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PREFACE

The first four editions of this book were based on the idea that a computer can
be regarded as a hierarchy of levels, each one performing some well-defined func-
tion. This fundamental concept is as valid today as it was when the first edition
came out, so it has been retained as the basis for the fifth edition. As in the first
four editions, the digital logic level, the microarchitecture level, the instruction set
architecture level, the operating system machine level, and the assembly language
level are all discussed in detail.

Although the basic structure has been maintained, this fifth edition does con-
tain many changes, both small and large, that bring it up to date in the rapidly
changing computer industry. For example, the example machines used have been
brought up to date. The current examples are the Intel Pentium 4, the Sun Ultra-
SPARC III, and the Intel 8051. The Pentium 4 is an example of a popular CPU
used on desktop machines. The UltraSPARC III is an example of a popular
server, widely used in medium and large mutiprocessors.

However, the 8051 may come as a surprise to some people. It is a venerable
chip that has been around for decades. However, with the enormous growth of
embedded systems, it has finally come into its own. With computers running
everything from clock radios to microwave ovens, interest in embedded systems is
surging, and the 8051 is a widely-used choice due to its extremely low cost (pen-
nies), the wealth of software and peripherals for it, and the large number of 8051
programmers available.

Over the years, many professors teaching from the course have repeatedly
asked for material on assembly language programming. With the fifth edition,
that material is now available in Appendix C and on the accompanying CD-ROM.

xviii



PREFACE Xix

The assembly language chosen is the 8088 since it is a stripped down version of
the enormously popular Pentium. I could have used the UltraSPARC or the MIPS
or some other CPU almost no one has ever heard of, but as a motivational tool, the
8088 is a better choice since large numbers of students have a Pentium at home
and the Pentium is capable of running 8088 programs. However, since debugging
assembly code is very difficult, I have provided a set of tools for learning assem-
bly language programming, including an 8088 assembler, a simulator, and a
tracer. These tools are provided for Windows UNIX, and Linux. The tools are on
the CD-ROM and also on the book’s Website (see below).

The book has become longer over the years. Such an expansion is inevitable
as a subject develops and there is more known about it. As a result, when the
book is used for a course, it may not always be possible to finish the book in a sin-
gle course (e.g., in a trimester system). A possible approach would be to do all of
Chaps. 1, 2, and 3, the first part of Chap. 4 (up through and including Sec. 4.4),
and Chap. 5 as a bare minimum. The remaining time could be filled with the rest
of Chap. 4, and parts of Chaps. 6, 7, and 8, depending on the interest of the
instructor.

A chapter-by-chapter rundown of the major changes since the fourth edition
follows. Chapter 1 still contains an historical overview of computer architecture,
pointing out how we got where we are now and what the milestones were along
the way. The enlarged spectrum of computers that exist is now discussed, and our
three major examples (Pentium 4, UltraSPARC III, and 8051) are introduced.

In Chapter 2, the material on input/output devices has been updated, em-
phasizing the technology of modern devices, including digital cameras, DSL, and
Internet over cable.

Chapter 3 has undergone some revision and now treats computer buses and
modern I/O chips. The three new examples are described here at the chip level.
New material has been added about the PCI Express bus, which is expected to
replace the PCI bus shortly.

Chapter 4 has always been a popular chapter for explaining how a computer
really works, so most of it is unchanged since the fourth edition. However, there
are new sections discussing the microarchitecture level of Pentium 4, the Ultra-
SPARC III, and the 8051.

Chapters 5, 6, and 7 have been updated using the new examples, but are other-
wise relatively unchanged. Chapter 6 uses Windows XP rather than Windows NT
as an example, but at the level of discussion here, the changes are minimal.

In contrast, Chapter 8 has been heavily modified to reflect all the new activity
in parallel computers of all forms. It covers five different classes of parallel sys-
tems, from on-chip parallelism (instruction-level parallelism, on-chip multithread-
ing, and single-chip multiprocessors), through coprocessors, shared-memory sys-
tems, and clusters, and ends up with a brief discussion of grids. Numerous new
examples are discussed here, from the TriMedia CPU, to the BlueGene/L, Red
Storm and Google clusters.



XX PREFACE

The references in Chap. 9 have been updated heavily. Computer organization
is a dynamic field. Over half the references in this 5th edition are to books and
papers written after the 4th edition of this book was published.

