

Need of Scientific Notation (K.B)

There are so many numbers that we use in science and technical work that are either very small or large.

While writing these numbers in ordinary

notation (Standard notation) there is always chance of making an error by omitting a zero or writing more than actual number of zeros. To overcome this problem, scientists have developed a concise, precise and convenient method to write very small or very large numbers, that is called scientific notation of expressing an ordinary number.

Scientific Notation

(K.B)

(A.B)

(LHR 2018, SGD 2017, RWP 2017)

A number written in the form $a \times 10^n$, where $1 \le a < 10$ and *n* is an integer, is called the scientific notation.

For example:

The distance from the Earth to the Sun is 150,000,000 Km approximately.

In scientific notation 150,000,000 km =

1.5×10^8 km.

Example # 1

Write each of the following ordinary numbers in scientific notation

(i) 30600 (ii) 0.000058 Solution:

(i) $30600 = 3.06 \times 10^4$

(move decimal point four places to the left)

(ii) $0.000058 = 5.8 \times 10^{-5}$

(move decimal point five places to the right)

Note

(U.B+K.B)

Steps to change an ordinary number into scientific notation:

- (i) Place the decimal point after the first non-zero digit of given number.
- (ii) We multiply the number obtained in step (i), by 10^n if we shifted the decimal points *n* places to the left
- (iii) We multiply the number obtained in step (i) by 10^{-n} if we shifted the decimal points *n* places to the right.

On the other hand, if we want to change a number from scientific notation to ordinary (standard) notation, we simply reverse the process.

Example # 2

(A.B)

Change each of the following numbers from scientific notation to ordinary notation.

(i) 6.35×10^6 (ii) 7.61×10^{-4} Solution

(i) $6.35 \times 10^6 = 6350000$ (Move the decimal point six places to the right)

(ii) $7.61 \times 10^{-4} = 0.000761$

(GRW 2018, SGD 2019, D.G.K 2017) (Move the decimal point four places to the left).

Exercise 3.1

- Q.1 Express each of the following numbers in scientific notations.
- (i) 5700 (MTN 2017, FSD 2018) (A.B) = 5.7×10^3
- (ii) 49,800,000 (A.B) = 4.98×10^7
- (iii) 96000000 (MTN 2017) (A.B) = 9.6×10^7

6

\

	(iv)	416.9		(A.B)	Note	nnn	U.B+K.B)
		$=4.169\times10^{2}$	Γ	1001	0-11	$a^n = y$ and $\log_a y = x$ ar	e respectively
	(V)	83000	\sim		1.0	exponential and logarith	nic forms of
	()	$=8.3\times10^{-10}$		ADU	\sim	the same solution.	
	(VI) (LH	0.00643 R 2017. FSD 201'	7. BWP 2017. D.	(A.D) G.K 2017)		$3^2 = 9$ is equivalent to lo	$g_{3}9 = 2$ and
		$= 6.43 \times 10^{-3}$	JUllin			. 1	Γ1]
ant	(vii)	0.0074		(A.B)		$2^{-1} = \frac{1}{2}$ is equivalent to	$\log_2 \left \frac{1}{2} \right = -1$
NN V	90	$=7.4 \times 10^{-3}$			•	Logarithm of a negative	number is not
0	(viii)	60,000,000		(A.B)	•	defined at this stage.	number is not
		$= 6 \times 10^7$			•	Idea of logarithm was	given by a
	(ix)	0.000000039	5	(A.B)		Muslim mathematie	cian Abu
		-2.05×10^{-9}	(SWL 2019, D.0	G.K 2013)		Muhammad Musa Al Kh	warizmi.
		$= 3.93 \times 10$ 275000			•	Logarithmic table with	base e was
	(x)	273000	(LHR 2013)	(A.B)		prepared was John Napie	er.
		0.0025 2.75×10^5			•	Logarithmic table with	base 10 was
		$=\frac{2.73 \times 10}{2.5 \times 10^{-3}}$				prepared was Professor H	Ienry Briggs.
	02	2.5×10 [°] Express the	following nu	mher in	•	Anti-logarithm table wa	s prepared by
	~	ordinary nota	tion.	inger in		Jobst Burgi in 1620 A.D.	1
		(LHR 2017, GR	W 2017, 19, 21, S	SWL 2019,	•	Napier's logarithm is a	iso known as
	(i)	FSD 2017, BWP 6×10^{-4}	2019)	(A R)	•	<i>a</i> is an irrational number	whose approx
	(1)	= 0.0006		(4.8)	•	value is 2.718.	whose approx
	(ii)	5.06×10 ¹⁰		(A.B)			
		= 506000000	0		Exan	nple # 3	(А.Б)
	(iii)	9.018×10 ⁻⁶		(A.B)	Find	$\log_4 2$, i.e., find log of 2	to the base 4
		= 0.00000901	8		Solut	tion:	
	(iv)	7.865×10^{8}		(A.B)	L at 1	$aa 4^2 $	
	-	= 786500000				$\log 4 = x$	
	Loga		2 DWD 2014 D	(K.B)	Then	its exponential form is 4^{2x}	57 (CO)
	Logari	thm are useful	tools for accu	irate and	1.e. 2		0.1000
	rapid c	computations. I	ogarithms bas	se 10 are	112	2x=1 : bases are same	
	known	as common	logarithms ar	nd those	$\cup \not \vdash$		
	with b	ase <i>e</i> are known	as natural log	arithm.	U.V.	2	
				NU	\therefore lo	$g_{2} = \frac{1}{2}$	
	If a^x	- athou ric o	alled the loge	rithm of		2	
		the base 'a'	and is wr	itten as	Ded	uctions from De	finition of
ann		= r where $a > a$	$and 13 with a \neq 1 and v$	>0	loga	rithm	(K.B)
AN ,	The The	relation $a^x -$	y = 1 and y	-r are	(i)	Since $a^0 = 1 \implies \log a^0$	1 = 0
	equive	lent	y = a y = a y		(-)	$L_{ogarithm}$ of unity to a	ny hase is 0
	Thus	iciit.			(ii)	Since $a^1 - a \rightarrow \log$	a - 1
		$a^x - y \leftarrow$	$\log v - r$		(11)	I operithm of a number	u = 1
		$u - y \searrow$	$\log_a y - x$			base is 1	i with fisell as
						0000 10 1.	

