

- Use the multiplicative property of \geq equality to isolate the variable.
- Verify the answer by replacing the \geq variable in the original equation.

Example 1 (Page # 131)

25

x-2

 \triangleright

 \triangleright

 \triangleright

 \geq

3x

(GRW 2017, SWL 2017, MTN 2016, D.G.K 2015) Solution:

$$\frac{3x}{2} - \frac{x-2}{3} = \frac{25}{6}$$

Some fractional equation may have no solution.

Solve:
$$\frac{3}{v-1} - 2 = \frac{3y}{v-1}$$
, $y \neq 1$

Note

$$\frac{3}{y-1} - 2 = \frac{3y}{y-1}$$

(A.B)

(A.B)

Linear Equations and Inequalities

To clear fractions we multiply both sides by L.C.M = y-1

$$3-2y+2=3y$$
$$-5y=-5$$
$$\Rightarrow y=1$$
Check

3-2(y-1)=3y

Substituting y=1 in the given equation, we have

$$\frac{3}{1-1} - 2 = \frac{3(1)}{1-1}$$
$$\frac{3}{0} - 2 = \frac{3}{0}$$

But $\frac{3}{0}$ is undefined, so y = 1 cannot be

a solution.

Thus, Solution Set = { }

Example 3 (Page # 132)

(A.B)

Solution:

$$\frac{3x-1}{3} - \frac{2x}{x-1} = x$$

To clear fractions we multiply each side by 3(x-1), we get

 $\frac{3x-1}{3} - \frac{2x}{x-1} = x \quad , \quad x \neq 1$

$$(x-1)(3x-1)-6x = 3x(x-1)$$

$$3x^{2}-4x+1-6x = 3x^{2}-3x$$

$$-10x+1 = -3x$$

$$-10x+3x = -1$$

$$-7x = -1$$

$$7x = 1$$

$$\Rightarrow x = \frac{1}{7}$$

Check

On substituting $x = \frac{1}{7}$ the original equation is verified a true statement. That means the

restriction
$$x \neq 1$$
 has no effect on the
solution because $\frac{1}{7} \neq 1$.
 \therefore Solution Set = $\left\{\frac{1}{7}\right\}$

Equation Involving Radicals but Reducible to Linear form

Radical Equation (K.B)

When the variable in an equation occurs under a radical sign, the equation is called a radical equation.

For example:

$$\sqrt{2x-3}-7=0$$

Extraneous Solutions

(K.B)

When raising each sides of the radical equation to a certain power may produce a non equivalent equation that has more solutions than the original equation. These additional solutions are called extraneous solutions.

Note

(U.B)

(A.B)

• We must check out answer(s) for such solutions when working with radical equations.

ight not do so.

(b) Solve the equation $\sqrt{2x-3}-7=0$ Solution:

age # 133

$$\sqrt{2x-3} - 7 = 0 \rightarrow (i)$$

$$\sqrt{2x-3} = 7$$

Squaring both sides

$$2x-3 = 49$$

$$2x = 52$$

$$\Rightarrow x = 26$$

MATHEMATICS-9

U_{nit} – 7

$$\begin{array}{l} (\mathbf{v}) & \frac{5(x-3)}{6} - x = 1 - \frac{x}{9} \\ \text{Solution} \\ & \frac{5(x-3)}{6} - x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} + x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} + x = 1 - \frac{x}{9} \\ & \frac{-15-x}{6} = \frac{9-x}{9} \\ & \frac{9(-15-x) = 6(9-x)}{-135-54-6x} \\ & -135-54 = -6x + 9x \\ & -135 = 54 - 6x \\ & -135-54 = -6x + 9x \\ & -189 = 3x \\ & x = -63 \\ \hline \frac{Check}{5(x-3)} - x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} - x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} - x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} - x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} - x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} - x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} - x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} - x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} - x = 1 - \frac{x}{9} \\ & \frac{5(x-3)}{6} - (-63) = 1 - \frac{(x+5)^{7}}{9} \\ & \frac{5(x-6)^{7}}{6} + 63 = 1 + 7 \\ & -35+63 = 8 \\ & 8 = 8 \\ & \text{Solution Set} = \{-63\} \\ & (\mathbf{vi}) \quad \frac{x}{3x-6} = 2 - \frac{2x}{x-2}, x \neq 2 \text{ (A,B)} \\ & \text{Solution Set} = \{-63\} \\ & (\mathbf{vi}) \quad \frac{x}{3x-6} = 2 - \frac{2x}{x-2}, x \neq 2 \text{ (A,B)} \\ & \text{Solution Set} = \{-63\} \\ & \frac{x}{3(x-2)} = \frac{2x}{x-2}, x \neq 2 \text{ (A,B)} \\ & \frac{x}{3(x-2)} = \frac{2x-4-2x}{x-2} \\ & \frac{x}{3(x-2)} = -4 \\ & \frac{x}{3(x-2)} \\ & \frac{x}{3(x-2)} = -4 \\ & \frac{x}{3(x-2)} \\ & \frac{x}{3(x-2)} = -4 \\ & \frac{x}{3(x-2)} \\ & \frac{x}{3(x-2$$

