Fifth Edition
STRUCTURED COMPUTER
ORGANIZATION

Andrew S. Tanenbaum

STRUCTURED
COMPUTER ORGANIZATION

Other bestselling titles by Andrew S. Tanenbaum

Computer Networks, 4th edition

This widely-read classic, now in its fourth edition, provides the ideal introduction
to today’s and tomorrow’s networks. It explains in detail how modern networks
are structured. Starting with the physical layer and working up to the application
layer, the book covers a vast number of important topics, including wireless com-
munication, fiber optics, data link protocols, Ethernet, routing algorithms, network
performance, security, DNS, electronic mail, USENET news, the World Wide
Web, and multimedia. The book has especially thorough coverage of TCP/IP and
the Internet.

Operating Systems: Design and Implementation, 2nd edition

This popular text on operating systems, co-authored with Albert S. Woodhull, is
the only book covering both the principles of operating systems and their applica-
tion to a real system. All the traditional operating systems topics are covered in
detail. In addition, the principles are carefully illustrated with MINIX, a free
POSIX-based UNIX-like operating system for personal computers. Each book
contains a free CD-ROM containing the complete MINIX system, including all
the source code. The source code is listed in an appendix to the book and
explained in detail in the text.

Modern Operating Systems, 2nd edition

This comprehensive text covers the principles of modern operating systems in
detail and illustrates them with numerous real-world examples. After an introduc-
tory chapter, the next five chapters deal with the basic concepts: processes and
threads, deadlocks, memory management, input/output, and file systems. The
next six chapters deal with more advanced material, including multimedia sys-
tems, multiple processor systems, security. Finally, two detailed case studies are
given: UNIX/Linux and Windows 2000.

Distributed Systems: Principles and Paradigms

This new book, co-authored with Maarten van Steen, covers both the principles
and paradigms of modern distributed systems. In the first part, it covers the prin-
ciples of communication, processes, naming, synchronization, consistency and
replication, fault tolerance, and security in detail. Then in the second part, it goes
into different paradigms used to build distributed systems, including object-based
systems, distributed file systems, document-based systems, and coordination-
based systems.

STRUCTURED
COMPUTER ORGANIZATION

FIFTH EDITION

ANDREW S. TANENBAUM

Vrije Universiteit
Amsterdam, The Netherlands

PEARSON
|

Prentice
Hall

UPPER SADDLE RIVER, NEW JERSEY 07458

Library of Congress Cataloging-in-Publication Data

Tanenbaum, Andrew S.

Structured computer organization
/ Andrew S. Tanenbaum. —5th edition

p. cm.

Includes bibliographical references and index.

ISBN 0-13-148521-0
1. Computer programming. 2. Computer organization.
L. Title.

QA76.6.T38 2005
005.1--dc22
2005043004

Vice President and Editorial Director, ECS: Marcia Horton

Senior Acquisitions Editor: Tracy Dunkelberger

Editorial Assistant: Michael Giacobbe

Executive Managing Editor: Vince O'Brien

Managing Editor: Camille Trentacoste

Production Editor: Irwin Zucker

Director of Creative Services: Paul Belfanti

Art Director: Heather Scott

Cover Illustrator: Maraska Artistic Concept and Design
Don Martinetti, DM Graphics, Inc.

Cover Concept: Andrew S. Tanenbaum

Composition and interior design: Andrew S. Tanenbaum

Managing Editor, AV Management and Production: Patricia Burns

Art Editor: Gregory Dulles

Manufacturing Buyer: Lisa McDowell

Marketing Manager: Pamela Hersperger

Marketing Assistant: Barrie Reinhold

PEARSON RS 2006, 19993 1990, 1984, 1976 by Pearson Education, Inc.
gl Pearson Prentice Hall
Prentice Pearson Education, Inc.

SENI Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without
permission in writing from the publisher.

Pearson Prentice Hall® is a trademark of Pearson Education, Inc.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effec-
tiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard
to these programs or the documentation contained in this book. The author and publisher shall not be
liable in any event for incidental or consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs.

Printed in the United States of America

10987654321
ISBN 0-13-148521-0

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educacion de Mexico, S.A. de C.V.

