ALTERNATING CURRENT

135

Each question has four possible answers, tick (11) the correct answer:

		_	-	-	
1.	Alternating current is	one which changes in a	:		

(a) Magnitude

(b) Direction

(c) Magnitude as well as direction

(d) None of the above

2. If V_{rms} be the root mean square value of emf then its peak to peak value is given by:

(a) $\frac{V_{rms}}{\sqrt{2}}$

(b) $\sqrt{2} V_{rms}$

(c) $\frac{2}{\sqrt{2} V_{rms}}$

(d) $\frac{V_{rms}}{2}$

3. If I_0 is the peak value of current, then its root mean square value is given by:

(a) $\sqrt{2} I_o$

(b) 2 I_o

(c) I_o

(d) 0.7 I_o

4. A.C can be measure with the help of:

(a) Ammeter (D.C)

(b) Moving coil galvanometer

(c) Hot wire ammeter

(d) All of the above

5. For a sine wave, the form factor is given by:

(a) $\frac{\pi}{2\sqrt{2}}$

(b) $\frac{\pi}{2}$

(c) $\sqrt{2} \pi$

(d) $2\sqrt{2} \pi$

6. Alternating current is converted to direct current by:

(a) Dynamo

(b) Motor

(c) Transformer

(d) Rectifier

7. The out put voltage of an A.C at any time is given by:

(a) $V = V_0 \sin \omega t$

(b) $V = V_0 \cos \frac{2\pi}{T} \times t$

(c) $V = V_o \sin \frac{2\pi}{T} \times t$

(d) None of the above

8. The value of capacitive reactance is given by:

(a) $X_c = VI$

(b) $X_c = \frac{V}{I}$

(c) $X_c = \frac{I}{V}$

(d) All of above

(c) $V = Vo \sin \frac{2\pi}{T} t$

OBJEC	TIVE	PHYSICS PART-II	136	
9.	The	time during which the voltage sources	chang	es its polarity once is called:
	(a)	Time period	(b)	Critical time
	(c)	Period of the AC	(d)	None of the above
10.	The	SI unit of reactance is:		
	(a)	ohm	(b)	$Volt - m^{-1}$
	(c)	Volt	(d)	Ampere
11.	Alte	rnating current or emf measuring instru	ments	measures its:
	(a)	r.m.s. value	(b)	Peak value
	(c)	Average value	(d)	None of the above
12.	The	average value of A.C over a complete of	cycle i	s:
	(a)	I_{o}	(b)	$\frac{1}{\sqrt{2}}$
	(c)	I	(d)	None of the above
13.	One	complete set of positive and negative v	alue o	of alternating quantities is called
	(a)	Frequency	(b)	Time period
	(c)	Amplitude	(d)	Cycle
14.	Rea	ctance offered by a coil having no resist	ance	in a.c circuit is equal to:
		$\frac{1}{\omega L}$	(b)	ωL
	(c)	$\omega^2 L^2$	(d)	ωLR
15.	Alte	rnating voltage is:		
	(a)	Varies inversely with time	(b)	Varies directly with time
	(c)	Independent of time	(d)	Varies sinusoidally with time
16.	The	alternating current can be transmitted:		
	(a)	Very low cost	(b)	To very high cost
	(c)	Long distances	(d)	Both (a) and (c)
17.	Alte	rnating current is produced by a voltage	e sour	ce which polarity:
	(a)	Keeps on reversing with time	(b)	Remains the same
	(c)	Reverses after period T	(d)	None of these
18.	The	output V of an A.C generator at any ins	stant i	s given by:
	(a)	$V = V_o \sin \omega t$	(b)	$V = Vo \sin \frac{2\pi}{t} T$

(d) Both (a) and (c)

A capacitor

(c)