(x)	$\frac{2}{3x+6} = \frac{1}{6} - \frac{1}{2x+4} (\mathbf{A.B})$	70	3x = 0 $x = -$
Solut	ion:	UIC	
	2 91 1000 100	\sim	x = 0
	$3x + 6 \ 6 \ 2x + 4$		$\frac{\text{CHCK}}{\sqrt{3r+4}} = 2$
mark			$\sqrt{3x+4} = 2$ When $x = 0$
NNN	$3(x+2)^{-}6 2(x+2)$		$\sqrt{3(0)+4} = 2$
90 0	2 $x+2-3$		$\sqrt{3(0)}$ ++=2
	$\frac{1}{3(x+2)} = \frac{1}{6(x+2)}$		$\sqrt{4} = 2$
	$2 \times 6(x+2)$		2=2 LHS-RHS
	$\frac{2 \times 6(x+2)}{3(x+2)} = x - 1$		Solution Set = $\{0\}$
	4 - r - 1		
	4+1 = x	(ii)	$\sqrt[3]{2r-4} - 2 - 0$ (A B)
	<i>x</i> = 5	(11)	(LHR 2015, BWP 2017)
	<u>Check</u>	Soluti	on:
	$\frac{2}{2(5)+6} = \frac{1}{6} - \frac{1}{2(5)+4}$		$\sqrt[3]{2x-4}-2=0$
	3(3)+0 0 $2(3)+42 1 1$		$\sqrt[3]{2x-4} = 2$
	$\frac{2}{15+6} = \frac{1}{6} - \frac{1}{10+4}$		Taking cube on both sides
			$\left(\sqrt[3]{2x-4}\right)^3 = (2)^3$
	$\frac{1}{21} = \frac{1}{6} - \frac{1}{14}$		2r - 4 = 8
	2 _7-3		2x = 8 + 4
	$\frac{1}{21}$ 42		2x = 12
	$2 \mathcal{A}^2$		$r = \frac{12}{12}$
	$\overline{21}^{-}\overline{42}^{21}$		2
	2 _ 2		x=6
	$\overline{21}$ $\overline{21}$	5	
	Solution Set = $\{5\}$	$\neg \square$	$\sqrt{2x} - 4 - 2 = 0$ When $x = 6$
Q.2	Check each equation and check for	$\cap \mathbb{N}$	$\sqrt[3]{2r-4} - 2 - 0$
	extraneous solution, if any		$\sqrt{2x} + 2 = 0$
(1)	$\sqrt{3x+4} = 2$ (1 HP 2013 CPW 2016 SWI 2014 16		$\sqrt[3]{2(6)} - 4 - 2 = 0$
6	BWP 2016, D.G.K 2017)		$\sqrt{12} - 4 - 2 = 0$
Soluti			$\sqrt[3]{8-2} = 0$
11/1 00	$\sqrt{3x+4} = 2$		$\sqrt[3]{2^3} - 2 = 0$
0.5	Taking square on both side $(\sqrt{2})^2$		2 - 2 = 0
	$\left(\sqrt{3}x+4\right) = \left(2\right)^2$		0 = 0
	3x + 4 = 4		L.H.J = K.H.J Solution Set $= \begin{pmatrix} 6 \end{pmatrix}$
	3x = 4 - 4		Solution $Set = \{0\}$

MATHEMATICS-9

Unit – 7

Linear Equations and Inequalities

Solving Linear Equations Involving Absolute Values (K.B) Example # 1 (Page # 136) Solve and check: $ 2x+3 =11$ Solution: 2x+3 =11 By definition of absolute equation, we get (2x+3)=11 or $-(2x+3)=112x+3=11$ or $2x+3=-112x=8$ or $2x=-14x=4$ or $x=-7CheckSubstituting x=4 in the original equationwe get 2(4)+3 =11i.e., 11=11, trueNow substituting x=-7, we have 2(-7)+3 =11$	11=11, true Hence $x=4,-7$ are the solutions to the given equation. Thus, Solution Set = $\{-7,4\}$ Example # 2 (Page # 137) Solve $ 8x-3 = 4x+5 $ Solution: $8x-3=\pm(4x+5)$ $8x-3=\pm(4x+5)$ 8x-3=4x+5 or $8x-3=-(4x+5)4x=8$ or $12x=-2x=2 or x=-\frac{1}{6}On checking, we find that x=2, x=-\frac{1}{6}both satisfy the original equations.Hence the Solution Set = \{-\frac{1}{6}, 2\}.$	
-11 =11 Exercis	se 7.2	
Q.1Identify the following statements as true or(i) $ x = 0$ has only one solutionTrue(ii)All absolute value equations have two solutionsFalse(iii)The equation $ x = 2$ is equivalent to $x = 2$ or $x = -2$ True		