Pearson Education-Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

To Suzanne, Barbara, Marvin, and the memory of Sweetie © and Bram

This page intentionally left blank

CONTENTS

PREFACE xviii

INTRODUCTION 1

1.1 STRUCTURED COMPUTER ORGANIZATION 2
1.1.1 Languages, Levels, and Virtual Machines 2
1.1.2 Contemporary Multilevel Machines 5
1.1.3 Evolution of Multilevel Machines 8

1.2 MILESTONES IN COMPUTER ARCHITECTURE 13
1.2.1 The Zeroth Generation—Mechanical Computers (1642-1945) 14
1.2.2 The First Generation—Vacuum Tubes (1945-1955) 16
1.2.3 The Second Generation—Transistors (1955-1965) 19
1.2.4 The Third Generation—Integrated Circuits (1965-1980) 22
1.2.5 The Fourth Generation—Very Large Scale Integration (1980-?) 23
1.2.6 The Fifth Generation—Invisible Computers 26

1.3 THE COMPUTER ZOO 27
1.3.1 Technological and Economic Forces 27
1.3.2 The Computer Spectrum 29
1.3.3 Disposable Computers 29
1.3.4 Microcontrollers 31
1.3.5 Game Computers 33
1.3.6 Personal Computers 34

vii

viii

CONTENTS

1.3.7 Servers 34
1.3.8 Collections of Workstations 34
1.3.9 Mainframes 36

1.4 EXAMPLE COMPUTER FAMILIES 37
1.4.1 Introduction to the Pentium 4 37
1.4.2 Introduction to the UltraSPARC III 42
1.4.3 Introduction to the 8051 44

1.5 METRIC UNITS 46

1.6 OUTLINE OF THIS BOOK 47

COMPUTER SYSTEMS ORGANIZATION

2.1 PROCESSORS 51
2.1.1 CPU Organization 52
2.1.2 Instruction Execution 54
2.1.3 RISC versus CISC 58
2.1.4 Design Principles for Modern Computers 59
2.1.5 Instruction-Level Parallelism 61
2.1.6 Processor-Level Parallelism 65

2.2 PRIMARY MEMORY 69
2.2.1 Bits 69
2.2.2 Memory Addresses 70
2.2.3 Byte Ordering 71
2.2.4 Error-Correcting Codes 73
2.2.5 Cache Memory 77
2.2.6 Memory Packaging and Types 80

2.3 SECONDARY MEMORY 81
2.3.1 Memory Hierarchies 81
2.3.2 Magnetic Disks 82
2.3.3 Floppy Disks 86
2.3.4 IDE Disks 86
2.3.5 SCSI Disks 88
2.3.6 RAID 89
2.3.7 CD-ROMs 93

51

CONTENTS

2.3.8 CD-Recordables 97
2.3.9 CD-Rewritables 99
2.3.10DVD 99

2.3.11 Blu-Ray 102

2.4 INPUT/OUTPUT 102
2.4.1 Buses 102
2.4.2 Terminals 105
2.4.3 Mice 110
2.4.4 Printers 112
2.4.5 Telecommunications Equipment 117
2.4.6 Digital Cameras 125
2.4.7 Character Codes 127

2.5 SUMMARY 131

THE DIGITAL LOGIC LEVEL

3.1 GATES AND BOOLEAN ALGEBRA 135
3.1.1 Gates 136
3.1.2 Boolean Algebra 138
3.1.3 Implementation of Boolean Functions
3.1.4 Circuit Equivalence 141

3.2 BASIC DIGITAL LOGIC CIRCUITS 146
3.2.1 Integrated Circuits 146
3.2.2 Combinational Circuits 147
3.2.3 Arithmetic Circuits 152
3.2.4 Clocks 157

3.3 MEMORY 159
3.3.1 Latches 159
3.3.2 Flip-Flops 161
3.3.3 Registers 163
3.3.4 Memory Organization 164
3.3.5 Memory Chips 168
3.3.6 RAMs and ROMs 171

140

ix

135

CONTENTS

3.4 CPU CHIPS AND BUSES 173
3.4.1 CPU Chips 174
3.4.2 Computer Buses 176
3.4.3 Bus Width 178
3.4.4 Bus Clocking 180
3.4.5 Bus Arbitration 184
3.4.6 Bus Operations 187