ODUL		TITOIOO TAIKT II		
19.	Usir	ng θ = ωt and ω = $\frac{2\pi}{T}$, the angle through	n whic	ch the coil of the A.C generator rotates when t =
	$\frac{T}{2}$ is	•		
	_		(Is)	7
	(a)	π	(b)	Zero
	(c)	$\frac{\pi}{2}$	(d)	2π
20.	If V	= $V_0 \sin \omega t$ and $\omega = \frac{2\pi}{T}$, the value of al	ternat	ing voltage V when $t = \frac{3T}{4}$ is:
	(a)	$-V_{o}$	(b)	V_{o}
	(c)	$V_0 = 0$	(d)	None of these
21.	The	waveform of alternating voltage is the	graph	between:
	(a)	Current and time	(b)	Voltage and time
	(c)	Voltage and current	(d)	Voltage along y-axis and time along x-axis
22.	The	waveform of alternating voltage is a:		
	(a)	Square	(b)	Sinusoidal
	(c)	Rectangular	(d)	None of these
23.9	The	peak to peak value of alternating voltag	ge is:	
	(a)	$2V_o$	(b)	V_{o}
	(c)	$\frac{V_o}{2}$	(d)	None of these
24.	The	average value of alternating voltage ov	er a c	omplete cycle is:
	(a)	Zero	(b)	$0.7~\mathrm{V_{max}}$
	(c)	$0.707~V_{max}$	(d)	None of these
25.	The	RMS value of alternating voltage is:		
	(a)	0.5 times the peak value	(b)	0.7 times the peak value
	(c)	0.7 times the instantaneous value	(d)	Equal to maximum voltage
26.	The	alternating voltage or current is actually	y mea	sured by:
	(a)	Its RMS value	(b)	Square root of its mean square value
	(c)	Peak value	(d)	Instantaneous value
27.	The	magnitude of alternating voltage is:		
	(a)	Always decreases	(b)	Always increases
	(c)	Always remains the same	(d)	Does not remain the same
28.	The	basic circuit element in a D.C circuit is	:	
	(a)	An inductor	(b)	A resistor

None of these

(d)

(c)

Impedance

OBJE	CTIVE	PHYSICS PART-II	138						
29.	The	The basic circuit elements in A.C circuits are:							
	(a)	Thermistor	(b)	Inductor and resistors					
	(c)	Inductor and capacitor	(d)	All of above					
30.		maximum current I_o passing through the V_o is given by:	a resi	stance R connected with an alternating voltage					
	(a)	$I_o = R \times V_o$	(b)	$I_o = \frac{V_o}{R}$					
	(c)	$I_o = \frac{R}{V_o}$	(d)	$I_o = V_o \times R$					
31.	In a	In a resistive A.C circuit, instantaneous values of voltage and current are:							
	(a)	In phase	(b)	Out of phase					
	(c)	Lead each other	(d)	None of these					
32.	The	The dimensions, of R.C matches with:							
	(a)	$\frac{\mathbf{R}}{\mathbf{L}}$	(b)	$\frac{L}{R}$					
	(c)	RL	(d)	None of these					
33.	At what frequency 1 henry inductance offer same impendance as 1 μF capacitor:								
	(a)	450 Hz	(b)	512 Hz					
	(c)	1 KHz	(d)	159 Hz					
34.	A transformer has $\frac{N_2}{N_1}$ = 10, the load current is 1.0A, the current in primary is:								
	(a)	1 A	(b)	0.1 A					
	(c)	11 A	(d)	10 A					
35.	For	resistance, \overrightarrow{V} and \overrightarrow{I} vectors are draw	n:						
	(a)	Parallel to each other	(b)	Perpendicular to each other					
	(c)	Such that \overrightarrow{V} leads \overrightarrow{I}	(d)	None of these					
36.	Who	en voltage V and current I are in phase	the po	wer is expressed as:					
	(a)	$P = VI \sin \theta$	(b)	$P = I^2 R$					
	(c)	P = VR	(d)	$P = VI \cos \theta$					
37.	Who	en A.C voltage source is connected to	a capac	itor:					
	(a)	Voltage V lags behind current I	(b)	Current I leads the voltage V					
	(c)	Voltage leads the current I	(d)	Both (a) and (b)					
38.	The	measure of the opposition offered by	a capac	itor to the flow of A.C is called:					
	(a)	Reactance	(b)	Resistance					

Capacitance

(d)

