

CURRENT ELECTRICITY

Each question has four possible answers, tick (11) the correct answer:

1.	In lic	luids and gases, the current is due to the	moti	on of:
	(a)	Negative charges	(b)	Neutral particle
	(c)	Positive charges	(d)	Both negative and positive charges
2.	The	charge carriers in metallic conductors as	re:	
	(a)	Free electrons and ions	(b)	Electrons
	(c)	Electrons and protons	(d)	+ve and -ve ions
3.	The	conventional current is due to the flow	of:	
	(a)	Atoms and molecules	(b)	Positive charge
	(c)	Negative charge	(d)	Both (b) and (c)
4.	The	electronics current is due to the flow of:		
	(a)	Positive charge	(b)	Negative ions
	(c)	Positive ions	(d)	Negative charge
5.	An e	lectric current in a wire involves the mo	oveme	ent of:
	(a)	Electrons	(b)	Atoms
	(c)	Protons	(d)	Molecules
6.	Whe	n electric current passes through the con	nducto	ors, it increases:
	(a)	P.E of the atoms	(b)	K.E of the atoms
	(c)	Atomic size	(d)	Number of protons
7.		n a pot difference of 4 volt is applied ge flows:	acros	s resistance, 10 J of energy is converted. Find
	(a)	0.20 C	(b)	2.5 C
	(c)	5.0 C	(d)	10.0 C
8.	The	motion of free electrons inside the meta	llic co	onductors is:
	(a)	Circular motion	(b)	Linear motion
	(c)	Random motion	(d)	None of above
9.	The	net charge flowing across the cross-sect	ional	area per unit time is known as:
	(a)	Electric flows	(b)	Electric current
	(c)	Pot difference	(d)	Ampere

10.	Elec	tric heater is the effect of electric curren	nt:	
	(a)	Heating effect	(b)	Chemical effect
	(c)	Magnetic effect	(d)	None of above
11.	The	rmo-couple convert into elect	rical e	energy:
	(a)	Heat energy	(b)	Nuclear energy
	(c)	Mechanical energy	(d)	Chemical energy
12.9	Ifa	charge Q flows through any cross section	n of t	he conductor in time t, the current I is:
	(a)	I = Qt	(b)	$I = \frac{Q}{t}$ $I = \frac{Q^2}{t}$
	(c)	$I = \frac{t}{Q}$	(d)	$I = \frac{Q^2}{t}$
13.9	SI u	nit of electric current is:		
	(a)	Ampere	(b)	Coulomb
	(c)	Volt	(d)	Ohm
14.		onstant temp, the current flowing through erence across its ends is called:	gh a c	onductor is directly proportional to the potential
	(a)	Charles law	(b)	Amperes law
	(c)	Coulombs law	(d)	Ohm's law
15.	Mos	t practical applications of electricity:		
	(a)	Molecules in motion	(b)	Electrons at rest
	(c)	Charge in motion	(d)	Atoms in notion
16.	The	conventional current is the name given	to cur	rent due to flow of:
	(a)	Positive charges	(b)	Negative charges
	(c)	Both (a) and (b)	(d)	None of these
17.		urrent of 1 ampere is passing through ute is:	a co	enductor, the charge passing through it in one
	(a)	40 coulomb	(b)	60 coulomb
	(c)	2 coulomb	(d)	None of these
18.	The	magnitude of the drift velocity is of the	order	of:
	(a)	10^{-3} m/s	(b)	10^{-4} m/s
	(c)	10^{-6} m/s	(d)	10^3 m/s
19.	Drif	t velocity is used when the ends of a wi	re are	:
	(a)	Connected to a voltage source	(b)	Not connected to voltage source
	(c)	At different values of potential	(d)	Both (a) and (c)
20.	The	production of heat due to an electric cur	rrent f	lowing through a conductor is given by:
	(a)	Feed back effect	(b)	Joule's effect
	(c)	Compton effect	(d)	Photo electric effect