3.5 EXAMPLE CPU CHIPS 189
3.5.1 The Pentium 4 189
3.5.2 The UltraSPARC III 196
3.5.3 The 8051 200

3.6 EXAMPLE BUSES 202
3.6.1 The ISA Bus 203
3.6.2 The PCI Bus 204
3.6.3 PCI Express 212
3.6.4 The Universal Serial Bus 217

3.7 INTERFACING 221
3.7.1 1/0 Chips 221
3.7.2 Address Decoding 222

3.8 SUMMARY 225

THE MICROARCHITECTURE LEVEL 231

4.1 AN EXAMPLE MICROARCHITECTURE 231
4.1.1 The Data Path 232
4.1.2 Microinstructions 239
4.1.3 Microinstruction Control: The Mic-1 241

4.2 AN EXAMPLE ISA: IVM 246
4.2.1 Stacks 246
4.2.2 The IIVM Memory Model 248
4.2.3 The IJVM Instruction Set 250
4.2.4 Compiling Javato JVM 254

CONTENTS xi

4.3 AN EXAMPLE IMPLEMENTATION 255
4.3.1 Microinstructions and Notation 255
4.3.2 Implementation of IJVM Using the Mic-1 260

4.4 DESIGN OF THE MICROARCHITECTURE LEVEL 271
4.4.1 Speed versus Cost 271
4.4.2 Reducing the Execution Path Length 273
4.4.3 A Design with Prefetching: The Mic-2 281
4.4.4 A Pipelined Design: The Mic-3 281
4.4.5 A Seven-Stage Pipeline: The Mic-4 288

4.5 IMPROVING PERFORMANCE 292
4.5.1 Cache Memory 293
4.5.2 Branch Prediction 299
4.5.3 Out-of-Order Execution and Register Renaming 304
4.5.4 Speculative Execution 309

4.6 EXAMPLES OF THE MICROARCHITECTURE LEVEL 311
4.6.1 The Microarchitecture of the Pentium 4 CPU 312
4.6.2 The Microarchitecture of the UltraSPARC-III Cu CPU 317
4.6.3 The Microarchitecture of the 8051 CPU 323

4.7 COMPARISON OF THE PENTIUM, ULTRASPARC, AND 8051 325

4.8 SUMMARY 326

THE INSTRUCTION SET ARCHITECTURE LEVEL 331

5.1 OVERVIEW OF THE ISA LEVEL 333
5.1.1 Properties of the ISA Level 333
5.1.2 Memory Models 335
5.1.3 Registers 337
5.1.4 Instructions 339
5.1.5 Overview of the Pentium 4 ISA Level 339
5.1.6 Overview of the UltraSPARC III ISA Level 341
5.1.7 Overview of the 8051 ISA Level 345

xii

CONTENTS

5.2 DATA TYPES 348
5.2.1 Numeric Data Types 348
5.2.2 Nonnumeric Data Types 349
5.2.3 Data Types on the Pentium 4 350
5.2.4 Data Types on the UltraSPARC III 350
5.2.5 Data Types on the 8051 351

5.3 INSTRUCTION FORMATS 351
5.3.1 Design Criteria for Instruction Formats 352
5.3.2 Expanding Opcodes 354
5.3.3 The Pentium 4 Instruction Formats 357
5.3.4 The UltraSPARC III Instruction Formats 358
5.3.5 The 8051 Instruction Formats 359

5.4 ADDRESSING 360
5.4.1 Addressing Modes 360
5.4.2 Immediate Addressing 361
5.4.3 Direct Addressing 361
5.4.4 Register Addressing 361
5.4.5 Register Indirect Addressing 362
5.4.6 Indexed Addressing 363
5.4.7 Based-Indexed Addressing 365
5.4.8 Stack Addressing 365
5.4.9 Addressing Modes for Branch Instructions 369
5.4.10 Orthogonality of Opcodes and Addressing Modes 369
5.4.11 The Pentium 4 Addressing Modes 371
5.4.12 The UltraSPARC III Addressing Modes 373
5.4.13 The 8051 Addressing Modes 373
5.4.14 Discussion of Addressing Modes 374

