

ELECTRONICS

Each question has four possible answers, tick (11) the correct answer:

1.	Tem	perature coefficient of resistivity of a semi conductor is:					
	(a)	Constant	(b)	Positive			
	(c)	Negative	(d)	Variable			
2.	The	pn junction on forward baising acts as:					
	(a)	Capacitor	(b)	Low resistor			
	(c)	Inductor	(d)	High resistor			
3.	Whi	ch one of the following is not semi cond	luctor	:			
	(a)	Silicon	(b)	Copper			
	(c)	Gallium arsenide	(d)	Germinium			
4.	The	average gap for Germanium at 0K is:					
	(a)	1.12 ev	(b)	0.02 ev			
	(c)	6.72 ev	(d)	7.2 ev			
5.	The	process of doping causes the resistivity	of ser	mi conductor to:			
	(a)	Decrease	(b)	Remains constant			
	(c)	Increase	(d)	None of these			
6.	Depl	etion region has:					
	(a)	Electrons only	(b)	Holes only			
	(c)	Both electrons and holes	(d)	Neither holes nor electrons			
7.	An n	-type substance is:					
	(a)	Electrically neutral	(b)	Negatively charged			
	(c)	Positively charged	(d)	None of these			
8.	Hole	s are exist in:					
	(a)	Conductors	(b)	Semi conductors			
	(c)	Insulators	(d)	All of the above			
9.	A pn	junction cannot be used as:					
	(a)	A detector	(b)	A rectifier			
	(c)	An amplifier	(d)	None of these			

(c) Both free electrons and holes

ODJE	CIIVE	1 11 1 0 1 0 0 1 A IX 1 - 11			10
10.	Hole	e is equivalent to:			
	(a)	A positive charge	(b)	A negative charge	
	(c)	A neutral	(d)	None of these	
11.	The	re is no current due to holes in good elec	etrical	conductors because they have:	
	(a)	Large forbidden energy gap	(b)	No valance electron	
	(c)	Overlapping valance & conduction band	d (d)	None of these	
12.	Silic	con is the most commonly used:			
	(a)	Insulator	(b)	Semi-conductor	
	(c)	Dielectric	(d)	Conductor	
13.	The	crystal of Germinium or silicon in its pu	ure fo	rm at absolute zero acts as:	
	(a)	Insulater	(b)	Conductor	
	(c)	Semi-conductor	(d)	None of these	
14.	The	crystal of germinium or silicon in its pu	re for	m at room temperature acts as:	
	(a)	Insulator	(b)	Conductor	
	(c)	Semi-conductor	(d)	None of these	
15.	All	the valence electrons present in a crystal	of si	licon are bounded in their orbits by:	
	(a)	Covalent bond	(b)	Ionic bond	
	(c)	Molecular bond	(d)	None of these	
16.	Maj	ority charge carries in the P-type region	of p-	n-junction are:	
	(a)	Protons	(b)	Electrons	
	(c)	Positrons	(d)	Holes	
17.	The	impurity in the germinium is usually in	the ra	itio of:	
	(a)	$1:10^6$	(b)	1:10 ⁴	
	(c)	1:108	(d)	$1:10^{10}$	
18.	A po	otential barrier of 0.7V exists across p-n	junct	ion made from:	
	(a)	Silicon	(b)	Germinium	
	(c)	Indium	(d)	Gallium	
19.	A Po	otential difference is developed across the	ne dep	letion region of p-n junction due to:	
	(a)	Negative ions	(b)	Positive ions	
	(c)	Both positive and negative ions	(d)	None of these	
20.	The	external potential difference applied to	p-n ju	nction for forward biasing supplied energy	to:
	(a)	Free electrons in n region	(b)	Holes in p-region	

(d) None of these

Insulators

(c)

