9 Data Science and Data Gathering ## Short Introduction of U This chapter explores various aspects of data management and its impact on our understanding of information. We begin by examining different types of data and effective ways to collect and store it. You will learn methods for organizing and analyzing data, using both quantitative and qualitative techniques. Q.1 Explain Data with suitable examples. 09509001 Ans. Data consists of raw facts collected about things around us that we can process to generate useful information. It can take many forms, such as numbers, words, measurements, observations, or even images and sounds, and may originate from various sources. Example - 1. Weather Data: Information on temperature, humidity, and wind speed collected from weather stations. - 2. Sales Data: Records of product sales, quantities, and prices at a store. For example, selling 50 units of a product at 100 Rupees each in a day. - 3. Survey Responses: Answers from a survey about customer satisfaction. For Example, 80% of customers rating their experience as "satisfactory" or better. - 4. Website Data: Information on website visitors, such as number of visitors per day and the pages they visit. For example 500 visitors viewing the homepage on a Monday. - 5. Social Media Data: Likes, comments, and shares on social media posts. For example, a post receiving 200 likes and 50 comments. Q.2 Describe Qualitative Data type categorically with its types. The amount of digital data created and consumed globally is so vast that it's predicted to reach 175 Zettabytes by 2025. Ans: Data can be divided into two broad categories namely qualitative and quantitative. Qualitative Data: Qualitative data refer to categories or labels used to describe the qualities or characteristics of something rather than its quantity. Key characteristics of qualitative data include non-numeric, descriptive, and categorical attributes. - Non-Numeric: Qualitative data is represented by words, labels, or symbols instead of numbers. It describes attributes rather than quantities. Examples include the names of students in a class (e.g. Ali, Badar, Qasim) and the colors of cars in a parking lot (e.g, red, blue, green), where "name" and "color are attributes. - Categorical: Qualitative data can be into categories or classes based on their characteristics. Examples include types of fruit (e.g., apple, banana, orange), job titles (e.g., manager, engineer, accountant), and book genres (e.g., fiction, non-fiction, mystery). Types of Qualitative data Qualitative data is further classified into two types namely Nominal and Ordinal data. Nominal Data: Nominal data is used to label or categorize items without implying any order. Each item is include and separate. Examples include gender (male, female), types of fruits (apple, banana, orange), and colors (red, blue, green), Nominal data is helpful for grouping and categorizing information. Ordinal Data: Ordinal data represents categories with a meaningful order, though the differences between categories are not uniform. Examples include customer satisfaction ratings (satisfied, neutral, unsatisfied), education tevels (high school, bachelor's, master's), and shirt sizes (small, medium large extra-large) Ordinal data helps in ranking items meaningfully. Q.3 What do you know about Quantitative Data? 09509003 Ans. Quantitative data consists of numbers used to measure the quantity or amount of something. These data types answer questions like "How much?" or "How long?" and can be useful for mathematical calculations and statistical analyses. Key characteristics of quantitative data include being numerical, measurable, countable, and arithmetical). Numerical: Quantitative data is expressed in numbers, representing a measurable quantity. Examples include heights in centimeters, weights in kilograms, and test scores. Measurable: Quantitative data can be measured using instruments or tools. Examples include using a ruler for length, a scale for weight, and a thermometer for temperature. Countable: Quantitative data can be counted or enumerated, particularly for discrete data. Examples include the number of students in a class or the number of cars in a parking lot. Arithmetical: Quantitative data can be used in arithmetic operations. For instance, multiplying the unit price of a fruit by its weight to find the total price, or calculating annual school fees by multiplying monthly fees number of months. **Types of Quantitative Data** Quantitative data ca be further classified into two main types: discrete and continuous. Discrete Data: Discrete data consist of distinct, separate values that are countable, often in whole numbers. Discrete data answer questions like "How many?" or "How often?" For example, counting oranges in a basket might show there are 16, answering "How many?" similarly, tracking the number of oranges falling from a tree each week, with counts like 5 on Monday, 7 on Wednesday, and 4 on Friday, helps answer "How often?" Continuous Data: Continuous data consists of values that can take any number within a given range, including fractions or decimals. Examples include student heights (150.5 cm, 160.2 cm), fruit weights (1.5 kg, 2.2 kg), and room temperatures (22.5°C, 23.7°C). **Operations Performed on Continuous Data** All operations that can be performed on discrete data can also be performed on continuous data. In addition to logical, grouping and arithmetic operations division can also be performed on continuous data. For example, you can divide a 2.5 kg of meat (continuous data) among ten persons (yielding 0.25 kg each) but cannot divide 3 cars (discrete data) among five persons. 09509004 Q.4 Make a Detailed Comparison on different data types with the help of table. Ans: | Aspect | Nominal Data | Ordinal
