

NUCLEAR PHYSICS

Each question has four possible answers, tick (11) the correct answer:

	-	•	•	1 - 7
1.	Ato	nic theory was announced in 1808 by:		
	(a)	Einstein	(b)	Dalton
	(c)	Newton	(d)	J.J. Thomson
2.	Вур	passing an electric discharge through a g	as at	low pressure, the electron was discovered:
	(a)	Millikan	(b)	Chadwick
	(c)	Bohr	(d)	J.J. Thomson
3.9	Cha	rge on an electron was determined by:		
	(a)	Ampere	(b)	Millikan
	(c)	Maxwell	(d)	Bohr
4.9	The	early Greeks believed that matter waves	s was	:
	(a)	Discrete	(b)	Continuous
	(c)	Both continuous and discrete	(d)	All of above
5.	The	electron was discovered by J.J Thomson	n by p	passing an electric discharge through:
	(a)	A liquid	(b)	A solid
	(c)	A gas at low pressure	(d)	A gas at high pressure
6.	The	charge on electron was experimentally	deteri	mined by Millikan in:
	(a)	1895	(b)	1916
	(c)	1905	(d)	1909
7.	Stru	cture of Nucleus successfully explained	by:	
	(a)	Bohr	(b)	Millikan
	(c)	J.J. Thomson	(d)	Rutherford
8.	Rutl	nerford determined the size of nucleus to	be e	
	(a)	$10^{-10}\mathrm{m}$	(b)	10^{-13} m
	(c)	10^{-16} m	(d)	10^{-14} m
9.	Prot	on was discovered by Rutherford in:		
	(a)	1917	(b)	1920
	(c)	1910	(d)	1915
10.	Cha	dwick discovered neutron by the study of	of sca	ttering of α-particles from:
	(a)	Nitrogen	(b)	Oxygen
	(c)	Gold foil	(d)	Beryllium

ODJL	CIIVL	. FTI TOIGO FAIRT-II		£11
11.	Neu	trons and protons in the Nucleus are to	gether	called:
	(a)	Nucleons	(b)	Atomic particles
	(c)	Photons	(d)	Phenons
12.	In th	ne unit of unified mass scale, The mass	of an	electron is:
	(a)	0.000554 u	(b)	0.0000554 u
	(c)	1,007276 u	(d)	1.0086654 u
13.	Uni	fied mass scale means that atomic mass	is exp	pressed in:
	(a)	Kilogram	(b)	Gram
	(c)	U only	(d)	Atomic mass unit
14.	The	particle which is 7000 times heavier th	an the	electron is called:
	(a)	β-particle	(b)	R.ray
	(c)	α-Particle	(d)	Proton
15.	The	Isotopes of hydrogen are:		
	(a)	Protium	(b)	Deutrium
	(c)	Tritium	(d)	All
16.	The alwa		otal m	ass of all the constituents making the nucleus i
	(a)	Grater than one	(b)	Equal to one
	(c)	Less than one	(d)	None of these
17.	The	energy required to breaks up helium nu	ıclear	into two protons and two neutron is:
	(a)	28.2 eV	(b)	28.2 Kev
	(c)	28.2 Mev	(d)	28.2 μev
18.	A la	rge amount of energy can be obtained v	when:	
	(a)	Fission takes palace	(b)	A heavy element breakup in to lighter elemen
	(c)	Both (a) and (b)	(d)	None of these
19.	A pa	article having the mass of an electron and	the cl	narge of a proton is called a:
	(a)	Photon	(b)	Nucleons
	(c)	Positron	(d)	Antiproton
20.	Cha	rge on Neutron is:		
	(a)	Zero	(b)	$+1.6 \times 10^{-19} \text{ c}$
	(c)	$-1.6 \times 10^{-19} \text{ c}$	(d)	None of above
21.		ss of proton is:		
	(a)	$1.67 \times 10^{-27} \text{ kg}$	(b)	$9.1 \times 10^{-31} \text{ kg}$
	(c)	$1.67 \times 10^{-17} \text{ kg}$	(d)	$2.1 \times 10^{-27} \text{ kg}$
22.	Mas	ss of electron is:		
	(a)	$1.67 \times 10^{-27} \text{ kg}$	(b)	$9.1 \times 10^{-31} \text{ kg}$
	(c)	$1.67 \times 10^{-17} \text{ kg}$	(d)	$2.1 \times 10^{-27} \text{ kg}$

H-Becqueral

(c)