- (iv) The equation |x 4| = -4 has no solution
- (v) The equation |2x-3| = 5 is equivalent to 2x-3=5 or 2x+3=5

True

False

	(ii)	$\frac{1}{2} 3x+2 -4$	=11 (K.B)	5	$x = \frac{6}{2}$	m	x = -16	90
		2 (LHR 2017, S [*] MTN 2013, 16,	WL 2015, 16, FSD 201 RWP 2016)	6, \ (C	x = 3	חח	x = -8	
		Solution:	I'N N ILV	,U ~	$\frac{\mathbf{CHCCK}}{ 2x+5 =1}$	1	2(-8)-8+5 =1	1
		$\frac{1}{2} 3x+2 -4$	HO C C		$ 2 \times 3 + 5 =$	=11	-16+5 =11	
NAP	111)	$\frac{1}{2} 3x+2 =11$	1+4		6+5 =11		-11 = 11	
90	0	2	_		11=11		11=11	
		$\frac{-}{2} 3x+2 =15$	5		Solution S (iv) $ 2 $	$set = \{-8, 3\}$		
		$ 3x+2 =2\times 1$ 3x+2 =20	.5		(IV) 34 (LE	x = 0x - x	//(n.d) . FSD 2016. SWL	2013.
	3x+2	3x+2 =30 =+30			BW	VP 2017)	,,	/
	3x+2	=30	3x + 2 = -30		Solution: $ 3+2x = $	6x-7		
	3x = 3 3x - 2	0-2	3x = -30 - 2 3x = -32		3+2x=+	(6x - 7)		
	$\int_{x=28}^{3x=2}$	3	-32		3+2x=6x	(2x-7)	3+2x = -(6x -	7)
	$\frac{x-3}{3}$		$x = \frac{1}{3}$		3 + 7 = 6x	-7	3 + 2x = -6x + 7	
	<u>Спеск</u> 1	<u> </u>	1 32		10 = 4x		2x + 6x = 7 - 3	
	$\frac{1}{2} 3x $	+2 -4=11	$\frac{1}{2}\left 3\times-\frac{32}{3}+2\right -4=11$		$\frac{10}{4} = x$		$\frac{4}{8} = x$	
	$\frac{1}{2} 3\times\frac{2}{3}$	$\frac{28}{3}$ + 2 -4 = 11	$\frac{1}{2} -32+2 -4=11$		$x = \frac{5}{2}$		$x = \frac{1}{2}$	
	$\frac{1}{2}$ 28-	+2 -4=11	$\frac{1}{2} -30 -4=11$		$\frac{\mathbf{Check}}{ 3+2x } = 6 $	6x - 7	3+2x = 6x-7	
	$\frac{1}{2} \times 30$	-4=11	$\frac{1}{2}(30) - 4 = 11$		$\left 3+2\left(\frac{5}{2}\right)\right =$		$\left 3+2\times\frac{1}{2}\right = \left \cancel{6}^3\times\frac{1}{\cancel{2}}\right $	-7
	13-4 - 11 = 11	-11 1	13-4-11 11=11	_	3+5 = 15		3+1 = 3-7	ZOUUU
	Soluti	on Set = $\left\{\frac{28}{3}, -\frac{28}{3}\right\}$	$\left(\frac{32}{3}\right)$	26	8 = 8 8 = 8	[n]	4 = -4 4 = 4	
	(iii)	2x+5 =11	(К.В)		Solution S	$\mathbf{Set} = \left\{ \frac{5}{2}, \frac{1}{2} \right\}$		
		(LHR 2014, 15, 17, SWL 2016, 2014, 15, 16, 17	16, 17, GRW 2014, 15, 1, 17, FSD 2014, 15, D.G.	6, K	$(\mathbf{v}) x$	(2^{2}) +2 -3=5-	x+2 (K . B)	
-	Soluti	2014, 15, 10, 17, on:	, DVVF 2017)		Solution:		~ _ (```)	
(NN)	2x+3	=+11			x+2 -3=	=5- x+2		
~	2x+5 2x+5	=11	2x + 5 = -11		x+2 + x-2 = 2	+2 =5+3		
	2x = 1 2x = 6	1-5	2x = -11 - 5 2x = -16		2 x+2 = 8	5		
	$\Delta \lambda = 0$,	$\Delta \lambda = -10$		$\left x+2\right = \frac{8}{2}$			