Data | Discrete
Data | Continuous Data | |-------------------|--|---|----------------------------|---| | Definition | Labels or categories without a specific order. | Categories with a meaningful order, but uneven differences. | values that are countable. | Values that can take any number within a range. | | Purpose | Categorizes items without implying | Ranks items in a | Counts specific | Measure the extent or duration | | | rank. | meaningful | items of | of something. | | | | |--------------------|--------------------|-------------------|----------------------|---------------------|--|--|--| | | T. | Order | occurrences | | | | | | Representation | Words, labels, | Words, | Numbers, | Numbers, | | | | | -10p1 C50110401011 | symbols | labels, | whole or | including fractions | | | | | Mars | MAN Since | symbols with | discrete | and decimals. | | | | | 1000 | | order. | values. | | | | | | Characteristics | Non-numeric, | Ordered, but | Countable, | Measurable, can | | | | | | categorical | differences | often whole | include fractions | | | | | | | between | numbers | or decimals. | | | | | | | categories | | | | | | | | | are not | | | | | | | | | uniform. | | | | | | | Examples | Gender (male, | Satisfaction | Number of | (150.5 cm, 160.2 | | | | | | female); | ratings | students in a | cm); Weight of | | | | | | Types of | (satisfied, | class (30); | fruits (1.5 kg, 2.2 | | | | | | fruits (apple, | neutral, | Number of | kg); | | | | | | banana, orange); | unsatisfied); | cars in a | Temperature | | | | | | Colors (red, blue, | Educ | parking lot | (22/59 e, 23.7° C). | | | | | | green). | ationTevels | (15); (210) | | | | | | | 1 -n/V | Thigh school \ | Number of | | | | | | | Allanlla | bachelor's, | books on a | | | | | | | M. JILLING | master's | shelf (50); | | | | | | ann | | Shirt sizes | | | | | | | 00 - | | (small, | | | | | | | | | medium, | | | | | | | Onevetions | Danielite | large). | T - 1'4 | D. P. | | | | | Operations | Equality, | Equality, | Equality, | Equality, | | | | | | grouping, | comparison, | grouping | grouping, | | | | | | counting, mode. | ranking, | counting, arithmetic | arithmetic | | | | | | | median, frequency | | operations | | | | | | | distribution, | operations without | including division | | | | | | | distribution, | division | | | | | | Statistical | Mode, frequency | Median, | Mean, | Mean, median, | | | | | Analysis | counts. | mode, | median, | range, standard | | | | | | | frequency | range, | deviation. | | | | | | | distribution. | standard | Olla | | | | | | | O Anni | deviation. | | | | | | Usage | Categorizi | 7 Unde | Cou | Measuring | | | | | | ng, understanding | rstanding | nting | precise amounts, | | | | | | preferences or | order or | specific | durations, or | | | | | ann | lattributes. | levels of a | occurrences | extents. | | | | | 900 | | characteristic | or items, | | | | | | | | | | | | | | Q. 5 Describe the importance of organizing data. 09509005 Ans. Organizing data systematically is very important for clear analysis and interpretation. When data is well-organised, it helps reduce errors. Importance of Organising Data Proper organisation saves time. Think about searching for a book in a messy room versus a neatly arranged bookshelf. Similarly, when data is organised, it's easier to find and analyse. For instance, if you have sales data arranged by date in a spreadsheet, you can quickly see how sales have changed over time without having to search through random numbers. Moreover, organised data improves clarity. When data is presented clearly, it's easier to understand and interpret. For example, a chart showing monthly sales figures is much easier to understand than a long list of numbers. By organising data into tables, charts, and graphs, you can quickly grasp what the data is saying, making it simpler to draw conclusions and make decisions. To make data easy to understand, it can be organised into tables, charts, and graphs. Here's how: Data Tables: Imagine you