OBJE	CTIVE	PHYSICS PART-II		2/9
23.	Cha	rge on an electron is:		
	(a)	$+1.6 \times 10^{-19} \text{ c}$	(b)	$-1.6 \times 10^{-19} \text{ c}$
	(c)	$2.1 \times 10^{-19} \text{ c}$	(d)	None of above
24.	1 an	nu is equal to:		
	(a)	$1.0606 \times 10^{-27} \text{ kg}$	(b)	$1.66 \times 10^{-31} \text{ kg}$
	(c)	$1.66 \times 10^{-34} \text{ kg}$	(d)	$1.66 \times 10^{-19} \text{ kg}$
25.	Ato calle		er are	the same but have different mass numbers are
	(a)	Isomers	(b)	Isotones
	(c)	Isotopes	(d)	None of these
26.	The	mass number of a nucleus is the number	er of:	
	(a)	Positive particle nucleus	(b)	Neutrons in the nucleus
	(c)	Nucleons in the nucleus	(d)	Protons in the nucleus
27.	An a	apparatus used to determine the masses	of pro	otons, nuclei, ions and to detect the isotopes is:
	(a)	Mass spectrograph	(b)	Dosimeter
	(c)	Geiger counter	(d)	None of these
28.	For	an atom having atomic mass A and atom	nic nui	mber Z, the number of neutrons in the nucleus is:
	(a)	A + Z	(b)	A - Z
	(c)	Z	(d)	None of these
29.	The	chemical behaviour of an atom is deter-	mined	l by:
	(a)	Number of isotopes	(b)	Atomic number
	(c)	Mass number	(d)	None of these
30.	The	amount of energy required to break the	nucle	eus is called its:
	(a)	Binding energy	(b)	Potential and kinetic energy
	(c)	Atomic energy	(d)	Nuclear energy
31.	The	average amount of energy to remove or	ne nuc	eleon from the nucleus is called:
	(a)	Nuclear energy	(b)	Binding energy
	(c)	Binding energy per nucleon	(d)	None of above
32.	Mas	ss defect per nucleon is called:		
	(a)	Average energy of nucleon	(b)	Binding energy of nucleus
	(c)	Packing fraction	(d)	None of these
33.		binding energy of deutron is:		
	(a)	22.22 Mev	(b)	2.224 Mev
	(c)	0.224 Mev	(d)	20.2 Mev
34.		io activity was discovered by:		
	(a)	Rutherford	(b)	Einstein

(d) Bohr

ODJE	OIIVE	. 1 11 1 0 1 0 0 1 1 1 1 1 1 1		20
35.	A n	aturally occurring disintegration involv	ing th	e emission of high energy electron is called:
	(a)	α-decay	(b)	β-decay
	(c)	γ-decay	(d)	None of these
36.	Who	en a nucleus emits an $lpha$ -particle, its mas	ss nun	nber drops by:
	(a)	1	(b)	3
	(c)	2	(d)	4
37.	The	interaction of different radiation with r	natter	depends upon:
	(a)	Mass of interacting particle	(b)	Charge
	(c)	Energy	(d)	All of above
38.	Arti	ficial radio activity is:		
	(a)	Unstable to unstable element	(b)	Stable to stable element
	(c)	Unstable to stable element	(d)	Stable to unstable element
39.	Rad	ioactivity happen due to the disintegrat	ion of	:
	(a)	Nucleus	(b)	Mass
	(c)	Electrons	(d)	Protons
40.	Wh	ich of the following have similar nature	as tha	at of electrons:
	(a)	β-rays	(b)	γ-rays
	(c)	α-rays	(d)	X-rays
41.	Arti	ficial radioactivity was discovered by:		
	(a)	Rutherford	(b)	Roentgen
	(c)	Marie curie and Pierre Currie	(d)	Henry Bacquerel
42.	Mar	rie curie and Pierre curie discovered two	new	radioactive elements which are:
	(a)	Polonium and radium	(b)	Radium and crypton
	(c)	Platinum and radium	(d)	Uranium and radium
43.	Who	en $lpha$ -particle is emitted out of the nucle	us the	n the mass number of the nucleus decreases by
	(a)	4	(b)	3
	(c)	2	(d)	1
44.	The	mass and charge of an α -particle is:		
	(a)	2u and + 4e	(b)	4u and + 2e
	(c)	2u and + 2e	(d)	4u and + 4e
45.	The	wavelength of γ-rays is:		
	(a)	Greater than that of x-rays	(b)	Equal to that of x-ray
	(c)	Shorter than that of x-rays	(d)	None of these
46.	γ-ra	diation:		
	(a)	has no mass	(b)	has no energy
	(c)	is a proton	(d)	All of the above