39. Energy in an inductance coil is stored in the form of:

(a) Electrical energy

(b) Light energy

(c) Magnetic energy

(d) Heat energy

40. The reactance is the ratio of:

(a) V_{rms}/I_{rms}

(b) $V_{rms} \times I_{rms}$

(c) I_{rms}/V_{rms}

(d) $V_{max} \times V_{rms}$

41.9 In case of capacitor, the unit of reactance is:

(a) Farad

(b) Ohm

(c) Newton

(d) All of these

42. The reactance of a coil depends upon:

(a) Inductance of the coil

(b) Capacitance of the coil

(c) Thickness of the coil

(d) None of these

43. To maintain the current in an inductor, the applied alternating voltage must be:

(a) Smaller than back emf

(b) Greater than back emf

(c) Equal to back emf

(d) None of these

44. When A.C voltage is applied to an inductor, the:

- (a) Voltage V leads current I by 90°
- **(b)** Voltage V leads current I by 270°
- (c) Voltage V leads current I by 0°
- (d) None of these

45. The phase diagram for an inductor can be shown as:

46. The phase diagram for a capacitor can be shown as:

(d) V

47. If frequency f is in Hz and inductance L is in milli henry, then X_L is in:

(a) milli ohm

(b) kilo ohm

(c) ohm

(d) none of these

48. If frequency f is in Hz and capacitance C is in μ F then the unit of X_C is:

(a) Mega ohm

(b) Milli ohm

(c) μ ohm

(d) None of these

None of the above

(d)

Towards zero

(c)

- **60.** The current flows from $T/2 \rightarrow T$ is:
 - (a) ve direction of A.C

(b) + ve direction of A.C

(c) Towards zero

- (d) All of the above
- **61.** The most common source of A.C voltage is:
 - (a) Cell

(b) A.C generator

(c) A.C transformer

- (d) Motor
- **62.** Voltage drop in A.C circuit is the product of current and:
 - (a) Impedance

(b) Inductance

(c) Resistance

- (d) None of the above
- **63.** In a purely capacitive A.C circuit, the current is:
 - (a) In phase with emf

(b) The emf by 90°

(c) Leads the emf by 90°

- (d) All of the above
- **64.** With high frequencies, capacitive reactance:
 - (a) Remain unchanged

(b) Increases

(c) Decreases

- (d) None of the above
- **65.** With increase of frequency of A.C supply, the inductive reactance is:
 - (a) Decreases

(b) Increases as square of frequency

(c) Remain unchanged

- (d) Increases as directly to frequency
- **66.** The natural frequency of L.C circuit is equal to:
 - (a) $\frac{1}{2\pi} \sqrt{\frac{C}{L}}$

(b) $\frac{1}{2\pi}\sqrt{\frac{L}{C}}$

(c) $\frac{1}{2\pi\sqrt{L C}}$

- (d) $\frac{\sqrt{LC}}{2\pi}$
- 67. With increase in frequency of an A.C supply, the impedance of LCR series circuit:
 - (a) Decrease

(b) Increases

(c) Remains constant

(d) First decrease, becomes minimum and then increase

- **68.** SI The unit of impedance is:
 - (a) Hertz

(b) Henry

(c) Volt

- (**d**) Ohm
- **69.** An expression for impedance for R.C series circuit is given by:
 - (a) $Z = \sqrt{R^2 + \frac{1}{\omega c}}$