x + 6x = 12 - 5

7x = 7

Linear Equations and Inequalities

Linear Inequality (K.B)+(U.B)A linear inequality in one variable x is an inequality in which the variable x occurs only to the first power and has the standard form ax + b < 0, $a \neq 0$ where $a, b \in R$. We may replace the symbol $\langle by \rangle$, $\langle or \rangle \geq$ also For example $x < 2, x \ge 2$ etc. Strict (Strong) Inequality (K.B) + (U.B) The inequality x > y and x < y are known as strict (or strong) inequalities. For example x < 2Non Strict (Weak) Inequality (K.B)+(U.B) Whereas he inequalities $x \le y$ and $y \le x$ are called non-strict (or weak) For example $x \ge 2$ Properties of inequalities Law of Trichotomy (K.B)+(U.B) (1) For any $a, b \in \Box$ one and only one of the following statements is true. Either a < b or a = b, or a > bAn important special case of this property is the case for b = 0; namely, a < 0 or a = 0or a > 0 for any $a \in \Box$. Transitive property (K.B)+(U.B) (2) Let $a, b, c \in \square$ (i) If a > b and b > c, then a > c(ii) If a < b and b < c, then a < cAdditive closure property for (3) (K.B)+(U.B) $a,b,c \in \square$ (i) If a > b, then a + c > b + cIf a < b, then a + c > b + cIf a > 0, and b > 0 then a + b > 0(ii) If a < 0, and b < 0 then a + b < 0Thomas Herriot (1560-1621). **MATHEMATICS-9**

x =x = 1x+5 = -6(2-x)x + 5 = -12 + 6x5+12=6x-x17 = 5x $\frac{17}{5} = x$ $x = \frac{17}{5}$ Check $\left|\frac{x+5}{2-x}\right| = 6$ $\left|\frac{1+5}{2-1}\right| = 6$ $\left|\frac{6}{1}\right| = 6$ 6 = 6 $\left(\frac{17}{5}+5\right)\div\left(2-\frac{17}{5}\right)=6$ $\left|\frac{17+25}{5} \div \frac{10-17}{5}\right| = 6$ $\left|\frac{42}{5} \div \frac{-7}{5}\right| = 6$ |-6| = 66 = 6**Solution Set** Work of Thomas Herriot on Inequality (K.B) + (U.B)The inequality symbols < and > were introduced by an English Mathematician

Unit – 7

Exercise 7.3

- **0.1** Solve the following inequalities.
- 3x+1 < 5x-4**(i)** (K.B) (FSD 2015, SGD 2013, RWP 2016, BWP 2013, 14, D.G.K 2013) **Solution:** 3x + 1 < 5x - 4

3x < 5x - 4 - 13x - 5x < -5-2x < -5

- Case-I When negative is eliminated from both sides of inequality the symbol will be change.
- Case-II When negative is transferred from variable to constant side, symbol will also change.

$$x > \frac{-5}{-2}$$
$$x > \frac{5}{2}$$

Solution Set =
$$\left\{ x \mid x > \frac{5}{2} \right\}$$

 $4x - 10.3 \le 21x - 1.8$

 $4x - 10.3 \le 21x - 1.8$

 $-17x \le 8.5$

 $x \ge \frac{8.5}{-17}$

 $x \ge -\frac{8.5}{17}$

 $x \ge -0.5$

 $4x - 21x \le -8.5 + 10.3$

Solution Set = $\{x \mid x \ge -0.5\}$

 $4 - \frac{1}{2}x \ge -7 + \frac{1}{4}x$

 $-\frac{1}{2}x - \frac{1}{4} \ge -7 - 4$

 $\frac{-2x-x}{4} \ge -11$

(ii)

(iii)

Solution:

Solution:

$$-3x \ge -44$$
When negative value is shifted the symbol changes
$$x \le \frac{-44}{-3}$$

$$x \le \frac{44}{3}$$
Solution Set = $\{x/x \le \frac{44}{3}\}$
(iv) $x-2(5-2x) \ge 6x-3\frac{1}{2}$ (A.B)
Solution:

 $x-2(5-2x) \ge 6x-3\frac{1}{2}$ $x-10+4x \ge 6x-\frac{7}{2}$ $5x-6x \ge -\frac{7}{2}+10$ $-1x \ge \frac{-7+20}{2}$ $-x \ge -\frac{13}{2}$

When negative is shifted other side symbol changes

MATHEMATICS-9

(**A.B**)