Appendices A and B are unchanged since last time, but Appendix C on as-
sembly language programming is completely new. It is a hands-on, how-to guide
to assembly language programming using the tools provided on the CD-ROM and
the Website. Appendix C was written by Dr. Evert Wattel of the Vrije Universi-
teit, Amsterdam. Dr. Wattel has had many years of experience teaching students
using these tools. My thanks to him for writing this appendix.

In addition to the assembly language tools, the Website also contains a graphi-
cal simulator to be used in conjunction with Chap. 4. This simulator was written
by Prof. Richard Salter of Oberlin College. It can be used by students to help
grasp the principles discussed in this chapter. My thanks to him for providing this
software.

In addition, the figures used in the book and PowerPoint sheets for instructors
are also available on the Website. The URL is

http:/www.prenhall.com/tanenbaum

From there, click on the Companion Website for this book and select the page you
are looking for from the menu.

Instructors using this book for a university course can obtain a manual with
the solutions to the problems by contacting their Pearson Education representa-
tive.

A number of people have read (parts of) the manuscript and provided useful
suggestions or have been helpful in other ways. In particular, I would like to
thank Nikitas Alexandridis, Shekar Borkar, Herbert Bos, Scott Cannon, Doug
Carmean, Alan Charlesworth, Eric Cota-Robles, Michael Fetterman, Quinn
Jacobson, Thilo Kielmann, Iffat Kazi, Saul Levy, Ahmed Louri, Abhijit Pandya,
Krist Petersen, Mark Russinovich, Ronald Schroeder, and Saim Ural for their
help, for which I am most grateful. Thank you.

I would also like to thank Jim Goodman for his contributions to this book,
especially to Chaps, 4 and 5. The idea of using the Java Virtual Machine was his
and the book is better for it.

Finally, I would like to thank Suzanne once more for her love and patience. It
never ends, not even after 15 books. Barbara and Marvin are always a joy and
now know what professors do for a living. The Royal Netherlands Academy of
Arts and Sciences granted me a much-coveted Academy Professorship in 2004,
freeing me from some of the less attractive aspects of academia (such as endless
boring committee meetings), for which I am eternally grateful.

Andrew S. Tanenbaum
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INTRODUCTION

A digital computer is a machine that can solve problems for people by carry-
ing out instructions given to it. A sequence of instructions describing how to per-
form a certain task is called a program. The electronic circuits of each computer
can recognize and directly execute a limited set of simple instructions into which
all its programs must be converted before they can be executed. These basic
instructions are rarely much more complicated than

Add two numbers.
Check a number to see if it is zero.

Copy a piece of data from one part of the computer’s memory to another.

Together, a computer’s primitive instructions form a language in which peo-
ple can communicate with the computer. Such a language is called a machine
language. The people designing a new computer must decide what instructions to
include in its machine language. Usually, they try to make the primitive instruc-
tions as simple as possible, consistent with the computer’s intended use and per-
formance requirements, in order to reduce the complexity and cost of the electron-
ics needed. Because most machine languages are so simple, it is difficult and
tedious for people to use them.

This simple observation has, over the course of time, led to a way of structur-
ing computers as a series of abstractions, each abstraction building on the one

1



2 INTRODUCTION CHAP. 1

below it. In this way, the complexity can be mastered and computer systems can
be designed in a systematic, organized way. We call this approach structured
computer organization and have named the book after it. In the next section we
will describe what we mean by this term. After that we will look at some histori-
cal developments, the state-of-the-art, and some important examples.

1.1 STRUCTURED COMPUTER ORGANIZATION

As mentioned above, there is a large gap between what is convenient for peo-
ple and what is convenient for computers. People want to do X, but computers
can only do Y. This leads to a problem. The goal of this book is to explain how
this problem can be solved.

1.1.1 Languages, Levels, and Virtual Machines

The problem can be attacked in two ways: both involve designing a new set of
instructions that is more convenient for people to use than the set of built-in ma-
chine instructions. Taken together, these new instructions also form a language,
which we will call L1, just as the built-in machine instructions form a language,
which we will call LO. The two approaches differ in the way programs written in
L1 are executed by the computer, which, after all, can only execute programs
written in its machine language, LO.

One method of executing a program written in L1 is first to replace each
instruction in it by an equivalent sequence of instructions in LO. The resulting
program consists entirely of L0 instructions. The computer then executes the new
LO program instead of the old L1 program. This technique is called translation.

