

ELECTROMAGNETISM

Each question has four possible answers, tick (11) the correct answer:

1.		name of the scientist who noted that a ent carrying conductor:	comp	bass needle was deflected when placed near the
	(a)	Henry	(b)	Faraday
	(c)	Coloumb	(d)	Oersted
2.	The	sources of magnetic field are:		
	(a)	Charges in the motion	(b)	Charges at rest
	(c)	Both (a) and (b)	(d)	None of above
3.		nrent carrying conductor placed in a monductor is:	agnet	ic field parallel to it. The force experienced by
	(a)	$\mathbf{F} = \mathbf{O}$	(b)	E = BIF
	(c)	$F = BIL \sin \theta$	(d)	$F = BIL \cos \theta$
4.	Who	discovered a relation between magneti	c and	electric field:
	(a)	Lenz	(b)	Faraday
	(c)	Orested	(d)	None of above
5.	A ch	anging magnetic field produces:		
	(a)	Electric current	(b)	Electric field
	(c)	Magnetic field	(d)	None of above
6.	The	direction of magnetic lines of force are	depen	d upon:
	(a)	Direction of current	(b)	Quantity of current
	(c)	Both (a) and (b)	(d)	None of the above
7.	The is ca		cond	uctor placed at right angle to the magnetic field
	(a)	Magnetic field	(b)	Magnetic induction
	(c)	Force	(d)	None of the above
8.	The	dot product of magnetic field B and vec	tor ar	ea A is:
	(a)	Magnetic flux	(b)	Magnetic induction
	(c)	Faraday's law	(d)	Electric flux

- **9.** Mathematically the magnetic flux is:
 - (a) $\phi = BA \sin\theta$

(b) $\phi = B^2 A$

(c) $\phi = \overrightarrow{B} \cdot \overrightarrow{A}$

- (d) $\phi = B.A^2$
- **10.** Tesla is the unit for measuring:
 - (a) Magnetic intensity

(b) Magnetic induction

(c) Magnetic force

(d) None of the above

- **11.** Weber is the unit of:
 - (a) Magnetic flux

(b) Permeability

(c) Magnetic force

- (d) None of above
- **12.** Weber has the dimensions of:
 - (a) volt/sec

(b) $volt^2/sec$

(c) $volt/sec^2$

- (d) sec/volt
- **13.** The dimensions of magnetic flux are:
 - (a) $M^1L^{-2}T^1A^1$

(b) $MLT^{-2}A^{-1}$

(c) $ML^2T^2A^{-1}$

- (d) $ML^2T^{-2}A^{-1}$
- 14. μ_0 is the permeability of free space, its value is:
 - (a) $4\pi \times 10^{-7} \text{ Wb Am}$

(b) $4\pi \times 10^{-7} \text{ Wb}^{-1} \text{ m}^{-1}$

(c) $4\pi \times 10^{-5} \text{ Wb A}^{-1}\text{m}^{-1}$

- (d) $4\pi \times 10^{-7} \text{ Wb A}^{-1} \text{m}^{-1}$
- 15. When the angle between the vector area and the magnetic field is 0° then magnetic flux is:
 - (a) Half

(b) Minimum

(c) Maximum

- (d) Double
- 16. When some compass needles are placed on a cardboard along a circle with the center at the wire, they will:
 - (a) Set themselves tangential to the circle (b)
- **(b)** Points in the direction of N-S
 - (c) Points in the direction of E.W
- (d) None of these
- 17. In the region surrounding a current carrying wire:
 - (a) A magnetic field is setup
- **(b)** The lines of force are elliptical

(c) Both (a) and (b)

- (d) None of these
- **18.** Magnetic force acting on unit positive charge moving perpendicular to the magnetic field with a unit velocity is known as:
 - (a) Magnetic induction

(b) Magnetic flux

(c) Magnetic field density

OBJE	CTIVE	PHYSICS PART-II		69				
19.		urrent carrying conductor is placed e experienced by the conductor:	in a unif	form magnetic field parallel to it. The magnetic				
	(a)	$F = \frac{I}{LB \sin \theta}$	(b)	F = 0				
	(c)	$F = IBL \sin\theta$	(d)	$F = \frac{IBL}{sin\theta}$				
20.	The	direction of force on a current carry	ing cond	uctor placed in a magnetic field is that of:				
	(a)	$\overrightarrow{L} \times \overrightarrow{B}$	(b)	\overrightarrow{F} . \overrightarrow{B}				
	(c)	Magnetic field	(d)	Length of conductor				
21.	Mag	gnetic field is a:						
	(a)	Scalar quantity	(b)	Vector quality				
	(c)	Both (a) and (b)	(d)	None of these				
22.	The	direction of magnetic lines of force	around a	current carrying conductor is given by:				
	(a)	Coulombs law	(b)	Ampere's law				
	(c)	Faraday's law	(d)	Right hand rule				
23.	The	strength of magnetic field around a co	onductor i	s:				
	(a)	Directly proportional to the square of distance from the conductor						
	(b)	Same every where around the cond	ductor					
	(c)	Both (a) and (b)						
	(d)	None of these						
24.	A m	A magnetic compass will be defected if it is kept near a:						
	(a)	Charge at rest	(b)	Charge in motion				
	(c)	No change	(d)	Both (a) and (b)				
25.	A current is passed through a straight conductor, the magnetic field produced around it. The magnetic lines of force are:							
	(a)	Straight	(b)	Circular				
	(c)	Parabolic	(d)	None of these				
26.	If a forc		d perpend	licular to the magnetic field, it will experience a				
	(a)	F = 0	(b)	$F = BIL \sin \theta$				
	(c)	E = BIF	(d)	None of these				
27.	A m	nagnetic field:						
	(a)	Exerts a force if a charge particle i	s moving	perpendicular to the magnetic field				
	(b)	Exerts a force if a charge particle i	s moving	parallel to the magnetic field				
	(c)	Never exerts a force on charged pa	rticle					

