resource database includes details of all items that may be borrowed
by users of the library. Normally, this is implemented using a database man-
agement system that includes a transaction-processing system. The database man-
agement system also includes resource-locking facilities so that the same
resource cannot be allocated to users who make simultaneous requests.

A rule set that describes the rules of resource allocation. For example, a library
system normally limits who may be allocated a resource (registered library users),

13 2 » Transaction-processing systems 303

User interface

User Resource Query
authentication delivery management

Resource Resource policy Resource
management control allocation

Transaction management
Resource database

the length of time that a book or other item may be borrowed, the maximum
number of books that may be borrowed, and so on. This is encapsulated in the
resource policy control component.

3. A resource management component that allows the provider of the resources
to add, edit or delete resources from the system.

4. A resource allocation component that updates the resource database when
resources are assigned and that associates these resources with details of the
TESOUICE Tequestor.

5. A user authentication module that allows the system to check that resources
are being allocated to an accredited user. In a library system, this might be a
machine-readable library card; in a ticket allocation system, it could be a credit
card that verifies the user is able to pay for the resource.

6. A query management module that allows users to discover what resources are
available. In a library system, this would typically be based around queries for
particular items; in a ticketing system, it could involve a graphical display show-
ing what tickets are available for particular dates.

7. A resource delivery component that prepares the resources for delivery to the
requestor. In a ticketing system, this might involve preparing an e-mail con-
firmation and sending a request to a ticket printer to print the tickets and the
details of where these should be posted.

8. A user interface component (often a web browser) that is outside the system
and allows the requester of the resource to issue queries and requests for the
resource to be allocated.

This layered architecture can be realised in several ways. Information systems
software can be organised so that each layer is a large-scale component running on

304 Chapter 13 w Application architectures

Figure 13.9 A multi-
tier Internet
transaction
processing system

Web Web Application Database |
browser server server server

13.3

a separate server. Each layer defines its external interfaces and all communication
takes place through these interfaces. Alternatively, if the entire information system
executes on a single computer, then the middle layers are usually implemented as
a single program that communicates with the database through its API. A third alter-
native is to implement finer-grain components as separate web services (discussed
in Chapter 12) and compose these dynamically according to the user s requests.

Implementations of information and resource management systems based on
Internet protocols are now the norm; the user interface in these systems is imple-
mented using a web browser. The organisation of servers in these systems reflects
the four-layer generic model presented in Figure 13.6. These systems are usually imple-
mented as multi-tier client-server/architectures, as discussed in Chapter 12. The sys-
tem organisation is shown in Figure 13.9. The web server is responsible for all user
communications; the application server is responsible for implementing application-
specific logic as well as information storage and retrieval requests; the database server
moves information to and from the database. Using multiple servers allows high thro gh-
put and makes it possible to handle hundreds of transactions per minute.

E-commerce systems are Internet-based resource management systems that are
designed to accept electronic orders for goods or services and then arrange deliv-
ery of these goods or services to the customer. There is a wide range of these
systems now in use ranging from systems that allow services such as car-hire to
be arranged to systems that support the order of tangible goods such as books or
groceries. In an e-commerce system, the application-specific layer includes addi-
tional functionality supporting a ‘shopping cart’ in which users can place a num-
ber of items in separate transactions, then pay for them all together in a single
transaction.

Event-processing systems

Event-processing systems respond to events in the system s environment or user
interface. As I discussed in Chapter 11, the key characteristic of event-processing
systems is that the timing of events is unpredictable and the system must be able
to cope with these events when they occur.

We all use such event-based systems like this on our own computers—word pro
cessors, presentation systems and games are all driven by events from the user interface.

13.3 ® Event-processing systems 305

The system detects and interprets events. User interface events represent implicit
commands to the system, which takes some action to obey that command. For example,
if you are using a word processor and you double-click on a word, the double-click
event means ‘select that word’.

Real-time systems, which take action in ‘real time’ in response to some exter-
nal stimulus, are also event-based processing systems. However, for real-time sys-
tems, events are not usually user interface events but events associated with sensors
or actuators in the system. Because of the need for real-time response to unpre-
dictable events, these real-time systems are normally organised as a set of cooper-
ating processes. [cover generic architectures for real-time systems in Chapter 15.