21. In forward biased situation, as the biasing voltage is increased, the current:			e is increased, the current:	
	(a)	Does not change	(b)	Decreases
	(c)	Also increases	(d)	None of these
22.	Whi	ile drawing a graph between current and	l biasi	ng voltage in p-n junction, the current is taken:
	(a)	Along x-axis	(b)	Along –y-axis
	(c)	Along x-axis and in mA	(d)	Along +y-axis
23.	In re	everse biased, the resistance offered by	the p-	n junction is of the order of:
	(a)	A few $M\Omega$	(b)	Several $M\Omega$
	(c)	A few ohms	(d)	None of these
24.	The	semi conductor diode has the property	of:	
	(a)	Two way conduction	(b)	Zero conduction
	(c)	One way conduction	(d)	Amplification
25.	Elec	etrons present in P-type material due to	therm	al pair generation are:
	(a)	Majority carriers	(b)	Minority carriers
	(c)	Dual carriers	(d)	None of these
26.	Sem	ni conductors with donor atoms and free	electi	rons belong to the type:
	(a)	n	(b)	P
	(c)	Both n and P	(d)	Any of above
27.	P-n	junction when reversed biased acts as a	:	
	(a)	Capacitor	(b)	Inductor
	(c)	On switch	(d)	Off switch
28.	In a	n n-type semi conductor there are:		
	(a)	Holes as majority carrier	(b)	Immobile positive ions
	(c)	Immobile negative ions	(d)	None of these
29.	The	width of depletion region of a junction:	:	
	(a)	Increase with inverse biasing	(b)	Decrease with light doping
	(c)	Increase with heavy doping	(d)	None of these
30.	Whi	ich one of the following has the greatest	energ	gy gap:
	(a)	Conductor	(b)	Semi conductor
	(c)	Insulator	(d)	None of these
31.	Whi	ich one of the following has smallest en	ergy g	gap:
	(a)	Conductors	(b)	Semi conductors

(d) None of these

ODJE	OIIVE	TITTOTO TAKT-II		
32.	Min	ority carries in n-type substances are:		
	(a)	Protons	(b)	Electrons
	(c)	Neutrons	(d)	Holes
33.	Min	ority carriers in a p-type substances are	:	
	(a)	Protons	(b)	electrons
	(c)	Neutrons	(d)	Holes
34.	A ju	nction between p and n materials forms	s:	
	(a)	An amplifier	(b)	An oscillator
	(c)	A detector	(d)	A semi conductor diode
35.	Sem	i conductor diode conducts only when i	it is:	
	(a)	Reverse biased	(b)	Forward biased
	(c)	Not biased	(d)	None of these
36.	The	forward current through a semi conduc	tor die	ode circuit is due to:
	(a)	Electrons	(b)	Holes
	(c)	Majority carriers	(d)	Minority carriers
37.	The	reverse current through a semi conduct	or dio	de is due to:
	(a)	Electrons	(b)	Holes
	(c)	Majority carriers	(d)	Minority carriers
38.	In p	n junction, p-type end is basically refer	ed as:	
	(a)	Anode	(b)	Cathode
	(c)	Neutral	(d)	None of these
39.	In h	alf wave rectification, the output DC vo	ltage	is obtained across the load for:
	(a)	The negative half cycle of input AC	(b)	The positive half cycle of input AC
	(c)	Both the input of AC	(d)	None of the above
40.	In fi	all wave rectification, the output DC vo	ltage i	s obtained across the load for:
	(a)	The positive half cycle of input AC	(b)	The negative half cycle of input AC
	(c)	Complete cycle of input AC	(d)	None of these
41.	Forv	vard resistance of p-n junction is:		
	(a)	Few ohms	(b)	Mega ohms
	(c)	Infinity	(d)	Kilo ohms
42.	Rev	erse resistance of p-n junction is:		
	(a)	Low	(b)	Zero
	(c)	Very high	(d)	None of these

OBJE	CIIVE	PHYSICS PART-II			19
43.	Con	version of alternating current into direc	t curr	ent is called:	
	(a)	Modulation	(b)	Amplification	
	(c)	Oscillation	(d)	Rectification	
44.	A re	egion having zero charge particle:			
	(a)	Depletion region	(b)	Potential difference	
	(c)	Curved region	(d)	None of above	
45.	The	potential difference across depletion re	egion i	n case of Si is:	
	(a)	0.6 volt	(b)	0.9 volt	
	(c)	0.7 volt	(d)	0.2 volt	
46.	The	potential difference across depletion re	egion i	n case of Ge is:	
	(a)	0.3 volt	(b)	0.7 volt	
	(c)	0.6 volt	(d)	0.8 volt	
47.	The	most commonly used diode for special p	urpos	e is:	
	(a)	Light emitting diode	(b)	Photo diode	
	(c)	Photo voltaic cell	(d)	All of above	
48.	A li	ght emitting diode is made from:			
	(a)	Germinium	(b)	Silicon	
	(c)	Gallium arsenide	(d)	Phosphorus	
49.	The	number of LEDs required to display al	l the d	ligits is:	
	(a)	Seven	(b)	Five	
	(c)	Six	(d)	Eight	
50.	A pl	hoto diode can be used:			
	(a)	For detection of visible light	(b)	For detection of invisible light	
	(c)	Both (a) and (b)	(d)	As an inductor	
51.	The	diode used for the detection of visible	and in	visible light is:	
	(a)	Photodiode	(b)	Photo voltaic cell	
	(c)	Light emitting	(d)	All of above	
52.	A di	iode, which can turn current ON and Ol	FF in 1	nanosecond is called:	
	(a)	Photo voltaic cell	(b)	Light emitting diode	
	(c)	Photodiode	(d)	None of these	
53.	Pho	todiode is operated:			
	(a)	In the reversed biased situation	(b)	In the forward biased situation	

