

DAWN OF MODERN PHYSICS

Each question has four possible answers, tick (11) the correct answer:

1.	The classical physics is based on the laws of:			
	(a)	Quantum mechanics	(b)	Newtonian mechanics
	(c)	Relativistic mechanics	(d)	None of these
2.	Math	nematical foundations for electromagne	tic wa	ives was provided by:
	(a)	Hertz	(b)	Ampere
	(c)	Maxwell	(d)	Newton
3.	Math	nematical formulation for electromagne	tic wa	ives is given the name:
	(a)	Hamiltons equation	(b)	Langrange's equation
	(c)	Maxwell's equation	(d)	None of these
4.	Whie	ch one of the following waves require a	mate	rial medium for their propagation:
	(a)	X-rays	(b)	Light waves
	(c)	γ-rays	(d)	Sound waves
5.	Whic	ch one of the following scientists regarde	ed ligl	nt as electromagnetic waves:
	(a)	Maxwell	(b)	de-Broglie
	(c)	Newton	(d)	Galileo
6.9	Whie	ch one of the following paved the way f	or mo	odern physics:
	(a)	Newtonian mechanics	(b)	Theory of relativity
	(c)	Quantum theory	(d)	All of above
7.	Abso	plute motion cannot be detected:		
	(a)	In different frame of reference	(b)	Its own frame of reference
	(c)	Both in its frame and different frame	(d)	None of these
8.	Point	t out the formulation that does not depen	d the	choice of reference frames:
	(a)	Velocity of object	(b)	Newton's law of motion
	(c)	Quantum theory	(d)	None of above
9.		nertial frame of reference is that:		
	(a)	Which is at rest on earth	(b)	Which moves with uniform velocity
	(c)	Whose acceleration is zero	(d)	All of above
10.	A no	on-inertial frame of reference is that:		
	(a)	Is always at rest	(b)	Moves with some acceleration
	(c)	Moves with uniform velocity	(d)	None of these

(c) Bohr

OBJECTIVE PHYSICS PART-II						
11.	Light was considered as electromagnetic waves by the scientist:					
	(a)	Newton	(b)	Maxwell		
	(c)	Hertz	(d)	Gallilo		
12.	All r	notions are:				
	(a)	Uniform	(b)	Relative		
	(c)	Absolute	(d)	Variable		
13.	New	ton's laws of motion are valid:				
	(a)	In non-inertial frame	(b)	In inertial frame		
	(c)	Both (a) and (b)	(d)	None of these		
14.	The	concept of direction is purely:				
	(a)	Relative	(b)	Absolute		
	(c)	Relative to the motion	(d)	None of these		
15.	Due	to relative motion of observer and the fi	rame	of reference of events time always:		
	(a)	Dilates itself	(b)	Stretches itself		
	(c)	Both (a) and (b)	(d)	None of these		
16.	The	dilation of time applies to the timing pro	ocess	which are:		
	(a)	Chemical	(b)	Biological		
	(c)	Physical	(d)	All of these		
17.	Agin	g process of a human body:				
	(a)	Becomes fast	(b)	Becomes slow		
	(c)	No change	(d)	None of these		
18.	Mass	s of an object is:				
	(a)	Constant quantity	(b)	Varying quantity		
	(c)	Depends upon the speed of light	(d)	None of these		
19.	Eartl	n orbital speed is:				
	(a)	30 cm/s	(b)	30 km/s		
	(c)	30 m/s	(d)	0.3 m/s		
20.	Whe	n the atomic particles are moving with	veloci	ities approaching that of light:		
	(a)	Newton's laws become valid	(b)	Newton's laws become invalid		
	(c)	Relativistic effects become prominent	(d)	None of these		
21.	Fron	$\Delta M = \frac{\Delta E}{C^2}$ that to get even a small incre	ease i	n mass of an object, we require:		
	(a)	Very small changes in energy	(b)	Large changes in energy		
	(c)	Small changes in energy	(d)	No change in energy		
22.	In 19	905, the special theory of relativity was j	propo	osed by:		
	(a)	Clark Maxwell	(b)	de-Broglie		