Common Logarithm

(K.B)

In daily life we use decimal system (means system of base 10) so in numerical calculations, the base of logarithm is taken as 10. This logarithm is called common logarithm or Briggesian logarithm in honour of Henry Briggs, an English mathematician and astronomer, who developed them.

Characteristic

(K.B)

Integral part of the logarithm of a number is called characteristic. It may be positive or negative.

For example:

Characteristic of 99.6 is 1.

How to find Characteristic

(U.B)

It is always one less than the number of digits in the integral part of the number. Or

When a number b is written in the scientific notation, i.e. in the form $b = a \times 10^n$ where $1 \le a < 10$, the power of 10 i.e. n will give the characteristic of log b.

Examples:

Number	Scientific Notation	Characteristic of the logarithm
1.02	$1.02 \times 10^{\circ}$	0
1662.4	1.6624×10^{3}	3
0.872	8.72 × 10-1	- FLAN
0.00345	3.45 ×10-3	m+3

Note

(K.B+U.B)

Characteristic of the logarithm of a number less then 1, is always negative and one more then the number of zeros immediately after the decimal paint of the number. Instead of -3 or -1 characteristic is written as $\overline{3}, \overline{2}$ or $\overline{1}(\overline{3}$ is read as bar 3) to avoid the mantissa becoming negative.

i.e. $\overline{2}$.3748 does not mean -2.3748. In $\overline{2}$.3748,2 is negative but .3748 is positive where as in -2.3748 both 2 and .3748 are negative.

Mantissa

(K.B)

Logarithms

Fractional part of the logarithm of a number is called mantissa. It may be positive or negative.

For example:

If $\log x = 2.3451$, then mantissa is 0.3451

Finding the Mantissa of the Logarithm of a Number (K.B)

Mantissa is found by making use of logarithm tables. These tables have been constructed to obtain the logarithms up to 7 decimal places. A four-figure logarithmic table provides sufficient accuracy.

A logarithmic table is divided into 3 parts.

- (a) The first part of the table is the extreme left column headed b7 blank square. This column Contain numbers from 10 to 99 corresponding to the first two digits of the number whose logarithm is required.
- (b) The second part of the table consists of 10 columns headed by 0,1,2,....,9; These headings correspond to third from the left of the number. The numbers under these columns record mantissa of the logarithms with decimal point omitted for simplicity.

(c) The third part of the table further consists of small columns known as mean differences columns heard by 1,2,3....9 these heading correspond to the fourth digit from the left of the number. The readings of these columns are added to the mantissa recorded in second part (b) above.

Example # 1

(A.B)

Find the mantissa of the logarithms of 43.254.

Solutions:

(i)

Rounding off 43.254 we consider only the four significant digits 4325. We first locate the row corresponding to 43 in the log tables and

- Proceed horizontally tell we reach (ii) the column corresponding to 2. The number at the intersection is 6355.
- (iii) Again proceeding horizontally till the mean difference column corresponding to 5 intersects this row, we get the number 5 at the intersection.
- (iv) Adding the two numbers 6355 and 5 we get. 0.6360 as the mantissa of the logarithm of 43.25.

Example # 2

(A.B)

Find the mantissa of the logarithm of 0.002347

Solution:

Here, we consider only the four significant digits 2347

We first locate the row corresponding to 23 in the logarithm tables and along the same row to its intersection with the column corresponding to 4 the resulting number is 3692. The number at the intersection of this row and the mean difference column corresponding to 7 is 13. Hence the sum of 3692 and 13 gives the mantissa of the logarithm of 0.002347 as 0.3705.