In this section, I focus on describing the generic architecture of editing systems.
Editing systems are programs that run on PCs or workstations and that allow users
to edit cocuments such as text documents, diagrams or images. Some editors focus
on editing a single type of document, such as images from a digital camera or scan-
ner. Others, including most word processors, are multi-editors and include support
for editing different types including text and diagrams. You can even think of a
spreadsheet as an editing system where you edit boxes on the sheet. Of course, spread-
sheets have additional functionality to carry out computations.

Editing systems have a number of characteristics that distinguish them from other
types of system and that influence their architectural design:

1. Editing systems are mostly single-user systems. They therefore don’t have to
deal with the problems of multiple concurrent access to data and have simpler
data management than transaction-based systems. Even where data are shared,
transaction management is not usually used because transactions take a long
timz and alternative methods of maintaining data integrity are used.

2. They have to provide rapid feedback on user actions such as ‘select’ and ‘delete’.
This means they have to operate on representations of data that is held in com-
puter memory rather than on disk. Because the data is in volatile memory, it
can be lost if there is a system fault, so editing systems should make some pro-
vision for error recovery.

3. Editing sessions are normally much longer than sessions involving ordering goods,
or making some other transaction. This again means that there is a greater risk
of loss if problems arise. Therefore, many editing systems include recovery facil-
ities that automatically save work in progress and recover the work for the user
in the event of a system failure.

A generic architecture for an editing system is shown in Figure 13.10 as a set
of interacting objects. The objects in the system are active rather than passive (see
Chapter 14) and can operate concurrently and autonomously. Essentially, screen events
are processed and interpreted as commands. This updates a data structure, which is
then redisplayed on the screen.

The responsibilities of the architectural components shown in Figure 13.10 are:

306 Chapter 13 ® Application architectures

Figure 13.10 An
architectural model
of an editing system

File system

Save

Ancillary data Editor data

Ancillary — Editing
commands commands

Command

Interpret

e

Event

Process

Screen

Refresh

Screen This object monitors the screen memory segment and detects events that
occur. These events are then passed to the event-processing object along with
their screen coordinates.

Event This object is triggered by an event arriving from Screen. It uses knowl-
edge of what is displayed to interpret this event and to translate this into the
appropriate editing command. This command is then passed to the object
responsible for command interpretation. For very common events, such as mouse
clicks or key presses, the event object can communicate directly with the data
structure. This allows faster updates of that structure.

Command This object processes a command from the event object and calls
the appropriate method in the Editor data object to execute the command.

Editor data When the appropriate command method in Editor data object is called,
it updates the data structure and calls the Update method in Display to dispiay
the modified data.

13.4 = Language-processing systems 307

13.4

5. Ancillary data As well as the data structure itself, editors manage other data such
as styles and preferences. In this simple architectural model, I have bundled
this together under Ancillary data. Some editor commands, such as a command
to initiate a spelling check, are implemented by a method in this object.

6. File system This object handles all opening and saving of files. These can be
either editor data or ancillary data files. To avoid data loss, many editors have
auto-save facilities that save the data structure automatically. This can then be
retr:eved in the event of system failure,

7. Display This object keeps track of the organisation of the screen display. It calls
the Refresh method in Screen when the display has been changed.

Because of the need for a rapid response to user commands, editing systems do
not have a central controller that calls the components to take action. Rather, the
critical tomponents in the system execute concurrently and can communicate
directly (e.g., the event processor can communicate directly with the editor data struc-
ture) so that faster performance can be achieved.

Language-processing systems

Language-processing systems accept a natural or artificial language as an input and
generate sore other representation of that language as an output. In software engi-
neering, the most widely used language-processing systems are compilers that
translate an artificial high-level programming language into machine code, but other
language-processing systems translate an XML data description into commands to
query a atabase and natural language-processing systems that attempt to translate
one natural language to another.

At the most abstract level, the architecture of a language-processing system is
illustrated in Figure 13.11. The instructions describe what has to be done and are
translated into some internal format by a translator. The instructions correspond to
the machine instructions for an abstract machine. These instructions are then inter-
preted by another component that fetches the instructions for execution and exe-
cutes them using, if necessary, data from the environment. The output of the
process is the result of interpreting the instructions on the input data. Of course, for
many compilers, the interpreter is a hardware unit that processes machine instruc-
tions and the abstract machine is a real processor. However, for languages such as
Java, the interpreter is a software component.