(d) Einstein

23.	Which one	of the follo	wing physical	quantities change	with relativis	tic speed

(a) Length

(b) Time

(c) Mass

(d) All of above

24. If an object moves with speed of light, its mass becomes:

(a) Zero

(b) Infinity

(c) No change

(d) None of these

25. The speed of light in free space is:

(a) $3 \times 10^8 \text{ m/s}$

(b) $3 \times 10^7 \text{ m/s}$

(c) $3 \times 10^9 \text{ m/s}$

(d) $3 \times 10^6 \text{ m/s}$

26. Due to the relative motion of observer and frame of reference, time:

(a) Contracts

(b) Dilates

(c) Constant

(d) Uniform

27. Earth is considered as:

- (a) Inertial fame of reference
- (b) Non-inertial frame of reference

(c) Both (a) and (b)

(d) None of these

28. Any coordinate system relative to which results are taken is known as:

(a) Zero point

(b) Frame of reference

(c) Infinity point

(d) None of these

29. The special theory of relativity is based upon:

(a) 3 postulates

(b) 2 postulates

(c) 4 postulates

(d) None of these

30. According to special theory of relativity all laws of physics are same in all:

(a) Accelerated frames

(b) None accelerated frames

(c) Non inertial frames

(d) None of these

31. The special theory of relativity is applicable to the objects moving with maximum velocity:

- (a) Less than speed of light
- **(b)** Equal to speed of light
- (c) More than speed of light
- (d) None of these

(a)
$$t = t_o \sqrt{1 - \frac{V^2}{C^2}}$$

$$\mathbf{(b)} \quad \mathbf{t} = \frac{\mathbf{t_o}}{\sqrt{1 - \frac{\mathbf{V}^2}{\mathbf{C}^2}}}$$

(c)
$$t = \frac{t_o}{1 - \frac{V^2}{C^2}}$$

$$(\mathbf{d}) \quad \mathbf{t} = \mathbf{t}_o \left(1 - \frac{\mathbf{V}^2}{\mathbf{C}^2} \right)$$

33. In special theory, an expression for length contraction is:

$$(a) \quad l = l_o \left(1 - \frac{V^2}{C^2} \right)$$

(b)
$$l = l_o \sqrt{1 - \frac{V^2}{C^2}}$$

(c)
$$l = l_o \sqrt{1 - \frac{C^2}{V^2}}$$

- 34. In an expression, for time dilation, the factor $\sqrt{1 \frac{V^2}{C^2}}$ is always:
 - (a) Equal to one

(b) Equal to zero

(c) Less than one

- (d) More than one
- 35. In special theory of relativity, an expression for mass variation is:
 - (a) $m = \frac{m_o}{\sqrt{1 \frac{V^2}{C^2}}}$

(b) $m = \frac{m_o}{\sqrt{1 - \frac{C^2}{V^2}}}$

(c) $m = m_o \sqrt{1 - \frac{V^2}{C^2}}$

- (d) None of these
- **36.** When an object moves with speed of light, its length:
 - (a) Remain unchanged

(b) Increases

(c) Decreases

- (d) None of these
- 37. If an object moves with speed of light, then its apparent length becomes:
 - (a) Zero

(b) Larger

(c) Smaller

- (d) Infinity
- **38.** The mass and energy of an object are related by the expression:
 - (a) $E = \frac{m}{C^2}$

(b) $E = mc^2$

(c) $E = \frac{C^2}{m}$

- (d) E = mc
- 39. According to special theory of relativity, mass and energy are different quantities and:
 - (a) Non-inter convertible

(b) Inter convertible

(c) No change

- (d) None of these
- **40.** The nature of radiation emitted from a hot body depends upon:
 - (a) Temperature

(b) Material

(c) Length

- (d) Mass
- 41. At low temperature, the hot body emits the radiation of:
 - (a) Shorter wavelength

(b) High energy

(c) Low energy

- (d) Both (a) and (b)
- 42. At high temperature, the hot body emits the radiation of:
 - (a) High energy and shorter wavelength
- (b) Longer wavelength and high energy
- (c) Low energy and shorter wavelength
- (d) Shorter wavelength
- **43.** The radiations of longer wavelength:
 - (a) Have low energy

(b) Have high energy

(c) At high temperature

(d) Both (a) and (b)