Note

(K.B+U.B)

The logarithms of number having the same sequence of significant digits have the same mantissa e.g., the mantissa of log of number 0.002347 and 0.2347 is 0.3705.

(A.B) Example # 3 Find (i) log 278.23 (ii) log 0.07058 Solution:

- (i) 278.23 can be round off as 278.2 The characteristic is 2 The mantissa using log tables, is 0.4443 Thus, Log 278.23 = 2.4443
- The characteristic of log 0.07058 is 2 (ii) Using log tables the mantissa is 0.8487 So that

 $\log 0.07058 = \overline{2}.8487$

Antilogarithm

(K.B)

(GRW 2018, MTN 2015) The number whose logarithm is given is called antilogarithm.

If $\log_a y = x$, then y is the antilogarithm of x, or y = antilog x.

Example

(A.B) Find the number whose logarithms are

(i) 1.3247 (ii) 2.1324

Solution:

(i) 1.32147

Reading along the row corresponding to .32 (as mantissa = 0.3247), we get 2109 at the intersection of this row with the column correspond to 4. The number at the intersection of this row and the mean difference column corresponding to 7 is 3 adding 2109 and 3 we get 2112. Since the characteristic is 1 (it is increased by 1), there for the decimal point is fixed after two digits from left to right in 2112.

Hence

antilog of 1.3247 = 21.12

(ii) 2.1324

Proceeding as in (i) the significant figures corresponding to the mantissa 0.1324 are 1356. Since the characteristics is 2, its numerical value 2 is decreased by 1. Hence there will be one zero after the decimal point

Hence

antilog of 2.1324 = 0.01356

Unit - 3

Logarithms

(K.B)

Exercise 3.2

Find the common logarithms of 0.1 each of the following numbers. log 232.92 (i) (K.B)

Solution: Ch = 2Mantissa = 0.3672

 $\log 232.92 = 2.3672$

log 29.326 Solution: Ch = 1Mantissa = 0.4672

 $\Rightarrow \log 29.326 = 1.4672$ (K.B) log 0.00032 (iii)

Solution:

(ii)

Ch = 4

Mantissa = 0.5051 $\Rightarrow \log 0.00032 = 4.5051$ (iv) log 0.3206

Solution:

Ch = 1

Mantissa = 0.5059

 $\Rightarrow \log 0.3206 = 1.5059$ If $\log 31.09 = 1.4926$, find the Q.2 value of the following. (K.B)

- **(i)** log 3.109
- (ii) log 310.9
- (iii) log 0.003109
- (iv) log 0.3109

Solution:

- If $\log 31.09 = 1.4926$ Then, mantissa = 0.4926
- log 3.109 (i)
- Characteristics = 0Mantissa = 0.4926

 $\log 3.109 = 0.4926$

(ii) log 310.9

Characteristics = 2

Mantissa =0.4926 $\log 310.9 = 2.4926$ **Solution:** Let required number = xThen, $\log x = 1.7427$ Taking antilog on both sides antilog log x = antilog 1.7427 $\Rightarrow x = 0.5530$ Hence, required number = 0.5530

1.7427

log 0.003109

log 0.3109

Characteristics $=\overline{3}$

Mantissa = 0.4926

Characteristics $=\overline{1}$

Mantissa = 0.4926

logarithms are

3.5621

 $\log 0.3109 = \overline{1.4926}$

Let required number = x

Taking antilog on both sides

antilog $\log x = \text{antilog } 3.5621$

 $\Rightarrow x = 3649.0$

Hence, required number = 3649

Then, $\log x = 3.5621$

Find the numbers whose common

 $\log 0.003109 = \overline{3}.4926$

(iii)

(iv)

0.3

(i)

(ii)

Solution:

(K.B)

(K.B)

Q.4 What replacement for the unknown in each of the following will make the true statements? (U.B+K.B+A.B)

(i) $\log_{3} 81 = L$ Solution: $\log_{3} 81 = L$ Writing in exponential form. $3^{L} = 81$

 $3^{L} = 3^{4}$: Bases are equal so L = 4

(ii) $\log_a 6 = 0.5$ (GRW 2017)

Solution:

 $\log_a 6 = 0.5$ In exponential form

$$\begin{aligned} & \text{Unit} - 3 \end{aligned} \\ & \text{Final Product of a function of the product of the produ$$