(SGD 2015, D.G.K 2015)

Negative value is shifted to other side its 8x + 10x - 88x + 7symbols changes 3 3 Multiplying both side by 3 *x* < $\beta \times \frac{18x-8}{3} > -\beta \times \frac{8x+7}{3}$ $x < \frac{8}{-}$ 18x - 8 > -(8x + 7)**Solution Set** = $\begin{cases} x \mid x < \frac{8}{3} \end{cases}$ 18x - 8 > -8x - 718x + 8x > -7 + 826x > 13(2x+1)-2(2x+5)<5(3x-2)(A.B) (vi) $x > \frac{1}{26}$ Solution: 3(2x+1)-2(2x+5)<5(3x-2)Solution Set = $\left\{ x \mid x > \frac{1}{26} \right\}$ 6x + 3 - 4x - 10 < 15x - 102x - 7 - 15x < -10-13x < -10 + 7Q.2 Solve the following inequalities -13x < -3(i) -4 < 3x + 5 < 8(K.B)+(U.B)Multiplying both sides by -1(SWL 2014, MTN 2015) **Solution:** 13x > 3-4 < 3x + 5 < 8 $x > \frac{3}{13}$ -4 < 3x + 53x + 5 < 8and -4-5 < 3x3x < 8 - 5-9 < 3x3*x* < 3 **Solution Set** = $\left\{ x \mid x > \frac{3}{13} \right\}$ $\frac{-9}{3} < x$ $x < \frac{3}{3}$ 3(x-1)-(x-2) > -2(x+4) (A.B) (vii) -3 < x*x* < 1 Solution: -3 < x < 13(x-1)-(x-2) > -2(x+4)**Solution Set** = $\{x \mid -3 < x < 1\}$ 3x-3-x+2 > -2x-8 $-5 \le \frac{4-3x}{2} < 1$ (SWL 2014) (ii) (\mathbf{A},\mathbf{B}) 2x - 1 > -2x - 82x + 2x > -8 + 1Solution: 4x > -7 $x > \frac{-7}{-7}$ $-5 \le \frac{4-3x}{2}$ $\frac{4-3x}{2} < 1$ and Solution Set = $-10 \le 4 - 3x$ 4 - 3x < 2-3x < 2 - 4 $3x - 10 \le 4$ $2\frac{2}{3}x+\frac{2}{3}(5x-4)>-\frac{1}{3}(8x+7)$ (A.B) (viii) -3x < -2 $3x \le 4 + 10$ $x > \frac{-2}{-3}$ Solution: $3x \le 14$ $2\frac{2}{3}x + \frac{2}{3}(5x-4) > -\frac{1}{3}(8x+7)$ $x \leq \frac{14}{2}$ $x > \frac{2}{2}$ $\frac{8}{3}x + \frac{10x-8}{3} > -\frac{(8x+7)}{3}$

(vii)
$$1-2x < 5-x \le 25-6x$$
 (A.B)
Solution:
 $1-2x < 5-x \le 25-6x$
 $1-2x < 5-x$ and $5-x \le 25-6x$
 $1-5x < 20+x$
 $x \le 4$
 $-4 < x \le 4$
(viii) $3x-2 < 2x+1 < 4x+17$ (A.B)
Solution:
 $3x-2 < 2x+1 < 4x+17$
 $3x-2 < 2x+1 < 2x+1 < 4x+17$
 3