(c) $\lambda = \frac{h}{mv}$

OBJE	CIIVE	PHTSICS PART-II		223
44.	Who	en platinum wire is heated, then it become	me —	at temperature 500°C.
	(a)	White	(b)	Green
	(c)	Yellow	(d)	Dull red
45.	Blac	ek colour is:		
	(a)	Good absorber of heat	(b)	Bad absorber of heat
	(c)	Both (a) and (b)	(d)	None of these
46.	For	a black body, the product of λ_m and T	known	as:
	(a)	Wien's constant	(b)	Planck's constant
	(c)	Davison constant	(d)	Lumber's constant
47.	The	value of Wien's constant is measured	in:	
	(a)	m.K	(b)	mK^{-1}
	(c)	$m^{-1}K$	(d)	$m^{-1}K^{-1}$
48.	In S	I units, the value of Wien's constant is	:	
	(a)	9.8 mK	(b)	$2.9 \times 10^{-3} \text{ mK}$
	(c)	$6.63 \times 10^{34} \text{ mK}$	(d)	3×10^8 mK
49.		ratio of the energy E to the correspond wn as:	ding fr	equency f of the radiation emitted or absorbed is
	(a)	Boltzman constant	(b)	Steffen's constant
	(c)	Wien's constant	(d)	Planck's constant
50.	Max	planck awarded the noble prize for hi	s disco	overy of energy quanta in:
	(a)	1918 A.D	(b)	1920 A.D
	(c)	1718 A.D	(d)	1818 A.D
51.	In S	I units the value of Stefen's constant is	s:	
	(a)	$6.63 \times 10^{-34} \text{ wm}^{-2} \text{ k}^{-4}$	(b)	$2.9 \times 10^{-3} \text{ wm}^{-2} \text{ k}^{-4}$
	(c)	$5.67 \times 10^{-8} \text{ wm}^{-2} \text{ k}^{-4}$	(d)	$3 \times 10^8 \text{ wm}^{-2} \text{ k}^{-4}$
52.	In S	I units the value of Planck constant is:		
	(a)	$6.63 \times 10^{-34} \text{ J.S}$	(b)	$2.9 \times 10^{-3} \text{J.S}$
	(c)	$5.67 \times 10^{-8} \text{J.S}$	(d)	$3 \times 10^8 \mathrm{J.S}$
53.	The	idea of matter waves was given by:		
	(a)	Einstein	(b)	de-Broglie
	(c)	Planck	(d)	Davison and Germer
54.		de-Broglie wavelength "λ"associated n by:	with a	particle of mass "m" moving with velocity V is
	(a)	$\lambda = mvh$	(b)	$\lambda = \frac{1}{mvh}$

(d) $\lambda = \frac{mv}{h}$

Sub-atomic particles only

(c)

OBJE	CTIVE	PHYSICS PART-II		224
55.	The	de-Broglie wavelength λ of a particle α	of mas	s m and momentum P is given by:
	(a)	$\lambda = \frac{p}{h}$	(b)	$\lambda = \frac{h}{p}$
	(c)	$\lambda = ph$	(d)	None of these
56.	The	electrons behave as waves because the	y can	be:
	(a)	Deflected by electric field	(b)	Ionize as gas
	(c)	Deflected by magnetic field	(d)	Diffracted by crystals
57.	A pl	hoton of frequency f has an energy:		
	(a)	E = hf	(b)	$E = \frac{h}{f}$
	(c)	$E = \frac{f}{h}$	(d)	None of these
58.	If th	e momentum of particle is doubled, that	ın its o	le-Broglie wavelength:
	(a)	Doubles	(b)	Halves
	(c)	Remain unchanged	(d)	None of these
59.	In D	Pavison and Germer experiment, nickel	crysta	ıl acts as a:
	(a)	Perfect reflector	(b)	Perfect absorber
	(c)	Two dimensional grating	(d)	Three dimensional grating
60.	The	Davison and Germer experiment relate	es to:	
	(a)	Diffusion	(b)	Interference
	(c)	Polarization	(d)	Electron diffraction
61.	In I calle	-	angle	between incident beam and diffracted beam is
	(a)	Angle of incidence	(b)	Glancing angle
	(c)	Angle of diffraction	(d)	Angle
62.		Davison and Germer expert, the angle valued crystal is:	vhich	the incident beam makes with the normal to the
	(a)	69°	(b)	65°
	(c)	90°	(d)	180°
63.	The	uncertainty principle was given by:		
	(a)	de-Broglie	(b)	Heisenberg
	(c)	Einstein	(d)	Max Planck
64.	The	uncertainty principle applicable to:		
	(a)	Small system only	(b)	Large system only