(c) In electric motor

OBJE	CIIVE	PHYSICS PART-II		31
21.	Whe	en same current passes for same time th	rough	a thick and thin wire:
	(a)	No heat is produced in wire	(b)	More heat is produced in thin wire
	(c)	More heat is produced in thick wire	(d)	None of these
22.	The	average velocity gained by electrons in	a cor	ductor placed in electric field is called:
	(a)	Variable velocity	(b)	Uniform velocity
	(c)	Drift velocity	(d)	Instantaneous velocity
23.	A w	rire having very high value of conductar	nce is	said to be:
	(a)	Very good conductor	(b)	An insulator
	(c)	Moderately good conductor	(d)	None of liens
24.	The	effects of bends in a wire on its electric	al res	istance are:
	(a)	Zero	(b)	Larger
	(c)	Smaller	(d)	None of these
25.	An e	electric field is generated along the wire	wher	1:
	(a)	A constant potential is maintained acr	oss th	e wire
	(b)	Net current is zero		
	(c)	A constant potential difference is main	ntaine	d across the wire
	(d)	None of these		
26.	In o	rder to have a constant current through a	wire,	the potential difference across its ends should be:
	(a)	Increasing	(b)	Decreasing
	(c)	Zero	(d)	Maintained constant
27.		en two spherical conducting balls at determine, potential difference will be:	liffere	nt potentials are joined by metallic wire, after
	(a)	Same	(b)	Zero
	(c)	Different	(d)	None of these
28.	Con	version of chemical energy into electric	al enc	ergy can be achieved by:
	(a)	Solar cell	(b)	Photo voltaic cell
	(c)	Dry cell	(d)	None of these
29.	The	device, which converts heat energy into	elec'	trical energy is called:
	(a)	Thermo couple	(b)	Photo voltaic cell
	(c)	Thermistor	(d)	Thermostat
30.	Неа	ting effect of current is used in:		
	(a)	Electric Kittle	(b)	Electric motor
	(c)	Electric taster	(d)	Both (a) and (c)
31.	Mag	gnetic effect of current is used:		
	(a)	To detect a current	(b)	To measure a current

(d) All of above

Resistance

(c)

32.	Electrolysis is the study of conduction of electricity through:			
	(a)	Liquids	(b)	Solids
	(c)	Greases	(d)	All
33.	The	vessel containing the two electrodes an	d cert	ain liquid is known:
	(a)	Electrolyte	(b)	Thermometer
	(c)	Voltameter	(d)	None of these
34.	The	voltameter usually contains:		
	(a)	Dilute solution of CuSo ₄	(b)	Water
	(c)	Carbon	(d)	CuSO ₄ in solid form
35.	Dur	ing electrolysis process, density of CuS	O ₄ so	lution:
	(a)	Remains constant	(b)	Decreased
	(c)	Increased	(d)	None of these
36.	The	magnitude of magnetic effects depends	upon	:
	(a)	Quality of electricity passed through t	he liq	uid
	(b)	Colour of the liquid		
	(c)	Nature of the liquid		
	(d)	Both (a) and (c)		
37.	Mat	hematically ohm's law can be expresse	d as:	
	(a)	$V = \frac{I}{R}$	(b)	V = IR
	(c)	R = VI	(d)	None of above
38.	The	conductors which obey Ohm's law are	called	1:
	(a)	Super conductors	(b)	Semi-conductors
	(c)	Ohmic	(d)	Non-ohmic
39.	The	conductors which do not obey Ohm's l	aw ar	e called:
	(a)	Non-Ohmic	(b)	Ohmic
	(c)	Super conductors	(d)	Semi-conductors
40.	For	ohmic devices, the graph between V an	d I is:	
	(a)	A curve	(b)	A straight line
	(c)	Parabola	(d)	None of above
41.	For	non-ohmic devices, the graph between	V and	I is:
	(a)	Not a straight line	(b)	A straight line
	(c)	A curve	(d)	All of above
42.	The	opposition offered by the conductor to	the flo	ow of current is called:
	(a)	Conductance	(b)	Inductance

