

(c)

Balmer

1.

ATOMIC SPECTRA

Each question has four possible answers, tick (11) the correct answer:

Rutherford concluded that central part of an atom is:

	(a)	Electrically neutral	(b)	Positively charged
	(c)	Negatively charged	(d)	None of above
2.	The	first theory about the structure of an ato	m wa	s introduced by:
	(a)	Neil Bohr	(b)	Einstein
	(c)	Compton	(d)	Rutherford
3.	Boh	r's postulates explained by:		
	(a)	de-Broglie	(b)	Einstein
	(c)	Newton	(d)	Rutherford
4.	de-E	Broglie's wavelength is:		
	(a)	$\lambda = hv$	(b)	$\lambda = hp$
	(c)	$\lambda = \frac{h}{2\lambda}$	(d)	$\lambda = \frac{h}{p}$
5.	Stuc	ly of hydrogen visible spectrum in:		
	(a)	1886	(b)	1887
	(c)	1895	(d)	1885
6.	Boh	r was presented atomic model of hydrog	gen in	:
	(a)	1913	(b)	1919
	(c)	1918	(d)	1905
7.		ording to Bohr theory only those orb	it are	allowed along which angular momentum of
	(a)	$\frac{2\pi}{nh}$	(b)	$\frac{\mathrm{nh}}{2\pi}$
	(c)	$\frac{n}{2\pi h}$	(d)	$\frac{2\pi n}{h}$
8.	The	scientist who studies the spectrum of hy	ydrogo	en in visible light, wavelength range was:
	(a)	Rydberg	(b)	Bohr

(d)

Paschen

OBJE	CTIVE	PHYSICS PART-II			25			
9.	The first series, which was identified in the spectrum of hydrogen is called:							
	(a)	Balmer series		Lyman series				
	(c)	Paschen series	(d)	Brakett series				
10.	Balı	Balmer series was identified in:						
	(a)	1685	(b)	1785				
	(c)	1985	(d)	1885				
11.	Balı	mer series lies in that region of electrom	agnet	ic wave spectrum, which is known as:				
	(a)	Visible region	(b)	Invisible region				
	(c)	Ultraviolet region	(d)	Infra-red region				
12.	The	results of spectra obtained by Balmer v	vere e	xpressed in 1896 by:				
	(a)	Newton	(b)	Bohr				
	(c)	Rydberg	(d)	Planck				
13.	The process of formation of spectrum is known as:							
	(a)	Diffraction	(b)	Interferences				
	(c)	Refraction	(d)	Spectroscopy				
14.	The value of Rydberg constant is:							
	(a)	$1.0974 \times 10^7 \mathrm{m}^{-1}$	(b)	$1.0974 \times 10^{-7} \mathrm{m}^{-1}$				
	(c)	$1.0974 \times 10^6 \text{ m}^{-1}$	(d)	$1.0974 \times 10^{-6} \text{ m}^{-1}$				
15.	Spec	ctrum shows the number of component	colou	r present in certain light in terms of:				
	(a)	Frequency	(b)	Energy				
	(c)	Wavelength	(d)	All of the above				
16.	Tick	the series lies in visible region:						
	(a)	Paschen series	(b)	Lyman series				
	(c)	Pfund series	(d)	Balmer series				
17.	Tick the series lies infrared region:							
	(a)	Paschen series	(b)	Brakett series				
	(c)	Pfund series	(d)	All of the above				
18.	In th	ne general formula in which all the series	of hyd	lrogen spectrum is given by:				
	(a)	$\lambda = R_H \left(\frac{1}{p^2} - \frac{1}{n^2} \right)$	(b)	$\frac{1}{\lambda} = R_H \left(\frac{1}{p^2} - \frac{1}{n^2} \right)$				
	(c)	$\lambda = \frac{1}{R_H} \left(\frac{1}{p^2} - \frac{1}{n^2} \right)$	(d)	$\lambda = R_H \left(\frac{1}{n^2} - \frac{1}{p^2} \right)$				
19.	Dur	ing the transition of electron of hydroger	ı atom	from higher orbit to a third orbit, a photo	n of:			
	(a)	Paschen series is emitted	(b)	Balmer series is emitted				