(d) Both sub-atomic and large system

ODOL	CIIVE	. 1 11 1 0 1 0 0 1 A N 1 - 11			LLO
65.	The	uncertainty principle is applicable only	when	:	
	(a)	Momentum is measured only			
	(b)	Position is measured only			
	(c)	Both position and momentum are mea	sured		
	(d)	None of these			
66.	The	uncertainty principle is significant for:			
	(a)	Macroscopic bodies	(b)	Microscopic bodies	
	(c)	Both microscopic and microscopic	(d)	None of these	
67.	The	uncertainty principle relates uncertainti	es in	the measurements of energy and:	
	(a)	Velocity	(b)	Time	
	(c)	Momentum	(d)	Mass of the particle	
68.		uncertainty in the location of a pa ertainty in its velocity will be equal to:	rticle	is equal to its de-Broglie wavelength,	then
	(a)	Four times its velocity	(b)	Twice its velocity	
	(c)	Half of its velocity	(d)	Its velocity	
69.	Pho	toelectric effect was discovered by:			
	(a)	Einstein	(b)	G.P Thomson	
	(c)	Hall wades	(d)	Bohr	
70.	The	photoelectric effect predicts that light is	s mad	e of:	
	(a)	Photons	(b)	Neutrons	
	(c)	Protons	(d)	None of these	
71.	The	phenomenon of photoelectric effect wa	s first	explained by:	
	(a)	Einstein	(b)	Bohr	
	(c)	Maxwell	(d)	Planck	
72.	The thei		diatio	n or photons interact with matter depends	upon
	(a)	Frequency	(b)	Energy	
	(c)	Wave length	(d)	All of the above	
73.	The	process through which photons can inte	eract v	vith matter is:	
	(a)	Photo electric effect	(b)	Compton effect	
	(c)	Pair production	(d)	Any of these	
74.	The	amount of photoelectric current depend	s upo	n:	
	(a)	Intensity of light beam	(b)	Energy of incident photons	
	(c)	Stopping potential	(d)	All of the above	
75.	Whi	ile demonstrating the photoelectric effec	t the	stopping potential is achieved when:	
	(a)	Anode is made more and more positive	e(b)	Battery is switched off	

(c) Photo electric current becomes Zero (d) None of these

(c) 5 V

OBJE	CIIVE	PHYSICS PART-II			220
76.	If th	e photoelectric current is goes on decre	asing	it means that:	
	(a)	Photons are attracted by the anode	(b)	Photoelectrons are attracted by the anode	
	(c)	Photoelectrons are repelled by the anod	e (d)	Electrons are repelled by the anode	
77.	Thre	eshold frequency is the:			
	(a)	Varies from metal to metal			
	(b)	Minimum frequency below which no	electr	on is emitted	
	(c)	Same for all metals			
	(d)	Both (a) and (b)			
78.	Eins	stein was received the noble prize in the	basis	of:	
	(a)	Quantum theory of light	(b)	Theory of relativity	
	(c)	Explanation of photoelectric effect	(d)	Energy band theory	
79.	The	unit of work function is:			
	(a)	Electron volt	(b)	Ampere	
	(c)	Volt cell	(d)	Hz	
80.	A pl	hotocell can be used to operate:			
	(a)	Counting system	(b)	Security system	
	(c)	Automatic door system	(d)	All of above	
81.	A pl	hoton is a:			
	(a)	Positively charged particle	(b)	Quantum of radiation	
	(c)	Unit of Energy	(d)	Unit of wavelength	
82.	Who mea		the a	node of photocell, no current is absorbed.	This
	(a)	The emission of photoelectrons stops			
	(b)	The photoelectrons are emitted but are	e reab	sorbed by the photo cathode itself	
	(c)	Both (a) and (b)			
	(d)	None of these			
83.	The	best metal to be used for photoemission	ı is:		
	(a)	Cesium	(b)	Lithium	
	(c)	Potassium	(d)	Sodium	
84.	Pho	toelectric effect was discovered by:			
	(a)	Lenard	(b)	Einstein	
	(c)	Hertz	(d)	Neutron	
85.	Whi	ch conservation law is obeyed in Einste	in ph	otoelectric equation:	
	(a)	Momentum	(b)	Charge	
	(c)	Mass	(d)	Energy	
86.	If th will		unctio	on is 5 eV, then the a value of stopping potential	ential
	(a)	50 V	(b)	2 V	

(d) 15 V

- 87. When a photon of energy 7 eV is made incident on a metal then emitted electron is stopped by a stopping potential –5.5 V. The work function of the metal will be:
 - (a) 12.5 eV

(b) -1.5 eV

(c) 37.5 eV

(d) 1.5 eV

- **88.** In the equation if $f_2 > f_1$ then:
 - (a) $\lambda_1 \geq \lambda_2$

(b) $\lambda_1 = \sqrt{\lambda_2}$

(c) $\lambda_1 = \lambda_2$

(d) $\lambda_1 \leq \lambda_2$

- **89.** Which of the following makes use of photoelectric effect:
 - (a) Television camera