5.5 INSTRUCTION TYPES 375
5.5.1 Data Movement Instructions 375
5.5.2 Dyadic Operations 376
5.5.3 Monadic Operations 377
5.5.4 Comparisons and Conditional Branches 379
5.5.5 Procedure Call Instructions 381
5.5.6 Loop Control 382
5.5.7 Input/Output 383
5.5.8 The Pentium 4 Instructions 386
5.5.9 The UltraSPARC III Instructions 389
5.5.10 The 8051 Instructions 392
5.5.11 Comparison of Instruction Sets 392

5.6

5.7

5.8

5.9

CONTENTS xiii

FLOW OF CONTROL 395

5.6.1 Sequential Flow of Control and Branches 395
5.6.2 Procedures 396

5.6.3 Coroutines 401

5.6.5 Traps 404

5.6.5 Interrupts 404

A DETAILED EXAMPLE: THE TOWERS OF HANOI 408
5.7.1 The Towers of Hanoi in Pentium 4 Assembly Language 409
5.7.2 The Towers of Hanoi in UltraSPARC III Assembly Language 409

THE IA-64 ARCHITECTURE AND THE ITANIUM 2 411
5.8.1 The Problem with the Pentium 4 413
5.8.2 The IA-64 Model: Explicitly Parallel Instruction Computing 414
5.8.3 Reducing Memory References 415
5.8.4 Instruction Scheduling 416
5.8.5 Reducing Conditional Branches: Predication 418
5.8.6 Speculative Loads 420

SUMMARY 421

THE OPERATING SYSTEM MACHINE LEVEL 427

6.1

6.2

VIRTUAL MEMORY 428
6.1.1 Paging 429
6.1.2 Implementation of Paging 431
6.1.3 Demand Paging and the Working Set Model 433
6.1.4 Page Replacement Policy 436
6.1.5 Page Size and Fragmentation 438
6.1.6 Segmentation 439
6.1.7 Implementation of Segmentation 442
6.1.8 Virtual Memory on the Pentium 4 445
6.1.9 Virtual Memory on the UltraSPARC III 450
6.1.10 Virtual Memory and Caching 452

VIRTUAL I/0O INSTRUCTIONS 453

6.2.1 Files 454

6.2.2 Implementation of Virtual I/O Instructions 455
6.2.3 Directory Management Instructions 459

Xiv CONTENTS

6.3 VIRTUAL INSTRUCTIONS FOR PARALLEL PROCESSING 460
6.3.1 Process Creation 461
6.3.2 Race Conditions 462
6.3.3 Process Synchronization Using Semaphores 466

6.4 EXAMPLE OPERATING SYSTEMS 470
6.4.1 Introduction 470
6.4.2 Examples of Virtual Memory 479
6.4.3 Examples of Virtual /O 482
6.4.4 Examples of Process Management 493

6.5 SUMMARY 500

7 THE ASSEMBLY LANGUAGE LEVEL 507

7.1 INTRODUCTION TO ASSEMBLY LANGUAGE 508
7.1.1 What Is an Assembly Language? 508
7.1.2 Why Use Assembly Language? 509
7.1.3 Format of an Assembly Language Statement 512
7.1.4 Pseudoinstructions 515

7.2 MACROS 517
7.2.1 Macro Definition, Call, and Expansion 518
7.2.2 Macros with Parameters 520
7.2.3 Advanced Features 521
7.2.4 Implementation of a Macro Facility in an Assembler 521

7.3 THE ASSEMBLY PROCESS 522
7.3.1 Two-Pass Assemblers 522
7.3.2 Pass One 523
7.3.3 Pass Two 527
7.3.4 The Symbol Table 529

7.4 LINKING AND LOADING 530
7.4.1 Tasks Performed by the Linker 532
7.4.2 Structure of an Object Module 535
7.4.3 Binding Time and Dynamic Relocation 536
7.4.4 Dynamic Linking 539

7.5 SUMMARY 543

CONTENTS

PARALLEL COMPUTER ARCHITECTURES

8.1 ON-CHIP PARALELLISM 548
8.1.1 Instruction-Level Parallelism 549
8.1.2 On-Chip Multithreading 556
8.1.3 Single-Chip Multiprocessors 562