Brakett series is emitted

(d)

Lyman series is emitted

(c)

(c) Visible radiation

OBJE	CIIVE	PHTSICS PART-II		233
20.	In th	ne general formula for spectral series, if	we pı	It $P = 3$, we get the formula for:
	(a)	Paschen series	(b)	Blamer series
	(c)	Lyman series	(d)	Brakett series
21.	An e	electron of the hydrogen atom in the sec	ond o	rbit, is called its:
	(a)	Ground state	(b)	Ionized state
	(c)	Excited state	(d)	None of these
22.	Whi	ch of the following is one of the spectra	ıl seri	es of atomic hydrogen:
	(a)	Brockett series	(b)	Balmer series
	(c)	P fund series	(d)	All of above
23.	An e	example of an absorption spectrum is th	e spec	etrum of:
	(a)	Sodium vapour	(b)	Molten iron
	(c)	Atomic hydrogen	(d)	Mercury vapour lamp
24.	The	radiations emitted from hydrogen filled	disch	narge tube shows:
	(a)	Continuous spectrum	(b)	Line spectrum
	(c)	Band spectrum	(d)	None of these
25.	The	spectral series that contains transitions	termi	nating on the ground level of hydrogen is called:
	(a)	Paschen series	(b)	P fund series
	(c)	Balmer series	(d)	Lyman series
26.	In h	ydrogen spectrum, which one the follow	ing se	ries lies in the ultraviolet region:
	(a)	Lyman series	(b)	Balmer series
	(c)	P fund series	(d)	Brackett series
27.	In h	ydrogen atom, which one of the followi	ng sei	ries lies in the infrared region:
	(a)	Lyman series	(b)	Brackett series
	(c)	Paschen series	(d)	Balmer series
28.	The	longest wavelength of light which ioniz	zes a l	nydrogen atom is:
	(a)	912 A°	(b)	0.74 A°
	(c)	400 A°	(d)	720 A°
29.	Rad	iations with wavelengths longer than red	d ligh	t is called:
	(a)	Visible radiation	(b)	Infrared radiation
	(c)	Ultraviolet radiation	(d)	X-rays
30.	Rad	iation, with wavelength shorter than vio	let is	called:
	(a)	Ultraviolet radiation	(b)	Infrared radiation

(d) None of these

31.	Elect	tromagnetic rays which lies above the x	-rays	region are called:
	(a)	γ-rays	(b)	Infrared radiations
	(c)	Ultraviolet radiation	(d)	None of these
32.	Ruth	erford's nuclear model predicted:		
	(a)	Discrete spectra of atoms	(b)	Continuous spectra of atoms
	(c)	Both (a) and (b)	(d)	None of these
33.	For t	he stability of nuclear model, Rutherfor	d pro	posed:
	(a)	Static equilibrium	(b)	Dynamic equilibrium
	(c)	Neutral equilibrium	(d)	None of these
34.	Acco	ording to Rutherford nuclear model, the	majo	r constituents of the nucleus are:
	(a)	Neutrons and electrons	(b)	Protons and positrons
	(c)	Neutron and protons	(d)	Protons and electrons
35.	Net f	force on an electron in an orbit around t	he nu	cleus is:
	(a)	Positive	(b)	Zero
	(c)	Negative	(d)	None of these
36.	In Bo	ohr atomic model, the electron does not	fall i	nto the nucleus because:
	(a)	The electron is not a particle		
	(b)	The quantum rules does not allow it		
	(c)	The electrostatic attraction is balanced	by m	echanical force
	(d)	None of these		
37.	Brac	kett series is obtained when electronic t	ransit	
	(a)	1 st orbit	(b)	2 nd orbit
	(c)	3 rd orbit	(d)	4 th orbit
38.	In Bo	ohr's atomic model, the lowest orbit con	теѕро	nds to:
	(a)	Zero energy	(b)	The minimum energy
	(c)	The maximum energy	(d)	None of these
39.	-	those orbits are allowed for the elementum is equal to an integral multiple of		of hydrogen atom for which orbital angular
	(a)	$\frac{2\pi}{h}$	(b)	$\frac{h}{2\pi}$
	(c)	$\frac{2\pi}{h}$	(d)	$\frac{h}{2\pi}$
1 0.	mvr	is the expression for:		
	(a)	Linear momentum	(b)	Angular momentum
	(c)	Torque	(d)	None of these