(c) Mean life

OBJE	CTIVE	PHYSICS PART-II		281
47.	Who	en α -particle emitted out of the nuc	leus then c	charge number of the nucleus decreased by:
	(a)	4	(b)	3
	(c)	2	(d)	1
48.	The	distance at which the radioactive p	article con	nes to rest after emitting from a source is called:
	(a)	Stopping distance	(b)	Range
	(c)	Distance	(d)	All of above
49.	Whi	ich of the reaction shows the emissi	ion of β-pa	article:
	(a)	$_{Z}X^{A} \longrightarrow _{Z-1}X^{A-4}$	(b)	$_{Z}X^{A} \longrightarrow _{Z+1}X^{A}$
	(c)	$_{Z}X^{A} \longrightarrow _{Z-2}X^{A-4}$	(d)	None of these
50.	Whi	ich of the reaction shows the emissi	ion of α-pa	articles:
	(a)	$_{Z}X^{A}\longrightarrow _{Z-1}X^{A-4}$	(b)	$_{Z}X^{A}\longrightarrow _{Z+1}X^{A}$
	(c)	$_{Z}X^{A} \longrightarrow _{Z-2}X^{A-4}$	(d)	None of these
51.	Whi	ich one of the following is not affec	ted by elec	ctric or magnetic field:
	(a)	Proton	(b)	Electrons
	(c)	γ-rays	(d)	x-rays
52.	The	half life of radioactive elements de	pends upo	n:
	(a)	Nature of element	(b)	Amount of radioactive substance
	(c)	Magnetic field	(d)	None of these
53.	The	radioactive decay obeys the law:		
	(a)	$N = N_o e^{\lambda t}$	(b)	$N = N_o e^{-\lambda t}$
	(c)	$N_o = N e^{-\lambda t}$	(d)	$N_o = N (1 + e^{-\lambda t})$
54.	The	rate of decay of radioactive substa	nce:	
	(a)	Varies inversely with time	(b)	Decreases with time
	(c)	Constant	(d)	Decreases exponentially with time
55.	The	time taken for a radioactive elemen	t to decay	to half of its original number of atoms is called:
	(a)	Half life of the material	(b)	Decay life of the material
	(c)	Average life of material	(d)	None of these
56.	The	half life of a radioactive element is	given by:	
	(a)	$T_{1/2}~=~0.693/\lambda$	(b)	$T_{1/2} = 0.603\lambda$
	(c)	$T_{1/2}~=~0.693\lambda$	(d)	$T_{1/2} = 0.603/\lambda$
57.	The	reciprocal of decay constant (λ) of	a radioact	ive element is:
	(a)	Average life	(b)	Half life

(d) None of these

OBJE	CTIVE	PHYSICS PART-II		282
58.	The	SI unit of decay constant is:		
	(a)	m	(b)	m^{-1}
	(c)	S^{-1}	(d)	Nm^{-1}
59.		e have No number of atoms of any radi	oactiv	ve element, then after 4 half life's, the number of
	(a)	$\frac{1}{16}$ No	(b)	$\frac{1}{4}$ No
	(c)	$\frac{1}{8}$ No	(d)	None of these
60	The	half life of uranium ⁻²³⁸ is:		
	(a)	4.5×10^9 years	(b)	3.8 days
	(c)	1620 years	(d)	23.5 minutes
61.	The	half life of radium -225 is:		
	(a)	4.5×10^9 years	(b)	3.8 days
	(c)	1620 years	(d)	23.5 minutes
62.	Rate	e of decay is actually described by:		
	(a)	Half life	(b)	Decay constant
	(c)	Mean life	(d)	None of these
63.	Whe	en a certain radiation passes through ma	atters i	t lose energy due to:
	(a)	Ionization of material atoms sue to di	rect co	ollision
	(b)	Ionization of material atoms due to el	ectros	tatic attraction
	(c)	Excitation of material atoms		
	(d)	Any of these		
64.	The	magnitude of range of radiation particl	e thro	ugh matter depends upon:
	(a)	Its mass and charge	(b)	Its charge
	(c)	Its mass and charge	(d)	all of the above
65.	The	intensity Io of a beam after passing three	ough:	
	(a)	$I = I_o e^{-\mu x}$	(b)	$I = I_o x$
	(c)	$I = I_1 e^{\mu x}$	(d)	$I = I_o x^2$
66.	In e	quation $I = I_o e^{-\mu x}$, the symbol μ represe	ents:	
	(a)	Radiation coefficient	(b)	Absorption coefficient
	(c)	Emission coefficient	(d)	Material coefficient
67.		process in which a heavy nucleus is bralled:	oken i	nto two lighter nuclei with the release of energy
	(a)	Nuclear fusion	(b)	Nuclear fission
	(c)	Chain reaction	(d)	None of these