Ι

6

\

Fourth law of logarithm / Change of
Base Formula

$$(\mathbf{U},\mathbf{B}+\mathbf{K},\mathbf{B})$$

 $\log_n n = \log_n n \times \log_n \delta = \log_n n$
 $n = b^n$
Let $\log_n n = \infty$.
Writing in exponential form
 $n = b^n$
Let $\log_n n = \log_n b^n$
 $\log_n n = \log_n b^n$
 $\log_n n = \log_n b^n$
 $\log_n n = \log_n n \times \log_n b$
 $1 = \log_n 4 \times \log_n b$
 $\log_n n = \log_n n \times \log_n b$
 $1 = \log_n 4 \log_n n$
 $\log_n n = \log_n n \log_n n$
 $\log_n n = \log_n n \log_n n$
 $\log_n n = \log_n 2 \times \log_n b$
 $1 = \log_n (2 \times S)$
 $Or \log_n b = \frac{1}{\log_n a}$
 $Or \log_n b = \frac{1}{\log_n a}$
 $Or \log_n t = \frac{1}{\log_n a}$
 $\log_n 10 = \frac{1}{\log_n a} = \frac{1}{0.4343} = 2.3026$
Example:
 $\log_n 10 = \frac{1}{\log_n n} = \frac{1}{0.4343} = 2.3026$
Example:
 $\log_n 2 \log_n 2 \times \log_n 8$
 (\mathbf{M}, \mathbf{B})
 $\log \sqrt{145} = \log(\frac{7}{15})$
 $(\log_n (m)^2 - \log_1 n)$
 $= \frac{\log_n 2}{\log_2 2}$
 $(\log_n m) = \log_n m - \log_n n$
 $= \frac{\log_n 2}{\log_2 2}$
 $(\log_n m) = \log_n m - \log_n n$
 $= \frac{1}{3}\log(-\frac{7}{15})$
 $(\log_n m) = \log_n n$
 $= \frac{1}{3}\log(-\frac{7}{15})$
 $(\log_n m) = \log_n n$
 $= \frac{1}{3}\log(-\frac{7}{1}\log_15)$

(v)

Logarithms

Solution:

$$\log \frac{(22)^{\frac{1}{3}}}{5^{3}} = \log 22^{\frac{1}{3}} - \log 5^{3}$$

 $\therefore \log_{a} \frac{m}{n} = \log_{a} m - \log_{a} n$

 $\log \frac{(22)^{\frac{1}{3}}}{\tau^3}$

$$= \frac{1}{3} \log 22 - 3 \log 5$$

$$\therefore \ \log_a (m)^n = n \log_a m$$

(vi)
$$\log \frac{25 \times 97}{29}$$

Solution:

$$\log \frac{25 \times 47}{29} = \log (25 \times 47) - \log 29$$

$$\because \log_a \frac{m}{n} = \log_a m - \log_a n$$

$$= \log 25 + \log 47 - \log 29$$

$$\because \log_a (mn) = \log_b m + \log_a n$$

Q.2 Express

$$\log x - 2\log x + 3\log(x+1) - \log(x^2 - 1)$$
 as a

single logarithm.

Solution:

$$\log x - 2\log x + 3\log(x+1) - \log(x^2 - 1)$$

= $\log x - \log x^2 + \log(x+1)^3 - \log(x^2 - 1)$
 $\therefore \log_a(m)^n = n \log_a m$
= $\log\left(\frac{x}{x^2}\right) + \log\frac{(x+1)^3}{x^2 - 1}$
 $\therefore \log_a \frac{m}{n} = \log_a m - \log_a n$
= $\log\left(\frac{x}{x^2} \times \frac{(x+1)^3}{x^2 - 1}\right)$
 $\therefore \log_a(mn) = \log_b m + \log_a n$

log $= \log \frac{\chi(x+1)^2 (x+1)}{x \times \chi(x-1) (x+1)}$ $=\log\frac{(x+1)^2}{x(x-1)}$ Write the following in the form of Q.3 a single logarithm. (A.B) (i) $\log 21 + \log 5$ Solution: $\log 21 + \log 5$ $\therefore \log_a(mn) = \log_b m + \log_a n$ $=\log(21\times5)$ $\log 25 - 2\log 3$ (ii) Solution: $\log 25 - 2\log 3$ $= \log 25 - 2\log 3$ $= \log 25 - \log 3^2$ $\therefore \log_a(m)^n = n \log_a m$ $=\log \frac{25}{3^2}$:: $\log_a \frac{m}{n} = \log_a m - \log_a n$ (iii) $2\log x - 3\log y$ (BWP 2017, SWL 2018, 19, MTN 2019, **D.G.K 2019**) Solution: $2\log x - 3\log y$ $=\log x^2 - \log y^3$ $\therefore \log_a \frac{m}{n} = \log_a m - \log_a n$ log $\log 5 + \log 6 - \log 2$ (iv) (FSD 2018) Solution: $\log 5 + \log 6 - \log 2$ $\therefore \log_a(mn) = \log_b m + \log_a n$ $=\log(5\times 6)-\log 2$ $\therefore \log_a \frac{m}{n} = \log_a m - \log_a n$ $=\log\frac{5\times 6}{2}$ Ans