(d) Both (a) and (c)

With the light incident upon it

(c)

Zero conduction

(c)

54.	Pho	to voltaic cell is also called:					
	(a)	Solar cell	(b)	Generator			
	(c)	Thermo couple	(d)	Thermister			
55.	A si	ngle photovoltaic cell produces a curre	ent of:				
	(a)	0.9v	(b)	0.6v			
	(c)	0.5v	(d)	6.0v			
56.	A si	ngle photo voltaic cell produces a curr	ent of:				
	(a)	A few mA	(b)	A few μ A			
	(c)	A few ampere	(d)	1A			
57.	The	light emitting diode emits light when	it is:				
	(a)	Reverse biased	(b)	Forward biased			
	(c)	Both (a) and (b)	(d)	None of these			
58.	The	specially designed semi conductor dic	odes use	ed as indicator lamps in electronic circuits are:			
	(a)	The switch	(b)	The light emitting diode			
	(c)	The photo diode	(d)	Solar cells			
59.	The	specially designed semi-conductor us	ed for a	s fast countings in electronic circuits is:			
	(a)	Photo diodes	(b)	Light emitting diode			
	(c)	Photo voltaic cell	(d)	Solar cell			
60.	A co	ombination of p-type and N-type subst	ance gi	ve rise to:			
	(a)	P-N junction	(b)	N-N-junction			
	(c)	P-P junction	(d)	None of the above			
61.		When p-type of p-n-junction connected to positive end and N-type of the junction connected to the negative terminal of battery then the junction is:					
	(a)	Reverse biased	(b)	Forward biased			
	(c)	Neutral	(d)	None of these			
62.	If a	reverse current of a reverse biased jun	ction is	increased to a maximum value then:			
	(a)	Diode junction may break down	(b)	Voltage drops to zero			
	(c)	Voltage becomes maximum	(d)	None of these			
63.	The	forward resistance of the p-n-junction	is expi	ressed as:			
	(a)	$r_f = \Delta v_f \times \Delta I_f$		$r_f = \Delta v_f - \Delta I_f$			
	(c)	$r_f = \frac{\Delta \ v_f}{\Delta \ I_f}$	(d)	$r_f = \frac{\Delta I_f}{\Delta V_f}$			
64.	The	semi conductor diode has the property	y of a:				
	(a)	Two way conduction	(b)	One way conduction			

(d) None of these

OBJE	CIIVE	PHYSICS PART-II		199
65.	_	ositive terminal of the battery is connect then diode is:	ted to	n-type and negative terminal is connected to p-
	(a)	Forward biased	(b)	Reverse biased
	(c)	Zero biased	(d)	Not biased
66.	The	process due to which current flows only	y duri	ng alternate half cycle is known as:
	(a)	Half wave rectification	(b)	Full wave rectification
	(c)	Saturation	(d)	Amplification
67.	The	circuit of full wave rectification consist	of:	
	(a)	Three diodes	(b)	Four diodes
	(c)	Two diodes	(d)	One diode
68.	The	wave form of an a.c voltage is:		
	(a)		(b)	
	(c)		(d)	
69.		ch of the following diagram represen	ts the	wave form of an a.c voltage after full wave
	(a)		(b)	
	(c)		(d)	
70.		ch of the following diagram represe	nts th	e wave form of a.c voltage after half wave
	(a)		(b)	
	(c)		(d)	
71.	Tran	nsistor was discovered by:		
	(a)	John Bardeen	(b)	I-carrie
	(c)	G Bell	(d)	Young
72.	A tra	ansistor has:		
	(a)	Two region	(b)	One region
	(c)	Three region	(d)	Four region
73.	In a	certain circuit, $I_B = 40 \mu A$, $I_C = 20 \text{ mA}$		
	(a)	450 amp	(b)	0.45 amp
	(c)	5 m amp	(d)	500 amp