28.	Whi	ich one of the following material is mos	t suita	able for making core of electrometer:
	(a)	Steel	(b)	Cu – Ni alloy
	(c)	Air	(d)	Soft iron
29.		magnetic force experienced by a climum when it moves:	narge	particle moving in a magnetic field will be
	(a)	Parallel to magnetic field	(b)	Anti-parallel to magnetic field
	(c)	Perpendicular to magnetic field	(d)	None of these
30.		magnetic force experienced by a claimum when it moves:	narge	particle moving in a magnetic field will be
	(a)	Parallel to magnetic field	(b)	Anti-parallel to magnetic field
	(c)	Perpendicular to magnetic field	(d)	None of these
31.	Vec	tor area is vector whose direction is:		
	(a)	Perpendicular to the surface element	(b)	Parallel to the surface element
	(c)	At an angle of 45° to the surface elemen	nt(d)	None of these
32.	If th	e magnetic field is directed along the no	ormal	to the area, then magnetic flux is:
	(a)	Zero	(b)	Maximum
	(c)	Minimum	(d)	None of them
33.	The	unit of magnetic induction $\stackrel{\longrightarrow}{B}$ is:		
	(a)	Coulomb	(b)	Ampere
	(c)	Coulomb/ampere	(d)	Weber/m ²
34.	Mag	gnetic induction is defined as flux per ur	nit are	a of the surface, which is:
	(a)	Perpendicular to $\stackrel{\longrightarrow}{B}$	(b)	Parallel to \overrightarrow{B}
	(c)	Both (a) and (b)	(d)	None of these
35.	Mag	gnetic flux density at any point due to a	currei	nt carrying conductor can be computed from:
	(a)	Newton's law	(b)	Coulomb's law
	(c)	Ampere's law	(d)	Lenz's law
36.	Amj	perean path is:		
	(a)	Circular path	(b)	Closed path
	(c)	Rectangular path	(d)	Any of above
37.	μ _o is	s called:		
	(a)	Permeability of free space	(b)	Proportional constant
	(c)	Permitivity of free space	(d)	None of these

(c) n AL

38.	A sc	plenoid is a coil of wire, which is:						
	(a)	Short loosely wound cylindrical coil	of wire					
	(b)	Long tightly wound cylindrical coil of	of wire					
	(c)	Both (a) and (b)						
	(d)	None of these						
39. 9	The	magnetic field is uniform and stronge	r:					
	(a)	Outside the solenoid	(b)	Inside the solenoid				
	(c)	At the central part of the solenoid	(d)	None of these				
40.	In th	ne formula, $B = \mu_0 nI$, where n represen	its:					
	(a)	Number of turns per unit length	(b)	Number of turns per unit volume				
	(c)	Number of turns per unit area	(d)	All of above				
41.	The	magnetic field inside the solenoid can	be inci	reased by:				
	(a)	Increasing number of turns	(b)	Decreasing current				
	(c)	Increasing current	(d)	Both (a) and (c)				
42.	The	permeability of free space is measured	d in:					
	(a)	wb A/m	(b)	Am/wb				
	(c)	wb/Am	(d)	m/wbA				
43.	The strength of magnetic field is measured in SI units:							
	(a)	Am/N	(b)	Nm/A				
	(c)	N/Am	(d)	N				
44.	Nm/	Nm/A is commonly called:						
	(a)	Gauss	(b)	Volt				
	(c)	Ampere	(d)	Weber				
45.	A long wire wound tightly on a cylindrical coil is called:							
	(a)	Toroid	(b)	Slide wire bridge				
	(c)	Potentiometer	(d)	Solenoid				
46.	If th	_	withou	t changing the number of turns then magnetic				
	(a)	is not charged	(b)	becomes half				
	(c)	becomes double	(d)	None of these				
47.		here are n charge carriers per unit volu e of length L and area A is:	me the	n the number of charge carriers in a segment of				
	(a)	AL/n	(b)	n A/L				