8.2 COPROCESSORS 567
8.2.1 Network Processors 568
8.2.2 Media Processors 576
8.2.3 Cryptoprocessors 581

8.3 SHARED-MEMORY MULTIPROCESSORS 582
8.3.1 Multiprocessors vs. Multicomputers 582
8.3.2 Memory Semantics 590
8.3.3 UMA Symmetric Multiprocessor Architectures 594
8.3.4 NUMA Multiprocessors 602
8.3.5 COMA Multiprocessors 611

8.4 MESSAGE-PASSING MULTICOMPUTERS 612
8.4.1 Interconnection Networks 614
8.4.2 MPPs—Massively Parallel Processors 617
8.4.3 Cluster Computing 627
8.4.4 Communication Software for Multicomputers 632
8.4.5 Scheduling 635
8.4.6 Application-Level Shared Memory 636
8.4.7 Performance 643

8.5 GRID COMPUTING 649

8.6 SUMMARY 651

READING LIST AND BIBLIOGRAPHY

9.1 SUGGESTIONS FOR FURTHER READING 655
9,1,1 Introduction and General Works 655
9.1.2 Computer Systems Organization 657
9.1.3 The Digital Logic Level 658

XV

547

655

Xvi CONTENTS
9.1.4 The Microarchitecture Level 659
9.1.5 The Instruction Set Architecture Level 659
9.1.6 The Operating System Machine Level 660
9.1.7 The Assembly Language Level 661
9.1.8 Parallel Computer Architectures 661
9.1.9 Binary and Floating-Point Numbers 663
9.1.10 Assembly Language Programming 664

9.2 ALPHABETICAL BIBLIOGRAPHY 664

A BINARY NUMBERS 679
A.1 FINITE-PRECISION NUMBERS 679

A.2 RADIX NUMBER SYSTEMS 681
A.3 CONVERSION FROM ONE RADIX TO ANOTHER 683
A.4 NEGATIVE BINARY NUMBERS 685

A.5 BINARY ARITHMETIC 688

B FLOATING-POINT NUMBERS 691

B.1 PRINCIPLES OF FLOATING POINT 692

B.2 IEEE FLOATING-POINT STANDARD 754 694

C ASSEMBLY LANGUAGE PROGRAMMING 701

C.1 OVERVIEW 702
C.1.1 Assembly Language 702
C.1.2 A Small Assembly Language Program 703

C2

C3

C4

C.S5

C.6

C.7

C.S8

CONTENTS xvii

THE 8088 PROCESSOR 704
C.2.1 The Processor Cycle 705
C.2.2 The General Registers 705
C.2.3 Pointer Registers 708

MEMORY AND ADDRESSING 709
C.3.1 Memory Organization and Segments 709
C.3.2 Addressing 711

THE 8088 INSTRUCTION SET 715

C.4.1 Move, Copy and Arithmetic 715

C.4.2 Logical, Bit and Shift Operations 718
C.4.3 Loop and Repetitive String Operations 718
C.4.4 Jump and Call Instructions 719

C.4.5 Subroutine Calls 721

C.4.6 System Calls and System Subroutines 723
C.4.7 Final Remarks on the Instruction Set 725

THE ASSEMBLER 725

C.5.1 Introduction 726

C.5.2 The ACK-Based Tutorial Assembler as88 727
C.5.3 Some Differences with Other 8088 Assemblers 730

THE TRACER 732
C.6.1 Tracer Commands 734

GETTING STARTED 735

EXAMPLES 736

C.8.1 Hello World Example 736

C.8.2 General Registers Example 740

C.8.3 Call Command and Pointer Registers 742

C.8.4 Debugging an Array Print Program 744

C.8.5 String Manipulation and String Instructions 748
C.8.6 Dispatch Tables 750

C.8.7 Buffered and Random File Access 752

INDEX 757

PREFACE

The first four editions of this book were based on the idea that a computer can
be regarded as a hierarchy of levels, each one performing some well-defined func-
tion. This fundamental concept is as valid today as it was when the first edition
came out, so it has been retained as the basis for the fifth edition. As in the first
four editions, the digital logic level, the microarchitecture level, the instruction set
architecture level, the operating system machine level, and the assembly language
level are all discussed in detail.

Although the basic structure has been maintained, this fifth edition does con-
tain many changes, both small and large, that bring it up to date in the rapidly
changing computer industry. For example, the example machines used have been
brought up to date. The current examples are the Intel Pentium 4, the Sun Ultra-
SPARC III, and the Intel 8051. The Pentium 4 is an example of a popular CPU
used on desktop machines. The UltraSPARC III is an example of a popular
server, widely used in medium and large mutiprocessors.