Unit – 3

MATHEMATICS-9

Unit - 3

$$= \frac{1}{2}(0.3010 + 0.69900 - 0.4771)$$

$$= \frac{1}{2}(1 = 0.4771)$$

$$= \frac{1}{2}(0.5229)$$

$$= 0.26145$$
(iv) $\log \frac{8}{3}$
Solution:
 $\log \frac{8}{3}$
 $= \log \frac{2^3}{3}$
 $\therefore \log_a \frac{m}{n} = \log_a m - \log_a n$
 $= \log 2^3 - \log 3$
 $\therefore \log_a \frac{m}{n} = \log_a m - \log_a n$
 $= \log 2^3 - \log 3$
 $\lim_{n \to \infty} \log \frac{1}{2} + \log$

Application of Laws of Logarithm in Numerical Calculations

So far we have applied laws of logarithm to simple type of products, quotients, powers or roots of numbers. We now extend their application to more difficult examples to verify their effectiveness in simplification.

Example 1:

(A.B+K.B+U.B)

Show that
$$7\log \frac{16}{15} + 5\log \frac{25}{24} + 3\log \frac{81}{80} = \log 2$$

Solution:
L.H.S. = $7\log \frac{16}{15} + 5\log \frac{25}{24} + 3\log \frac{81}{80}$
 $\therefore \log_a \frac{m}{n} = \log_a m - \log_a n$
= $7[\log 16 - \log 15] + 5[\log 25 - \log 24] + 3[\log 81 - \log 80]$
= $7[\log 2^4 - \log(3 \times 5)] + 5[\log 5^2 - \log(2^3 \times 3)] + 3[\log 3^4 - \log(2^4 \times 5)]$
 $\therefore \log_a(mn) = \log_b m + \log_a n$
= $7[4\log 2 - (\log 3 + \log 5)] + 5[2\log 5 - (3\log 2 + \log 3)] + 3[4\log 3 - [4\log 2 + \log 5]]$
= $28\log 2 - 15\log 2 - 12\log 2 - 7\log 3 - 5\log 3 + 12\log 3 - 7\log 5 + 10\log 5 - 3\log 5$
= $(28 - 15 - 12)\log 2 + (-7 - 5 + 12)\log 3 + (-7 + 10 - 3)\log 5$
= $(1)\log 2 + (0)\log 3 + (0)\log 5$
= $\log 2 + 0 + 0$
= $\log 2 = R.H.S$

Unit - 3
Texample 72
Evaluate:
$$3 \sqrt{\frac{0.0792 \cdot 4(18.99)^2}{(5.79)^3 \times 0.3474}}$$
 (A.B)
Solution:
 $het y = 3 \sqrt{\frac{0.07921 \times (18.99)^2}{(5.79)^3 \times 0.3474}}$
 $= \left[\frac{0.07921 \times (18.99)^2}{(5.79)^3 \times 0.9474}\right]^3$
Taking log on both sides
 $\log y = \log \left[\frac{0.07921 \times (18.99)^2}{(5.79)^3 \times 0.9474}\right]^3$
 $\therefore \log_n(m)^2 = n\log_n m$
 $= \frac{1}{3} \log \left[\frac{0.07921 \times (18.99)^2}{(5.79)^3 \times 0.9474}\right]$
 $\therefore \log_n \frac{m}{n} = \log_n m - \log_n n$
 $= \frac{1}{3} \left[\log (0.07921 \times (18.99)^2\right] - \log[(5.79)^3 \times 0.9474]$
 $\therefore \log_n(m) = \log_m m + \log_n n$
 $= \frac{1}{3} \left[\log (0.07921 \times (18.99)^2\right] - \log[(5.79)^3 \times 0.9474]$
 $\therefore \log_n(m) = \log_m m + \log_n n$
 $= \frac{1}{3} \left[\log (0.07921 + 2\log 18.99) - (4\log 5.79 + \log 0.9474)\right]$
 $= \frac{1}{3} \left[\log (0.07921 + 2\log 18.99) - (4\log 5.79 + \log 0.9474)\right]$
 $= \frac{1}{3} \left[\frac{1}{2} 8988 + 2.5572 - 3.0508 - 19705\right]$
 $= \frac{1}{3} \left[\frac{1}{3} + 1.4287\right]$
 $= 1 + 0.4762 - 14762$
 $Or y = antilog 1.4762$
 $y = 0.2993$

Example # 3

Logarithms (A.B)

Given $A = Aoe^{-kd}$ If k = 2 what be the value of d to make $A = \frac{Ao}{2}$?