4.1	1 D 12		C	1	C	D 1 2	1.34	41
41.	de-Broglie	suggest	for a	length	01	Bohr	s orbit	that

(a)
$$l = 2\pi r$$

(b)
$$l = 2\pi \lambda$$

(c)
$$l = \pi r^2$$

(d)
$$\lambda l = 2\pi$$

42. The radii of different orbits around the nucleus of an atom is given by:

(a)
$$r_n^2 = nr_1$$

(b)
$$r_n = n r_1^2$$

(c)
$$r_n = n^2 r_1$$

(d)
$$r_n = nr_1$$

43. Balmer series is obtained when all the transitions of electron terminate on:

44. The orbital speed of an electron in the nth orbit is:

(a)
$$V_n = \frac{nh}{2\pi r_n m}$$

(b)
$$V_n = \frac{nh}{\pi m r_n}$$

(c)
$$v_n = \frac{2\pi m r_n}{nh}$$

- **45.** The numerical value of ground state energy of an electron in an orbit is the measure of:
 - (a) Excitation energy

(b) Excitation potential

(c) Ionization energy

- (d) None of these
- **46.** The electric P.E of an electron in an orbit around the nucleus is:
 - (a) $\frac{-ke^2}{r_n}$

(b) $\frac{ke}{r^2n}$

(c) $\frac{ke^3}{r^2n}$

- (d) $\frac{-ke^2}{r^2n}$
- 47. If the ionization energy of hydrogen atom is 13.6 eV, its ionization potential will be:
 - (a) 136.0 volt

(b) 3.0 volt

(c) 13.6 volt

- (d) None of these
- **48.** The SI unit of Rydberg constant is:
 - (a) ms^{-1}

(b) m

(c) sm^{-1}

- (d) m^{-1}
- **49.** The experimental value of Rydberg's constant is:
 - (a) $1.0974 \times 10^7 \,\mathrm{m}^{-1}$

(b) $1.0974 \times 10^{-7} \,\mathrm{m}^{-1}$

(c) $10.97 \times 10^{-7} \text{ m}^{-1}$

- (d) $109.1 \times 10^{-9} \text{ m}^{-1}$
- **50.** The radius of the nth orbit for hydrogen atom is:
 - (a) $\frac{4\pi^2 \text{ mke}^2}{n^2 \text{ h}^2}$

(b) $\frac{\text{nh}}{4\pi^2 \text{ mke}^2}$

(c) $\frac{\text{nh}}{4\pi^2 \text{ kme}^4}$

(d) $\frac{n^2 h^2}{4\pi^2 \text{ kme}^2}$

- **51.** The diameter of an atom is of the order of:
 - (a) 10^{-16} m

(b) 10^{-8} m

(c) 10^{-10} m

- (d) 10^{10} m
- **52.** The electrostatic force between the electron and the nucleus of hydrogen atom is given by:
 - (a) $F_e = \frac{ke}{r_n^2}$

(b) $F_e = \frac{ke^2}{r_n^2}$

(c) Fe = $\frac{ke^2}{r^2n}$

- (d) None of these
- 53. The centripetal force when an electron revolving around the nucleus is given by:
 - (a) $F_e = \frac{mV_n^2}{r_n}$

(b) $F_e = \frac{mV_n}{r_n^2}$

 $\mathbf{(c)} \quad \mathbf{F_c} = \frac{\mathbf{mV_n^2}}{r_n^2}$

- (d) None of these
- **54.** The value of Planck's constant is:
 - (a) $9 \times 10^9 \,\mathrm{Nm}^2\mathrm{C}^{-2}$