However, the 8051 may come as a surprise to some people. It is a venerable
chip that has been around for decades. However, with the enormous growth of
embedded systems, it has finally come into its own. With computers running
everything from clock radios to microwave ovens, interest in embedded systems is
surging, and the 8051 is a widely-used choice due to its extremely low cost (pen-
nies), the wealth of software and peripherals for it, and the large number of 8051
programmers available.

Over the years, many professors teaching from the course have repeatedly
asked for material on assembly language programming. With the fifth edition,
that material is now available in Appendix C and on the accompanying CD-ROM.

xviii

PREFACE Xix

The assembly language chosen is the 8088 since it is a stripped down version of
the enormously popular Pentium. I could have used the UltraSPARC or the MIPS
or some other CPU almost no one has ever heard of, but as a motivational tool, the
8088 is a better choice since large numbers of students have a Pentium at home
and the Pentium is capable of running 8088 programs. However, since debugging
assembly code is very difficult, I have provided a set of tools for learning assem-
bly language programming, including an 8088 assembler, a simulator, and a
tracer. These tools are provided for Windows UNIX, and Linux. The tools are on
the CD-ROM and also on the book’s Website (see below).

The book has become longer over the years. Such an expansion is inevitable
as a subject develops and there is more known about it. As a result, when the
book is used for a course, it may not always be possible to finish the book in a sin-
gle course (e.g., in a trimester system). A possible approach would be to do all of
Chaps. 1, 2, and 3, the first part of Chap. 4 (up through and including Sec. 4.4),
and Chap. 5 as a bare minimum. The remaining time could be filled with the rest
of Chap. 4, and parts of Chaps. 6, 7, and 8, depending on the interest of the
instructor.

A chapter-by-chapter rundown of the major changes since the fourth edition
follows. Chapter 1 still contains an historical overview of computer architecture,
pointing out how we got where we are now and what the milestones were along
the way. The enlarged spectrum of computers that exist is now discussed, and our
three major examples (Pentium 4, UltraSPARC III, and 8051) are introduced.

In Chapter 2, the material on input/output devices has been updated, em-
phasizing the technology of modern devices, including digital cameras, DSL, and
Internet over cable.

Chapter 3 has undergone some revision and now treats computer buses and
modern I/O chips. The three new examples are described here at the chip level.
New material has been added about the PCI Express bus, which is expected to
replace the PCI bus shortly.

Chapter 4 has always been a popular chapter for explaining how a computer
really works, so most of it is unchanged since the fourth edition. However, there
are new sections discussing the microarchitecture level of Pentium 4, the Ultra-
SPARC III, and the 8051.

Chapters 5, 6, and 7 have been updated using the new examples, but are other-
wise relatively unchanged. Chapter 6 uses Windows XP rather than Windows NT
as an example, but at the level of discussion here, the changes are minimal.

In contrast, Chapter 8 has been heavily modified to reflect all the new activity
in parallel computers of all forms. It covers five different classes of parallel sys-
tems, from on-chip parallelism (instruction-level parallelism, on-chip multithread-
ing, and single-chip multiprocessors), through coprocessors, shared-memory sys-
tems, and clusters, and ends up with a brief discussion of grids. Numerous new
examples are discussed here, from the TriMedia CPU, to the BlueGene/L, Red
Storm and Google clusters.

XX PREFACE

The references in Chap. 9 have been updated heavily. Computer organization
is a dynamic field. Over half the references in this 5th edition are to books and
papers written after the 4th edition of this book was published.

Appendices A and B are unchanged since last time, but Appendix C on as-
sembly language programming is completely new. It is a hands-on, how-to guide
to assembly language programming using the tools provided on the CD-ROM and
the Website. Appendix C was written by Dr. Evert Wattel of the Vrije Universi-
teit, Amsterdam. Dr. Wattel has had many years of experience teaching students
using these tools. My thanks to him for writing this appendix.

In addition to the assembly language tools, the Website also contains a graphi-
cal simulator to be used in conjunction with Chap. 4. This simulator was written
by Prof. Richard Salter of Oberlin College. It can be used by students to help
grasp the principles discussed in this chapter. My thanks to him for providing this
software.