OBJE	CTIVE	PHYSICS PART-II			200			
74.	The	basic condition for a transistor amplifie	er circ	uit is:				
	(a)	The base-emitter junction should be forward biased						
	(b)	The base-emitter junction should be reverse biased						
	(c)	The base-collector junction should be for	ward l	biased				
	(d)	None of these						
75.	Usu	ally V _{BB} is:						
	(a)	Larger than V_{CC}	(b)	Smaller than V _{CC}				
	(c)	Equal to V_{CC}	(d)	None of these				
76.	In o	rder that a transistor acts as switch, a la	rger p	ositive potential is applied across its:				
	(a)	Base-collector terminals	(b)	Base emitter terminals				
	(c)	Collector emitter terminals	(d)	None of these				
77.	To t	turn the transistor OFF, the base current	is set	:				
	(a)	At zero value	(b)	At maximum value				
	(c)	At minimum value	(d)	None of these				
78.	Тур	es of transistors are:						
	(a)	Seven	(b)	Two				
	(c)	Four	(d)	Three				
79.	In th	ne transistor schematic symbol, the arro	w is:					
	(a)	Located on the base	(b)	Located on the collector				
	(c)	Located on the emitter	(d)	None of these				
80.	The	term transistor stands for:						
	(a)	Transfer of resistance	(b)	Transfer of current				
	(c)	Transfer of charge	(d)	Transfer of energy				
81.	The	transistor in a circuit basically acts as:						
	(a)	Power amplifier	(b)	Current amplifier				
	(c)	Voltage amplifier	(d)	None of these				
82.	Trai	nsistor can be used as:						
	(a)	Oscillator	(b)	Switches				
	(c)	Units	(d)	All of above				
83.	Who	en a transistor is used in a circuit genera	ılly:					
	(a)	The collector-base junction is forward biased	ırd bia	ased and the collector-base junction is re	verse			
	(b)	Both the junctions are forward biased						
	(c)	Both the junction are reverse biased						

None of these

(d)

84. The symbol of p-n-p transistor is:

85. The characteristic of transistor are:

(a) Temperature dependent

(b) Sound dependent

(c) Energy dependent

(d) Light dependent

86. Emitter base junction is always:

(a) Forward biased

- (b) Reverse biased
- (c) Both forward and reverse
- (d) None of these

87. The emitter and base has concentration of impurity:

(a) Less

(b) Zero

(c) Greater

(d) None of these

88. Identify which device used the rectification:

(a) Inductor

(b) Capacitor

(c) Transistor

(d) P-n junction

89. Which one of the following device based on p-n junction:

(a) Photo diode

(b) Light emitting diode

(c) Photo voltaic cell

(d) All of the above

90. Light emitting diode based on:

- (a) Emission of energy in the form of photons
- (b) Faradays law
- (c) Ionic bonding between p-type and n-type substances
- (d) None of these

91. Photo diode can be used as:

- (a) A automatic ON and OFF switch
- (b) Direction of light

(c) Logic gates

(d) All of above

92. The central region of n-p-n transistor is known as:

(a) Base

(b) Collector

(c) Emitter

(d) None of above

93. In general, most of the electrical circuits make use of:

(a) n-n junction

(b) p-p junction

(c) n-p-n transistor

(d) p-n-p transistor

<u>ОВЈЕ</u> 94.		PHYSICS PART-II normal transistor the emitter current car	n he σ	iven hv
74.		$I_E = I_C$	_	$I_E = I_C + I_B$
	(c)	$I_E = I_B$	(d)	None of these
95.	Whe	en light emitting diode is forward biased	l, it er	nits light of colour:
	(a)	Yellow	(b)	Green
	(c)	Red	(d)	All of the above
96.	The	advantage of LEDs is:		
	(a)	High operating speed	(b)	Small size

In n-p-n transistor, the current flows in the direction from:

In p-n-p transistor, the current flows in the direction from:

An expression for current gain of a transistor is given by:

When transistor works as an amplifier, its output is:

Inverting and non-inverting amplifier (d)

An operational amplifier can be used as:

(d)

(b)

(d)

(b)

(d)

(b)

(d)

(b)

(d)