(d) None of above

ODOL	0	7 77 70 70 7 7 7 7 7 7		
43.	The	resistance on a one metre cube of a con	ducto	r is called:
	(a)	Resistivity	(b)	Inductivity
	(c)	Permitivity	(d)	Conductivity
44.	The	SI unit of resistance is:		
	(a)	Ohm	(b)	Ampere
	(c)	Volt	(d)	Joule
45.	The	SI unit of resistivity is:		
	(a)	Ohm-m	(b)	Ohm-m ²
	(c)	Ohm-m ³	(d)	Ohm
46.	The	reciprocal of a resistance is called:		
	(a)	Conductance	(b)	Inductance
	(c)	Reactance	(d)	Resistivity
47.	The	reciprocal of resistivity is:		
	(a)	Conductivity	(b)	Permitivity
	(c)	Resistance	(d)	Voltage
48.	The	SI unit of conductance is:		
	(a)	mho	(b)	Ohm
	(c)	mho-m ⁻¹	(d)	None of above
49.	If th	e resistivity of the conductor is large the	en it is	3:
	(a)	An insulator	(b)	A poor conductor
	(c)	A good conductor	(d)	A conductor
50.	If th	e resistivity of the conductor is small th	en it i	s:
	(a)	Good conductor	(b)	Conductor
	(c)	Insulator	(d)	Poor conductor
51.	The	study of conductance of Electricity thro	ough l	iquids is known as:
	(a)	Electrolysis	(b)	Resistivity
	(c)	Conductivity	(d)	None of above
52.	Con	ductance is:		
	(a)	Reciprocal of resistance	(b)	Measured in mho
	(c)	Another name of resistance	(d)	All of above
53.	The	value of the resistivity is the least for:		
	(a)	Silver	(b)	Aluminium
	(c)	Copper	(d)	All of above
54.	Whi	ich of the following substance has got p	ositiv	e temperature coefficient of resistance:
	(a)	Copper	(b)	Aluminium
	(c)	Silver	(d)	All of above

Sound signals

(c)

55.	Colo	our code carbon resistance consist of:		
	(a)	Four bands read from left to right	(b)	Three bands read from left to right
	(c)	Four bands read from right to left	(d)	None of these
56.	The	third band of the colour code:		
	(a)	Gives the third digit	(b)	Gives the number of zeros
	(c)	Give the tolerance	(d)	None of these
57.	The	fourth band is a:		
	(a)	Gold band	(b)	Silver band
	(c)	Brown band	(d)	Both (a) and (b)
58.	Gold	d band shows a tolerance of:		
	(a)	± 10%	(b)	± 20%
	(c)	± 5%	(d)	10%
59.	Silve	er band shows a tolerance of:		
	(a)	± 10%	(b)	± 20%
	(c)	± 5%	(d)	10%
60.	If the	ere is no fourth band, tolerance is shows	as:	
	(a)	± 10%	(b)	± 20%
	(c)	± 5%	(d)	10%
61.	The	wire used in the construction of a rheost	tat is o	of the material:
	(a)	Iron	(b)	Silver
	(c)	Gold	(d)	Manganin
62.	To u	ise a rheostat as variable resistor, the terr	minal	s which are inserted in a circuit are:
	(a)	Fixed terminal A and sliding contact C	(b)	Both fixed terminals A and B
	(c)	Fixed terminal B and sliding contact C	(d)	All of above
63.	Ther	mistors are made from mixtures of meta	allic o	oxides of:
	(a)	Gold	(b)	Silver
	(c)	Manganese	(d)	Carbon
64.	Ther	mistors are prepared under:		
	(a)	High pressure and high temperature	(b)	High pressure and low temperature
	(c)	Low pressure and low temperature	(d)	None of these
65.	Ther	mistors may be in the form of:		
	(a)	Rods	(b)	Washers
	(c)	Beads	(d)	Either of these
66.	A te	mperature changes converts changes of	tempo	erature into:
	(a)	Electrical voltage	(b)	Light signals

(d) All of above

Energy

(c)

OBJE	CTIVE	PHYSICS PART-II		
67.	In th	ne construction of a rheostat, we use ma	ngani	n which is an alloy of:
	(a)	Cu, Ag and Fe	(b)	Fe and Ni
	(c)	Cu, Au and Fe	(d)	Cu, Ni, Fe and Mn
68.	Wor	k done in moving a charge ΔQ up throu	gh th	e potential difference V is given be:
	(a)	$W = \frac{\Delta Q}{V}$	(b)	$W = \frac{V}{\Delta Q}$
	(c)	$W = V\Delta Q$	(d)	$W = \frac{1}{V \; \Delta Q}$
69.	Whe	en the current is being drawn from the b	attery	:
	(a)	V = E + Ir is applied	(b)	V = E - Ir is applied
	(c)	It is being discharged	(d)	Both (a) and (c)
70.	Whe	en the current is drawn from a cell, its te	rmina	al potential difference and emf are:
	(a)	Different	(b)	Same
	(c)	Both zero	(d)	None of them
71.	The	resistance present between the two elec-	trodes	s of the cell is due to:
	(a)	Connecting wires	(b)	An electrolyte present between them
	(c)	Electrodes themselves	(d)	None of these
72.	Who	en a battery is being charged, its termina	ıl pote	ential difference is:
	(a)	Less than its emf	(b)	Greater than its emf
	(c)	Equal to emf	(d)	None of these
73.	The	loss of electrical energy per second is c	alled:	
	(a)	Power dissipation	(b)	Energy dissipation
	(c)	Work	(d)	None of these
74.	The	unit of emf is:		
	(a)	Newton	(b)	Joule
	(c)	Ampere	(d)	J/c
75.	The	quantity having the same unit as that of	emf	is:
	(a)	Energy	(b)	Momentum
	(c)	Potential difference	(d)	Current
76.	Kirc	chhoff's first rule is a manifestation of la	w of	enervation of:
	(a)	Charge	(b)	Mass
	(c)	Energy	(d)	None of these
77.	Kirc	chhoff's second rule is a manifestation o	f law	of conservation of:
	(a)	Charge	(b)	Mass