(b) $Z = \sqrt{R + \frac{1}{\omega c}}$

(c) $Z = \sqrt{R^2 + \left(\frac{1}{\omega c}\right)^2}$

(d) $Z = \sqrt{\left(R + \frac{1}{\omega c}\right)^2}$

70. The phase angle θ in an R.C series circuit is expressed as:

(a)
$$\theta = \cos^{-1}\left(\frac{1}{\omega CR}\right)$$

(b)
$$\theta = \tan\left(\frac{1}{\omega CR}\right)$$

(c)
$$\theta = \tan^{-1} \left(\frac{X_C}{R} \right)$$

(d) None of these

71. The phase angle θ in an R.L series circuit is expressed as:

(a)
$$\theta = \tan^{-1} \left(\frac{\omega L}{R} \right)$$

(b)
$$\theta = \tan\left(\frac{\omega L}{R}\right)$$

(c)
$$\theta = \tan^{-1}\left(\frac{R}{\omega L}\right)$$

(d) None of these

72. The impedance Z of an R.L series circuit is expressed as:

(a)
$$Z = \sqrt{(\omega L)^2 + \frac{1}{R^2}}$$

(b)
$$Z = \sqrt{R^2 + (\omega L)^2}$$

(c)
$$Z = \sqrt{R^2 + \left(\frac{1}{\omega L}\right)^2}$$

(d) None of these

73. In an R.L.C series circuit, the quantities which are directed opposite to each other are:

(b) X_C and X_L

(c)
$$X_C$$
 and L

(d) X_L and C

74. The condition of resonance in an R.L.C series circuit is that:

(a)
$$X_L = X_C$$

(b) $X_L \ge X_C$

(c)
$$X_L \leq X_C$$

(d) None of these

75. The equation which satisfied the resonance condition is:

(a)
$$X_L = X_C$$

(b)
$$\omega = \frac{1}{\sqrt{LC}}$$

(c)
$$f = \frac{1}{2\pi \sqrt{LC}}$$

(d) All of above

76. Power factor is defined by:

(a) $\cos \theta$

(b) $\sin \theta$

(c) $\tan \theta$

(d) $\sec \theta$

77. At resonance frequency, the impedance of an R.L.C series circuit is:

(a) Minimum

(b) Zero

(c) Maximum

(d) None of these

78. At resonance frequency in an R.L.C series circuit, V_L and V_C :

- (a) Greater than the source voltage
- **(b)** Smaller than the source voltage

- (c) Equal to source voltage
- (d) None of these

79. A.C voltmeter measures:

(a) Peak value

(b) Average voltage

(c) Peak inverse voltage

(d) r.m.s voltage

OBJE	CTIVE I	PHYSICS PART-II	143						
80.	The	The impedance of pure anti-resonant which at resonance is:							
	(a)	0	(b)	$\frac{1}{2}$					
	(c)	1	(d)	œ					
81.	The	positive value of current and voltage	over a c	cycle is:					
	(a)	Positive	(b)	Zero					
	(c)	Negative	(d)	None of the above					
82.	A ca	apacitor is a perfect insulator for:							
	(a)	Direct current	(b)	Alternating current					
	(c)	Both (a) and (b)	(d)	None of above					
83.	In c	omparison to D.C transmission losses	in A.C	are:					
	(a)	Low	(b)	High					
	(c)	Negligible	(d)	None of the above					
84.	In A	A.C circuits, the A.C instruments indic	ate:						
	(a)	Peak values	(b)	Square of peak values					
	(c)	Square root of peak values	(d)	Virtual values					
85.	Who	en resistance is increased in a series L	CR circ	uit:					
	(a)	Impedance decreases	(b)	Reactance increases					
	(c)	Phase angle increases	(d)	phase angle decreases					
86.	In a	n L.C.R, A.C circuit, the current beco	mes mii	nimum when:					
	(a)	$X_L > X_C$	(b)	$X_L = X_C$					
	(c)	$\sqrt{X_L X_C} = 1$	(d)	$X_L < X_C$					
87.	The	resonance frequency in case of series	resonai	nce circuit is given by:					
	(a)	$f = \frac{1}{4\pi\sqrt{LC}}$	(b)	$f = \frac{1}{2\pi\sqrt{L\ C}}$					
	(c)	$f = \frac{1}{5\pi\sqrt{L C}}$	(d)	None of the above					
88.	Whi	ich current can pass through a capacite	or conti	nuously:					
	(a)	Direct current	(b)	Electronic current					
	(c)	Alternating current	(d)	Both (a) and (b)					
89.	An i	inductor may store energy in its:							
	(a)	Magnetic field	(b)	Electric field					
	(c)	Coil	(d)	None of the above					
90.	The	reactance of inductor depends upon:							
	(a)	L	(b)	ωL					

(d)