(b) $6.63 \times 10^{-34} \text{ J.S}$

(c) $9.1 \times 10^{-31} \text{ kg}$

- **(d)** $1.67 \times 10^{-27} \text{ kg}$
- 55. The radius of 1st Bohr's orbit for hydrogen is:
 - (a) 0.053 nm

(b) 0.53 nm

(c) 0.53 m

- (d) None of these
- 56. The total energy of an electron in the nth orbit of the hydrogen atom is given by:
 - (a) $E_n = \frac{-2\pi \text{ Kme}^4}{n^2 \text{ h}^2}$

(b) $E_n = \frac{-2\pi^2 K^2 me^4}{n^2 h^2}$

(c) $E_n = \frac{-2\pi K^2 me^2}{n^2 h^2}$

- (d) $E_n = \frac{-\pi K^2 m^2 e^2}{n^2 h^2}$
- 57. An expression for ground state energy of an electron is given by:
 - (a) $E_o = \frac{4\pi^2 k^2 me^4}{h^2}$

(b) $E_o = \frac{4\pi \text{ Kme}^4}{\text{h}^2}$

(c) $E_o = \frac{2\pi^2 k^2 me^4}{h^2}$

- (d) $E_o = \frac{2\pi K^2 me^4}{h^2}$
- **58.** The 1st Bohr atom in the hydrogen atom has radius:
 - (a) $3.56 \times 10^{-10} \text{ m}$

(b) $0.053 \times 10^{-11} \text{ m}$

(c) $0.53 \times 10^{-11} \text{ m}$

- (d) $5.30 \times 10^{-11} \text{ m}$
- **59.** Mathematically, P fund series is written as:
 - (a) $\frac{1}{\lambda} = R_H \left(\frac{1}{1^2} \frac{1}{n^2} \right)$

(b) $\frac{1}{\lambda} = R_H \left(\frac{1}{5^2} - \frac{1}{n^2} \right)$

(c) $\frac{1}{\lambda} = R_H \left(\frac{1}{3^2} - \frac{1}{n^2} \right)$

(d) $\frac{1}{\lambda} = R_H \left(\frac{1}{4^2} - \frac{1}{n^2} \right)$

- **60.** Mathematically, Balmer series is written:
 - (a) $\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} \frac{1}{n^2} \right)$

(b) $\frac{1}{\lambda} = R_H \left(\frac{1}{1^2} - \frac{1}{n^2} \right)$

(c) $\frac{1}{\lambda} = R_H \left(\frac{1}{3^2} - \frac{1}{n^2} \right)$

- (d) None of these
- **61.** Mathematically, Brackett series is written as:
 - (a) $\frac{1}{\lambda} = R_H \left(\frac{1}{4^2} \frac{1}{n^2} \right)$

(b) $\frac{1}{\lambda} = R_H \left(\frac{1}{1^2} - \frac{1}{n^2} \right)$

(c) $\frac{1}{\lambda} = R_H \left(\frac{1}{3^2} - \frac{1}{n^2} \right)$

- (d) $\frac{1}{\lambda} = R_H \left(\frac{1}{5^2} \frac{1}{n^2} \right)$
- **62.** When an electron exist in its lowest state it is called:
 - (a) Ground state

(b) Excited state

(c) Both (a) and (b)

- (d) None of these
- **63.** The photons emitted in inner shell transition are called:
 - (a) β-particle

(b) Characteristic x-rays

(c) γ-particle

(d) None of these

- **64.** X-rays were discovered by:
 - (a) Curie

(b) Henry Becquerel

(c) Rontgen

- (d) None of these
- **65.** X-rays are similar in nature to:
 - (a) γ-rays

(b) Positive rays

(c) α -particle

(d) None of these

- **66.** X-rays are:
 - (a) Electromagnetic waves
- (b) Mechanical waves

(c) Transverse waves

- (d) Longitudinal waves
- 67. The transition's of electrons in the hydrogen atom result in the emission of spectral lines in the:
 - (a) Visible region

(b) Infra red region

(c) Ultra violet region

- (d) Any of these
- **68.** X-ray tube used for production of X-rays contains:
 - (a) Air at pressure of 760 mm of Hg
- **(b)** Air at pressure of 76 cm of Hg