(d) None of these

OBJE	CTIVE	PHYSICS PART-II		42
78.	A vo	-	l differe	ence only when the current drawn by it from the
	(a)	Smaller	(b)	Greater
	(c)	Zero	(d)	None of these
79.	The	unknown emf Ex, can be found by us	ing pote	entiometer by formula:
	(a)	$E_{\mathbf{X}} = \frac{\mathbf{R}}{\mathbf{r}} \times \mathbf{E}$	(b)	$E_X = E \frac{r}{R}$
	(c)	$\mathbf{E}\mathbf{x} = \frac{l}{\mathbf{L}} \times \mathbf{E}$	(d)	Both (b) and (c)
80.	The	electrode connected with positive terr	minal of	f battery is called:
	(a)	Anode	(b)	Cathode
	(c)	Electrode	(d)	Electrolyte
81.	The	electrode connected with negative ter	minal o	f battery is called:
	(a)	Electrode	(b)	Cathode
	(c)	Anode	(d)	Electrolyte
82.		resistance of a conductor through wherence across its ends is one volt is:	ich a cu	irrent of one ampere is flowing when a potentia
	(a)	One volt	(b)	One ohm
	(c)	One ampere	(d)	One coulomb
83.	The	resistance of a conductor depends up-	on:	
	(a)	Pot difference between its ends		
	(b)	The nature of material		
	(c)	Dimension		
	(d)	The nature, dimension and physical	state of	conductor
84.	If th	e resistance of the conductor is increa	sed, the	current will:
	(a)	Remains the same	(b)	Increase
	(c)	Decrease	(d)	None of above
85.	The	resistance of a conductor of length L,	cross-s	ectional area A and resistivity ρ is given by:
	(a)	$R = \frac{L}{\rho A}$	(b)	$R = \frac{\rho L}{A}$
	(c)	$R = \frac{A}{\rho L}$	(d)	$R = \frac{\rho}{LA}$
86.	The	resistivity of the material having the	resistan	ce R, cross-sectional area A and length L is:
	(a)	$\rho = \frac{AL}{R}$	(b)	$\rho = \frac{A}{LR}$
	(c)	$\rho = \frac{RA}{L}$	(d)	$\rho = \frac{RL}{A}$

- 87. The resistance of the conductor does not depend upon its:
 - (a) Mass

(b) Length

Cross-sectional area (c)

- (d) Resistivity
- 88. When the temperature of a conductor is raised, its resistance:
 - Remains the same (a)

Always increase (b)

Always decrease (c)

- None of these (d)
- The resistance of the conductor increase with the increase in its: 89.
 - (a) Cross-sectional area

(b) Length

(c) Diameter

- (d) None of these
- 90. The resistance of the conductor increases due to rise of temp of a conductor because collision cross-section of the atoms:
 - Remain, unchanged (a)

(b) Decreases

(c) Increases (d) None of above

- 91. Non-ohmic devices are:
 - Filament of a bulb

Semiconductor diode (b)

(c) Both (a) and (b)

- None of above (d)
- 92. In series circuit, the pot difference across each resistance is:
 - (a) Different

(b) Same

(c) Variable

- (d) None of these
- 93. In parallel circuit, the current has:
 - Many paths (a)

(b) Two paths

(c) Three paths

- (d) None of these
- The equivalent resistance in series circuit is: 94.
 - (a) $R_c = R_1 + R_2 + R_3$

(b) $R_c = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

(c) $\frac{1}{R_2} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

- (d) All of above
- 95. The equivalent resistance in parallel circuit is:
 - (a) $R_e = R_1 + R_2 + R_3$