Language-processing systems are used in situations where the easiest way to solve
a problem is to specify that solution as an algorithm or as a description of the sys-
tem data. For example, meta-CASE tools are program generators that are used to
create specific CASE tools to support software engineering methods. Meta-CASE

308 Chapter 13 @« Application architectures

Figure 13.11 The
abstract architecture
of a language-
processing system

Translator

Check syntax
Check semantics £
Generate

Instructions

Y

Abstract m/c
instructions

Interpreter

’ Data Fetch Results E
Execute

tools include a description of the method components, its rules and so on, written
in a special-purpose language that is parsed and analysed to configure the gener-
ated CASE tool.

Translators in a language-processing system have a generic architecture (Figure
13.12) that includes the following components:

Y

\J

1. A lexical analyser, which takes input language tokens and converts them to an
internal form

2. A symbol table, which holds information about the names of entities (variables,
class names, object names, etc.) used in the text that is being translated

3. A syntax analyser, which checks the syntax of the language being translated.
It uses a defined grammar of the language and builds a syntax tree

4. A syntax tree, which is an internal structure representing the program being
compiled

5. A semantic analyser, which uses information from the syntax tree and the sym-
bol table to check the semantic correctness of the input language text

6. A code generator, which ‘walks’ the syntax tree and generates abstract
machine code

Other components might also be included that transform the syntax tree to improve
efficiency and remove redundancy from the generated machine code. In other types
of language-processing systems, such as a natural language translator, the gener-
ated code is actually the input text translated into another language.

The components that make up a language-processing system can be organised
according to different architectural models. As Garlan and Shaw point out (Garlan

13 4 = language-processing systems 309

Figure 13.12 A data-
flow model of a
compiler

Figure 13.13 The
repository model of
a language-
processing system

_ | Symbol table
o Syntax tree

V. Y

Syntactic Semantic Code
generation j

analysis analysis J
and Shaw, 1993), compilers can be implemented using a composite model. A data-
flow architecture may be used with the symbol table acting as a repository for shared
data. The phases of lexical, syntactic and semantic analysis are organised sequen-
tially, a: shown in Figure 13.12.

This data-flow model of compilation is still widely used. It is effective in batch
environments where programs are compiled and executed without user interaction.
It is less effective when the compiler is to be integrated with other language-processing
tools such as a structured editing system, an interactive debugger or a program pret-
typrinter. The generic system components can then be organised in a repository-
based model, as shown in Figure 13.13.

This figure illustrates how a language-processing system can be part of an inte-
grated set of programming support tools. In this example, the symbol table and syn-
tax tree act as a central information repository. Tools or tool fragments communicate
through it. Other information that is sometimes embedded in tools, such as the gram-
mar definition and the definition of the output format for the program, have been
taken out of the tools and put into the repository. Therefore, a syntax-directed edi-
tor can check that the syntax of a program is correct as it is being typed, and a pret-
typrinter can create listings of the program in a format that is easy to read.

Lexical
analysis f

o gy

Syntax
analyser

_— —
Pretty- Abstract | Grammar -
Cprinter 25“ > | syntax tree - | definition > (Optlmnser Z
c Symbol [Output | Code
table definition | ¢ generator

Repository

310 Chapter 13 = Application architectures

&

KEY POINTS

Generic models of application systems architectures help us understand the operation of
applications, compare applications of the same type, validate application system designs
and assess large-scale components for reuse.

Many applications either fall into one of four classes of generic application or are
combinations of these generic applications. The four types of generic application covered
here are data-processing systems, transaction-processing systems, event-processing
systems and language-processing systems.

Data-processing systems operate in batch mode and generally have an input-process-
output structure. Records are input into the system, the information is processed and
outputs are generated.

Transaction-processing systems are interactive systems that allow information in a
database to be remotely accessed and modified by a number of users. Information systems
and resource management systems are examples of transaction-processing systems.

Event-processing systems include editing systems and real-time systems. In an editing
system, user interface events are interpreted and an in-store data structure is modified.
Word processors and presentation systems are examples of editing systems.