have data about students' scores in different subjects. An example of this data is shown in table. | Student | Math | Science | English | |---------|------------|-------------|---------| | Sajid | 85 | 3 3 178 101 | 030090 | | Hammad | 3/18/11/18 | 88 | 85 | | Rizwan | 92 | 82 | 87 | | Sufiyan | 90 , | 80 | 89 | | Khuram | 67 | 75 | 70 | Q.6 What do you know about Charts and Graphs? Ans. Charts: Charts are visuals representation of data designed to make complex information easier to understand. Charts help identify patterns, trends and outliers in datasets. Common types of charts include: Bar charts Line charts Pie charts Graphs: Graphs are visuals tools used to represent data and show relationship between different data points. Common types of graphs include. Line graphs Bar graphs Scatter plots Histograms etc. Pie Chart 09509006 ### Graphs Q.7 Describe the role of Surveys and Questionnaires in Collection of Data. 09509007 Ans. Data collection is the process of gathering information to answer questions, make decisions or understand something better. There are different methods and tools for collecting data, each with its own way of gathering and recording information. Methods of Data Collection Here's a simple explanation of the main methods: 1. Surveys: Surveys collect information from people by asking them questions. This can be done or paper, over the phone, or online. For example, to find out your classmates' favourite ice cream flavours, you might create a survey with questions like "What is your favourite ice cream flavour?" and give it to your classmates to fill out. ## Best Practices in Survey Design and Administration - Be clear and specific - Keep it short and simple - Use multiple choice and rating scales - Ensure anonymity - Test your survey before sending it out - Analyse the results - 2. Questionnaires: Questionnaires are similar to surveys but are often written forms that people fill out. They usually usually have a set of questions that need to be answered. For instance, if your school wants to know which activities students enjoy most, they might give out a questionnaire with questions like, "Which school activity do you enjoy the most? (eg, sports, art, music)", where students choose their answers from the options provided. - Interviews: Talking to individuals one-on-one to gather detailed information. Example: Interviewing a school teacher to understand their experience and challenges. - Observations: Watching and noting what happens in a particular situation. Example: Observing how students behave during a group project to understand how they work in a team. Online Data Sources: These include websites, databases, and digital tools where you can find and collect information. For example, if you're researching the most popular pets, you might use the internet to find statistics or articles about pet ownership. Q. 8 How data can be collected from Online Sources? Explain in details. Ans. In today's world, we can find lots of information online to help with school projects. We can gather, extract and integrate this information to answer almost any question. For example, if you want to know how social media affects teenagers, you would collect information from different sources, extract useful data from it and integrate it into a coherent and comprehensible report. Here's how you can do it. Data Gathering: Data gathering means collecting information from various places to help with your research or school projects. 1. Online Databases: These are special websites where you can find a lot of information, such as articles and reports. For example, you can use Google Scholar or IEEE Xplore databases. Search for keywords like "how social media affects teenagers" to find useful articles and Did you know? Every day, people generate over 2.5 quintillion bytes of data. studies. 2. Online Resources: These include educational websites, government portals, and news outlets. For example, Wikipedia, the National Institute of Health (USA), and BBC.com. Data Extraction: Data extraction is about finding and saving the most relevant information from 1. Identify Relevant Data: Fook for specific details about how social media impacts teenagers. a larger set of data. Search for keywords like "teenage social media usage statistics" and find sections in articles with important statistics or quotes. 2. Copy and Save: Highlight the key information you find. For example, if an article says "70% of teenagers feel stressed because of social media, copy this information and paste it into a document. Keep your data organised by topic or source. 3. Use Tools: Some websites have tools to help you gather and organise data. Look for options like "Export" or "Download" to get articles in formats like PDFs. Data Integration: Data integration involves combining information from different sources to get a complete perspective. 1. Organise Data: Put all your saved information into one place, such as a document or spreadsheet. For example, create a Google Sheets file titled "Social Media Impact Research" where you list all key statistics and quotes. 2. Compare and Merge: Review data from different sources and find common themes. For instance, if many sources say that social media increases anxiety among teenagers, note this. Combine similar findings into one summary. 3. Create Summaries: Write a brief overview of what you found Highlight the main points, such as how many teenagers report feeling anxious due to social media. Make charts or graphs to show rends, such as bar graph of anxiety levels among teens. 