(d) n L/A

Magnetic Field

Radius of circular path

(a)

(c)

		PHYSICS PART-II	1.1	72				
48.9		n electron is projected in a magnetic fie						
	(a)	$\overrightarrow{F} = e (\overrightarrow{B} \times \overrightarrow{V})$	(b)	$\overrightarrow{F} = e (\overrightarrow{V} \times \overrightarrow{B})$				
	(c)	$\overrightarrow{F} = \overrightarrow{V} (e \times \overrightarrow{B})$	(d)	$\overrightarrow{F} = e (\overrightarrow{V} \cdot \overrightarrow{B})$				
49.	Whe		tht ang	gles to the magnetic field then force experienced				
	(a)	F = qvB	(b)	Minimum				
	(c)	Zero	(d)	None of these				
50.		en the charge particle is projected in terienced will be:	he dir	ection parallel to the magnetic field, then force				
	(a)	qvB	(b)	Maximum				
	(c)	Zero	(d)	None of these				
51.	Who	en an electric charge q is placed in an e	lectric	field, it will experienced a force:				
	(a)	At an angle 45° to the field	(b)	Parallel to electric field				
	(c)	Perpendicular to the field	(d)	None of these				
52.	If a	charge is free to move in an electric fie	ld the	n acceleration produced in it will be:				
	(a)	$a = \frac{qE}{m}$	(b)	a = qEm				
	(c)	$a = \frac{q}{Em}$	(d)	$A = \frac{m}{qE}$				
53.	Lore	Lorentz force means the force acting on a particle, which is:						
	(a)	Magnetic force only	(b)	Electric force only				
	(c)	Sum of electric and magnetic force	(d)	None of these				
54.	In fo	ormula $\overrightarrow{F} = e(\overrightarrow{V} \times \overrightarrow{B})$ where \overrightarrow{F} is:						
	(a)	Parallel to $\overset{\longrightarrow}{\mathrm{V}}$	(b)	Perpendicular to \overrightarrow{V} and \overrightarrow{B}				
	(c)	Parallel to $\stackrel{\longrightarrow}{B}$	(d)	Perpendicular to B				
55.	Whe	en an electron enters at right angle to th	e mag	netic field, the magnitude of velocity:				
	(a)	Remains constant	(b)	Decreases				
	(c)	Increases	(d)	None of these				
56.	Who may		n perp	endicular to the lines of magnetic force, its path				
	(a)	Circular	(b)	Straight line				
	(c)	Parabola	(d)	None of these				
57.	The	e/m of an electron can be calculated if	wa kn	ow the value of:				

Velocity of electron

All of above

(d)

- **58.** The e/m of an electron can be calculated by using the formula:
 - (a) $\frac{e}{m} = \frac{Vr}{Br}$

(b) $\frac{e}{m} = \frac{2v}{B^2 r^2}$

(e) $\frac{e}{m} = \frac{2Ve}{m}$

- (d) None of these
- **59.** If the magnetic flux is expressed in weber, then the magnetic induction can be expressed as:
 - (a) Weber/m

(b) Weber/m²

(c) Weber/m³

- (d) m/Weber
- **60.** Which one of the following is the unit of magnetic induction:
 - (a) Gauss

(b) Dyne

(c) Ampere

- (d) Newton
- **61.** The earth magnetic field always has a vertical component except at the:
 - (a) Magnetic pole

(b) Magnetic equator

(c) Both (a) and (b)

(d) None of the above

- **62.** Magnetic field is a:
 - (a) Vector quantity

- **(b)** Scalar quantity
- (c) Scalar as well as vector

- (d) None of these
- 63. The magnetic field at a point due to current carrying conductor is directly proportional to:
 - (a) Current flows through the conductor
- **(b)** Distance from the conductor
- (c) Resistance of the conductor
- (d) Thickness of the conductor
- **64.** The direction of the magnetic field produced by a linear current is given by:
 - (a) Joule's law

(b) Ampere law

(c) Right hand rule

- (d) None of the above
- **65.** Two free parallel wires carrying currents in opposite direction:
 - (a) Repel each other

- (b) Attract each other
- (c) Do not effect each other
- (d) All of above
- **66.** Ampere's law mathematically can be expressed as:
 - (a) $\sum_{i=1}^{N} \left(\overrightarrow{B} \cdot \overrightarrow{\Delta L} \right) = \mu_0 I$

(b) $\sum_{i=1}^{N} \left(\overrightarrow{B} \cdot \overrightarrow{\Delta L} \right) = \mu_o A$

(c) $\sum_{i=1}^{N} \left(\overrightarrow{B} \cdot \overrightarrow{\Delta L}\right) = \mu_0 N$

- (d) $\sum_{i=1}^{N} (\overrightarrow{B} \cdot \overrightarrow{\Delta L}) = \mu_0 R$
- **67.** A current carrying conductor surrounded by:
 - (a) Electric field