Sub critical mass

(c)

68.	Nuc	clear fission reaction can be produced in	92U ²³	⁸ by:
	(a)	Slow neutrons	(b)	Fast neutrons
	(c)	Thermal neutrons	(d)	None of these
69.		product of the fission reaction of ura al to:	nium	named barium and krypton have a total mass
	(a)	1.96 Mev	(b)	0.67 Mev
	(c)	0.9 Mev	(d)	0.97 Mev
70.	The	chain reaction is controlled by a series	of roc	Is usually made of:
	(a)	Cadmium	(b)	Uranium
	(c)	Iron	(d)	Boron
71.	The	nuclear fission reaction is given by the	follov	wing reaction:
	(a)	$_{92}U^{235} + _{0}n^{1} \longrightarrow _{56}B_{a}^{144} + _{36}kr^{92} + 3_{0}r^{1}$	1 (b)	$_{1}H^{2} + _{1}H^{2} \longrightarrow _{2}He^{4} + Q$
	(c)	$_{7}N^{14} + _{0}n^{1} \longrightarrow {}_{6}C^{12} + _{1}H^{3}$	(d)	None of these
72.	Ene	ergy emitted when one atom of 92U235 un	dergo	es fission reaction is:
	(a)	150 Mev	(b)	70 Mev
	(c)	200 Mev	(d)	300 Mev
73.	The	process of nuclear fission was explaine	d by:	
	(a)	Lies Meitner	(b)	Stressman and Hann
	(c)	Bohr and Hahn	(d)	None of these
74.	Dur	ing fission process, a large amount of:		
	(a)	Light energy is produced	(b)	Heat energy is released
	(c)	Nuclear energy is released	(d)	None of these
75.	The	energy released during fission process	is con	trolled in:
	(a)	Nuclear reactor	(b)	Cyclotron
	(c)	Van de Graff generator	(d)	None of these
76.	The	moderator used in a nuclear reactor is:		
	(a)	Uranium	(b)	Sodium
	(c)	Aluminum	(d)	Graphite
77.	The	first atomic reactor was introduced by:		
	(a)	Currie	(b)	Enrico Fermi
	(c)	Newton	(d)	Bohr
78.	The	total energy transferred to a body by me	eans o	of radiation is measured is units of:
	(a)	Rontgens	(b)	Rutherford's
	(c)	Curies	(d)	None of these
79.	The	mass of fissionable material needed for	self s	sustaining chain reaction is called:
	(a)	Atomic mass	(b)	Critical mass

(d) None of these

(c) Wooden window

80.	Urai	nium bomb depends on the process of:		
	(a)	Nuclear Fission	(b)	Nuclear Fusion
	(c)	Pair production	(d)	All of above
81.	The	first artificially produced nuclear transr	nutati	on was studied by:
	(a)	Chadwick	(b)	Rutherford
	(c)	Faraday	(d)	None of these
82.		process in which two or more lighter ase of energy is called:	nucle	i combine together to form heavier nuclei with
	(a)	Nuclear fission	(b)	Nuclear fusion
	(c)	Chain reaction	(d)	None of these
83.	The	main source of energy in the stars and t	he sui	is due to:
	(a)	Fission reaction	(b)	Fusion reaction
	(c)	Chemical reaction	(d)	None of above
84.	The calle	1	ed of	neutron produced during a fission reaction are
	(a)	Moderators	(b)	Retardants
	(c)	Both (a) and (b)	(d)	None of these
85.	Exa	mples of radiation detector case:		
	(a)	Gorger counter	(b)	Wilson cloud chamber
	(c)	Solid state detector	(d)	All of the above
86.		tain radiation detector makes use of erentially on ions this type of detector is		fact that super saturated vapors condense d:
	(a)	Gorger counter	(b)	Wilson cloud chamber
	(c)	Solid state detector	(d)	None of these
87.	In V	Vilson cloud chamber x-particle leave:		
	(a)	Thick and continuous	(b)	Thin and discontinuous
	(c)	Thick and discontinuous	(d)	Thin and continuous
88.	In V	Vilson cloud chamber, β-particles leave:		
	(a)	Thin and continuous tracks	(b)	Thick and continuous tracks
	(c)	No tracks	(d)	Thin and discontinuous tracks
89.	In G	3.M, counter, the cylinder is dilled with	mixtu	re of gases:
	(a)	Containing Ne and Br	(b)	Containing organ and alcohol
	(c)	Both (a) and (b)	(d)	None of these
90.	Тоа	allow the entry of α or β -particles, one e	nd of	the Geiger counter tube vas a:
	(a)	Thin glass window	(b)	Thin mica window