(b)

(d)

(b)

A transistor consists of three electrical contact which one of these is rectifying:

(b) 10^{-4} m

(d) 10^4 m

Base

(b) $\beta = I_C + I_B$

Greater

Comparator

All of the above

Greater or less directly proportional to the input

(d) $\beta = \frac{I_B}{I_C}$

All

Collector to emitter

Emitter to collector

Base to collector

Collector

None of these

Both (a) and (c)

Base to collector

(c)

(a)

(c)

(a)

(c)

(a) $\beta = \frac{I_B}{I_C}$

(c) $\beta = I_C - I_B$

Zero

Less

Night switch

(a)

(c)

(a)

Base

Emitter

 $10^{-6} \, \text{m}$

 10^{-2} m

Collector

Emitter

97.

98.

99.

100.

101.

102.

103.

104.

Reliability

Base to emitter

Emitter to base

Base to emitter

Emitter to base

In a transistor which one is very thin:

The thickness of the base is of the order of:

(c)

Three

105.	An operational amplifier have how many input terminals:			
	(a)	Two	(b)	Four
	(c)	Three	(d)	Five
106.	An c	pperational amplifier will act as inverting	g amp	olifier, when the input signal is connected to:
	(a)	Earthed wire	(b)	Inverting terminal
	(c)	Non inverting terminal	(d)	None of these
107.		operational-amplifier is so called beca ations:	use it	was some times used to perform mathematical
	(a)	Chemically	(b)	Electronically
	(c)	Electrically	(d)	Mechanically
108.	An c	pp-amp has input terminals namely:		
	(a)	Inverting (–) input	(b)	Non-inventing C+D
	(c)	Both (a) and (b)	(d)	None of these
109.	The	resistance between (+) and (-) inputs of	an op	p-amp is of the order of:
	(a)	Several mega ohms	(b)	A few ohms
	(c)	Both (a) and (b)	(d)	None of these
110.	To u	se an op-amp as an inverting amplifier,	the te	erminal which is grounded is the:
	(a)	Inverting terminal	(b)	Non-inverting terminal
	(c)	Out put terminal	(d)	None of these
111.	In ca	ase of op-amp as an inverting amplifier,	V_{+} $-$	$V_{-} = 0$, this is because:
	(a)	Open gain loop is very low	(b)	Closed loop gain is very high
	(c)	Open loop gain is very high	(d)	Both (a) and (a)
112.	In or	rder to use the op-amp as non-inverting	ampli	fier, the input signal is applied as:
	(a)	Non-inverting (+) terminal	(b)	Inverting (-) terminal
	(c)	Inverting (+) terminal	(d)	All of above
113.	If R ₁	= $10 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, the gain of the o	p-am	p acting as inverting amplifier comes out to be:
	(a)	+10	(b)	-10
	(c)	+0.1	(d)	-0.1
114.	The	open loop gain of an op-amplifier is of	the or	der of:
	(a)	10^{3}	(b)	10^4
	(c)	10^{6}	(d)	10^{5}
115.	The	number of input terminals of an op-amp	olifier	is:
	(a)	Four	(b)	Two

(d) One

OBJE	CTIVE	PHYSICS PART-II		204
116.	Ope	rational-amplifier has been discussed as	compa	rator of:
	(a)	Voltage	(b)	Current
	(c)	Displacement	(d)	Electric fields
117.	The	operational amplifier is:		
	(a)	A high gain amplifier	(b)	A high-power amplifier
	(c)	A high resistance amplifier	(d)	A low resistance amplifier
118.	An	op-amplifier can apply to:		
	(a)	A.C only	(b)	D.C only
	(c)	Both A.C and D.C	(d)	None of these
119.	Non	n-inverting amplifier circuit have:		
	(a)	A very low input impedance	(b)	A very high input impedance
	(c)	A low output impedance	(d)	None of these
120.	An	expression for gain of an inverting amp	lifier i	s:
	(a)	$-\frac{R_2}{R_1}$	(b)	$\frac{R_1}{R_2}$
	(c)	$(R_1 R_2)$	(d)	None of these
121.	The	value of open loop gain value for the an	nplifie	er is:
	(a)	Zero	(b)	Infinity
	(c)	Very high	(d)	Very low
122.	An	expression for gain of non-inverting am	plifie	r is:
	(a)	$G = 1 + \frac{R_2}{R_1}$	(b)	$G = 1 + \frac{R_1}{R_2}$
	(c)	$G = 1 - \frac{R_1}{R_2}$	(d)	$G = 1 + R_1 R_2$
123.		ystem which deals with quantities or vanown as:	ariable	es which have only two discrete values or state
	(a)	Binary system	(b)	Logic gate
	(c)	Number system	(d)	Digital system
124.	In d	escribing functions of digital system, a	lighte	d bulb will be described as:
	(a)	Infinity	(b)	1
	(c)	0	(d)	None of these
125.	Whi	ich of the following is basic operation o	f Boo	lean algebra:
	(a)	AND operation	(b)	NOT operation