Language-processing systems are used to translate texts from one language into another
and to carry out the instructions specified in the input language. They include a translator
and an abstract machine that executes the generated language.

FURTHER READING B EENEREEEE b o

The topic of application architectures has been largely neglected; authors of books and articles on
software architecture tend to focus on abstract principles or product line architectures.

Databases and Transaction Processing: An Application-oriented Approach. This is not really a book
on software architecture, but it discusses the principles of transaction-processing and data-centric
applications. (P. M. Lewis, et al., 2003, Addison-Wesley.)

Design and Use of Software Architectures. This book takes a product-line approach to software
architectures and therefore discusses architecture from an application perspective. (}. Bosch, 2000,
Addison-Wesley.)

Chapter 13 # Exercises 311

EXERCISES

131

13.2

133

13.4

135

13.6

13.7

138

Explain how the generic applications architectures described here can be used to help the
designer make decisions about software reuse.

Using the four bas:c application types introduced in this chapter, classify the foliowing
systems and explain your classification:

B A point-of-sale system in a supermarket

B A system that sends out reminders that magazine subscriptions are due to be paid

| A photo album system that provides some facilities for restoring old photographs

W A system that reads web pages to visually disabled users

W An interactive game in which characters move around, cross obstacles and collect treasure

B An inventory control system that keeps track of what items are in stock and automatically
generates orders for new stock when the level falls below a certain value.

Based on an input-process-output model, expand the Compute salary function in Figure 13.2
and draw a data-flow diagram that shows the computations carried out in that function. You
need the following information to do this:

B The employee record identifies the grade of an employee. This grade is then used to look
up the table of pay rates.

W Employees below a particular grade may be paid overtime at the same rate as their normal
hourly pay rate. Tha extra hours for which they are to be paid are indicated in their employee
record.

B The amount of tax deducted depends on the employee’s tax code (indicated in the record)
and their annual salary. Monthly deductions for each code and a standard salary are
indicated in the tax tables. These are scaled up or down depending on the relationship
between the actual salary and the standard salary used.

Explain why transaction management is necessary in systems where user inputs can result in
database changes.

Using the basic model of an information system as presented in Figure 13.6, show the
components of an information system that allows users to view information about flights
arriving and departing from-a particular airport.

Using the layered architecture shown in Figure 13.8, show the components of a resource
management systern that could be used to handle hotel room bookings.

In an editing systen, alt user interface events can be translated into implicit or explicit
commands. Explain why, in Figure 13.10, the Event object therefore communicates directly
with the editor data structure as well as the Command object.

Modify Figure 13.10 to show the generic architecture of a spreadsheet system. Base your
design on the features of any spreadsheet system that you have used.

312 Chapter 13 ® Application architectures

139 What is the function of the syntax tree component in a language-processing system?

13.10 ysing the generic model of a language-processing system presented here, design the
architecture of a system that accepts natural language commands and translates these into
database queries in a language such as SQL.

| 14
Object-oriented design

Objectives

The objective of this chapter is to introduce an approach to software
design where the design is structured as interacting objects. When you
have read this chapter, you will:

® understand how a software design may be represented as a set of
interacting objects that manage their own state and operations;

B know the most important activities in a general object-oriented
design process;

M understand the different models that may be used to document an
object-oriented design;

®m have been introduced to the representation of these models in the
Unified Modeling Language (UML),

Contents

14.1 Objects and object classes
14.2 An object-oriented design process
14.3 Design evolution

314 Chapter 14 ® Object oriented design

An object-oriented system is made up of interacting objects that maintain their own
local state and provide operations on that state (Figure 14.1). The representation of
the state is private and cannot be accessed directly from outside the object. Object-
oriented design processes involve designing object classes and the relationships between
these classes. These classes define the objects in the system and their interactions.
When the design is realised as an executing program, the objects are created
dynamically from these class definitions.

Object-oriented design is part of object-oriented development where an object-
oriented strategy is used throughout the development process:

* Object-oriented analysis is concerned with developing an object-oriented
model of the application domain. The objects in that model reflect the entities
and operations associated with the problem to be solved.