(b) Magnetic field

(c) Gravitational field

(d) All of the above

OBJE	CTIVE	PHYSICS PART-II		74		
68.	A cl	narged particle moving with velocity V	in a m	agnetic field B experiences a magnetic force is:		
	(a)	$\overrightarrow{F} = \frac{\left(\overrightarrow{V} \times \overrightarrow{B}\right)}{q}$	(b)	$\overrightarrow{F} = q \left(\overrightarrow{V} \cdot \overrightarrow{B} \right)$		
	(c)	$\overrightarrow{F} = q \left(\overrightarrow{V} \times \overrightarrow{B} \right)$	(d)	$\overrightarrow{F} = \frac{\overrightarrow{V} \cdot \overrightarrow{B}}{q}$		
69.	The	energy resides in a current carrying con	nducto	or in the form of:		
	(a)	Magnetic field	(b)	Electrostatic field		
	(c)	Gravitational field	(d)	All of above		
70.		moving electron deflected side ways dict the presence of a magnetic field:	on pas	ssing through a certain region of space, can we		
	(a)	No	(b)	Yes		
	(c)	Maximum	(d)	None of above		
71.	The magnetic force experienced by a charged particle moving in a magnetic field will be maximum when it moves:					
	(a)	Perpendicular to the field	(b)	Parallel to the field		
	(c)	Anti parallel to the field	(d)	All of above		
72.	A co	ompass needle will be deflected if it is k	cept no	ear:		
	(a)	Charged body in motion	(b)	A negatively charged body at rest		
	(c)	A positively charged body at rest	(d)	none of the above		
73.	Amj	pere based his circuital law on the find	ings o	f:		
	(a)	Ampere himself	(b)	Laplace		
	(c)	Biot-sarvant	(d)	Maxwell		
74.	The	total number of magnetic lines of force	passi	ng normally through a given area is called:		
	(a)	magnetic flux	(b)	flux density		
	(c)	self induction	(d)	mutual induction		
75.	Magnetic flux and flux density are related by:					
	(a)	Flux density = Flux \times Area	(b)	$Flux density = \frac{Flux}{Area}$		
	(c)	$Flux = \frac{Flux \ density}{Area}$	(d)	None of the above		
76.	Whi	ich one of the following quantities can b	oe repl	laced by magnetic induction:		
	(a)	Flux density	(b)	Magnetic flux		
	(c)	Magnetic field intensity	(d)	All of above		
77.	Cha	rge to mass ratio (e/m) of a charged par	ticle i	s also called:		
	(a)	Specific force	(b)	Specific charge		

None of the above

(d)

Both (a) and (b)

(c)