(b) Television receiver

(c) Radar

- (d) CRO
- **90.** The work function for photoelectric effect:
 - (a) Same for all metals

- **(b)** Depends on the frequency
- (c) different for different metals
- (d) None of these
- **91.** In photoelectric emission, the energy of emitted electron is:
 - (a) Larger than that of photon
- **(b)** Less than that of photon

(c) Same as that of photon

- (d) None of these
- 92.9 Einstein photoelectric equation is:
 - (a) $hf = \phi + \frac{1}{2} mV_{max}^2$

(b) $\phi = hf + \frac{1}{2} V_{max}^2$

(c) $hf + \phi = \frac{1}{2} m V_{max}^2$

- (d) None of these
- 93. A photon of frequency f is incident on a metal surface whose threshold frequency is f_0 then work function of metal will be:
 - (a) $h(f + f_0)$

(b) hf_o

(c) hf

- (d) Zero
- **94.** The photoelectric current depends upon:
 - (a) Intensity of the incident radiation
 - (b) Frequency of incident photon only
 - (c) Intensity and frequency of incident radiation
 - (d) None of these
- **95.** The velocity of the photoelectron depends upon:
 - (a) Intensity of incident photon
 - (b) Frequency of incident photon
 - (c) Intensity as well as frequency of incident photon
 - (d) None of these

96.	The study of photoelectric effect is useful for understanding:				
	(a)	The quantum nature of matter	(b)	The wave nature of matter	
	(c)	Bohr's atomic model	(d)	Structure of the nucleus	
97.	The	stopping voltage in photoelectric effect	t depe	nds upon:	
	(a)	Nature of the metal surface	(b)	Intensity of incident light	
	(c)	Frequency of incident light	(d)	Frequency as well as metal surface	
98.	The	cut off voltage is independent of intens	sity of	incident light if:	
	(a)	Material of electrode is fixed			
	(b)	Frequency of incident light			
	(c)	Frequency and material of electrode a	ire fixe	ed	
	(d)	None of these			
99.	The	photoelectric threshold frequency depe	ends up	oon.	
	(a)	Frequency	(b)	Nature of material	
	(c)	Intensity of light	(d)	None of them	
100.	The	maximum number of the photoelectror	is rele	ased in photocell is independent of:	
	(a)	Frequency of incident light	(b)	Nature of the cathode surface	
	(c)	Intensity of the radiations	(d)	None of these	
101.	A m	nilliammeter in the circuit of a photo cel	ll meas	sures:	
	(a)	Energy of photon	(b)	Velocity of photoelectrons	
	(c)	Number of electrons released per secon	nd (d)	None of these	
102.	The	photoelectric effect is based upon the c	conser	vation of:	
	(a)	Angular momentum	(b)	Energy	
	(c)	Momentum	(d)	Mass	
103.	Whi	ich statement about a photon is invalid:			
	(a)	Its momentum is $\frac{hf}{c}$	(b)	Its total energy is hf	
	(c)	It has zero rest mass	(d)	Its mass is λ^2 f ²	
104.	The	Compton effect is associated with:			
	(a)	X-rays	(b)	γ-rays	
	(c)	Positive rays	(d)	β-rays	
105.	The	Compton effect in x-rays proves that:			
	(a)	X-rays have wave characteristics	(b)	X-rays have particle characteristic	
	(c)	Electron have wave characteristics	(d)	None of these	
106.	An i	ideal black body is:			
	(a)	A perfect absorber of radiation	(b)	The most efficient radiation	
	(c)	A body when hot emits radiation	(d)	All of the above	