(d) None of these

					_
91.	The	counter which also provide the power to	o the	G.M tube is called:	_
	(a)	Chamber	(b)	Amplifier	
	(c)	Scalar	(d)	Vector	
92.	The	term "dead time" in G.M counter mean	s the	time or the order of:	
	(a)	More than 1 millisec	(b)	Less than 1 millisec	
	(c)	More than 1 millisec	(d)	None of these	
93.	In so	olid-state detector, the reverse bias is ap	plied	through the two:	
	(a)	Conducting layers of silver	(b)	Conducting layers of gold	
	(c)	Conducting layers of aluminum	(d)	Conducting layers of plastic	
94.	In so	old state detector, the energy needed to	produ	ce an electron hole pair is about:	
	(a)	3Mev to 4Mev	(b)	3ev to 4Mev	
	(c)	Both (a) and (b)	(d)	None of these	
95.	The	phenomenon of nuclear fission is used	in the	construction of:	
	(a)	Atomic bombs	(b)	Hydrogen bomb	
	(c)	Both (a) and (b)	(d)	None of these	
96.	In fi	ssion reaction, heavy water is used as:			
	(a)	Heat exchanger	(b)	Coolant	
	(c)	Moderator	(d)	None of above	
97.		Wilson cloud chamber is based on the lily on:	princ	iple that supper saturated vapors condense mor	re
	(a)	Ions and dust particles	(b)	Dust particles	
	(c)	Ions	(d)	None of these	
98.	Wils	son cloud chamber is a device used as:			
	(a)	Path of ionizing particle	(b)	Accelerating +vely charged particle	
	(c)	Accelerating -vely charged particle	(d)	None of these	
99.	In V	Vilson Cloud chamber, the β-particle lea	ive:		
	(a)	Thin and discontinous tracks	(b)	No tracks	
	(c)	Thick and continuous tracks	(d)	None of these	
100.	In V	Vilson Cloud chamber, the $lpha$ -particle lea	ave:		
	(a)	Thin and discontinuous tracks	(b)	No tracks	
	(c)	Thick, straight and continuous tracks	(d)	None of these	
101.	Geig	ger counter was designed by:			
	(a)	Mosely	(b)	Michelson	
	(c)	Geiger and Muller	(d)	Faraday	
102.	Geig	ger Muller counter is suitable for:			
	(a)	Slow counting	(b)	Fast counting	
	(c)	Both (a) and (b)	(d)	None of these	

103.	Geig	er Muller counter is widely used:		
	(a)	Radioactivity experiments	(b)	Electrical experiments
	(c)	Both (a) and (b)	(d)	None of these
104.	Spec	ially designed solid state detector can b	e use	d to detect:
	(a)	γ-rays	(b)	X-rays
	(c)	α -particles	(d)	β -particles
105.	A so	lid state detector is basically:		
	(a)	A p-n-p transistor	(b)	A n-p-n transistor
	(c)	A reverse p-n junction	(d)	A forward p-n-junction
106.	The	potential difference between the top and	d botte	om of a cloud chamber is of the order of:
	(a)	290 v	(b)	400 v
	(c)	1 kv	(d)	None of above
107.	The	potential difference between anode and	catho	de in a neon-bromine filled G.M counter is:
	(a)	290 v	(b)	400 v
	(c)	l kv	(d)	1 MV
108.		ch one of the following detectors can co		
	(a)	Solid state detector	(b)	G.M counter
	(c)	Wilson cloud chamber	(d)	None of these
109.		.M counter, the electrons take time to re		
	(a)	1 μs	(b)	$10^{-6} \mu s$
	(c)	2 μς	(d)	None of these
110.		.M counter, the positive ions take time t		
		10^{-2} s		•
	(c)	10^{-4} s	(d)	10^{-6} s
111.		capture of a neutron by a nucleus results		
	(a)	Deutron	(b)	Proton
	(c)	Helium	(d)	Radio Isotope
112.		mass scale 1u is equal to:		1.55 10-19
	(a)	$1.66 \times 10^{18} \text{ kg}$		$1.66 \times 10^{-19} \text{ kg}$
	(c)	$1.66 \times 10^{-27} \text{ kg}$	(d)	$1.66 \times 10^{27} \text{ kg}$
113.	One	joule of energy absorbed per kilogram of		ody is:
	(a)	Roentgen	(b)	Grey
	(c)	Rem	(d)	Curie
114.		total energy transferred to a body by me		
	(a)	Becquerels	(b)	Grey
	(c)	Rem	(d)	Roentgen