Unit – 7

	Review E	xercise 7	
0.1	Choose the correct answer		
(i)	Which of the following is the solution of	f the inequality $3 - 4x \le 11$?	(A.B)
	(a) -8	(b) -2	× /
- 00	$(c) = \frac{14}{4}$	(d) None of these	
	A statement involving any of the symbo	ls < > <or> is called</or>	(K B)
90	(a) Equation	(b) Identity	(1.1.2)
	(c) Inequality	(d) Linear equation	
(:::)	is a solution of the inequality	3	(II D)
(111)	$x = \dots$ is a solution of the inequality	$-z < x > \frac{1}{2}$	(О.В)
	(a) - 5	(b) 3	
	(a) 0	$(\mathbf{d})^{3}$	
	(\mathbf{c}) 0	(a) $\frac{1}{2}$	
(iv)	If x is no larger than 10, then		(U.B)
	(FSD 20	14, 15, SWL 2017, RWP 2014, SGD 2014, D.	G.K 2013)
	(a) $x \le 8$	(b) $x \ge 10$	
()	(c) $x < 10$	(d) $x > 10$	
(v)	If the capacity of an elevator is at most	1600 pounds then	(K.B) 2014–16)
	(a) c < 1600	(LHR 2013, GRW 2014, FSD 2014, 17, SWL(h) $c > 1600$	2014, 10)
	(c) $c < 1600$	(d) c > 1600	
(vi)	$\mathbf{x} = 0$ is a solution of the inequality	(u) 07 1000	(A.B)
	(a) $x > 0$	(b) $3x + 5 < 0$	
	(a) $x + \frac{z}{z} < 0$	(d) = 2 < 0	
	(c) $x + \frac{1}{2} < 0$	(u) $x - 2 < 0$	
	ANSWE	RKEY	
			c.
	i ii iii	iv V vi	2010
	b c c	$\mathbf{b} \mid \mathbf{C} \mid \mathbf{d} \mid \mathbf{c} \mid \mathbf{M} \mid $	(()))
			100-
		Nanna)/(CJ	, ye
Q.2	Identify the following statement as true	or false	(U.B)
Q.2 (i)	Identify the following statement as true The equation $3x-5=7-x$ is a linear eq	or false unation.	(U.B) (True)
Q.2 (i) (ii)	Identify the following statement as true The equation $3x-5=7-x$ is a linear eq The equation $x-0.3x=0.7x$ is an identi	or false uation.	(U.B) (True) (True)
Q.2 (i) (ii) (iii) (iii)	Identify the following statement as true The equation $3x-5=7-x$ is a linear eq The equation $x-0.3x=0.7x$ is an identi The equation $-2x+3=8$ is equivalent t	or false uation. ity o $-2x = 11$	(U.B) (True) (True) (False)
Q.2 (i) (ii) (iii) (iv)	Identify the following statement as true The equation $3x-5=7-x$ is a linear eq The equation $x-0.3x=0.7x$ is an identi The equation $-2x+3=8$ is equivalent t To eliminate fractions we multiply e	or false uation. ity to $-2x = 11$ each side of an equation by the L	(U.B) (True) (True) (False) .C.M of
Q.2 (i) (ii) (iii) (iv)	Identify the following statement as true The equation $3x-5=7-x$ is a linear eq The equation $x-0.3x=0.7x$ is an identi The equation $-2x+3=8$ is equivalent t To eliminate fractions we multiply e denominators	or false uation, ity to $-2x = 11$ each side of an equation by the L	(U.B) (True) (True) (False) .C.M of (True)
Q.2 (i) (ii) (iii) (iv) (v)	Identify the following statement as true The equation $3x-5=7-x$ is a linear eq The equation $x-0.3x=0.7x$ is an identi The equation $-2x+3=8$ is equivalent t To eliminate fractions we multiply e denominators 4(x+3) = x+3 is a conditional equation	or false juation. ity to $-2x = 11$ each side of an equation by the L s	(U.B) (True) (True) (False) .C.M of (True) (True)
Q.2 (i) (ii) (iii) (iv) (v) (v) (vi)	Identify the following statement as true The equation $3x-5=7-x$ is a linear eq The equation $x-0.3x=0.7x$ is an identi The equation $-2x+3=8$ is equivalent t To eliminate fractions we multiply e denominators 4(x+3)=x+3 is a conditional equation The equation $2(3x+5)=6x+12$ is an i	or false uation, ity to $-2x = 11$ each side of an equation by the L s n consistent equation	(U.B) (True) (True) (False) .C.M of (True) (True) (True)
Q.2 (i) (ii) (iii) (iv) (v) (v) (vi) (vi)	Identify the following statement as true The equation $3x-5=7-x$ is a linear eq The equation $x-0.3x=0.7x$ is an identi The equation $-2x+3=8$ is equivalent t To eliminate fractions we multiply e denominators 4(x+3) = x+3 is a conditional equation The equation $2(3x+5) = 6x+12$ is an if To solve $\frac{2}{3}x = 12$, we should multiply each	or false uation, ity to $-2x = 11$ each side of an equation by the L as n consistent equation ach side by $\frac{2}{3}$	(U.B) (True) (True) (False) .C.M of (True) (True) (True) (True) (False)
Q.2 (i) (ii) (iii) (iv) (v) (v) (vi) (vii) (viii)	Identify the following statement as true The equation $3x-5=7-x$ is a linear eq The equation $x-0.3x=0.7x$ is an identi The equation $-2x+3=8$ is equivalent t To eliminate fractions we multiply e denominators 4(x+3) = x+3 is a conditional equation The equation $2(3x+5) = 6x+12$ is an i To solve $\frac{2}{3}x = 12$, we should multiply ea Equations having exactly the same solu	or false uation. ity to $-2x = 11$ each side of an equation by the L as n consistent equation ach side by $\frac{2}{3}$ tion are called equivalent equations.	(U.B) (True) (True) (False) .C.M of (True) (True) (True) (True) (False) (True)