ODJE	01112	1 11 1 0 1 0 0 1 A 1 1 1 1 1 1 1 1 1 1 1		
107.		wavelength corresponding to maximu elength:	ım inte	ensity of radiation shifts steadily towards shorte
	(a)	The temperature decreases	(b)	The temperature increases
	(c)	The temperature is constant	(d)	The temperature is zero
108.	Rad	iations are always emitter or absorbed	in the	form of packet of energy. This is a statement of
	(a)	Stefan's law	(b)	Planck's quantum law
	(c)	Einstein law	(d)	None of these
109.	A go	ood absorber of heat radiation would b	e:	
	(a)	A black body	(b)	A polished plate
	(c)	A white plate	(d)	None of the above
110.	Blac	ck bodies are formed of:		
	(a)	Reflecting solid objects	(b)	Metals
	(c)	No-reflecting objects	(d)	Non-metals
111.	A b	lack body becomes white at temperatu	re:	
	(a)	1300°C	(b)	900°C
	(c)	1500°C	(d)	1600°C
112.	A b	ody emits radiation which is of long or	r wavel	ength in visible infrared region at:
	(a)	Low temperature	(b)	High temperature
	(c)	At constant temperature	(d)	None of these
113.	The	nature of radiation emitted by a body	depend	ls upon:
	(a)	Mass	(b)	Temperature
	(c)	Volume	(d)	Pressure
114.	At h	nigh temperature, a body emits radiation	ns of:	
	(a)	Long wavelength	(b)	Small wavelength
	(c)	Intermediate wavelength	(d)	None of these
115.	At l	ow temperature, a body generally emit	radiat	ions of:
	(a)	Long wavelength	(b)	Small wavelength
	(c)	Intermediate wavelength	(d)	None of these
116.	The	relation between work function and m	naximu	m energy of photoelectrons was discovered by:
	(a)	Stefan	(b)	Marely
	(c)	Planck	(d)	Einstein
117.	The	Compton effect was presented in:		
	(a)	1933	(b)	1924
	(c)	1920	(d)	1923
118.	Con	npton effect was presented by:		
	(a)	Einstein	(b)	Ampere
	(c)	Auther holly Compton	(d)	None of these

Positron

(c)

OBJE	CTIVE	PHYSICS PART-II		230
119.		Compton effect, the wavelength of sc dent x-rays is:	attere	d photons as compared to the wavelength of
	(a)	Larger	(b)	Smaller
	(c)	Constant	(d)	None of these
120.	Con	npton considered that x-rays consist of:		
	(a)	Neutrons	(b)	Protons
	(c)	Electrons	(d)	Photons
121.	The	expression derived by Compton for Con	mpton	shift scattering an angle θ is given as:
	(a)	$\Delta \lambda = \frac{h}{m_o c} \left(1 - \cos \theta \right)$	(b)	$\Delta \lambda = h (1 - \cos \theta)$
	(c)	$\Delta\lambda = m_o c (1 - \cos \theta)$	(d)	$\Delta \lambda = \frac{m_o c}{n} \ (1 - \cos \theta)$
122.	The	numerical value of Compton wavelengt	th is e	qual to:
	(a)	$3.43 \times 10^{-12} \text{ m}$	(b)	$1.43 \times 10^{-12} \text{ m}$
	(c)	$2.43 \times 10^{-12} \text{ m}$	(d)	$0.43 \times 10^{-12} \text{ m}$
123.	In C	Compton effect the change in wavelength	n of a	scattered photon is called:
	(a)	Compton shift	(b)	Einstein equation
	(c)	Angle of refractions	(d)	None of these
124.	Aut	hor Holly Compton was awarded Nobel	Prize	in:
	(a)	1927	(b)	1928
	(c)	1923	(d)	1931
125.	A.H	Compton studies the scattering of x-ray	s by:	
	(a)	Tightly bounded positrons	(b)	Loosely bounded electrons
	(c)	Tightly bounded electrons	(d)	Loosely bounded photons
126.	A.H	Compton studies the scattering of x-ray	s by l	loosely bounded electrons from:
	(a)	Copper crystal	(b)	NaCl crystal
	(c)	Graphite target	(d)	None of these
127.	Con	npton shift is actually the change in:		
	(a)	Mass of incident photon	(b)	Wavelength of incident photon
	(c)	Charge on photon	(d)	All of the above
128.	Who	en X-rays are scattered by loosely bound	ed ele	ctrons from graphite target, which is known as:
	(a)	Photoelectric effect	(b)	Compton effect
	(c)	Thomson effect	(d)	None of these
129.	Con	npton shift refers to:		
	(a)	Proton	(b)	Meson

Photon

(d)