(b) $R_e = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

(c) $\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

- (d) All of above
- The Fractional change in resistivity per unit original resistivity per Kelvin in temperature is 96. known as:
 - (a) Temperature coefficient of resistance (b)
- Temperature coefficient of resistivity
 - Temperature coefficient of conductivity (d) None of these (c)

(c) Inductor

OBJE	CTIVE	PHYSICS PART-II		44
97.	The	SI unit of the temp coefficient of resist	ivity c	of a material is:
	(a)	K	(b)	K^{-1}
	(c)	Ohm K	(d)	Ohm
98.	Nev	v prepared ceramic material have been t	found	to be super conductor even at:
	(a)	T = 125 K	(b)	T = 50 K
	(c)	T = 130 K	(d)	T = 75 K
99.		ee resistors of resistance 2, 3 and 6 (stance is:	Ohms	are connected in parallel then their equivalent
	(a)	11.0 ohms	(b)	1.0 ohm
	(c)	5.0 ohms	(d)	70 ohms
100.	Whi	ich one is the best conductor:		
	(a)	Copper	(b)	Gold
	(c)	Silver	(d)	Aluminum
101.	The	resistivity of ———— decrease with t	he inc	rease in temp.
	(a)	Gold	(b)	Silver
	(c)	Copper	(d)	Silicon
102.	Sup	er conductor has ———— temperature c	coeffic	ient.
	(a)	+ve	(b)	-ve
	(c)	Neutral	(d)	None of above
103.	The	tolerance of silver is:		
	(a)	± 20%	(b)	± 15%
	(c)	± 5%	(d)	± 10%
104.	The	tolerance of gold is:		
	(a)	20%	(b)	15%
	(c)	± 5%	(d)	10%
105.	Res	istance and resistivity of a substance:		
	(a)	Decrease in rise of temperature	(b)	Increase with rise of temperature
	(c)	Remains same at every temperature	(d)	None of above
106.	A h	eat sensitive resistor is called:		
	(a)	Thermistor	(b)	Variable resistor
	(c)	Fixed resistor	(d)	None of these
107.	A de	evice which is a wire wound resistance	called	:
	(a)	Rheostat	(b)	Solenoid

(d) None of above

108.9	A rheostat can be used as variable resistor as well as a ———.				
	(a)	Potential divider	(b)	Current divider	
	(c)	Wheat stone bridge	(d)	Power divider	
109.	The	electrical power in mathematical form	can be	e expressed as:	
	(a)	$P = I^2 R$	(b)	$P = I \times V$	
	(c)	$P = \frac{V^2}{R}$	(d)	All of above	
	(c)	r - R	(u)	All of above	
110.		ne end of the fixed terminals and sliding used as:	g con	tact of a rheostat are connected in a circuit, it i	
	(a)	Variable resistor	(b)	Power supply	
	(c)	Potential divider	(d)	None of above	
111.	Alge	ebraic sum of currents meeting at a poin	t is ze	ero according to:	
	(a)	Faraday's law	(b)	Ampere's law	
	(c)	Kirchhoff first rule	(d)	None of above	
112.	If bo	oth fixed as well as the sliding contact of	a rhe	ostat are connected in a circuit, it is to be used as	
	(a)	Variable resistor	(b)	Power supply	
	(c)	Potential divider	(d)	None of above	
113.	Whe	en ever current is drawn from the battery	y, its e	emf and terminal potential difference became:	
	(a)	Equal	(b)	Different	
	(c)	Zero	(d)	Negative	
114.	Асс	omplex system consisting of a many res	istanc	es can be solved by:	
	(a)	Faraday's law	(b)	Ohm's law	
	(c)	Kirchhoff rules	(d)	Ampere's law	
115.	Kirc	hoff first rule is also called the law of c	onser	vation of:	
	(a)	Momentum	(b)	Mass	
	(c)	Energy	(d)	Charge	
116.	If th	e source of emf is traversed from negati	ive to	positive terminal, the potential change are:	
	(a)	Positive	(b)	Negative	
	(c)	Consult	(d)	Zero	
117.	If th	e source of emf traversed from positive	to ne	gative terminals, the potential change are:	
	(a)	Negative	(b)	Constant	
	(c)	Zero	(d)	Positive	
118.	If the	e resistor is traversed in the direction of	currer	nt, the potential change are:	
	(a)	Negative	(b)	Zero	
	(c)	Constant	(d)	Positive	