» Object-oriented design is concerned with developing an object-oriented model
of a software system to implement the identified requirements. The objects in
an object-oriented design are related to the solution to the problem. There may
be close relationships between some problem objects and some solution
objects, but the designer inevitably has to add new objects and to transform
problem objects to implement the solution.

s Object-oriented programming is concerned with realising a software design using
an object-oriented programming language, such as Java. An object-oriented pro-
gramming language provides constructs to define object classes and a run-time
system to create objects from these classes.

The transition between these stages of development should, ideally, be seamless,
with compatible notations used at each stage. Moving to the next stage involves
refining the previous stage by adding detail to existing object classes and devising
new classes to provide additional functionality. As information is concealed within
objects, detailed design decisions about the representation of data can be delayed
until the system is implemented. In some cases, decisions on the distribution of objects
and whether objects can be sequential or concurrent may also be delayed.

This means that software designers can devise designs that can be adapted to
different execution environments. This is exemplified by the Model Driven
Architecture (MDA) approach, which proposes that systems should be explicitly
designed in two levels (Kleppe et al., 2003), an implementation-independent level
and an implementation-dependent level. An abstract model of the system is
designed at the implementation-independent level, and this is mapped to a more detailed
platform-dependent model that can be used as a basis for code generation. At the
time of this writing, the MDA approach is still experimental and it is not clear how
widely it will be adopted.

Object-oriented systems are easier to change than systems developed using other
approaches because the objects are independent. They may be understood and mod-
ified as standalone entities. Changing the implementation of an object or adding
services should not affect other system objects. Because objects are associated with

Chapter 14 % Object-oriented design 315

Figure 14.1 A system
made up of
interacting objects

ol: C1 03:C3 04: C4
state o1 | Sstate 03 state 04
opst() ops3 () ops4 ()

Y
02: C3 : 06: Ci 05:C5
stateo2 [stateo6 | stateo5 |
ops3 () 4 opsi0 | ops50

things, tnere is often a clear mapping between real-world entities (such as hardware
components) and their controlling objects in the system. This improves the under-
standability and hence the maintainability of the design.

Objects are, potentially, reusable components because they are independent
encapsu.ations of state and operations. Designs can be developed using objects that
have be¢n created in previous designs. This reduces design, programming and val-
idation costs. It may also lead to the use of standard objects (hence improving design
understandability) and reduce the risks involved in software development.
However, as I discuss in Chapters 18 and 19, reuse is sometimes best implemented
using collections of objects (components or frameworks) rather than individual objects.

Several object-oriented design methods have been proposed (Coad and
Yourdon, 1990; Robinson, 1992; Jacobson, et al., 1993; Graham, 1994; Booch, 1994).
The UML is a unification of the notations used in these methods. The Rational Unified
Process (RUP), which I discussed in Chapter 4, has been designed to exploit the
models that can be expressed in the UML (Rumbaugh, et al., 1999). I use the UML
throughout the chapter.

As I discuss in Chapter 17, system development based on extensive up-front design
can be criticised because the extensive analysis and design effort is not well suited
to incremental development and delivery. So-called agile methods have been devel-
oped to address this problem, and these drastically reduce or completely eliminate
the object-oriented design activity. My view on this is that extensive, ‘heavyweight’
design is unnecessary for small and medium-sized business systems. However, for
large systems, particularly critical systems, it is essential to ensure that the teams
working on different parts of the system are properly coordinated. For this reason,
I have not used the previous examples of the library or the insulin pump system in
this chapter, as these are relatively small systems. Rather, I use an example that is
part of 4 much larger system where up-front object-oriented design is more useful.

This view is reflected, to some extent, in the Rational Unified Process that is
geared (o the iterative development and incremental delivery of large software sys-
tems. This process is an iterative development process based around use-cases
to exprsss requirements and object-oriented design, with a particular focus on
architecture-centric design.

316 Chapter 14 w Object oriented design

14.1

The design process that I discuss in Section 14.2 has some things in common with
the RUP but with less emphasis on use-case driven development. The use of use-cases
means that the design is certainly user-centric and is based around user interactions
with the system. However, representing the requirements of stakeholders who are not
direct users of the system as use-cases is difficult. Use-cases certainly have a role in
object-oriented analysis and design, but they need to be supplemented with other tech-
niques to discover indirect and non-functional system requirements.