(c) No air at all

- (d) None of these
- **69.** K_{β} x-ray is emitted when an electron from:
 - (a) M shell fills the vacancy of K shell
- **(b)** K shell fills the vacancy of M shell
- (c) L shell fills the vacancy of K shell
- (d) Both (a) and (b)

Wavelength

(c)

OBJE	CIIVE	PHYSICS PART-II		230				
70.	The	characteristic x-rays appear as:						
	(a)	Discrete spectrum	(b)	Continuous spectrum				
	(c)	Band spectrum	(d)	Discrete lines on continuous spectrum				
71.	Bral	king radiation causes:						
	(a)	Discrete spectrum	(b)	Continuous spectrum				
	(c)	Band spectrum	(d)	Line spectrum				
72.	Ву	CAT scans, we can detect the density d	ifferer	nce of the order of:				
	(a)	1%	(b)	15%				
	(c)	10%	(d)	50%				
73.	X-ra	ays are diffracted by crystal but not by	a diffr	action grating because:				
	(a)	The ions in a crystal are well arranged						
	(b)	The lines in a diffraction grating cannot reflect x-rays						
	(c)	The penetrating power of x-rays is in	high i	n diffraction grating				
	(d)	The wavelength of x-rays are the sa atom in the crystal	me or	der of magnitude as the separation between the				
74.	The	The maximum frequency in the spectrum from x-rays tube is directly proportional to the:						
	(a)	Number of incident electron						
	(b)	The kinetic energy of the incident ele	ctron					
	(c)	The soft target, which can easily emit	t electi	rons				
	(d)	None of these						
75.	The	characteristic x-rays spectrum is due to	o:					
	(a)	The illumination of target metal by u	ltravio	let radiation				
	(b)	The bombardment of the target by pro-	otons					
	(c)	The bombardment of the target by ele	ectron	S				
	(d)	None of these						
76.	The	minimum wavelength of x-rays can fu	rther b	pe reduced by:				
	(a)	Reducing the press use or cooling the	targe	t				
	(b)	Increasing the temperature of the fila	ment					
	(c)	Using the target element of higher atomic number						
	(d)	Increasing the potential difference						
77.	The	penetrating power of x-rays is compara	able w	rith that of:				
	(a)	β-rays	(b)	γ-rays				
	(c)	x-rays	(d)	None of these				
78.	The	penetrating power of x-rays depends u	pon th	eir:				
	(a)	Frequency	(b)	Applied voltage				

(d) None of these

OBJE	CIIVE	PHISICS PARI-II		238
79.	Who	en x-rays are passed through aluminium	sheet	s, what happens to their thickness:
	(a)	Decreases	(b)	Increases
	(c)	Remain the same	(d)	None of these
80.	X-ra	ays are:		
	(a)	Of unknown nature	(b)	High energy photons
	(c)	High energy electrons	(d)	High energy positrons
81.	The	x-rays diffraction with crystal was first	studi	ed by:
	(a)	W.H Bragg	(b)	W.L. Bragg
	(c)	Michelson	(d)	None of these
82.	X-ra	ay photons cannot produce pair product	ion be	cause:
	(a)	Electromagnetic waves	(b)	Rest mass and charge is zero
	(c)	Energy is less than rest mass energy	(d)	None of these
83.		eries of characteristic x-rays spectrum in inate an:	esults	when all the transitions of inner-shell electrons
	(a)	K-shell	(b)	M-shell
	(c)	L-shell	(d)	None of these
84.	The	first spectra line of K-series of character	eristic	s x-rays spectrum results when:
	(a)	M-shell electron fall into K-shell	(b)	L-shell electron into K-shell
	(c)	N-shell electron fall into M-shell	(d)	None of these
85.	Mos	st efficient tube for production of x-rays	was o	designed by:
	(a)	Maxwell in 1913	(b)	Einstein in 1913
	(c)	Dr. Coolidge 1913	(d)	Dr. Rontgen in 1913
86.	For	the production of x-rays, the target met	al sho	uld be bombarded by:
	(a)	Electrons	(b)	Neutrons
	(c)	Protons	(d)	Positrons
87.	Qua	lity of x-rays depends upon:		
	(a)	Accelerating voltage	(b)	Filament current
	(c)	Material of the target	(d)	Both (a) and (c)
88.	The	velocity of x-rays is equal to that of:		
	(a)	α-rays	(b)	β-rays
	(c)	γ-rays	(d)	Speed of light
89.	X-ra	ays can be used to:		
	(a)	Detect Bone Fracture	(b)	Detect Flows in welding
	(c)	Control of Cancer	(d)	All of above