09509009 Q. 9 Differentiate between Structured and Unstructured data. Ans. ır re > Structured data is organised and formatted to be easily searchable and analysable. Examples 1. Structured Data: include data in spread sheets and traditional databases. Think of a spread sheet with rows and columns where each row is a record (such as student) and each column is an attribute (such Student ID, Student Name, Class, Date of Birth, Fee Status, and Height) as shown in table. | Student ID | Student Name | Class | Date of Birth | Fee Status | Height | |------------|----------------|-----------------|---------------|------------|--------| | WWW. | All Alkbar | 9 th | 3/25/2009 | Paid | 4.7 | | 002 | Faheem Aslam | 9 th | 5/7/2008 | Paid . | 4.9 | | 003 | Munir Ahmad | 9 th | 6/11/2009 | Unpaid | 5.2 | | 004 | Khalid Mahmood | 9 th | 9/13/2009 | Paid | 5.6 | | 005 | Kamran Malik | 9 th | 7/21/2009 | Paid | 5.3 | #### 2. Unstructured Data Unstructured data is more free-form and doesn't fit into a specific format. Examples includest from emails, social media posts, videos, and images. This type of data is harder to organish but can be very valuable. Develop a sound sense of discipline character, initiative and a social academic background. You must devote yourself whole-heartedly to your studies, as that is you first obligation to yourselves, your parents and the State, you must dearn to obey for only then you can learn to command. Q.10 Briefly discuss different data storage techniques. 00500011 Ans. When we talk about data storage methods, we're referring to the different ways we can said organise information so that we can easily access and use it later. Here we look at important data storage technologies: Spreadsheets, Databases, Data Warehouses, and NoSQL ## 1. Spreadsheets Spreadsheets are tools that help us organise data in rows and columns, much like a simple version of a database. They are often used for tasks that don't require complex data management Spreadsheets like Microsoft Excel or Google Sheets allow users to input data into cells organise in rows and columns. #### 2. Databases Databases are like digital filing cabinets where information is stored in an organised was They are designed to handle large amounts of structured data and allow users to easily find an manipulate this data. Information in databases is stored in tables, similar to spreadsheets. Each table has rows and columns, where rows represent individual records, and columns represent the attributes of those records. #### 3. Data Warehouses Data Warehouses are specialized types of databases designed for storing and analysing large amounts of data collected from various sources. They are used to help organizations madecisions based on data analysis. Data warehouses are used by companies to analyze busine performance, track sales, and understand customer behaviour. Prominent examples of dawarehouse include Amazon Redshift, a data warehouse service offered by Amazon Weservices, and Google Big-Query, a fast and scalable data warehouse offered by Google Cloud. 4. NoSQL NoSQL stands for "Not Only SQL and refers to a variety of database technologies that are designed to handle different types of data that may not fit well into traditional databases. NoSQL databases are flexible and can store unstructured data, which is data that doesn't follow a specific format. Example: Examples of popular NoSQL databases include Mongo B which stores data in JSON-like documents and Cassandra, which is designed to handle large amounts of data across many servers without a single point of failure. Q.11 Explain the concept of data visualization. How does it help in understanding complex data? Provide examples of different types of visualizations and their applications in real-life scenarios. Ans: Data visualization is the process of turning numbers and information into pictures. These pictures make it easier for us to understand what the data is telling us. When we look at data in the form of charts or graphs, it becomes simpler to see patterns, trends, and relationships. Visualizing Different Data Types Different types of data can be visualized in different ways. Here are some common types of data and how we can visualize them: Nominal Data: Nominal data represents categories without any specific order. Bar charts and pie charts are great for showing nominal data. Ordinal Data: Ordinal data
represents categories with a specific order but without a uniform scale. Bar charts and stacked bar charts are effective for visualization for ordinal data. Discrete Data: Discrete data consists of distinct, separate values. Visualization technique of histograms and dot plots are useful. Continuous Data: Continuous data can take any value within a range visualization technique of line graphs, scatterplot and box plot are commonly used for continuous data. Q.12 Discuss the importance and benefits of data visualization. Why is it essential for businesses and decision-makers to use charts, graphs, and dashboards? 