(d) All of these

(c) OR operation

OBJE	JIIVE	PHYSICS PART-II		20:
126.		rcuit which has two or more input signa als are energetic is known as:	ıls tha	t delivers an output when any one or more inpu
	(a)	AND gate	(b)	OR gate
	(c)	NOT gate	(d)	NOR gate
127.		reuit which has two or more input sign t signal is energetic is known as:	gnals	and which delivers an output only when every
	(a)	OR gate	(b)	NOT gate
	(c)	AND gate	(d)	NOR gate
128.		logic circuit with one input and one wn as:	outpu	nt that inverts the input signal at the output is
	(a)	OR gate	(b)	NOT gate
	(c)	AND gate	(d)	NOR gate
129.	The	mathematical symbol for OR operation	:	
	(a)	X = A.B	(b)	$X = \overline{A \cdot B}$
	(c)	X = A + B	(d)	$X = \overline{A + B}$
130.9	The	mathematical symbol for AND gate is:		
	(a)	$X = \overline{A + B}$	(b)	X = A.B
	(c)	X = A + B	(d)	$X = \overline{A \cdot B}$
131.9	The	mathematical symbol for NOR operation	on is:	
	(a)	$X = \overline{A + B}$	(b)	X = A.B
	(c)	X = A + D	(d)	$X = \overline{A \cdot B}$
132.9	The	mathematical symbol for NAND opera	tion is	3:
	(a)	X = A + B	(b)	$X = \overline{A} \cdot \overline{B}$
	(c)	$X = \overline{A \cdot B}$	(d)	$X = \overline{A + B}$
133.	` '	logic gats are used in:	. ,	
	(a)	Pocket calculators	(b)	Robots
	(c)	Digital watches	(d)	All of these
134.	In de	escribing functions of digital system, 0	repres	sents:
	(a)	OFF	(b)	True
	(c)	ON	(d)	Lighted
135.	In de	escribing function of digital system, 1 re	eprese	ents:
	(a)	True statement	(b)	Closed switch
	(c)	Lighted bulb	(d)	All of above

(c) OR, NAND, NOT gates

136.	The	e values 1 and 0 are designated as:						
	(a)	Binary values	(b)	Continuous values				
	(c)	Decimal values	(d)	None of these				
137.	The	The gate will recognized the voltage as high or 1 if the voltage applied to the						
	(a)	1.5 volt	(b)	3.5 volt				
	(c)	0.5 volt	(d)	0.7 volt				
138.	The	gate will recognize the voltage as 1 or 0	if the	voltage applied to the gate is:				
	(a)	3.5 volt	(b)	0.5 volt				
	(c)	5.5 volt	(d)	7.5 volt				
139.	In O	R gate, the output is 1 if:						
	(a)	At least one input is 1	(b)	Both input are 1				
	(c)	Both inputs are 0	(d)	None of these				
140.	In A	ND gate, the output is 0 if:						
	(a)	Both inputs are 1	(b)	Both inputs are 0				
	(c)	One input is Zero	(d)	None of these				
141.	In A	ND gate, the output is 1 if:						
	(a)	Both inputs are 1	(b)	Both inputs are 0				
	(c)	One input is 0	(d)	None of these				
142.	The	he gate, which performs the operation of inversion is called:						
142.	(a)	NOT gate	(b)	AND gate				
	(c)	OR gate	(d)	XOR gate				
143.	The	The gate, which changes the logic level to its opposite level is called:						
	(a)	NOR gate	(b)	AND gate				
	(c)	OR gate	(d)	NOT gate				
144.	If bo	th the inputs given to a gate are 1, such	that t	he output is 0 then it is:				
	(a)	NAND gate	(b)	NOR gate				
	(c)	XOR gate	(d)	All of these				
145.	If bo	oth the inputs given to a gate are 0 such	that tł	ne output is 1 then it is:				
	(a)	NAND gate	(b)	NOR gate				
	(c)	XN, OR gate	(d)	All of these				
146.	XOF	OR gate can be made by combining:						
	(a)	NOR, AND, NOT gates	(b)	OR, AND, NOT gates				