OBJE	CTIVE	PHYSICS PART-II			46		
119.	When the Wheatstone bridge is balanced, the galvanometer shows zero deflection because:						
	(a)	Both the terminals of galvanometer are at the same potential					
	(b)	Both terminals of the galvanometer have maximum potential					
	(c)	The resistance of galvanometer become	ies ze	ro			
	(d)	The resistance of galvanometer become	ies m	aximum			
120.	Whe	eat stone bridge is an arrangement consi	sting	of:			
	(a)	Four resistances	(b)	Three resistances			
	(c)	Five resistances	(d)	None of above			
121.	A ba	alanced Wheatstone bridge is used to mo	easure	e the:			
	(a)	The current	(b)	Pot difference			
	(c)	An unknown resistance	(d)	None of above			
122.9	The	condition for the Wheatstone bridge to	be ba	lanced is given by:			
	(a)	$\frac{R_1}{R_2} = \frac{R_3}{R_4}$	(b)	$\frac{R_2}{R_1} = \frac{R_3}{R_4}$			
	(c)	$\frac{R_1}{R_2} = \frac{R_4}{R_3}$	(d)	None of above			
123.		ch one of the following instrument caracy:	an m	easure the unknown resistance with suffic	cient		
	(a)	Potentiometer	(b)	Slide wire bridge			
	(c)	Galvanometer	(d)	All of above			
124.	Slid	e wire bridge is a practical form of the:					
	(a)	Voltmeter	(b)	Galvanometer			
	(c)	Wheatstone bridge	(d)	Ammeter			
125.	An i	nstrument which can measure potential	witho	out drawing any current is called:			
	(a)	Voltmeter	(b)	Potentiometer			
	(c)	Galvanometer	(d)	Ammeter			
126.	A de	evice which gives continuously varying		—— is called potential divider.			
	(a)	Potential difference	(b)	Capacitance			
	(c)	Charge	(d)	Inductance			
127.	The	instrument used to compare the emf of	two c	ells is called:			
	(a)	A potentiometer	(b)	An ammeter			
	(c)	A galvanometer	(d)	All of above			

(c) 12Ω

OBJEC) I I V E	PHYSICS PART-II		
128.	Whi	ch device is used to determine internal r	esista	nce of a cell:
	(a)	Potentiometer	(b)	Wheat stone bridge
	(c)	Voltmeter	(d)	Ammeter
129.9	The	algebraic sum of potential changes for a	close	ed circuit is zero according to:
	(a)	Kirchhoff's 2 nd rule	(b)	Kirchhoff's first rule
	(c)	Ampere's law	(d)	Joul's law
130.	Inter	nal resistance is the resistance offered b	y:	
	(a)	The conductor	(b)	The circuit
	(c)	The resistor	(d)	Source of emf
131.	The	equation for the power dissipation in a r	esisto	or is:
	(a)	$\mathbf{P} = \mathbf{I}^2 \mathbf{R}$	(b)	$P = \frac{V^2}{R}$
	(c)	P = IV	(d)	All of above
132.	The	emf E of the source is expressed by:		
		$E = \frac{\Delta q}{\Delta w}$	(b)	$E = \frac{\Delta w}{\Delta Q^2}$ $E = \frac{\Delta w}{\Delta t}$
	(c)	$E = \frac{\Delta w}{\Delta q}$	(d)	$E = \frac{\Delta w}{\Delta t}$
133.	Whi	ch one of the following quantities in ele	etricit	y is analogous to mass in mechanics:
	(a)	Resistance	(b)	Potential
	(c)	Charge	(d)	Inductance
134.	The	temp coefficient of resistance is positive	e for:	
	(a)	Aluminum	(b)	Germanium
	(c)	Carbon	(d)	None of the above
135.	On i	ncreasing the length of a wire, the speci-	fic res	sistance of the material of the wire:
	(a)	Decreases	(b)	Increases
	(c)	Remains unchanged	(d)	First decrease then increase
136.	Whi	ch one of the following is the best mater	rial fo	r making connecting wire:
	(a)	Nichrome	(b)	Manganin
	(c)	Copper	(d)	None of the above
137.	Whe	in three resistances 2Ω , 4Ω and 6Ω conr	nected	I in parallel the equivalent resistance is:
	(a)	$\frac{11}{12}\Omega$	(b)	$\frac{12}{11}\Omega$

(d) 0 Ω

(c)