In addition, the figures used in the book and PowerPoint sheets for instructors
are also available on the Website. The URL is

http:/www.prenhall.com/tanenbaum

From there, click on the Companion Website for this book and select the page you
are looking for from the menu.

Instructors using this book for a university course can obtain a manual with
the solutions to the problems by contacting their Pearson Education representa-
tive.

A number of people have read (parts of) the manuscript and provided useful
suggestions or have been helpful in other ways. In particular, I would like to
thank Nikitas Alexandridis, Shekar Borkar, Herbert Bos, Scott Cannon, Doug
Carmean, Alan Charlesworth, Eric Cota-Robles, Michael Fetterman, Quinn
Jacobson, Thilo Kielmann, Iffat Kazi, Saul Levy, Ahmed Louri, Abhijit Pandya,
Krist Petersen, Mark Russinovich, Ronald Schroeder, and Saim Ural for their
help, for which I am most grateful. Thank you.

I would also like to thank Jim Goodman for his contributions to this book,
especially to Chaps, 4 and 5. The idea of using the Java Virtual Machine was his
and the book is better for it.

Finally, I would like to thank Suzanne once more for her love and patience. It
never ends, not even after 15 books. Barbara and Marvin are always a joy and
now know what professors do for a living. The Royal Netherlands Academy of
Arts and Sciences granted me a much-coveted Academy Professorship in 2004,
freeing me from some of the less attractive aspects of academia (such as endless
boring committee meetings), for which I am eternally grateful.

Andrew S. Tanenbaum

http:/www.prenhall.com/tanenbaum

INTRODUCTION

A digital computer is a machine that can solve problems for people by carry-
ing out instructions given to it. A sequence of instructions describing how to per-
form a certain task is called a program. The electronic circuits of each computer
can recognize and directly execute a limited set of simple instructions into which
all its programs must be converted before they can be executed. These basic
instructions are rarely much more complicated than

Add two numbers.
Check a number to see if it is zero.

Copy a piece of data from one part of the computer’s memory to another.

Together, a computer’s primitive instructions form a language in which peo-
ple can communicate with the computer. Such a language is called a machine
language. The people designing a new computer must decide what instructions to
include in its machine language. Usually, they try to make the primitive instruc-
tions as simple as possible, consistent with the computer’s intended use and per-
formance requirements, in order to reduce the complexity and cost of the electron-
ics needed. Because most machine languages are so simple, it is difficult and
tedious for people to use them.

This simple observation has, over the course of time, led to a way of structur-
ing computers as a series of abstractions, each abstraction building on the one

1

2 INTRODUCTION CHAP. 1

below it. In this way, the complexity can be mastered and computer systems can
be designed in a systematic, organized way. We call this approach structured
computer organization and have named the book after it. In the next section we
will describe what we mean by this term. After that we will look at some histori-
cal developments, the state-of-the-art, and some important examples.

1.1 STRUCTURED COMPUTER ORGANIZATION

As mentioned above, there is a large gap between what is convenient for peo-
ple and what is convenient for computers. People want to do X, but computers
can only do Y. This leads to a problem. The goal of this book is to explain how
this problem can be solved.

1.1.1 Languages, Levels, and Virtual Machines

The problem can be attacked in two ways: both involve designing a new set of
instructions that is more convenient for people to use than the set of built-in ma-
chine instructions. Taken together, these new instructions also form a language,
which we will call L1, just as the built-in machine instructions form a language,
which we will call LO. The two approaches differ in the way programs written in
L1 are executed by the computer, which, after all, can only execute programs
written in its machine language, LO.

One method of executing a program written in L1 is first to replace each
instruction in it by an equivalent sequence of instructions in LO. The resulting
program consists entirely of L0 instructions. The computer then executes the new
LO program instead of the old L1 program. This technique is called translation.

The other technique is to write a program in LO that takes programs in L1 as
input data and carries them out by examining each instruction in turn and execut-
ing the equivalent sequence of LO instructions directly. This technique does not
require first generating a new program in LO. It is called interpretation and the
program that carries it out is called an interpreter.