Objects and object classes

The terms object and object-oriented are applied to different types of entity, design
methods, systems and programming languages. There is a general acceptance that
an object is an encapsulation of information, and this is reflected in my definition
of an object and an object class:

An object is an entity that has a state and a defined set of operations that
operate on that state. The state is represented as a set of object attributes.
The operations associated with the object provide services to other objects
(clients) that request these services when some computation is required.

Objects are created according to an object class definition. An object class
definition is both a type specification and a template for creating objects. It
includes declarations of all the attributes and operations that should be asso-
ciated with an object of that class.

In the UML, an object class is represented as a named rectangle with two sec-
tions. The object attributes are listed in the top section. The operations that are asso-
ciated with the object are set out in the bottom section. Figure 14.2 illustrates this
notation using an object class that models an employee in an organisation. The UML
uses the term operation to mean the specification of an action; the term method is
used to refer to the implementation of an operation.

The class Employee defines a number of attributes that hold information about
employees including their name and address, social security number, tax code, and
so on. The ellipsis (...) indicates that there are more attributes associated with the
class than are shown. Operations associated with the object are join (called when
an employee joins the organisation), leave (called when an employee leaves the organ-
isation), retire (called when the employee becomes a pensioner of the organisation)
and changeDetails (called when some employee information needs to be modified).

Objects communicate by requesting services (calling methods) from other objects

and, if necessary, by exchanging the information required for service provision. Th

copies of information needed to execute the service and the results of service execu-
tion are passed as parameters. Some examples of this style of communication are:

14 1 = Objects and object classes 317

Figure 14.2 An
employee object

Employee

name: string

address: string

dateOfBirth: date
employeeNo: integer
socialSecurityNo: string
department: dept

manager: employee

salary: integer

status: {current, left, retired)
taxCode: integer

join

leave ()

retire ()
changeDetails ()

// Cell a method associated with a buffer object that returns the next value
// in the buffer

v = circularBuffer.Get () ;

// Call the method associated with a thermostat object that sets the

// temperature to be maintained

thermostat.setTemp (20) ;

In service-based systems, object communications are implemented directly as XML
text messages that objects exchange. The receiving object parses the message, iden-
tifies the service and the associated data, and carries out the requested service. However,
when the objects coexist in the same program, method calls are implemented as
procedure or function calls in a language such as C.

When service requests are implemented in this way, communication between objects
is synchronous. That is, the calling object waits for the service request to be com-
pleted. However, if objects are implemented as concurrent processes or threads, the
object communication may be asynchronous. The calling object may continue in
operation while the requested service is executing. I explain how objects may be
implemented as concurrent processes later in this section.

As L discussed in Chapter 8, where I described a number of possible object mod-
els, object classes can be arranged in a generalisation or inheritance hierarchy that
shows the relationship between general and more specific object classes. The more
specific object class is completely consistent with its parent class but includes fur-
ther information. In the UML, an arrow that points from a class entity to its parent
class indicates generalisation. In object-oriented programming languages, general-
isation is implemented using inheritance. The child class inherits attributes and oper-
ations from the parent class.

w Object-oriented design

Employee

JAY
|]

Manager Programmer
budgetsControlled project
dateAppointed proglLanguages

Project Dept. Strategic
Manager Manager Manager
projects dept responsibilities

Figure 14.3 shows an example of an object class hierarchy where different classes
of employee are shown. Classes lower down the hierarchy have the same attributes
and operations as their parent classes but may add new attributes and operations or
modify some of those from their parent classes. This means that there is one-way
interchangability. If the name of a parent class is used in a model, the object in the
system may either be defined as of that class or of any of its descendants.

The class Manager in Figure 14.3 has all of the attributes and operations of the
class Employee but has, in addition, two new attributes that record the budgets con-
trolled by the manager and the date that the manager was appointed to a particular
management role. Similarly, the class Programmer adds new attributes that define
the project that the programmer is working on and the programming language skills
that he or she has. Objects of class Manager or Programmer may therefore be used
anywhere an object of class Employee is required.

Objects that are members of an object class participate in relationships with other
objects. These relationships may be modelled by describing the associations
between the object classes. In the UML, associations are denoted by a line between
the object classes that may optionally be annotated with information about the asso-
ciation. This is illustrated in Figure 14.4, which shows the association between objects
of class Employee and objects of class Department, and between objects of class
Employee and objects of class Manager.