 $150\,\Omega$

OBJE	CTIVE	PHYSICS PART-II		48			
138.	Two resistances R_1 and R_2 are connected in parallel. The equivalent resistance of the combination is equal to:						
	(a)	$\frac{R_1R_2}{R_1+R_2}$	(b)	$\frac{R_1+R_2}{R_1\ R_2}$			
	(c)	$R_1 + R_2$	(d)	$R_2 - R_2$			
139.	The	resistance of a conductor increases with	the r	ise in temp. This is due to:			
	(a)	Increase in mass of electron	(b)	Decrease of electron density			
	(c)	The decrease of relaxation time	(d)	None of above			
140.		closed circuit, the e.m.f and internal restance in the circuit is R then the Ohm's		ce of cell are E and r respectively. If the external has the form:			
	(a)	$I = \frac{E}{R}$	(b)	$I = \frac{E}{Rr}$			
	(c)	$I = \frac{E}{r}$	(d)	$I = \frac{E}{R + r}$			
141.	Thre	ee resistance R ₁ , R ₂ and R ₃ are connected	d in p	arallel. The resultant resistance R is:			
	(a)	Greater than sum of three resistances	(b)	Equal to sum of three resistances			
	(c)	Less than the sum of three resistances	(d)	None of the above			
142.	The specific resistance of the material of the wire depends on:						
	(a)	Area of cross section	(b)	Mass			
	(c)	Length	(d)	None of the above			
143.		re are three equal resistances. How m	any	different combination, of these resistances are			
	(a)	Six	(b)	Three			
	(c)	One	(d)	Two			
144.	The	difference of potential between the term	ninals	of a cell in an open circuit is called:			
	(a)	e.m.f	(b)	Resistances			
	(c)	Capacitance	(d)	Potential difference			
145.	In w	thich one of the following substances, the	ie resi	stance decreases with increase in temp:			
	(a)	Copper	(b)	Silver			
	(c)	Carbon	(d)	None of these			
146.		wheat stone bridge, the resistances in 80Ω , the resistance of the 4 th arm will b		atio arms are 100 Ω and 150 Ω respectively. If			
	(a)	80 O	(b)	70 O			

(d) 120Ω

157. The potential difference across the terminals of a cell varies with the current drawn from the cell in accordance with the graph as shown:

(a)

(b)

(c)

(d)

- **158.** Drift velocity of electron, in metal, is of the order of:
 - (a) 10^{-3} cm/s

(b) 10^{-3} m/s

(c) 10^3 m/s

(d) 10^{-3} mm/s

- 159. Secondary cells are:
 - (a) Non-chargeable

(b) Rechargeable

(c) Both (a), (b)

- (d) Like primary cells
- 160. If three resistors are connected parallel to each other then their equivalent resistance is:
 - (a) Greater than larger individual resistance (b) Less than smaller individual resistance
 - (c) Equal to larger value

- (d) Equal to smaller value
- **161.** A potentiometer can be used to:
 - (a) Find emf

- **(b)** Compare emf of two cells
- (c) Find internal resistance of cell
- (d) All of these
- **162.** A wire of resistance R is cut into two equal parts, its resistance becomes R/2, what happens to resistivity:
 - (a) Double

(b) Same

(c) Half

- (d) One fourth
- **163.** The resistance of a conductor does not depend on its:
 - (a) Length

(b) Area of cross-section

(c) Resistivity

- (d) Mass
- **164.** The conductance of a conductor increases when:
 - (a) Its temperature increase
- **(b)** It temperature decrease

(c) Its length increases

(d) None of these

Conductance

(c)