115.	The	SI unit of radiation dose is:		
	(a)	Roentgen	(b)	Curie
	(c)	Grey	(d)	Rem
116.	The	number of fundamental forces present i	n natı	are are:
	(a)	3	(b)	2
	(c)	5	(d)	4
117.	Duri	ng fusion of hydrogen into helium:		
	(a)	Energy is released		
	(b)	Energy is absorbed		
	(c)	Mass is increased due to energy absorp	ption	
	(d)	Mass is reduced due to energy released	d	
118.	A pa	air of quark and anti quark makes a:		
	(a)	Meson	(b)	Bargon
	(c)	Photon	(d)	Proton
119.	The	mass spectrum of naturally occurring no	eon, s	howing:
	(a)	1 isotope	(b)	2 isotope
	(c)	3 isotope	(d)	4 isotope
120.	The	energy of photon for photoelectric effect	et is le	ess than:
	(a)	1 MeV	(b)	2 MeV
	(c)	5 MeV	(d)	8 MeV
121.	In W	ilson cloud chamber, if tracks are thick, s	straigh	nt and continuous, then particle is:
	(a)	α -particles	(b)	β -particles
	(c)	γ-rays	(d)	All
122.	Low	level radiations effects:		
	(a)	Less of hair	(b)	Ulceration
	(c)	Drop of white blood cells	(d)	All

ANSWERS									
1.	(b)	2.	(d)	3.	(b)	4.	(a)	5.	(c)
6.	(d)	7.	(d)	8.	(d)	9.	(a)	10.	(d)
11.	(a)	12.	(a)	13.	(d)	14.	(c)	15.	(d)
16.	(b)	17.	(c)	18.	(c)	19.	(c)	20.	(a)
21.	(a)	22.	(b)	23.	(b)	24.	(a)	25.	(c)
26.	(c)	27.	(a)	28.	(b)	29.	(a)	30.	(a)
31.	(c)	32.	(b)	33.	(b)	34.	(c)	35.	(b)
36.	(c)	37.	(d)	38.	(d)	39.	(a)	40.	(a)
41.	(d)	42.	(a)	43.	(c)	44.	(b)	45.	(c)
46.	(d)	47.	(c)	48.	(b)	49.	(b)	50.	(c)
51.	(c)	52.	(b)	53.	(b)	54.	(d)	55.	(a)
56.	(a)	57.	(c)	58.	(b)	59.	(a)	60.	(a)
61.	(c)	62.	(b)	63.	(d)	64.	(d)	65.	(a)
66.	(b)	67.	(b)	68.	(b)	69.	(c)	70.	(a)
71.	(a)	72.	(c)	73.	(b)	74.	(c)	75.	(a)
76.	(d)	77.	(b)	78.	(a)	79.	(b)	80.	(a)
81.	(b)	82.	(b)	83.	(b)	84.	(a)	85.	(d)
86.	(b)	87.	(a)	88.	(d)	89.	(c)	90.	(b)
91.	(c)	92.	(a)	93.	(b)	94.	(b)	95.	(b)
96.	(c)	97.	(a)	98.	(a)	99.	(a)	100.	(c)
101.	(c)	102.	(a)	103.	(a)	104.	(a)	105.	(c)
106.	(c)	107.	(b)	108.	(c)	109.	(a)	110.	(b)
111.	(d)	112.	(c)	113.	(b)	114.	(d)	115.	(c)
116.	(d)	117.	(a)	118.	(a)	119.	(c)	120.	(c)
121.	(a)	122.	(d)		A.	1			