All of the above

(c) ω

91. A device that allows only the continuous flow of AC through a circuit is:

(a) Capacitor

(b) Inductor

(c) Dynamo

(d) D.C motor

92. A.C varies as function of:

(a) Time

(b) Voltage

(c) Current

(d) Displacement

93. In electromagnetic waves, the electric and magnetic fields are:

(a) Perpendicular

(b) Parallel

(c) Antiparallal

(d) At an angle of 45°

94. The impedance of a series circuit containing capacitance C, inductance L and resistance R is:

(a) $R + L - \frac{1}{C}$

(b) $\frac{1}{R} + L - C$

(c) R + L + C

(d) None of the above

95. The effective value of any sinusoidal alternating current or voltage is:

- (a) $\sqrt{3}$ times its maximum value
- **(b)** $\frac{1}{\sqrt{2}}$ times its maximum value
- (c) $\sqrt{2}$ times its maximum value
- (d) None of the above

96. In modulation, low frequency signal is known as:

(a) Loaded signal

(b) Fluctuated signal

(c) Harmonic signal

(d) Modulation signal

97. As a result of modulation, the resultant wave is known as:

- (a) Energetic carriers wave
- (b) Carrier wave
- (c) Modulated carrier wave
- (d) None of the above

98. The reactance X_C for a capacitor across an alternating source of frequency is:

(a) $X_c = \frac{f}{2\pi c}$

(b) $X_c = 2\pi fc$

(c) $X_c = \frac{fc}{2\pi}$

(d) $X_c = \frac{1}{2\pi fc}$

99. In A.C circuits, current and voltage is controlled by:

(a) Inductor L

(b) Resistance R

(c) Capacitance C

(d) All of the above

100. A pure inductive coil is that which has:

(a) No impedance

(b) No ohmic resistance

(c) Some ohmic resistance

(d) None of these

101. If X be the reactance, Z be impedance then in a series L.C.R circuit:

(a) $X^2 = (Z + R)^2$

(b) $X^2 = (Z - R)^2$

(c) $X^2 = Z^2 - R^2$

(d) $X^2 = Z^2 + R^2$

(c) Zero

102.		series L.C.R circuit, the total reactance	of the	circuit is:
	(a)	$(\mathbf{x}_{1}, \mathbf{x}_{2})^{2}$		
		$(X_L - X_C)^2$		$\sqrt{X_L^2 - X_C^2}$
	(c)	$X_L + X_C$	(d)	$\sqrt{(X_L - X_C)^2}$
103.	Elec	trical resonance in an LCR A.C circuit i	s very	y sharp if:
	(a)	R is large	(b)	R is small
	(c)	$R = X_L \text{ or } X_C$	(d)	None of these
104.	The	instantaneous voltage across a pure indu	ıctanc	ee is:
	(a)	In phase with current	(b)	Lags the current by 90°
	(c)	Leads the current by 90° in phase	(d)	None of these
105.	The	process of combining low frequency sig	gnal w	rith high frequency radio waves is called:
	(a)	Resonance	(b)	Fluctuation
	(c)	Modulation	(d)	Amplitude
106.	Forp	parallel resonant circuit, the resonance c	urren	t is:
	(a)	Zero	(b)	Minimum
	(c)	Maximum	(d)	One
107.	In L.	.C parallel circuit, the coil draws:		
	(a)	Leading current	(b)	Lagging voltage
	(c)	Lagging current	(d)	Leading voltage
108.	The	reciprocal of impedance is called:		
	(a)	Admittance	(b)	Capacitance
	(c)	Inductance	(d)	Resistance
109.	The	circuit in which current and voltage are	in ph	ase, the power factor is:
	(a)	Double	(b)	three times
	(c)	One	(d)	Zero
110.	Capa	acity time constant is given by:		
	(a)	$\frac{1}{RC}$	(b)	R/C
		RC .		C
	(c)	RC	(d)	$\frac{\mathrm{C}}{\mathrm{R}}$
111.	In w	hich of the following, the loss of energy	is les	ss:
	(a)	Alternating current	(b)	Direct current
	(c)	Photo electric current	(d)	None of the above
112.	At h	igh frequency, the current through a cap	acito	r is:
	(a)	Small	(b)	Infinity