(d) OR, NOR, NOT gates

ODSE	CIIVE	. T TT TOTOG T ART-II		201				
147.	XNOR gate can be made by combining:							
	(a)	OR, NOR, NOT gate	(b)	OR, AND, NO gates				
	(c)	OR, NAND, NOT gates	(d)	NOR, AND, NOT gates				
148.	At higher temperature, potential barrier voltage:							
	(a)	Decreases	(b)	Increases				
	(c)	No change	(d)	None				
149.	Wid	lth of depletion region is:						
	(a)	10^{-8} m	(b)	$10^{-7} \mathrm{m}$				
	(c)	10^{-6} m	(d)	$10^{-4} \mathrm{m}$				
150.		The barrier voltage is more for silicon because of its ———— atomic number allows more stability in covalent bonds.						
	(a)	High	(b)	Low				
	(c)	Both (a), (b)	(d)	None				
151.	Brea	akdown voltage is:						
	(a)	25 V	(b)	15 V				
	(c)	35 V	(d)	5 V				
152.	The	value of reverse current for Ge is:						
	(a)	1 μΑ	(b)	1 mA				
	(c)	1 A	(d)	1 MA				
153.	Dev	rice used for conversion of D.C. to A.C.	is:					
	(a)	Oscillator	(b)	Rectifier				
	(c)	Amplifier	(d)	None				
154.	p-n junction when reversed biased acts as a:							
	(a)	Capacitor	(b)	On switch				
	(c)	Off switch	(d)	None				
155.	Pulsating D.C. can be made smooth by using a circuit known as:							
	(a)	Filter	(b)	Tank				
	(c)	Accepter	(d)	All				
156.	A pl	A photodiode can switch its current on OR off in:						
	(a)	nano second	(b)	milli second				
	(c)	micro second	(d)	centi second				
157.	Photodiode is used in:							
	(a)	Automatic switch	(b)	Optical communication equipment				
	(c)	Light meters	(d)	All				

OBJE	CIIVE	FHTSICS FART-II		200			
158.	Silic	con transistors are preferred because:					
	(a)	High operating temperature	(b)	Low leakage current			
	(c)	Suited to high frequency circuits	(d)	All			
159.	Curi	rent gain of a transistor which has colle	ctor cı	irrent of 10 mA and a base current of 40 μA is:			
	(a)	25	(b)	250			
	(c)	2500	(d)	25000			
160.	In ca	ase of common emitter amplifier, phase	diffe	rence between input and out:			
	(a)	0°	(b)	120°			
	(c)	180°	(d)	90°			
161.	Whe	en transistor acts as OFF switch then vo	ltage	across collector and emitter is ————V _{CC} .			
	(a)	Less than	(b)	Greater than			
	(c)	Equal to	(d)	None			
162.	LDF	R is a:					
	(a)	Conductor	(b)	Semiconductor			
	(c)	Insulator	(d)	None			
163.	Dur	During day time, when light is falling upon LDR, R _L is:					
	(a)	Large	(b)	Unchanged			
	(c)	Small	(d)	None			
164.	The	photovoltaic cell is always:					
	(a)	Forward biased	(b) Reverse biased	Reverse biased			
	(c)	No biasing is required	(d)	None			
165.	Und	er ideal conditions, the collector curren	t is:				
	(a)	Equal to base current	(b)	Nearly equal to emitter current			
	(c)	Less than base current	(d)	Always zero			
166.	The symbol represents:						
	(a)	LED	(b)	Photodiode			
	(c)	Diode	(d)	All			
167.	One	use of a single p-n junction semicondu	ctor ir	an electrical circuit is a:			
	(a)	Rectifier	(b)	Transistor			
	(c)	Battery	(d)	Diode			
168.	The	main difference between intrinsic and o	extrins	sic semiconductor, under ambient condition, is:			
167. 168.	(a)	Shape	(b)	Density			
	(c)	Electrons	(d)	Resitivity			