Q.3 (i) Ans	Answer the following short question. Define a linear inequality in one variable A linear inequality in one variable <i>x</i> is an inequality in which the variable <i>x</i> occurs of the first power and has the standard form $ax + b < 0$, $a \neq 0$	(K.B) only to
(ii)	State the Trichotomy and transitive properties of in equalities	(K.B)
Ans	Trichotomy Property For any $a, b \in \mathbb{R}$ one and only one of the following statements in true, $a < b$ or $a = b$ or	(K.B)
N	For any $a, b \in R$ one and only one of the following statements in true. $a < b$ of $a = b$, of Transitive Property Let $a, b, c \in R$.	<i>a > b</i>
(a)	If $a > b$ and $b > c$, then $a > c$	
(b)	If $a < b$ and $b < c$, then $a < c$	
(iii)	The formula relating degree Fahrenheit to degree Celsius is $F = \frac{9}{5}c + 32$ for	what
	value of c is $F < O$ was $(K.B) + (A.B) +$	(U.B)
Ans	$F = \frac{9}{5}c + 32$	
	$\frac{9}{5}c + 32 = F$	
	Since $F < 0$	
So	$\frac{9}{5}c + 32 < 0$	
	$\frac{9c+160}{5} < 0$	
Or	$9c + 160 < 0 \times 5$	
Or Or	9c + 160 < 0 9c < -160	
01	160	
Or	$c < -\frac{1}{9}$	
(iv)	Seven times the sum of an integer and 12 is at least 50 and at most 60. Write solve the inequality that expresses this relationship	e and
Soluti	Solve the integration that expresses this relationship on: Let the integer = y Sum of integer and $12 = y + 12$	(0.B) 7005
	Seven times sum of integer and $12 = 7(y+12)$	50
	According to condition	
	$50 \le 7(y+12) \le 60$	
	$\frac{50}{7} \le 7 \frac{(y+12)}{7} \le \frac{60}{7}$ 50	
NN	$\overline{7} \leq y + 12 \leq \overline{7}$	
AA ,	$\frac{50}{7} - 12 \le y + \cancel{12} - \cancel{12} \le \frac{60}{7} - 12$	
	$\frac{50-84}{7} \le y \le \frac{60-84}{7}$	
	$\frac{-34}{7} \le y \le \frac{-24}{7}$ Solution Set = $\left\{ y \mid \frac{-34}{7} \le y - \frac{24}{7} \right\}$	

Q.4 Solve each of the following and check for extraneous solution if any
(i)
$$\sqrt{2t}+4=\sqrt{t-1}$$
 (A.B)
Solution: $\sqrt{2t}+4=\sqrt{t-1}$
Taking square on boin side
 $(\sqrt{2t}+4)=(\sqrt{t-1})^2$
 $2t+4=t-1$
 $2t-t=t-1-4$
 $t=t-5-5$
To check
 $\sqrt{2t}+4=\sqrt{t-1}$
When $t=5$
 $\sqrt{2}(-5)+4=\sqrt{t-5-1}$
 $\sqrt{-10+4}=\sqrt{-6}$
 $\sqrt{-6}=\sqrt{-6}$
L.H.S = R.H.S
Solution Set = $\{-5\}$
(ii) $\sqrt{3x-1}-2\sqrt{8-2x}=0$ (A.B)
Solution: $\sqrt{3x-1}-2\sqrt{8-2x}=0$
 $\sqrt{3x-1}-2\sqrt{8-2x}$
Taking square on both side
 $(\sqrt{3x-1})^2 = (2\sqrt{8-2x})^2$
 $3x-1=4(8-2x)$
 $3x-1=4(8-2x)$
 $3x-1=4(8-2x)$
 $3x-1=32-8x$
 $3x+8x=32+1$
 $11x=33$
 $x=\frac{31}{11}$
 $x=3$
To check
 $\sqrt{3x-1} + 2\sqrt{8-2x=0}$
When $x=8$
 $\sqrt{3(t)}+1+2\sqrt{8-2}(3)=0$
 $\sqrt{4t-1}+2\sqrt{8-2}(3)=0$
 $\sqrt{4t-1}+2\sqrt{8}-6=0$
 $2\sqrt{2}-2\sqrt{2}=0$
 $0=0$
L.H.S Solution Set = $\{3\}$