ODSE	,,,,_	1 11 1 0 1 0 0 1 A 1 1 1 1 1		
130.	The	process of conversion of a photons into	an el	ectron and a positron is known as:
	(a)	Compton effect	(b)	Photoelectric effect
	(c)	Pair production	(d)	None of these
131.	The	process of pair production is also know	n as:	
	(a)	Compton effect	(b)	Photoelectric effect
	(c)	Materialization of energy	(d)	None of these
132.	The	minimum energy required for the pair p	roduc	etion is:
	(a)	0.21 MeV	(b)	0.12 MeV
	(c)	1.02 MeV	(d)	None of these
133.	The	process of pair production takes place i	f the e	energy of photon is:
	(a)	Greater than $2m_oc^2$	(b)	Less than $2m_oC^2$
	(c)	Equal to 2m _o C ²	(d)	None of these
134.	The	reverse process of pair production is ca	lled:	
	(a)	Materialization of energy	(b)	Compton effect
	(c)	Annihilation of matter	(d)	None of these
135.	Posi	tron was discovered by:		
	(a)	Dirac	(b)	Anderson
	(c)	Wilson	(d)	None of these
136.	The	condition $hf > 2m_oc^2$ refers to the proce	ss of:	
	(a)	Compton effect	(b)	Pair production
	(c)	Photoelectric effect	(d)	Annihilation of matter
137.	The	equation $e^- + e^+ \rightarrow \gamma + \gamma$ refers to:		
	(a)	Compton effect	(b)	Pair production
			, ,	Fusion process
138.	In ar	nnihilation of matter, the two photons ar	e pro	duced traveling:
	(a)	In opposite direction	(b)	In same direction
	(c)	At on angle of 180°	(d)	Both (a) and (c)
139.	The	positron was discovered in:		
	(a)	1928	(b)	1828
	(c)	1918	(d)	1923
140.		ry particle with corresponding anti-parti		
	(a)	The same mass	(b)	Opposite charge
	(c)	Different mass	(d)	Both (a) and (b)
141.	Tick	the correct equation in case of Davison	and (Germer experiment:
	(a)	$\frac{1}{2} \text{ mv}^2 = \text{ve}$	(b)	$mv = \sqrt{2mve}$
	(c)	$\lambda = \frac{h}{\sqrt{2mve}}$	(d)	None of these

OBJE	CTIVE	PHYSICS PART-II		
142.	Unc	ertainty principle states that:		
	(a)	$\Delta x \cdot \Delta E \approx h$	(b)	$\Delta x \cdot \Delta P \approx h$
	(c)	$\Delta \to \Delta P \approx h$	(d)	None of these
143.	Heis	enberg uncertainty principle is used in:		
	(a)	Wave mechanics	(b)	Classical mechanics
	(c)	Both (a) and (b)	(d)	Quantum mechanics
144.	Stric	tly speaking, the Earth is:		
	(a)	Inertial frame of reference	(b)	Non-inertial frame of reference
	(c)	Both (a), (b)	(d)	None
145.	Time	e dilation applies to the timing process:		
	(a)	Chemical	(b)	Physical
	(c)	Biological	(d)	All
146.	The	length contraction happens:		
	(a)	Along the direction of motion	(b)	Perpendicular to direction of motion
	(c)	Both (a), (b)	(d)	None
147.	Eart	h's orbital speed is:		
	(a)	30 km/s	(b)	30 m/s
	(c)	30 km/h	(d)	None
148.	Mas	s of an object moving with 0.8 C is:		
	(a)	Zero	(b)	Infinite
	(c)	$\frac{m_o}{\sqrt{0.36}}$	(d)	$\sqrt{0.36} \; m_o$
149.	For	a black body, the product of λ_{max} and T	is equ	ual to:
	(a)	Wien's constant	(b)	Planck's constant
	(c)	Davison constant	(d)	Dirac constant
150.	Unit	of Stephen's constant is:		
	(a)	$\mathrm{W} \mathrm{\ m\ K}^{-2}$	(b)	$\mathrm{W}\;\mathrm{m}^{-2}\;\mathrm{K}^{-4}$
	(c)	$W m K^{-4}$	(d)	None
151.	Stop	ping potential of photoelectrons:		
	(a)	Increase with increase in intensity	(b)	Decrease with increase in intensity
	(c)	Independent of intensity	(d)	None
152.	The	energy of photon of radio waves is about	ut:	
	(a)	10^{-4} eV	(b)	10^{-6} J
	(c)	10^{-8} eV	(d)	10^{-10} eV
153.	A pł	notocell is used in:		
	(a)	Security systems	(b)	Counting systems
	(c)	Automatic door systems	(d)	All