78. The SI unit of permeability μ_0 is:

(a) Weber -m/A

(b) Weber/A.m

(c) Weber -A/m

(d) None of the above

79. A long tightly wound cylindrical coil of wire is called:

(a) Capacitor

(b) Resistance

(c) Inductor

(d) Solenoid

80. The magnetic field at the middle of the solenoid is:

(a) Uniform and strong

(b) Uniform

(c) Strong

(d) Weak

81. The magnetic field out of the solenoid is:

(a) Negligible weak

(b) Uniform

(c) Uniform and strong

(d) All of above

82. Ampere's circuital law is $\sum_{i=1}^{N} (\overrightarrow{B} \cdot \overrightarrow{\Delta L})_i =$

(a) μ_oI

(b) μ_oA

(c) μ_oB

(d) None of the above

83. Force on the current carrying conductor placed in a uniform magnetic field is:

(a) $I \stackrel{\rightarrow}{L} \times \stackrel{\rightarrow}{B}$

(b) $\overrightarrow{Iq} \times \overrightarrow{B}$

(c) $\frac{IL}{B}$

(d) $\overrightarrow{IL} \times \overrightarrow{V}$

84. Which one is suitable for circular trajectory of a charged particle:

(a) Magnetic field

(b) Electric field

(c) Conservative field

(d) Gravitational field

85. In particle velocity method, the selected speed is equal to:

(a) V = BE

(b) $V = \frac{E}{R}$

(c) $V = \frac{E}{F}$

(d) None of the above

86. One tesla is equal to:

(a) 1 Gauss

(b) 10^4 Gauss

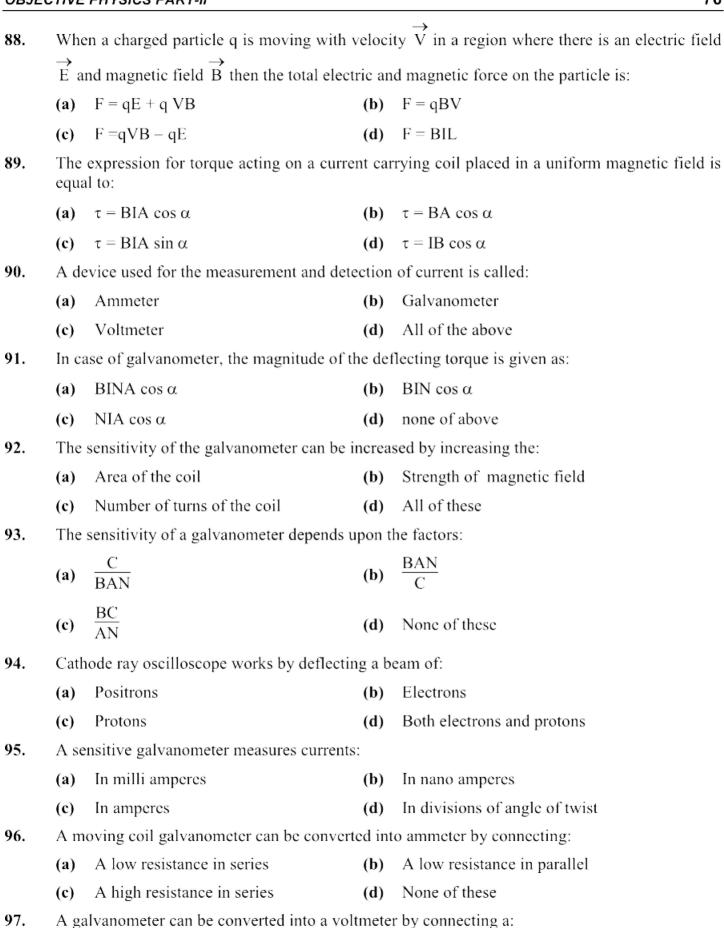
(c) 10 Gauss

(d) 10^{-4} Gauss

87. Magnetic flux density at a point due to the current carrying conductor determined by:

(a) Faraday's law

(b) Ampere's law


(c) Flemming's law

(d) Gauss's law

High resistance in series

High resistance in parallel

(c)

(b) Low resistance in parallel

- **98.** The strength of magnetic field produced inside the solenoid when it has n terns per unit length and current I is:
 - (a) $B = \mu_0 n^2 I^2$

(b) $B = \mu_o NI$

(c) $B = \mu_0 nI$

- (d) $B = \mu_o \frac{N}{I}$
- **99.** The expression for charge to mass ratio of an electron is determined by:
 - (a) $\frac{e}{m} = \frac{r}{VB}$

(b) $\frac{e}{m} = \frac{V}{B^2 r^2}$

(c) $\frac{e}{m} = \frac{v}{r}$

- (d) $\frac{e}{m} = \frac{B}{rv}$
- **100.** The device used for displaying the waveform of given voltage is:
 - (a) A.C generator

(b) Cathode ray oscilloscope

(c) D.C generator

- (d) Galvanometer
- **101.** The force which deflects the coil of the galvanometer is called:
 - (a) Deflecting torque

(b) Ordinary torque

(c) Reflecting torque

- (d) None of these
- **102.** CRO works by deflecting the beam of electron as they pass through:
 - (a) Uniform magnetic field
 - **(b)** Uniform electric field between two sets of parallel plates
 - (c) Non-uniform magnetic field
 - (d) None of these
- **103.** Indirectly heated cathode means that the:
 - (a) Filament heats the cathode
- (b) Cathode heat, the filament

- (c) Grid heats the filament
- (d) None of these

- **104.** The anode in CRO are at:
 - (a) Lower potential w.r.t cathode
- **(b)** Higher potential w.r. to cathode
- (c) Same potential as cathode
- **(d)** None of these

- 105. The grides in CRO is at:
 - (a) Negative potential w.r.to anode
- **(b)** Positive potential w.r.to anode
- (c) Negative potential w.r.to cathode
- (d) Both (a) and (b)

- 106. In CRO, there are:
 - (a) Power deflecting plates
- **(b)** Two sets of deflecting plates
- (c) Three sets of deflecting plats
- (d) None of these
- **107.** The voltage applied across Y-plate deflects the beam:
 - (a) Vertically on the screen
- **(b)** Horizentically on the screen

(c) Both (a) and (b)

0000	· · · · · -			
108.	The	voltage applied across X-plats deflects tl	ne bea	ım:
	(a)	Vertically or the screen	(b)	Horizentically on the screen
	(c)	Both (a) and (b)	(d)	None of these
109.	In C	RO, the output waveform of time base g	enerat	or is:
	(a)	Circular	(b)	Square
	(c)	Sinusoidal	(d)	Saw-toothed
110.	Saw	toothed waveform means that its voltage	ge:	
	(a)	Decreases linearly with time		
	(b)	Increases linearly with time		
	(c)	Increases linearly with time and then of	lrops	to zero
	(d)	None of these		
111.	By n	neans of waveform displayed on the scr	een o	f CRO, we can measure:
	(a)	Frequency of voltage	(b)	Voltage
	(c)	Phase of voltage	(d)	All of above
112.	An i	nstrument which can measure potential	witho	out drawing any current is called:
	(a)	Voltmeter	(b)	Potentiometer
	(c)	CRO	(d)	Ammeter
113.	The	cathode ray oscilloscope is useful for:		
	(a)	A volt meter		
	(b)	Wave shape of rapidly charging lubric	ants	
	(c) Measuring time interval between electrical plates			
	(d)	All of the above		
114.	Wha	it is emitted by the hot metal filament in	a cat	hode ray oscilloscope:
	(a)	Electron	(b)	X-plates
	(c)	Protons	(d)	Y-plates
115.	How	are the electrons produced in a cathode	ray o	oscilloscope:
	(a)	By heating a metal filament	(b)	By ionization of the air
	(c)	By applying an electric field	(d)	None of these
116.	The	function of grid in cathode ray oscilloso	ope is	s:
	(a)	To control the number of electrons account	elera	ted by anode
	(b)	To control the brightness of spot former	ed on	the screen
	(c)	Both (a) and (b)		