Translation and interpretation are similar. In both methods, the computer car-
ries out instructions in L1 by executing equivalent sequences of instructions in LO.
The difference is that, in translation, the entire L1 program is first converted to an
LO program, the L1 program is thrown away, and then the new LO program is
loaded into the computer’s memory and executed. During execution, the newly
generated LO program is running and in control of the computer.

In interpretation, after each L1 instruction is examined and decoded, it is car-
ried out immediately. No translated program is generated. Here, the interpreter is
in control of the computer. To it, the L1 program is just data. Both methods, and
increasingly, a combination of the two, are widely used.

SEC. 1.1 STRUCTURED COMPUTER ORGANIZATION 3

Rather than thinking in terms of translation or interpretation, it is often sim-
pler to imagine the existence of a hypothetical computer or virtual machine
whose machine language is L1. Let us call this virtual machine M1 (and let us
call the virtual machine corresponding to LO, MO0). If such a machine could be
constructed cheaply enough, there would be no need for having language LO or a
machine that executed programs in LO at all. People could simply write their pro-
grams in L1 and have the computer execute them directly. Even if the virtual
machine whose language is L1 is too expensive or complicated to construct out of
electronic circuits, people can still write programs for it. These programs can
either be interpreted or translated by a program written in LO that itself can be
directly executed by the existing computer. In other words, people can write pro-
grams for virtual machines, just as though they really existed.

To make translation or interpretation practical, the languages LO and L1 must
not be “too” different. This constraint often means that L1, although better than
L0, will still be far from ideal for most applications. This result is perhaps
discouraging in light of the original purpose for creating L1— relieving the pro-
grammer of the burden of having to express algorithms in a language more suited
to machines than people. However, the situation is not hopeless.

The obvious approach is to invent still another set of instructions that is more
people-oriented and less machine-oriented than L1. This third set also forms a
language, which we will call L2 (and with virtual machine M2). People can write
programs in L2 just as though a virtual machine with L2 as its machine language
really existed. Such programs can either be translated to L1 or executed by an
interpreter written in L1.

The invention of a whole series of languages, each one more convenient than
its predecessors, can go on indefinitely until a suitable one is finally achieved.
Each language uses its predecessor as a basis, sO we may view a computer using
this technique as a series of layers or levels, one on top of another, as shown in
Fig. 1-1. The bottommost language or level is the simplest and the topmost
language or level is the most sophisticated.

There is an important relation between a language and a virtual machine.
Each machine has a machine language, consisting of all the instructions that the
machine can execute. In effect, a machine defines a language. Similarly, a
language defines a machine—namely, the machine that can execute all programs
written in the language. Of course, the machine defined by a certain language
may be enormously complicated and expensive to construct directly out of elec-
tronic circuits but we can imagine it nevertheless. A machine with C or C++ or
Java as its machine language would be complex indeed but could easily be built
using today’s technology. There is a good reason, however, for not building such
a computer: it would not be cost effective compared to other techniques. Merely
being doable is not good enough: a practical design must be cost effective as well.

In a certain sense, a computer with n levels can be regarded as n different vir-
tual machines, each with a different machine language. We will use the terms

4 INTRODUCTION CHAP. 1

Programs in Ln are
either interpreted by

Level n Virtual machine Mn, with / an interpreter running
machine language Ln on a lower machine, or
are translated to the
machine language of a
lower machine
Virtual machine M3, with
Level 3 machine language L3
Programs in L2 are
either interpreted by
interpreters running
Lovel2 | Virtual machine M2, with |.— on M1 or M0, or are
machine language L2 translated to L1 or LO
Programs in L1 are
either interpreted by
Virtual machine M1, with / an interpreter running on
Level 1 machine language L1 MO, or are translated to LO
Programs in LO can be
- directly executed by
Level 0 Actual computer MO, with the electronic circuits
machine language LO

Figure 1-1. A multilevel machine.

“level” and “virtual machine’ interchangeably. Only programs written in lan-
guage LO can be directly carried out by the electronic circuits, without the need
for intervening translation or interpretation. Programs written in L1, L2, ..., Ln
must either be interpreted by an interpreter running on a lower level or translated
to another language corresponding to a lower level.

A person who writes programs for the level n virtual machine need not be
aware of the underlying interpreters and translators. The machine structure
ensures that these programs will somehow be executed. It