OBJE	CTIVE	PHYSICS PART-II			51				
165.	Unit	(S.I) of temperature coefficient of resis	tivity	of a material is:					
	(a)	K	(b)	K^{-1}					
	(c)	°C	(d)	K^{-2}					
166.	Hea	t generated by a 40 watt bulb in one hou	r is:						
	(a)	4800 J	(b)	40 J					
	(c)	144000 J	(d)	14400 J					
167.	A 10	00 watt bulb is operated by 200 volt, the	curre	ent flowing through bulb is:					
	(a)	1 A	(b)	0.5 A					
	(c)	2.5 A	(d)	3.5 A					
168.	The	resistance of a 60 watt bulb in a 120 vol	lt line	is:					
	(a)	20 ohm	(b)	0.5 ohm					
	(c)	240 ohm	(d)	2 ohm					
169.	If a	40 watt bulb is on for 2 hours, how much	h hea	t is generated?					
	(a)	$280 \times 10^5 \text{ J}$	(b)	$288 \times 10^3 \mathrm{J}$					
	(c)	80 J	(d)	400 J					
170.	Max	Maximum power is delivered to a load when:							
	(a)	Internal resistance = External resistance	(b)	Internal resistance > External resistance					
	(c)	Internal resistance < External resistance	(d)	None of these					
171.	Kirc	hhoff's 2 nd rule obey law of conservation	n of:						
	(a)	Momentum	(b)	Charge					
	(c)	Energy	(d)	None of these					
172.	The	instrument which measures potential dir	fferen	ce accurately:					
	(a)	Potentiometer	(b)	Digital voltmeter					
	(c)	Cathode ray oscilloscope	(d)	All of above					
173.	Terr	minal potential difference is greater than	emf	of the cell when:					
	(a)	Circuit is open	(b)	Circuit is closed					
	(c)	Small battery is charged by bigger battery	(d)	None of these					
174.	e.m.	f. is the conversion of ———ener	gy int	to electrical energy.					
	(a)	Chemical	(b)	Solar					
	(c)	Light	(d)	None of these					
175.		A resistance R is placed in parallel with another resistance of 40 Ω , their equivalent resistance is 24 Ω the value of R is:							
	(a)	20Ω	(b)	$40~\Omega$					
	(c)	60 Ω	(d)	80 Ω					
176.	The	product of resistance and conductance is	s:						
	(a)	1	(b)	Resistivity					

(d) Zero

	TIVETTITOIC								
				ANS	WER	\mathbf{S}			
1.	(d)	2.	(a)	3.	(b)	4.	(b)	5.	(a)
6.	(b)	7.	(b)	8.	(b)	9.	(b)	10.	(a)
11.	(a)	12.	(b)	13.	(a)	14.	(d)	15.	(c)
16.	(a)	17.	(b)	18.	(a)	19.	(d)	20.	(b)
21.	(c)	22.	(c)	23.	(a)	24.	(a)	25.	(c)
26.	(d)	27.	(a)	28.	(c)	29.	(a)	30.	(d)
31.	(d)	32.	(a)	33.	(c)	34.	(a)	35.	(a)
36.	(d)	37.	(b)	38.	(c)	39.	(a)	40.	(b)
41.	(a)	42.	(c)	43.	(a)	44.	(a)	45.	(a)
46.	(a)	47.	(a)	48.	(a)	49.	(b)	50.	(b)
51.	(a)	52.	(a)	53.	(b)	54.	(b)	55.	(a)
56.	(b)	57.	(d)	58.	(c)	59.	(a)	60.	(b)
61.	(d)	62.	(a)	63.	(c)	64.	(a)	65.	(d)
66.	(a)	67.	(d)	68.	(c)	69.	(d)	70.	(a)
71.	(b)	72.	(b)	73.	(a)	74.	(c)	75.	(c)
76.	(a)	77.	(c)	78.	(c)	79.	(c)	80.	(a)
81.	(b)	82.	(b)	83.	(d)	84.	(c)	85.	(b)
86.	(c)	87.	(a)	88.	(b)	89.	(b)	90.	(c)
91.	(c)	92.	(a)	93.	(a)	94.	(a)	95.	(c)
96.	(b)	97.	(b)	98.	(a)	99.	(b)	100.	(c)
101.	(d)	102.	(b)	103.	(d)	104.	(c)	105.	(b)
106.	(a)	107.	(a)	108.	(a)	109.	(d)	110.	(a)
111.	(c)	112.	(c)	113.	(a)	114.	(c)	115.	(d)
116.	(a)	117.	(a)	118.	(a)	119.	(a)	120.	(a)
121.	(c)	122.	(a)	123.	(b)	124.	(c)	125.	(b)
126.	(a)	127.	(a)	128.	(a)	129.	(a)	130.	(d)
131.	(d)	132.	(c)	133.	(c)	134.	(a)	135.	(b)
136.	(c)	137.	(b)	138.	(a)	139.	(c)	140.	(d)
141.	(c)	142.	(c)	143.	(d)	144.	(a)	145.	(c)
146.	(d)	147.	(a)	148.	(c)	149.	(a)	150.	(a)
151.	(a)	152.	(a)	153.	(b)	154.	(b)	155.	(b)
156.	(a)	157.	(c)	158.	(b)	159.	(b)	160.	(b)
161.	(d)	162.	(b)	163.	(d)	164.	(b)	165.	(b)
166.	(c)	167.	(b)	168.	(c)	169.	(b)	170.	(a)
171.	(c)	172.	(d)	173.	(c)	174.	(a)	175.	(c)
176.	(a)								