Association is a very general relationship and is often used in the UML to indi-
cate that either an attribute of an object is an associated object or the implementa-
tion of an object method relies on the associated object. However, in principle at

14 1 ® Objects and object classes 319

Figure 14.4 An
association model

14.1.1

Employee Department
ploy is-member-of P

is-managed-by

manages

Manager

least, any kind of association is possible. One of the most common associations is
aggregation, which illustrates how objects may be composed of other objects. See
Chapter 8 for a discussion of this type of association.

Concurrent objects

Conceptually, an object requests a service from another object by sending a ser-
vice request’ message to that object. There is no requirement for serial execution
where one object waits for completion of a requested service. Consequently, the
general model of object interaction allows objects to execute concurrently as par-
allel processes. These objects may execute on the same computer or as distributed
objects on different machines.

In practice, most object-oriented programming languages have as their default a
serial execution model where requests for object services are implemented in the
same way as function calls. Therefore, when an object called thelist is created from
a normal object class, you write in Java:

theList.append (17)

This calls the append method associated with thelList object to add the element
17 to thelList, and execution of the calling object is suspended until the append oper-
ation has been completed. However, Java includes a very simple mechanism
(threads) that lets you create objects that execute concurrently. Threads are created
in Java by using the built-in Thread class as a parent class in a class declaration.
Threads must include a method called run, which is started by the Java run-time
system when objects that are defined as threads are created. It is therefore easy to
take an object-oriented design and produce an implementation where the objects
are concurrent processes.

There are two kinds of concurrent object implementation:

I. Servers where the object is realised as a parallel process with methods corre-
sponding to the defined object operations. Methods start up in response to an

320 Chapter 14 ® Object oriented design

external message and may execute in parallel with methods associated with other
objects. When they have completed their operation, the object suspends itself
and waits for further requests for service.

2. Active objects where the state of the object may be changed by internal oper-
ations executing within the object itself. The process representing the object
continually executes these operations so never suspends itself.

Servers are most useful in a distributed environment where the calling and the
called object may execute on different computers. The response time for the ser-
vice that is requested is unpredictable, so, wherever possible, you should design the
system so that the object that has requested a service does not have to wait for that
service to be completed. They can also be used in a single machine where a ser-
vice takes some time to complete (e.g., printing a document) and several objects
may request the service.

Active objects are used when an object needs to update its own state at speci-
fied intervals. This is common in real-time systems where objects are associated
with hardware devices that collect information about the system’s environment. The
object’s methods allow other objects access to the state information.

Figure 14.5 shows how an active object may be defined and implemented in Java.
The object class represents a transponder on an aircraft. The transponder keeps track
of the aircraft’s position using a satellite navigation system. It can respond to mes-
sages from air traffic control computers. It provides the current aircraft position in
response to a request to the givePosition method. This object is implemented as a
thread where a continuous loop in the run method includes code to compute the air-
craft’s position using signals from satellites.

14.2 An object-oriented design process

In this section, I illustrate the process of object-oriented design by developing an
example design for the control software that is embedded in an automated weather
station. As I discussed in the introduction, there are several methods of object-oriented
design with no definitive ‘best’ method or design process. The process that I cover
here is a general one that incorporates activities common to most OOD processes.

The general process that I use here for object-oriented design has a number of
stages:

1. Understand and define the context and the modes of use of the system.
2. Design the system architecture.

3. Identify the principal objects in the system.

14 2 m An object-oriented design process 321

class Transponder extends Thread {

Position currentPosition ;
Coords ¢1, c2 ;

Satellite sat1, sat2 ;
Navigator theNavigator ;

public Position givePosition ()

{
return currentPosition ;
}
public void. run ()
{
while (true)
{
c1 = sati.position () ;
€2 = sat2.position () ;
currentPosition = theNavigator.compute (cl, c2) ;
}
}
} //Transponder

4. Develop design models.
5. Specify object interfaces.

I have deliberately not illustrated this as a simple process diagram because that
would irply there was a neat sequence of activities in this process. In fact, all of
the above activities are interleaved and so influence each other. Objects are identi-
fied and the interfaces fully or partially specified as the architecture of the system
is defined. As object models are produced, these individual object definitions may
be refined, which leads to changes to the system architecture.