U	J _{nit –} 7	Linear Equations and Inequalities	D
Q.: (i)	5 Solve for x 3x+14 -2=5x Solution: $ 3x+14 -2=5x$	VACUUM (A.B)	
NNN	3x+14 = 5x+2 $3x+14 = \pm (5x+2)$ 3x+14 = 5x+2 14 = 2x+2	3x+14 = -(5x+2)	
M9 0 .	$14-2=5x-3x$ $12=2x$ $\frac{12}{2}=x$	3x + 14 = -5x - 2 3x + 5x = -2 - 14	
	x = 6	$8x = \frac{-16}{8}$	
	To check $ 3x+14 -2=5x$	$\begin{array}{l} x = -2 \\ 3x + 14 - 2 = 5x \end{array}$	
	When $x = 6$	when $x = -2$	
	3(6)+14 -2=5(6)	3(-2)+14 -2=5(-2)	
	18+14 -2=30	-6+14 -2=-10	
	32-2=30 30-30	8-2 = -10 6 - 10	
	Solution Set = $\{6\}$	010	
(ii)	$\frac{1}{3} x-3 = \frac{1}{2} x+2 $	(A.B)	
Sol	lution $\frac{1}{3} x-3 = \frac{1}{2} x+2 $		
	$\frac{2}{3} x-3 = x+2 $		D
	$\frac{2}{3} = \frac{ x+2 }{ x-3 }$	O JULIUN CO.COM	
	$\frac{x+2}{x-3} = \pm \frac{2}{3}$ $\frac{x+2}{x-3} = \frac{2}{3}$ and	$\frac{x+2}{x-3} = -\frac{2}{3}$	
	3(x+2) = 2(x-3) 3x+6=2x=6	3(x+2) = -2(x-3) 3x+6 = -2x+6	
MAA	3x - 2x = -6 - 6 x = -12	3x + 0 = 2x + 0 3x + 2x = +6 - 6 5x = 0	
	To check	$x = \frac{0}{5} \implies x = 0$	

Q.6 Solve the following inequality (iii) $-\frac{1}{3}x+5 \le 1$ Solution $-\frac{1}{3}x+5 \le 1$ $-\frac{1}{3}x \le 1-5$ $-\frac{1}{3}x \le -4$

 $x \ge -4 \times (-3)$

(U.B)+(K.B)

st	Uni	t – 7	Linear Equations and Inequalities
CUT HER I I I I	Time: Q.1	40 min Four possible answers (A), (B), (C) & (D) correct answer. If capacity " <i>C</i> " of an elevator is at most	EST Marks: 25 to each question are given, mark the (7×1=7) 1600 pounds then
NA	N	(A) <i>C</i> < 1600	(B) <i>C</i> ≤1600
90	9	(C) $C \ge 1600$	(D) <i>C</i> > 1600
	2	x = 0 is a solution of the inequality	-
l		$(\mathbf{A}) x > 0$	(B) $3x + 5 < 0$
		(C) $x + 2 < 0$	(D) $x - 2 < 0$
	3	is the member of the solution set of i	nequality $-2 < x < \frac{3}{2}$.
į		(A) –5	(B) 0
 		(C) $\frac{3}{2}$	(D) 3
	4	The solution set of $ x-4 = -4$ is:	
		(A) – 8	(B) – 16
į		(C) { }	(D) 4
	5	Which of the solution set of the inequality	$x^{9-7x>19-2x}$
		(A) 19	(B)=77
		(C) 2	(D) - 2
- !	6	The value of "x" from the equation $\sqrt{2x}$ –	3 - 7 = 0 is:
ANA.	M	(A) 7	(B) 49
AG.	7	(C) 52 The general form of linear equation in on	(D) 26 e variable x is
	-	(A) $ax + by + c$	(B) $ax^2 + bx + c$
I		(C) $ax + b = 0$	$(\mathbf{D}) \mathbf{a}x + \mathbf{b}y + \mathbf{c}z = 0$

KIPS NOTES SERIES

 $(5 \times 2 = 10)$

(4+4=8)

Q.2 Give Short Answers to following Questions.

(i) Find the solution set of
$$\frac{3}{y-1} - 2 = \frac{3y}{y-1}$$

(ii) Solve the inequality:
$$4x - 10.3 \le 21x - 1.8$$

(iii) Solve the inequality:
$$4 - \frac{1}{2}x \ge -7 + \frac{1}{4}x$$

(iv) Solve: $\left|\frac{3-5x}{4}\right| - \frac{1}{3} = \frac{2}{3}$

(v) Solve the radical equation:
$$\sqrt[3]{2x+3} = \sqrt[3]{x-2}$$

Q.3 Answer the following Questions.

(a) Solve the inequality:
$$x-2(5-2x) \ge 6x-3\frac{1}{2}$$

(b) Solve the equation and check for extraneous root:

$$x = \sqrt{\frac{x+1}{2x+5}} = 2, \ x \neq \frac{-5}{2}$$

NOTE: Parents or guardians can conduct this test in their supervision in order to check the skill of students.

y ≠1