 $\frac{A_o}{2} = A_o e^{-kd}$ $\frac{A_o}{2A_o} = e^{-kd}$

 $\frac{1}{2} = e^{-kd}$

 $A = A_{o}e^{-}$

Substituting k = 2 and where e = 2.718

$$\frac{1}{2} = (2.718)^{-2d}$$

Taking Common log on both sides

$$\log 10\frac{1}{2} = \log 10(2.718)^{-2d}$$

$$\log_{10} 1 - \log_{10} 2 = -2d \log_{10} (2.718)$$

$$0 - 0.3010 = -2d (0.4343)$$

$$-0.3010 = -0.8686(d)$$

$$\frac{-0.3010}{-0.8686} = d$$

$$d = 0.3465$$

Exercise 3.4

Q.1 Use log tables to find the value of (i) 0.8176×13.64 (A.B) Solution: Suppose $x = 0.8176 \times 13.64$ Taking log on both sides $\log x = \log(0.8176 \times 13.64)$ According to first law of logarithm $\log x = \log 0.8176 + \log 13.64$ $= \bar{1.9125} + 1.1348$ $\log x = -1 + 0.9125 + 1.1348$ $\log x = 1.0473$ Taking antilog on both sides x = antilog 1.0473x = 11.15

(ii)
$$(789.5)^{\frac{1}{8}}$$

Solution:
Let $x = (789.5)^{\frac{1}{8}}$
Taking log on both sides
 $\log x = \log(789.5)^{\frac{1}{8}}$
According to third law
 $\log x = \frac{1}{8}\log(789.5)$
 $\log x = \frac{1}{8}(2.8974)$
 $= \frac{2.8974}{8}$
 $\log x = 0.3622$
Taking antilog on both sides
 $x = \operatorname{antilog} 0.3622$
 $x = 2.302$

Unit – 3

$$= \frac{1}{3} (-0.6168)$$

= -0.2056
log x is in negative, so
log x = -1+1-0.2056
= -1+0.79144
= 1.7944
Taking antilog on both sides
x = antilog 1.7944
= 0.6229

(vii)

Solution:
$$\frac{83 \times \sqrt[3]{92}}{127 \times \sqrt[5]{246}}$$

Suppose: $x = \frac{83 \times \sqrt[3]{92}}{127 \times \sqrt[5]{246}}$

 $x = \frac{83 \times (92)^{\frac{1}{3}}}{(92)^{\frac{1}{3}}}$ $127 \times (246)^{-5}$

Taking on both sides

$$\log x = \log \frac{83 \times (92)^{\frac{1}{3}}}{127 \times (246)^{\frac{1}{5}}}$$

According to 1st and 2nd law of log
$$\log x = \log 83 + \log (92)^{\frac{1}{3}} - \log 127 - \log 12$$

 $\log x = \log x$ $\log x =$ = 1.91

 $\log x$ is in negative, so

 $\log x = -1 + 1 - 0.0083$

 $=\bar{1}.9917$

 $x = antilog \overline{1.9917}$

x = 0.9811

= -1 + 0.9917

Taking antilog log on both sides

$$\log x = \log \frac{-83 \times (92)^{3}}{127 \times (246)^{\frac{1}{5}}}$$

g to 1st and 2nd law of log
g83 + log(92) ^{$\frac{1}{3}$} - log127 - log(246) ^{$\frac{1}{5}$}
g to third law of log
og83 + $\frac{1}{3}$ log92 - log27 - $\frac{1}{5}$ log246

$$(1.9191) + \frac{1}{3}(1.9638) - (2.1038)$$

$$-\frac{1}{5}(2.3909)$$

= 1.9191 + 0.65460 - 2.1038 - 0.47818
= 1.9191 + 0.6546 - 2.1038 - 0.47818
= -0.0083

(388)
olution:
uppose:
$$x = \frac{(438)^3 \sqrt{0.056}}{(388)^4}$$

(438)³√0.056

(viii)

S

$$x = \frac{(438)^3 (0.056)^{\frac{1}{2}}}{(388)^4}$$
$$(438)^3 (0.056)^{\frac{1}{2}}$$

$$x = \frac{(438)^{(0.050)^2}}{(388)^4}$$

Taking log on both sides
 $\left((438)^3 (0.056)^{\frac{1}{2}} \right)$

$$\log x = \log \left(\frac{(438)^{6} (0.056)^{2}}{(388)^{4}} \right)$$

According to 1st and 2nd law

$$\log x = \log (438)^3 + \log (0.056)^{\frac{1}{2}} - \log (388)^4$$
According to third law

$$\log x = 3\log (438) + \frac{1}{2}\log (0.056) - 4\log (38)$$

$$\log x = 3(2.6415) + \frac{1}{2}(\overline{2.7482}) - 4(2.5888)$$

$$\log x = 3(2.6415) + \frac{1}{2}(2.7482) - 4(2.5888)$$
$$= 7.9245 + \frac{1}{2}(-2 + 0.7482) - 10.3552$$

$$= 7.9245 + \frac{1}{2}(-1.2518) - 10.3552$$

= 7.9245 - 0.6259 - 10.3552
= -3.0566

log is in negative, so $\log x = -4 + 4 - 3.0566$ = -4 + 0.9434 = 4.9434Taking antilog on both sides $x = antilog \overline{4.9434}$ = 0.0008778