154.	The	e inverse of photoelectric effect is:									
	(a)	Emission of γ-rays	(b)	X-rays							
	(c)	Thermionic emission	(d)	None							
155.	Pair production occurs only when energy of photon is at least equal to:										
	(a)	1.02 eV	(b)	1.02 MeV							
	(c)	1.2 MeV	(d)	All							
156.	Inter	erplanar distance (spacing) for nickel crystal:									
	(a)	$0.91 \times 10^{10} \text{ m}$	(b)	$0.91 \times 10^{-10} \text{ m}$							
	(c)	$0.91 \times 10^{-6} \text{ m}$	(d)	None							
157.	A three dimensional image of remarkable quality can be achieved by:										
	(a)	Electron microscope	(b)	Scanning electron microscope							
	(c)	Optical microscope	(d)	All							
158.	Valu	ue of ħ =									
	(a)	$1.05 \times 10^{34} \mathrm{J}$	(b)	$1.05 \times 10^{-34} \text{ Js}$							
	(c)	$1.05 \times 10^{-34} \text{ Ns}$	(d)	All							
159.	Whi	ch one of the following radiations has the	he stro								
	(a)	Microwaves	(b)	X-rays							
	(c)	γ-rays	(d)	None							
160.	Rest	mass of photon is:									
	(a)	Zero	(b)	Infinite							
	(c)	$9.11 \times 10^{-31} \text{ kg}$	(d)	None							
161.	Ener	rgy for 1 kg of mass is:									
	(a)	$1 \times 10^6 \text{ eV}$	(b)	$5.6 \times 10^{35} \text{ eV}$							
	(c)	$9 \times 10^{16} \text{ eV}$	(d)	None							
162.	Con	Compton shift is maximum for scattering angle of photon:									
	(a)	0°	(b)	90°							
	(c)	180°	(d)	45°							
163.	Complete the electromagnetic spectrum microwaves, ————, visible, ultraviolet.										
	(a)	Infrared	(b)	X-rays							
	(c)	γ-rays	(d)	Short radio waves							

ANSWERS											
1.	(b)	2.	(c)	3.	(c)	4.	(d)	5.	(a)		
6.	(b)	7.	(b)	8.	(b)	9.	(d)	10.	(b)		
11.	(b)	12.	(b)	13.	(b)	14.	(a)	15.	(c)		
16.	(d)	17.	(b)	18.	(c)	19.	(b)	20.	(c)		
21.	(a)	22.	(d)	23.	(d)	24.	(b)	25.	(a)		
26.	(b)	27.	(b)	28.	(b)	29.	(b)	30.	(b)		
31.	(b)	32.	(b)	33.	(b)	34.	(c)	35.	(a)		
36.	(c)	37.	(a)	38.	(b)	39.	(b)	40.	(a)		
41.	(d)	42.	(a)	43.	(a)	44.	(d)	45.	(a)		
46.	(a)	47.	(a)	48.	(b)	49.	(d)	50.	(a)		
51.	(c)	52.	(a)	53.	(b)	54.	(c)	55.	(b)		
56.	(d)	57.	(a)	58.	(b)	59.	(d)	60.	(d)		
61.	(b)	62.	(b)	63.	(b)	64.	(d)	65.	(c)		
66.	(b)	67.	(b)	68.	(d)	69.	(c)	70.	(a)		
71.	(a)	72.	(d)	73.	(d)	74.	(a)	75.	(c)		
76.	(c)	77.	(d)	78.	(c)	79.	(a)	80.	(d)		
81.	(b)	82.	(b)	83.	(a)	84.	(b)	85.	(d)		
86.	(c)	87.	(d)	88.	(a)	89.	(a)	90.	(c)		
91.	(b)	92.	(a)	93.	(b)	94.	(c)	95.	(b)		
96.	(a)	97.	(d)	98.	(c)	99.	(b)	100.	(c)		
101.	(c)	102.	(b)	103.	(d)	104.	(a)	105.	(b)		
106.	(d)	107.	(b)	108.	(b)	109.	(a)	110.	(a)		
111.	(d)	112.	(a)	113.	(b)	114.	(b)	115.	(a)		
116.	(d)	117.	(d)	118.	(c)	119.	(a)	120.	(d)		
121.	(a)	122.	(c)	123.	(a)	124.	(a)	125.	(b)		
126.	(c)	127.	(b)	128.	(b)	129.	(d)	130.	(c)		
131.	(c)	132.	(c)	133.	(a)	134.	(c)	135.	(a)		
136.	(b)	137.	(c)	138.	(d)	139.	(a)	140.	(d)		
141.	(c)	142.	(b)	143.	(d)	144.	(b)	145.	(d)		
146.	(a)	147.	(a)	148.	(c)	149.	(a)	150.	(b)		
151.	(c)	152.	(d)	153.	(d)	154.	(b)	155.	(b)		
156.	(b)	157.	(b)	158.	(b)	159.	(c)	160.	(a)		
161.	(b)	162.	(b)	163.	(a)						