(d) Large

OBJEC	TIVE P	HYSICS PART-II	146	
113.	The	reactance of 1 farad capacitance when c	onnec	eted to D.C circuit is:
	(a)	Infinite	(b)	One
	(c)	Zero	(d)	None of these
114.	Pure	choke consumes:		
	(a)	Minimum power	(b)	Maximum power
	(c)	No power	(d)	Average power
115.	Radi	o frequency choke is:		
	(a)	Iron cored	(b)	Air Cored
	(c)	Air as well as iron cored	(d)	None of these
116.	A ch	oke is preferred to a capacitor to decrea	se the	A.C in a circuit because the capacitor:
	(a)	Has power factor $\cos \phi = 1$	(b)	May not be a leak proof wattless resistance
	(c)	Leak proof wattless resistance	(d)	None of these
117.	The 1	peak value of alternating voltage is 423	volts,	its rms value is:
	(a)	300 volts	(b)	423 volts
	(c)	150 volts	(d)	211.5 volts
118.	The j	purpose of choke in a fluorescent lamp	is:	
	(a)	Increase the current	(b)	Decrease the current
	(c)	Decrease the voltage	(d)	Increase the voltage
119.	The	power dissipation in a pure inductive or	capa	citive circuit is:
	(a)	Zero	(b)	Maximum
	(c)	Opposite	(d)	Negative
120.	As se	eries resonance in L.C.R circuit, the imp	pedan	ce is equal to:
	(a)	Inductive reactance	(b)	Ohmic resistance
	(c)	Capacitive reactance	(d)	None of these
121.	The	frequency of an A.C may be associated	by:	
	(a)	$f = \frac{IV}{T}$	(b)	$f = \frac{I}{T}$

(c)
$$f = \frac{1}{T}$$

122. The reactance of magnitude X_C of a capacitor joined across a alternating source can be found by a relation:

(a)
$$X_C = \frac{V_{rms}}{I_{rms}}$$

(b)
$$X_C = V_{rms} + I_{rms}$$

(c)
$$X_C = \frac{I_{rms}}{V_{rms}}$$

- **123.** The magnitude of r.m.s value of voltage can be expressed as:
 - (a) $V_{rms} = \frac{V_o + V}{\sqrt{2}}$

(b) $V_{rms} = \frac{V_o}{\sqrt{2}}$

(c) $V_{rms} = \frac{V_o + V_o}{2}$

(d) None of these

- **124.** Modulation is the process of:
 - (a) Combining low frequency signal with carrier
 - **(b)** Separating the low frequency signal from higher frequency radio wave
 - (c) Combing low frequency signal with high frequency radio waves
 - (d) Both (a) and (c)
- **125.** For modulation purpose, high frequency radio waves are called:
 - (a) Carrier waves

(b) Transverse waves

(c) Radio waves

- (d) Longitudinal waves
- **126.** The low frequency signal used for modulation is called:
 - (a) Carrier signal

(b) Radio signal

(c) Modulating signal

- (d) None of these
- **127.** The amplitude modulation A.M transmission frequencies range from:
 - (a) 540 Hz to 1600 Hz

(b) 540 Hz to 1500 MHz

(c) 540 KHz to 1600 KHz

- (d) None of these
- **128.** In frequency modulation, the amplitude of carrier waves is:
 - (a) Increases

(b) Remains constant

(c) Decreases

- (d) None of these
- **129.** Modulation is achieved by changing the:
 - (a) Frequency and amplitude of the carrier waves
 - **(b)** Only frequency of the carrier wave
 - (c) Only amplitude of the carrier wave
 - (d) None of these
- 130. If frequency of rotating coil of an A.C. generator is f Hz then frequency of e.m.f. produced is:
 - (a) 50 Hz

(b) 60 Hz

(c) f Hz

(d) None of these

- **131.** In figure phase at B is:
 - (a) $\frac{\pi}{2}$

(b) π

(c) $\frac{3\pi}{2}$

(d) 2π

- **132.** The basic circuit element in a D.C. circuit is:
 - (a) Capacitor

(b) Transistor

(c) Resistor

(d) Inductor

- 133. For q t graph, slope shows:
 - (a) Current

(b) Voltage

(c) e.m.f.