Series

(d) None of the above

Some times in series and some times in parallel

(b)

(c)

OBJE	CTIVE	PHYSICS PART-II		79
117.	The	electron gun in cathode ray oscilloscop	e cons	sists of:
	(a)	Grid	(b)	Three anodes
	(c)	Indirectly heated cathode	(d)	All of the above
118.	The	current passing through the coil of galv	anom	eter is directly proportional to:
	(a)	Angle of deflection	(b)	Magnetic field
	(c)	Number of turns	(d)	Resistance of the coil
119.		at is the current in a wire of 10 cm longing on the wire is 5 N:	at rig	ht angle to a magnetic field of 0.5 T when force
	(a)	I = 10 A	(b)	I = 50 A
	(c)	I = 500 A	(d)	I = 100 A
120.	Whe	en a charged particle moves through a m	agnet	ic field, the field changes the particle:
	(a)	Mass	(b)	Energy
	(c)	Speed	(d)	Direction of motion
121.	Whi	ch one of the following particles movin	g in th	ne magnetic field cannot be deflected:
	(a)	Neutron	(b)	α-particle
	(c)	β-particle	(d)	Proton
122.	The	working of galvanometer depends upon	ι:	
	(a)	Material of the coil	(b)	Torque exerted on the coil
	(c)	Magnetic force exerted on the coil	(d)	None of the above
123.9	For	accurate measurement of current throug	h a ci	rcuit, the resistance of ammeter should be:
	(a)	Very small	(b)	Very high
	(c)	Neither small nor high	(d)	None of the above
124.	Тос	convert a galvanometer into an ammeter	, the s	hunt resistance is given by:
	(a)	$R_{S} = \frac{IgRg}{I + Ig}$	(b)	$R_{S} = \frac{IgRg}{I - Ig}$
	(c)	$R_{S} = \frac{I - Ig}{I} \times Rg$	(d)	RS = (I - Ig) Rg
125.		convert a galvanometer into a voltmete anometer is given by:	er, a l	nigh resistance R _h connected in series with the
	(a)	$R_{h} = \frac{V}{Rg} - Ig$	(b)	$R_{\rm h} = rac{R_{ m g}}{ m V} - m I m g$
	(c)	$R_{h} = \frac{V}{Ig} - Rg$	(d)	$R_h = \frac{V}{Rg} + Ig$
126.	To r	neasure potential difference across a res	istor,	voltmeter is always connected in:
	(a)	Parallel		

Heating effect

(c)

OBJE	CIIVE	PHYSICS PART-II		00
127.	A de	evice which can measure current, potent	ial di	fference and resistance accurately is called:
	(a)	Ammeter	(b)	Voltmeter
	(c)	AVO meter	(d)	Ohm meter
128.	In C	RO when beam of electrons falls on a s	creen	it makes a visible spot because the screen is:
	(a)	Rough	(b)	Fluorescent
	(c)	Polished	(d)	Clear
129.	In C	RO when cathode is heated by a filament	nt it e	mits:
	(a)	Protons	(b)	Electrons
	(c)	Rays	(d)	Radiation
130.		ce on a moving charge in magnetic fi metic field is:	eld is	s maximum when angle between velocity and
	(a)	$\theta = 90^{\circ}$	(b)	$\theta = 270^{\circ}$
	(c)	$\theta = 180^{\circ}$	(d)	$\theta = 360^{\circ}$
131.		force on a moving charge in magne metic field is:	tic fi	eld is zero when angle between velocity and
	(a)	$\theta = 0^{\circ} \text{ OR } 180^{\circ}$	(b)	$\theta = 90^{\circ}$
	(c)	$\theta = 270^{\circ}$	(d)	$\theta = 45^{\circ}$
132.	The	unit of magnetic force is:		
	(a)	Tesla	(b)	Gauss
	(c)	Newton	(d)	Ampere
133.	The	galvanometer usually consists of a:		
	(a)	Coil placed in a magnetic field	(b)	Coil placed in an electric field
	(c)	Coil and a scale only	(d)	None of these
134.	The	coil of a galvanometer is suspended bet	ween	the poles of a U-shaped magnet which are:
	(a)	Concave shaped	(b)	Convex shaped
	(c)	Plane-shaped	(d)	Spherical shaped
135.	The	rectangular coil of a galvanometer is m	ade of	f:
	(a)	Enameled steel wire	(b)	Copper wire
	(c)	Enameled copper wire	(d)	None of these
136.	To r	make the field stronger near the coil of the	he gal	vanometer, we place inside the coil a:
	(a)	Soft iron cylinder	(b)	Soft steel cylinder
	(c)	Soft copper cylinder	(d)	None of these
137.	A m	oving coil galvanometer is based on the	follo	wing effect of current:
	(a)	Chemical effect	(b)	Magnetic effect