A gas is expanding according to Q.2 the law $pv^n = C$. Find C when p = 80, v = 3.1 and $n=\frac{5}{4}$. Solution:

Given
$$pv^n = C$$

Taking log on both sides
 $log (pv^n) = log C$
Applying laws of logarithm
 $log C = log P + n log v$
Putting P=80, v=3.1 and $n = \frac{5}{4}$
 $log C = log 80 + \frac{5}{4} log 3.1$
 $=1.9031 + \frac{5}{4} (0.4914)$
 $=1.9031 + 0.6143$
 $log C = 2.5174$
Taking antilog both sides
C=Antilog (2.5174)
C=329.2
Q.3 The formula $p = 90$ (5)^{-q/10} applies
to the demand of a product, where
q is the number of units and p is
the price of one unit. How many
units will be demanded if the price
is Rs 18.00? (A.B)

Solution:

Given that
$$p = 90(5)^{\frac{10}{10}}$$

Taking log on both sides
 $log \ p = \log 90(5)^{\frac{-q}{10}}$
Applying laws of logarithm
 $\log P = \log 90 - \frac{q}{10} \log 5$
Putting the value of *P*
 $\log 18 = \log 90 - \frac{q}{10} \log 5$
 $1.2553 = 1.9542 - \frac{q}{10} \times 0.6990$
 $1.2553 - 1.9542 = -\frac{q}{10} \times 0.6990$
 $-0.6989 \times 10 = -q \times 0.6990$
 $-6.989 = -q \times 0.6996$
 $6.989 = q \times 0.6996$
 $\frac{6.989}{0.6990} = q$
 $q = 10$ approximately

-a

Hence 10 units will be demanded $A = \pi r^2$, find A, when $\pi = \frac{22}{7}$ If Q.4 (A.B) and r = 15. Solution: Given that $A = \pi r^2$ Taking log on both sides $\log A = \log \pi r^2$ Putting $\pi = \frac{22}{7}$ and r = 15 $\log A = \log \frac{22}{7} \left(15\right)^2$ Applying laws of logarithm $\log A = \log 22 \cdot \log 7 + 2 \log 15$ = 1.3424 - 0.8451 + 2(1.1761)= 0.4973 + 2.3522 $\log A = 2.8495$ Taking antilog on both sides A = antilog 2.8495A = 707.1If $V = \frac{1}{3}\pi r^2 h$, find V, when $\pi = \frac{22}{7}$, Q.5 (A.B) *r* = 2.5 and *h*=4.2. **Solution:** Given that $V = \frac{1}{3}\pi r^2 h$ Taking log on both sides $\log V = \log \frac{1}{3}\pi r^2 h$ Putting the values $\log V = \log \frac{1}{2} \times \frac{22}{7} (2.5)^2 (4.2)$ Applying laws of logarithm $= \log 1 - \log 3 + \log 22 - \log 7 + 2\log 2.5 + \log 4.2$ = -0.4771 + 1.3424 - 0.8450 + 2(0.3979) + 0.6232= -0.4771 + 1.3424 - 0.8450 + 0.7959 + 0.6232log V=1.4394 Taking antilog on both sides V=antilog 1.4394

V=27.50

N

V

$\mathbf{U}_{\mathtt{ni}}$	t – 3	Logarithms
		arcise 3
Q.1	Multiple choice Questions. Choose of the If $a^x - r$, then	correct answer. (K.B)
(1)	(a) $a = \log_{n} n$	(b) $x = \log_{a} a$
~	(c) $x = \log_a n$	(d) $a = \log_n x$
(ii)	The relation $y = \log_z x$ implies	N 2014 FSD 2015 17 MTN 2014 15 17 DWD 2017)
90	(a) $x^{y}=z$ (LHK 2017, GRV	(b) $z^{y}=x$
(;;;)	(c) $x^{z}=y$ The logarithm of unity to any base is	(d) $y^z = x$
(III)	(a) 1	(b) 10
(:)	(c) e The legenithm of any number to itself as	(d) 0
(IV)	I he logarithm of any number to itself as	Dase Is (LHR 2016, FSD 2014, 15, D.G.K 2014)
	(a) 1 (a) 2	(b) 0 (d) 10
(v)	log e=,where $e \approx 2.718$	(u) 10
	(a) 0	(b) 0.4343
	$(\mathbf{c})\infty$	(d) 1
(vi)	The value of $\log\left(\frac{P}{q}\right)$ is	
	(a) $\log n - \log a$	(b) $\frac{\log p}{\log p}$
		$\log q$
(wii)	(c) $\log p + \log q$ $\log p \log q$ is some as	(d) $\log q - \log p$
(VII)	$\left(\begin{array}{c} q \end{array} \right)$	
	(a) $\log\left(\frac{1}{p}\right)$	(b) $\log(p-q)$
	(c) $\frac{\log p}{\log p}$	(d) $\log a - \log p$
	$\log q$	
(viii)	$log(m^{*})$ can be written as (LHR 2013, 14, SW	(K.B+U.B) L 2013, 15, BWP 2013, 14, FSD 2013, 17, RWP 2016)
	(a) $(\log m)^n$	(b) $m \log n$
	(c) $n \log m$	(d) $\log(mn)$
(ix)	$\log_b a \times \log_c b$ can be written as	(K.B+U.B)
- 0	(a) $\log_a c$	(b) $\log_c a$
	(c) $\log_a b$	(d) $\log_b c$
	$\log_y x$ log_ x	
	(a) $\frac{z_z}{\log_y z}$	(b) $\frac{c_x}{\log_y z}$
	(c) $\frac{\log_z x}{\log_z x}$	(d) $\frac{\log_z y}{\log_z z}$
	$\log_z y$	$\log_z x$