90. X-rays exhibit the phenomenon of:

(a) Diffraction

(b) Interference

(c) Polarization

(d) All of the above

91. The rest mass of x-ray photon is:

(a) Zero

(b) $1.67 \times 10^{-27} \text{ kg}$

(c) $9.1 \times 10^{-31} \text{ kg}$

(d) None of these

92. The reverse process of photo-electric effect is called:

(a) Annihilation of matter

(b) Compton effect

(c) Pair production

(d) X-rays

93. The transitions of inner shell electrons in heavy atoms give rise to the emission of:

- (a) High energy photon or x-rays
- (b) High energy γ -rays
- (c) Low energy photons or x-rays
- (d) High energy β-rays

94. Laser is device which can produce:

(a) Coherent beam of light

- (b) Monochromatic beam of light
- (c) An intense beam of light
- (d) All of above

95. The idea of laser was introduced by:

- (a) C.H. Townes and Arthur L Schaw Law(b) Dr. Grattling
- (c) Frank whittle

(d) Dr. C-gilbert young

96. The duration of a laser pulse is 10^{-8} see. The uncertainty in its energy will be:

(a) $\Delta E = \frac{h}{\Delta t}$

(b) $\Delta E = h \Delta t$

(c) $\Delta E = \frac{\Delta t}{h}$

(d) None of these

97. The duration of a laser pulse is 10^{-8} see. The uncertainty in its energy will be:

(a) $10.500 \times 10^{-26} \,\mathrm{J}$

(b) $6.625 \times 10^{-28} \text{ J}$

(c) $6.625 \times 10^{-26} \text{ J}$

(d) $1.050 \times 10^{-28} \text{ J}$

98. Different types of lasers are:

(a) Two

(b) Three

(c) Five

(d) None of these

99. Characteristic x-rays are produced from:

(a) Heavy element

(b) Light element

(c) Inner shell

(d) Both (a) and (b)

100. An atom can reside in excited state for:

(a) 10^{-8} second

(b) One second

(c) 10^{-10} second

(d) More than one second

(c) 25%

101.	The calle		used 1	to generate 3- dimensional images of objects
	(a)	Holography	(b)	Geo graphy
	(c)	Tomography	(d)	Radio graphy
102.	In th	ne production of laser beam for each inc	ident	photon, we will have two photons going:
	(a)	In the same direction	(b)	In opposite direction
	(c)	At right angle to each other	(d)	In arbitrary direction
103.	The	velocity of laser light is:		
	(a)	Less than ordinary light	(b)	More than ordinary light
	(c)	Equal to ordinary light	(d)	None of these
104.	Refl	ecting mirrors in laser is used to:		
	(a)	Further stimulation	(b)	For producing more energetic lasers
	(c)	Both (a) and (b)	(d)	None of these
105.	In H	le-Ne laser, the laser action is produced	by:	
	(a)	Ne only	(b)	He-Ne both
	(c)	Electrons of He	(d)	Electrons of Ne
106.	Mos	et commonly used type of gas laser is:		
	(a)	Helium-Neon	(b)	Carbon dioxide
	(c)	Argon ion	(d)	All of above
107.	The	excited atoms returns to their ground sta	ate in	:
	(a)	$10^{-10} \mathrm{sec}$	(b)	$10^{-8} \mathrm{sec}$
	(c)	10^{-6} sec	(d)	10^{-11} sec
108.	Life	time of metastable states is:		
	(a)	10 ⁻⁶ sec or more	(b)	10^{-3} sec or more
	(c)	10^{-5} sec or more	(d)	None of these
109.	Ope	ration of a laser depends upon:		
	(a)	The existence of atoms in metastable state	(b)	The existence of atoms in ground state
	(c)	The existence of atoms in excited state	e (d)	None of these
110.	Lase	er beam can be used to generate three di	mensi	ional images of object in a process called:
	(a)	Holography	(b)	Tomography
	(c)	None of these	. ,	
111.		um-Neon laser discharge tube contains	neon:	
	(a)	82%	(b)	15%
	. ,		· /	