(d) All

				•
138.	Whi	le construction a galvanometer, the ena	meled	copper wire is wound on:
	(a)	Magnetic material	(b)	An insulator
	(c)	A conductor	(d)	Non-magnetic material
139.	Redi	al magnetic field is used in a galvanom	eter s	o that the galvanometer scale is:
	(a)	Exponential	(b)	Circular
	(c)	Linear	(d)	None of these
140.	In la	mp and scale arrangement for measures	s the a	ngle of deflection, the scale is:
	(a)	Translucent	(b)	Mass scale
	(c)	Transparent	(d)	None of these
141.	In a	pivoted type galvanometer, the coil is p	oivote	d between two:
	(a)	Bearings	(b)	Jewels
	(c)	Jewelled bearings	(d)	All are correct
142.	Such calle	_	es to 1	rest quickly after the current passed through it is
	(a)	Stable galvanometer	(b)	Sensitive galvanometer
	(c)	Both (a) and (b)	(d)	None of these
143.	A m	oving coil galvanometer can be convert	ted int	o:
	(a)	Voltmeter	(b)	Ohmmeter
	(c)	Ammeter	(d)	All of above
144.	An A	AVO meter is also called:		
	(a)	A mullti meter	(b)	An ammeter
	(c)	An ohmmeter	(d)	None of these
145.9	То с	onvert a galvanometer into an ammeter	, we c	connect with it a:
	(a)	Shunt resistance	(b)	Low value parallel
	(c)	Low value by pass resistor	(d)	All of above
146.	То с	onvert a galvanometer into a voltmeter.	, we c	onnect with it a:
	(a)	Shunt resistance	(b)	A high value series resistance
	(c)	Parallel resistance	(d)	None of these
147.	The	resistance of shunt is:		
	(a)	Verge large	(b)	Very small
	(c)	Both (a) and (b)	(d)	None of these
148.	An A	AVO meter can measure:		
	(a)	Potential difference in volt	(b)	Current in Ampere
	(c)	Resistance in ohms	(d)	All of above

OBJE	CTIVE	PHYSICS PART-II		82
149.	Whe	en the ohmmeter measures the infinite r	esista	nce, its pointer lies at:
	(a)	Center of the scale	(b)	Left end of the scale
	(c)	Right end of the scale	(d)	None of these
150.	A pı	roper combination of a galvanometer an	ıd a se	eries resistance acts as:
	(a)	Voltmeter	(b)	Ammeter
	(c)	Ohmmeter	(d)	None of these
151.	The	relation between current I and angle of	defle	ction in a moving coil galvanometer is:
	(a)	$I \times \frac{1}{\theta}$	(b)	$I \times \cos \theta$
	(c)	$\theta \times I$	(d)	$I \times \sin \theta$
152.	Whi	ch of the following is correct?		
	(a)	$1 T = 10^3 G$	(b)	$1 T = 10^4 G$
	(c)	$1 \text{ T} = 10^{-4} \text{ G}$	(d)	None of these
153.	Two	parallel wires carrying current in oppo	site d	irection:
	(a)	Repel each other	(b)	Attract each other
	(c)	No effect on each other	(d)	None of these
154.	Whi	ch one of the following is not deflected	by m	agnetic field?
	(a)	α-particle	(b)	β-particle
	(c)	Neutrons	(d)	None of these
155.		n electron enters the magnetic field at reeflected:	ight a	ngle from left and \overrightarrow{B} is into paper, electron will
	(a)	Upward	(b)	Downward
	(c)	No deflection	(d)	None of these
156.	A so	olenoid 15 cm, long has 300 turns, I = 5	A, B	=
	(a)	$1.3 \times 10^{-2} \text{ wbm}^{-2}$	(b)	$1.3 \times 10^2 \text{ wb m}^{-2}$
	(c)	$1.3 \times 10^{-2} \text{ G}$	(d)	$1.3 \times 10^{-2} \text{ wb}$
157.	The	sensitvity of galvanometer can be incre	eased	by decreasing:
	(a)	Area of coil	(b)	Magnetic field
	(c)	Number of turns of coil	(d)	Torsional constant
158.	Pole	e pieces of magnet in galvanometer are	made	concave to make field:
	(a)	Radial	(b)	Strong
	(c)	Both (a), (b)	(d)	Weaker
159.	In a	velocity selector, particle pass through	it if:	
	(a)	$\overrightarrow{F}_{c} = \overrightarrow{F}_{B}$		$\overrightarrow{F}_{c} = \overrightarrow{F}_{g}$
	(c)	$\overrightarrow{Fe} = \overrightarrow{F_B}^2$	(d)	$\overrightarrow{F}_{c} = -\overrightarrow{F}_{B}$