The	output from a full wave rectifier is.							
(a)	An ac voltage	(b)	A dc voltage					
(c)	Zero	(d)	A pulsating unidirectional voltage					
_	piece of copper and another of germanium are cooled from room temperature to 80K. T stance of:							
(a)	Each of them increases							
(b)	Each of them decreases							
(c)	(c) Copper increases and that of germanium decreases							
(d)	Copper decreases and that of germanic	ım inc	creases					
wave	elength shorter than 2066 nm is inci	(b) A dc voltage (d) A pulsating unidirectional voltage remanium are cooled from room temperature to 80K. The manium decreases remanium increases emiconductor increases if electromagnetic radiation of s incident on it. The band gap energy (in eV) for the						
(a)	0.5	(b)	0.6					
(c)	0.8	(d)	1.2					
	(a) (c) A piresis (a) (b) (c) (d) The wave seminary	 (c) Zero A piece of copper and another of germanic resistance of: (a) Each of them increases (b) Each of them decreases (c) Copper increases and that of germanic (d) Copper decreases and that of germanic The electrical conductivity of a semiconomic wavelength shorter than 2066 nm is increased increased in the conductor is very nearly equal to. (a) 0.5 	(a) An ac voltage (b) (b) (c) Zero (d) A piece of copper and another of germanium a resistance of: (a) Each of them increases (b) Each of them decreases (c) Copper increases and that of germanium december (d) Copper decreases and that of germanium increases are proportionally increased as a semiconductivity of a semiconducti					

ANSWERS									
1	(1-)	2					(a)	_	(a)
1.	(b)	2.	(b)	3.	(b)	4.	(c)	5.	(a)
6.	(d)	7.	(a)	8.	(b)	9.	(c)	10.	(a)
11.	(c)	12.	(b)	13.	(a)	14.	(c)	15. 20.	(a)
16. 21.	(d)	17. 22.	(c)	18. 23.	(a) (b)	24.	(c)	25.	(c)
26.	(c) (a)	27.	(c) (d)	28.	(b)	29.	(c) (a)	30.	(b) (c)
31.	(a)	32.	(d)	33.	(b)	34.	(d)	35.	(b)
36.	(c)	37.	(d)	38.	(a)	39.	(b)	40.	(b)
41.	(a)	42.	(c)	43.	(d)	44.	(a)	45.	(c)
46.	(a)	47.	(d)	48.	(c)	49.	(a)	50.	(c)
51.	(a)	52.	(c)	53.	(d)	54.	(a)	55.	(b)
56.	(a)	57.	(b)	58.	(b)	5 9 .	(a)	60.	(a)
61.	(b)	62.	(a)	63.	(c)	64.	(b)	65.	(b)
66.	(a)	67.	(b)	68.	(c)	69.	(b)	70.	(c)
71.	(a)	72.	(c)	73.	(d)	74.	(a)	75.	(a)
76.	(b)	77.	(a)	78.	(b)	79.	(c)	80.	(a)
81.	(b)	82.	(d)	83.	(a)	84.	(c)	85.	(a)
86.	(a)	87.	(c)	88.	(d)	89.	(d)	90.	(a)
91.	(d)	92.	(a)	93.	(c)	94.	(b)	95.	(d)
96.	(d)	97.	(a)	98.	(c)	99.	(a)	100.	(a)
101.	(d)	102.	(d)	103.	(d)	104.	(d)	105.	(a)
106.	(c)	107.	(b)	108.	(c)	109.	(a)	110.	(b)
111.	(c)	112.	(a)	113.	(b)	114.	(d)	115.	(b)
116.	(a)	117.	(a)	118.	(a)	119.	(b)	120.	(a)
121.	(c)	122.	(a)	123.	(b)	124.	(b)	125.	(a)
126.	(b)	127.	(c)	128.	(b)	129.	(c)	130.	(b)
131.	(a)	132.	(b)	133.	(d)	134.	(a)	135.	(d)
136.	(a)	137.	(b)	138.	(b)	139.	(a)	140.	(b)
141.	(a)	142.	(a)	143.	(d)	144.	(d)	145.	(d)
146.	(b)	147.	(d)	148.	(a)	149.	(c)	150.	(b)
151.	(a)	152.	(b)	153.	(a)	154.	(c)	155.	(a)
156.	(a)	157.	(d)	158.	(d)	159.	(b)	160.	(c)
161.	(c)	162.	(b)	163.	(c)	164.	(c)	165.	(b)
166.	(b)	167.	(a)	168.	(d)	169.	(d)	170.	(d)
171.	(c)								