(d) 85%

OBJE	CIIVE	PHYSICS PART-II		
112.	The	idea of laser device was first introduced	l by C	C.H. Townes and Authers Schowlan is:
	(a)	1972	(b)	1965
	(c)	1958	(d)	1913
113.	Lase	er can be made by creating:		
	(a)	Population inversion	(b)	Metastable state
	(c)	Assembly	(d)	All of the above
114.	For	production of X-rays, the target must be	of:	
	(a)	High melting point	(b)	Low melting point
	(c)	Very hard	(d)	None of these
115.	Wha	at is speed of electron in the first Bohr o	rbit?	
	(a)	$2.19 \times 10^6 \text{ m/s}$	(b)	$1.6 \times 10^6 \text{ m/s}$
	(c)	$2.2 \times 10^{-6} \text{ m/s}$	(d)	$3 \times 10^8 \text{ m/s}$
116.	The	branch of Physics in which laser is stud	lied:	
	(a)	Optics	(b)	Photonics
	(c)	Plasma	(d)	None
117.	For	shortest wavelength radiation in the Bal	mer s	eries, the value of n is:
	(a)	2	(b)	3
	(c)	Infinity	 (d) 1913 (b) Metastable state (d) All of the above et must be of: (b) Low melting point (d) None of these rst Bohr orbit? (b) 1.6 × 10⁶ m/s (d) 3 × 10⁸ m/s ser is studied: (b) Photonics (d) None in the Balmer series, the value of n is: 	

ANSWERS									
1.	(b)	2.	(d)	3.	(a)	4.	(d)	5.	(d)
6.	(a)	7.	(b)	8.	(c)	9.	(a)	10.	(d)
11.	(a)	12.	(c)	13.	(d)	14.	(a)	15.	(d)
16.	(d)	17.	(d)	18.	(b)	19.	(a)	20.	(a)
21.	(c)	22.	(d)	23.	(c)	24.	(b)	25.	(d)
26.	(a)	27.	(c)	28.	(a)	29.	(b)	30.	(a)
31.	(a)	32.	(b)	33.	(b)	34.	(c)	35.	(b)
36.	(c)	37.	(d)	38.	(b)	39.	(b)	40.	(b)
41.	(a)	42.	(c)	43.	(b)	44.	(a)	45.	(c)
46.	(a)	47.	(c)	48.	(d)	49.	(a)	50.	(d)
51.	(c)	52.	(c)	53.	(a)	54.	(b)	55.	(a)
56.	(b)	57.	(c)	58.	(d)	59.	(b)	60.	(a)
61.	(a)	62.	(a)	63.	(b)	64.	(c)	65.	(a)
66.	(a)	67.	(d)	68.	(c)	69.	(a)	70.	(d)
71.	(b)	72.	(a)	73.	(d)	74.	(b)	75.	(c)
76.	(d)	77.	(b)	78.	(a)	79.	(c)	80.	(b)
81.	(a)	82.	(c)	83.	(a)	84.	(b)	85.	(c)
86.	(a)	87.	(d)	88.	(d)	89.	(d)	90.	(d)
91.	(a)	92.	(d)	93.	(a)	94.	(d)	95.	(a)
96.	(a)	97.	(c)	98.	(b)	99.	(d)	100.	(a)
101.	(a)	102.	(b)	103.	(c)	104.	(a)	105.	(a)
106.	(d)	107.	(b)	108.	(b)	109.	(a)	110.	(a)
111.	(b)	112.	(c)	113.	(d)	114.	(a)	115.	(a)
116.	(b)	117.	(c)						