(d) None of these

- **134.** Slope of a horizontal line is:
 - (a) Zero

(b) Infinite

(c) Maximum

- (d) None of these
- **135.** For A.C. through a capacitor, current ————voltage.
 - (a) Lags by $\frac{\pi}{2}$

(b) Leads by $\frac{\pi}{2}$

(c) $\tan^{-1} \frac{1}{\omega CR}$

- (d) $\tan^{-1} \frac{\omega^2}{R}$
- **136.** When switch S in closed bulb is:
 - (a) ON
 - **(b)** OFF
 - (c) Both (a), (b)
 - (d) None of these

- **137.** When A.C. pass through an inductor, voltage leads the current by:
 - (a) Half cycle

(b) Quarter cycle

(c) Full cycle

- (d) None of these
- 138. In case of inductor, in third quarter power is:
 - (a) Positive

(b) Negative

(c) Both (a), (b)

- (d) None of these
- 139. Since an inductor does not consume energy coil is used for controlling A.C. Such a coil is called:
 - (a) Resistor

(b) Choke

(c) Starter

- (d) None of these
- 140. When 10 V are applied to an A.C. circuit, the current flowing in it is 100 mA. Its impendence is:
 - (a) 100Ω

(b) 200 Ω

(c) 10Ω

- (d) 300Ω
- 141. In a R-C series circuit, current ——applied voltage by $\theta =$
 - (a) Lead, $\tan^{-1} \frac{1}{\omega CR}$

(b) Lead, $\frac{\pi}{2}$

(c) Lags, $\tan^{-1} \frac{1}{\omega CR}$

(d) Lags, $\frac{\pi}{2}$

OBJE	CTIVE I	PHYSICS PART-II	149	
142.	In a	R-L series circuit, current	– applic	ed voltage by θ =
	(a)	Lags, $\frac{\pi}{2}$	(b)	Lags, $tan^{-1} \frac{\omega L}{R}$
	(c)	Leads, $tan^{-1} \frac{\omega L}{R}$	(d)	None of these
143.	Seri	es resonance circuit is also called:		
	(a)	R-L-C series circuit	(b)	Acceptor circuit
	(c)	Both (a), (b)	(d)	None of these
144.	The	resonance frequency is:		
	(a)	$\frac{1}{2\pi\sqrt{2LC}}$	(b)	$\frac{1}{4\pi\sqrt{LC}}$
	(c)	$\frac{0.0159}{\sqrt{LC}}$	(d)	None of these
145.	Para	allel resonance circuit is also called:		
	(a)	LC parallel	(b)	Tank
	(c)	Rejector	(d)	All of these
146.	At	resonance, impedance of parallel re	esonanc	ee circuit is ———— and it is equal to
		 .		
	(a)	Maximum, $\frac{L}{Cr}$	(b)	Minimum, $\frac{L}{Cr}$
	(c)	Zero	(d)	None of these
147.	For	L-C parallel circuit, power factor is:		
	(a)	Zero	(b)	One
	(c)	Two	(d)	Three
148.	If ca	pacitance of L-C parallel circuit is ma	de four	times then $f = \underline{\hspace{1cm}}$.
	(a)	Twice	(b)	Four times
	(c)	One fourth	(d)	One half
149.	A 10	00 μF capacitor will offer a reactance of	of:	
	(a)	60Ω	(b)	90 Ω
	(c)	32 Ω	(d)	42 Ω
150.		glass plate is placed between plate htness of the bulb.	es of a	capacitor, in series with a lighted bulb, the
	(a)	Remains same	(b)	Decreases
	(c)	Increases	(d)	Bulb turns off

(b)

(d)

 $460 \mathrm{~V}$

None of these

151.