09509012 Ans: Data visualization is important because it makes understanding data much easier. Imagine trying to understand a list of hundreds of numbers. It's tough, right? But if those numbers are displayed as a bar chart, it's much easier to see what's going on. Visualizations provide quick insights, allowing you to grasp what the data is saying without having to read through all the details. This is particularly useful for making better and faster decisions. For example, a business an quickly see which products are selling well and which are not. There are several techniques and tools for visualizing data including charts, graphs and dashboards. Some popular tools for visualizing data include Microsoft Excel, Google Sheets and Tableau. Microsoft Excel: A spreadsheet tool that can create various charts and graphs. Google Sheets: Similar to Excel, it allows you to create and share visualizations online. Tableau: A powerful tool specifically designed for creating detailed and interactive visualizations. Microsoft Power BI: Power BI allows users to create a wide variety of visualizations, including charts, graphs, maps, and more, to represent data in an intuitive and understandable format. Did you know? Al helps everyday gadgets like virtual assistants (Siri and Alexa) understand your questions and perform tasks, making technology feel more initiative. Q.13 Explain the process of data Pre-Processing and Evaluate Data Techniques. 09509013 Ans. Data pre-processing is the first and most important step in working with data. It involves etting the data ready for analysis by cleaning and organizing it. Think of it like preparing ingredients before cooking a meal; you need to wash, chop, and measure everything so that the mooking process goes smoothly. **Data Pre-processing Techniques** In data pre-processing, we use various techniques to ensure the data is accurate and read for analysis. Here are some important steps and techniques: Evaluating Data Quality Before using data, we need to check its quality, ensuring it is accurate, complete, and reliable. We ask questions like: Is any data missing? Are there errors or incorrect entries? Is the data consistent and up-to-date? **Example:** Imagine you have a list of students' names and their test scores. You need to check all students have scores recorded, if the scores are correct, and if they are from the current session. **Errors** are mistakes in the data. **Example:** Check, if the data is within a valid range. For instance, if maximum marks of a subject are 100 and a student's score is recorded as 105, it's clearly an error because scores can't exceed 100. Outliers are unusual or extreme values that don't fit the pattern of the rest of the data. **Example:** In a list of test scores, if most students scored between 50 and 80, but one students scored 5, the score of 5 is an outlier. Biases are distortions that affect the accuracy of the data. **Example:** If a survey only includes answers from students in one school, it may not represent the opinion of all students in the city. Hence if you want to analyse opinion of entire city studenthen this data would be biased due to the limited sample. Q.14 Describe data analysis techniques with the help of quantitative & statistical analysis. Ans. Data analysis involves examining data to discover useful information, draw conclusions, as support decision-making. There are two main types of data analysis: quantitative and qualitative Quantitative Analysis o Quantitative analysis deals with numbers and measurable data. It helps us understand patterns relationships, and trends in numeric data. Statistical Analysis. Statistical analysis uses math to make sense of data. Here are some keep concepts: - Measures of Centre: Measures of centre are statistical tools that help us understand to central point or typical value in a set of data. They provide a summary of a dataset identifying the middle point. The three most common measures of centre are the mean median, and mode. - Mean (Average): The sum of all values divided by the number of values representing average. Example For example, if five students have scores of 70, 80, 90, 100, and 110, the mean score (70+80+90+100+110)/5=90. • Median: The middle value when all values are arranged in order. If there is an even number of values, the median is the average of the two middle values. **Example:** For example, for the scores 70, 80, 90, 100, and 110, the median is 90. For 70, 80, 91, 100, 110, and 120, the median is 95. • Mode: The value that appears most frequently. There can be more than one modes if multiple values appear with the same frequency. **Example:** For example, in the scores 70, 80, 80, 90, and 100, the mode is 80 and the scores 70, 80, 80, 90, 100 has two modes 70 and 80. • Measures of Spread: Measures of spread (also known as measures of dispersion) are statistical tools used to describe the amount of variation of diversity in a dataset. • Range: The range is the simplest measure of spread. It is the difference between the highest, and lowest values. For example, for the test scores 60, 75, 83, 91, and 95, the range is 95-60=35. • Variance: Variance the asures how spread out the values are from the mean. It gives a sense of how much the values in a dataset vary from the mean. Formula for the variance is: $$S^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$ #### Where: S² Sample Variance • x_i = the value of the one observation • \bar{x} = the mean value of all observations • n =the number of observations • Σ = Sigma symbol; used to represent sum of values For example, for the dataset [2, 4, 6], the mean is 4. The variance is calculated as $[(2-4)^2 + (4-4)^2 + (6-4)^2]/2 = (4+0+4)/2 = 8/2 = 4$. Standard Deviation: This measures the amount of variation or spread in a set of data. A low standard deviation means that the data points are close to the mean, while a high standard deviation means that the data points are spread out over a wide range. Formula for standard deviation is: $$S = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$ Q.15 What are the methods of Qualitative Analysis? 