The other technique is to write a program in LO that takes programs in L1 as
input data and carries them out by examining each instruction in turn and execut-
ing the equivalent sequence of LO instructions directly. This technique does not
require first generating a new program in LO. It is called interpretation and the
program that carries it out is called an interpreter.

Translation and interpretation are similar. In both methods, the computer car-
ries out instructions in L1 by executing equivalent sequences of instructions in LO.
The difference is that, in translation, the entire L1 program is first converted to an
LO program, the L1 program is thrown away, and then the new LO program is
loaded into the computer’s memory and executed. During execution, the newly
generated LO program is running and in control of the computer.

In interpretation, after each L1 instruction is examined and decoded, it is car-
ried out immediately. No translated program is generated. Here, the interpreter is
in control of the computer. To it, the L1 program is just data. Both methods, and
increasingly, a combination of the two, are widely used.
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Rather than thinking in terms of translation or interpretation, it is often sim-
pler to imagine the existence of a hypothetical computer or virtual machine
whose machine language is L1. Let us call this virtual machine M1 (and let us
call the virtual machine corresponding to LO, MO0). If such a machine could be
constructed cheaply enough, there would be no need for having language LO or a
machine that executed programs in LO at all. People could simply write their pro-
grams in L1 and have the computer execute them directly. Even if the virtual
machine whose language is L1 is too expensive or complicated to construct out of
electronic circuits, people can still write programs for it. These programs can
either be interpreted or translated by a program written in LO that itself can be
directly executed by the existing computer. In other words, people can write pro-
grams for virtual machines, just as though they really existed.

To make translation or interpretation practical, the languages LO and L1 must
not be “too” different. This constraint often means that L1, although better than
L0, will still be far from ideal for most applications. This result is perhaps
discouraging in light of the original purpose for creating L1— relieving the pro-
grammer of the burden of having to express algorithms in a language more suited
to machines than people. However, the situation is not hopeless.

The obvious approach is to invent still another set of instructions that is more
people-oriented and less machine-oriented than L1. This third set also forms a
language, which we will call L2 (and with virtual machine M2). People can write
programs in L2 just as though a virtual machine with L2 as its machine language
really existed. Such programs can either be translated to L1 or executed by an
interpreter written in L1.

The invention of a whole series of languages, each one more convenient than
its predecessors, can go on indefinitely until a suitable one is finally achieved.
Each language uses its predecessor as a basis, sO we may view a computer using
this technique as a series of layers or levels, one on top of another, as shown in
Fig. 1-1. The bottommost language or level is the simplest and the topmost
language or level is the most sophisticated.

There is an important relation between a language and a virtual machine.
Each machine has a machine language, consisting of all the instructions that the
machine can execute. In effect, a machine defines a language. Similarly, a
language defines a machine—namely, the machine that can execute all programs
written in the language. Of course, the machine defined by a certain language
may be enormously complicated and expensive to construct directly out of elec-
tronic circuits but we can imagine it nevertheless. A machine with C or C++ or
Java as its machine language would be complex indeed but could easily be built
using today’s technology. There is a good reason, however, for not building such
a computer: it would not be cost effective compared to other techniques. Merely
being doable is not good enough: a practical design must be cost effective as well.

In a certain sense, a computer with n levels can be regarded as n different vir-
tual machines, each with a different machine language. We will use the terms
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Programs in Ln are
either interpreted by

Level n Virtual machine Mn, with / an interpreter running
machine language Ln on a lower machine, or
are translated to the
machine language of a
lower machine
Virtual machine M3, with
Level 3 machine language L3
Programs in L2 are
either interpreted by
interpreters running
Lovel2 | Virtual machine M2, with |.— on M1 or M0, or are
machine language L2 translated to L1 or LO
Programs in L1 are
either interpreted by
Virtual machine M1, with / an interpreter running on
Level 1 machine language L1 MO, or are translated to LO
Programs in LO can be
- directly executed by
Level 0 Actual computer MO, with the electronic circuits
machine language LO

Figure 1-1. A multilevel machine.

“level” and “virtual machine’ interchangeably. Only programs written in lan-
guage LO can be directly carried out by the electronic circuits, without the need
for intervening translation or interpretation. Programs written in L1, L2, ..., Ln
must either be interpreted by an interpreter running on a lower level or translated
to another language corresponding to a lower level.

A person who writes programs for the level n virtual machine need not be
aware of the underlying interpreters and translators. The machine structure
ensures that these programs will somehow be executed. It