160.	Unit	t of permeability of free space is:		
	(a)	$wbA^{-1}m^{-1}$	(b)	NmA^{-1}
	(c)	$Nm^{o}A^{-2}$	(d)	None of these
161.	Mag	gnetic field inside a solenoid is:		
	(a)	Zero	(b)	Minimum
	(c)	Maximum	(d)	None of these
162.	In fi	inding the value of e/m, apparatus used	is:	
	(a)	Cavendish	(b)	Teltron tube
	(c)	Mass spectrograph	(d)	None of these
163.	In fi	inding the value of e/m, velocity of elec	tron c	an be calculated by using:
	(a)	Potential difference	(b)	Velocity selector
	(c)	Both (a), (b)	(d)	None of these
164.	In c	ase of torque on a current carrying coil	α is a	ngle between:
	(a)	\overrightarrow{B} and \overrightarrow{A}	(b)	\overrightarrow{B} and coil
	(c)	\overrightarrow{B} and plane of coil	(d)	None of these
165.	A ga	alvanometer in which magnet rotates is:		
	(a)	Moving coil	(b)	Tangent
	(c)	Ballistic	(d)	None of these
166.	We	• • • • • • • • • • • • • • • • • • • •		eter as the current in μA required to produce the away from mirror of galvanometer.
	(a)	1 mm	(b)	2 mm
	(c)	1 cm	(d)	1 m
167.	In la	amp and scale arrangement, mirror used	is:	
	(a)	Convex mirror	(b)	Convex lens
		Concave mirror	(d)	None of these

ANSWERS									
1.	(d)	2.	(a)	3.	(a)	4.	(c)	5.	(a)
6.	(c)	7.	(b)	8.	(a)	9.	(c)	10.	(b)
11.	(a)	12.	(a)	13.	(d)	14.	(d)	15.	(c)
16.	(a)	17.	(c)	18.	(a)	19.	(b)	20.	(a)
21.	(b)	22.	(d)	23.	(b)	24.	(b)	25.	(b)
26.	(b)	27.	(a)	28.	(d)	29.	(a)	30.	(c)
31.	(a)	32.	(b)	33.	(d)	34.	(a)	35.	(c)
36.	(a)	37.	(a)	38.	(b)	39.	(c)	40.	(a)
41.	(d)	42.	(c)	43.	(c)	44.	(d)	45.	(d)
46.	(b)	47.	(c)	48.	(b)	49.	(a)	50.	(c)
51.	(b)	52.	(a)	53.	(c)	54.	(b)	55.	(a)
56.	(a)	57.	(d)	58.	(b)	59.	(b)	60.	(a)
61.	(a)	62.	(a)	63.	(a)	64.	(c)	65.	(a)
66.	(a)	67.	(b)	68.	(c)	69.	(a)	70.	(b)
71.	(a)	72.	(a)	73.	(c)	74.	(a)	75.	(b)
76.	(a)	77.	(b)	78.	(b)	79.	(d)	80.	(a)
81.	(a)	82.	(a)	83.	(a)	84.	(a)	85.	(b)
86.	(b)	87.	(b)	88.	(a)	89.	(a)	90.	(b)
91.	(a)	92.	(d)	93.	(a)	94.	(b)	95.	(d)
96.	(b)	97.	(a)	98.	(c)	99.	(b)	100.	(b)
101.	(a)	102.	(a)	103.	(a)	104.	(b)	105.	(c)
106.	(b)	107.	(a)	108.	(b)	109.	(d)	110.	(c)
111.	(d)	112.	(b)	113.	(b)	114.	(a)	115.	(a)
116.	(c)	117.	(d)	118.	(a)	119.	(d)	120.	(d)
121.	(c)	122.	(b)	123.	(a)	124.	(b)	125.	(c)
126.	(a)	127.	(c)	128.	(b)	129.	(b)	130.	(a)
131.	(a)	132.	(c)	133.	(a)	134.	(a)	135.	(c)
136.	(a)	137.	(b)	138.	(d)	139.	(c)	140.	(a)
141.	(c)	142.	(b)	143.	(d)	144.	(a)	145.	(c)
146.	(b)	147.	(b)	148.	(d)	149.	(b)	150.	(a)
151.	(c)	152.	(b)	153.	(a)	154.	(c)	155.	(b)
156.	(b)	157.	(d)	158.	(c)	159.	(d)	160.	(a)
161.	(c)	162.	(b)	163.	(c)	164.	(c)	165.	(b)
166.	(a)	167.	(c)						