	$\mathbf{U}_{\mathtt{ni}}$	t – 3		Logarithms
	Q.2	ANSWE i ii iii iv v c b d a b Complete the following: For common logarithm, the base is	ER KEY vi Vii a D	viii ix x e b c (K.B)
W	(1) (ii) (iii) (iv) (v)	The integral part of the common logar The decimal part of the common logar If $x = \log y$, then y is called the of x. If the characteristic of the logarithm the decimal point.	ithm of a ithm of a of a nun	number is called the number is called the ber havezero(s) immediately after
	(vi)	If the characteristic of the logarithm of in its integral part.	f a numl ER KE sa Antil	oer is 1, that number will have digits
	Q.3	Find the value of x in the following.		$(5^4)^{\frac{x}{4}} = 5$
	(i) Soluti	(A.B) log ₃ $x = 5$ log ₃ $x = 5$		$5^x = 5^1$ x = 1 : bases are same
	Or (ii)	Write in exponential form. $3^5 = x$ 243 = x x = 243 $\log 256 = x$ (D G K 2014 SGD 2017)	(iv) Solut	$\log_{64} x = -\frac{2}{3}$
	Soluti	$\frac{\log_4 256 - r}{\log_2 256 - r}$		$\log_{11} x = -\frac{2}{3}$
		Write in exponential form $4^{x} = 256$ $4^{x} = 4^{4}$ x = 4 : bases are same	70	Write in exponential form $(64)^{\frac{-2}{3}} = x$
NN	(iii) Soluti	$\log_{625} 5 = \frac{1}{4}x$ (LHR 2014)		$(4^{3})^{-\frac{2}{3}} = x$ $4^{-2} = x$
00	-	$\log_{625} 3 = \frac{-x}{4}$ Write in exponential form		$\frac{1}{4^2} = x$
		$(625)^{\frac{1}{4}x} = 5$		$\frac{1}{16} = x$

MATHEMATICS-9

Unit – 3

Logarithms

×	Uni	t – 3	Logarithms
CUT HER	Time:	40 min	EST Marke: 25
i	Q.1	Four possible answers (A), (B), (C) & correct answer.	(D) to each question are given, mark the $(7 \times 1=7)$
	1	Who prepared logarithim tables with bas (A) John Napier	se 10. (B) Henry Briggs
(N)	90	(C) Jobst Burgi	(D) Musa Al Khwarizmi
	2	A number written in the form $a \times 10^n$, where $a \times 10^n$, $a \times 1$	nere and n is an integer, is called
		the scientific rotation	
I		(A) 1 < a < 10	(B) $0 \le a < 10$
		(C) $1 \le a < 10$	(D) $1 \le a \le 10$
i	3	$\log_{\sqrt{3}}\sqrt{3} = ?$	
1		(A) 1	(B) $\sqrt{3}$
I		(C) 3	(D) $\sqrt{6}$
	4	$\log_y x =$	
1		(A) $\frac{\log_z x}{\log_y z}$	(B) $\frac{\log_x z}{\log_y z}$
i		(C) $\frac{\log_z x}{\log_z y}$	(D) $\frac{\log_z y}{\log_z x}$
	5	0.0073 write in scientific notation	
i		(A) 7.3×10^3	(B) 7.3×10 ⁻³
		$(C) 0.73 \times 10^{-3}$	(D) 7.3×10 ⁴
i	6	$\log e = $	
I		(\mathbf{A}) 0 \mathbf{A}	(B) 0.4343
	- 00	(C)-∞	(D) 1
MAR	1/1/	$\log p - \log q$ is same as	
90	0.0	(A) $\log\left(\frac{q}{p}\right)$	$(\mathbf{B})\log\big(p-q\big)$
 		(C) $\frac{\log p}{\log q}$	(D) $\log\left(\frac{p}{q}\right)$

KIPS NOTES SERIES

NOTE: Parents or guardians can conduct this test in their supervision in order to check the skill of students.

www.Mankholumya.cor