(a)

(c)

230 V

 $400 \mathrm{~V}$

Three phase supply also provides:

- **152.** The electromagnetic spectrum contains:
 - (a) Radio waves

(b) X-rays

(c) Microwaves

- (d) All of these
- **153.** Who proved that light waves are electromagnetic?
 - (a) Faraday

(b) Einstein

(c) Maxwell

- (d) Enderson
- **154.** Formula to prove speed of electromagnetic wave is equal to speed of light is:
 - (a) $V = \frac{S}{t}$

(b) $\frac{1}{\sqrt{\in {}_{o}\mu_{o}}}$

(c) $\sqrt{\frac{\in o}{\mu_o}}$

(d) $\sqrt{\in {}_{0}\mu_{0}}$

- 155. Value of μ_0 is:
 - (a) $4\pi \times 10^{-7} \,\mathrm{Hm}^{-1}$

(b) $4\pi \times 10^{-7} \text{ wbA}^{-1} \text{m}^{-1}$

(c) $4\pi \times 10^{-7}$ wb Am

(d) Both (a), (c)

- (e) Both (a), (b)
- 156. A capacitor of capacitance $30 \,\mu\text{F}$ is charged by a constant current of $10 \,\text{mA}$. If initially capacitor is uncharged, what is time taken for potential difference across capacitor to reach $300 \,\text{V}$?
 - (a) 0.9 sec.

(b) 15 sec.

(c) $1.5 \times 10^{-5} \text{ s}$

(d) $0.9 \times 10^{-3} \text{ s}$

				ANS	WERS	\mathbf{S}			
1.	(c)	2.	(b)	3.	(d)	4.	(c)	5.	(a)
6.	(d)	7.	(a)	8.	(b)	9.	(c)	10.	(a)
11.	(a)	12.	(c)	13.	(d)	14.	(b)	15.	(d)
16.	(d)	17.	(a)	18.	(d)	19.	(a)	20.	(a)
21.	(d)	22.	(b)	23.	(a)	24.	(a)	25.	(b)
26.	(a)	27.	(d)	28.	(b)	29.	(b)	30.	(b)
31.	(a)	32.	(b)	33.	(d)	34.	(d)	35.	(a)
36.	(b)	37.	(d)	38.	(a)	39.	(c)	40.	(a)
41.	(b)	42.	(a)	43.	(c)	44.	(a)	45.	(d)
46.	(a)	47.	(a)	48.	(a)	49.	(b)	50.	(a)
51.	(b)	52.	(d)	53.	(a)	54.	(a)	55.	(c)
56.	(b)	57.	(a)	58.	(a)	59.	(a)	60.	(a)
61.	(b)	62.	(a)	63.	(c)	64.	(d)	65.	(d)
66.	(c)	67.	(d)	68.	(d)	69.	(c)	70.	(c)
71.	(a)	72.	(b)	73.	(b)	74.	(a)	75.	(d)
76.	(a)	77.	(a)	78.	(b)	79.	(d)	80.	(d)
81.	(b)	82.	(a)	83.	(c)	84.	(d)	85.	(d)
86.	(b)	87.	(b)	88.	(c)	89.	(a)	90.	(b)
91.	(a)	92.	(a)	93.	(a)	94.	(d)	95.	(b)
96.	(d)	97.	(c)	98.	(d)	99.	(d)	100.	(b)
101.	(c)	102.	(d)	103.	(b)	104.	(c)	105.	(c)
106.	(b)	107.	(c)	108.	(a)	109.	(c)	110.	(a)
111.	(a)	112.	(d)	113.	(a)	114.	(c)	115.	(b)
116.	(b)	117.	(a)	118.	(b)	119.	(b)	120.	(b)
121.	(c)	122.	(a)	123.	(b)	124.	(d)	125.	(a)
126.	(c)	127.	(c)	128.	(b)	129.	(a)	130.	(c)
131.	(a)	132.	(c)	133.	(a)	134.	(a)	135.	(b)
136.	(b)	137.	(b)	138.	(a)	139.	(b)	140.	(a)
141.	(c)	142.	(c)	143.	(c)	144.	(c)	145.	(d)
146.	(a)	147.	(b)	148.	(d)	149.	(c)	150.	(b)
151.	(c)	152.	(d)	153.	(c)	154.	(b)	155.	(c)
156.	(a)								