I discuss these as separate stages in the design process later in this section. However,
you should not assume from this that design is a simple, well-structured process.
In reality, you develop a design by proposing solutions and refining these solutions
as information becomes available. You inevitably have to backtrack and retry when
problems anise. Sometimes you explore options in detail to see if they work; at other
times you ignore details until late in the process.

I illustrate these process activities by developing an example of an object-
oriented design. This example is part of a system for creating weather maps using

322 Chapter 14 m Object oriented design

Figure 14.6 Layered
architecture for
weather mapping

system

1 Data display layer where objects are
bsvsterns concerned wit dprepann and
B‘"-' e presenting the data in a human
ata display readable form
! Data archivinﬁ layer where objects
«subsystem> are concerned with storing the data
Data archiving for future processing
] Data processing layer where objects
ssubsystem» are concemed with checking and
Data processing integrating the collected data
l Data collection layer where objects
s«subsystem» are concerned with acquiring data
Data collection from remote sources

automatically collected meteorological data. The detailed requirements for such a
weather mapping system would take up many pages. However, an overall system
architecture can be developed from a relatively brief system description:

A weather mapping system is required to generate weather maps on a regu-
lar basis using data collected from remote, unattended weather stations and
other data sources such as weather observers, balloons and satellites.
Weather stations transmit their data to the area computer in response to a
request from that machine.

The area computer system validates the collected data and integrates the data
from different sources. The integrated data is archived and, using data from
this archive and a digitised map database, a set of local weather maps is cre-
ated. Maps may be printed for distribution on a special-purpose map printer
or may be displayed in a number of different formats.

This description shows that part of the overall system is concerned with collecting
data, part with integrating the data from different sources, part with archiving that
data and part with creating weather maps. Figure 14.6 illustrates a possible system
architecture that can be derived from this description. This is a layered architecture
(discussed in Chapter 11) that reflects the stages of processing in the system, namely
data collection, data integration, data archiving and map generation. A layered archi-
tecture is appropriate in this case because each stage relies only on the processing
of the previous stage for its operation.

In Figure 14.6, I have shown the layers and have included the layer name in a
UML package symbol that has been denoted as a sub-system. A UML package rep-

14 2 # An object oriented design process 323

Figure 14.7
Subsystems in the
weather mapping
system

14.2.1

ssubsystern»
Data collection «subsystems
— Data display
[~—1.
Observer] Satellite —lUser ™
] Comms interface dispf;y
— =
Weather ap
station Balloon | Map printer
—:;Jbsysteem» asubsystem»
Iata processing Data archiving
- ==
—1 (1 Data
Data . Data storage
checking integration
[Map store | [Data store |
—

resents a collection of objects and other packages. I have used it here to show that
each layer includes a number of other components.

In Figure 14.7, I have expanded on this abstract architectural model by showing
the components of the sub-systems. These are still abstract and have been derived
from the information in the description of the system. I continue the design example
by focusing on the weather station sub-system that is part of the data collection layer.

System context and models of use

The first stage in any software design process is to develop an understanding of the
relationships between the software that is being designed and its external environment.
You nezd this understanding to help you decide how to provide the required system
functionality and how to structure the system to communicate with its environment.

The system context and the model of system use represent two complementary
models of the relationships between a system and its environment:

1. The system context is a static model that describes the other systems in that
environment.
2. The model of the system use is a dynamic model that describes how the sys-

tem actually interacts with its environment.

The context model of a system may be represented using associations (see Figure
14.4) where a simple block diagram of the overall system architecture is produced.

324 Chapter 14 w Object oriented design

Figure 14.8 Use-
cases for the
weather station

You then develop this by deriving a sub-system model using UML packages as shown
in Figure 14.7. This model shows that the context of the weather station system is
within a sub-system concerned with data collection. It also shows other sub-sys-
tems that make up the weather mapping system.

When you model the interactions of a system with its environment you should
use an abstract approach that does not include too much detail. The approach that
is proposed in the RUP is to develop a use-case model where each use-case repre-
sents an interaction with the system. In use-case models (also discussed in Chapter
7), each possible interaction is named in an ellipse and the external entity involved
in the interaction is represented by a stick figure. In the case of the weather station
system, this external entity is not a