09509015 Ans. Qualitative analysis deals with non-numeric data such as text, images, and sounds. It helps us understand meanings, concepts, and experiences. Methods for Analysing Qualitative Data One common method is **Content Analysis**, which involves counting the number of times specific words or themes appear in a text. For example, researchers might analyse a set of interviews to count how many times students mention "homework stress." This method helps to quantify the presence of specific themes or ideas within qualitative data. Another method is Thematic Analysis, which involves identifying and Interpreting themes or patterns within qualitative data. Q.16 Describe Cloud Storage and Remote Access. 09509016 Ans. In today's world, working together and sharing information online is essential. Collaborative tools make this possible, allowing people to work together, share files, and access their work from anywhere. 1. Cloud Storage for Data Management Using cloud storage for managing data has become an essential part of how we store, access, and share information. It allows us to save files on the Internet for access from any device, make backups to protect our data, and work on documents with others in real-time. 2. Remote Access Remote access refers to the ability to connect to and use a computer or network from a distant location. This means you can work on files, use software, or access resources on a computer or network that is not physically near you. For example, if you save a school project on a cloud storage service like Google Drive while at home, you can later access and edit that same project from a computer at school. Remote access is made possible through the Internet, allowing you to connect to your files and applications from anywhere, as long as you have an Internet connection. Following is the activity flow for remote access. · Save Your Work: Open Google Drive and upload your project file. • Access from Anywhere: Log into Google Drive from any device (computer, tablet, phone and open your project. • Continue Working: Make changes, add new information, or review your work from wherever you are. Q.17 How do data backups support collaborative authoring, and what best practices ensure both data security and seamless collaboration among multiple users? O9509017 Ans. Data Backups are copies of important data or files stored separately from the original to protect against data loss. Backups are essential to ensure that you can recover your data if something goes wrong, such as accidental deletion, hardware failure, or a computer virus. Automatic Backups: Set up your device to automatically back up important files to a cloud service like OneDrive: • Restore Files: If you lose a file, log into your cloud account and download the backup version. Resume Work: Continue working on your restored file without worrying about losing data. Collaborative Authoring Collaborative authoring is the process of multiple people working together to create, edit, and improve e a document of project in real-time, often using online tools and platforms that alloweveryone to contribute and see each other's changes instantly. Following is the activity flow for collaborative authoring. • Create a
Shared Presentation: In Google Slides, create a presentation called "Climate Change Presentation" and share it with your friends. • Upload Files: Each group member work on their slides and notes. • Edit Together: Open the files and make edits together, ensuring everyone's input is included. Benefits of Collaborative Tools - 1. Enhanced Productivity: When multiple students work on different sections of a project simultaneously the project gets done faster. This saves time and allows everyone to contribute their best work. - 2. Version Control: Google Docs automatically saves every change, so you can go back to previous versions if needed. You don't lose work, and you can see who made which changes in the document. Q.18 What is Data Science, and how does its workflow function? Could you provide an explanation? OR Opposed to the state of What do you know about Data Science and its Workflow? Explain. Ans. Data science is like being a detective, but instead of solving crimes, you solve problems using data. Imagine you want to figure out why some students do better in exams than others. Data science helps you gather information about students' study habits, look for patterns, and find out what makes a difference. **Understanding Data Science** Knowing about data science is important because it helps us make better decisions in our daily lives. For example, if you understand how to analyse data, you can figure out the best time to study when you're most focused. Businesses use data science to learn what their customers like and improve their products. Sports teams use data to create better strategies and enhance their performance. Even doctors use data science to predict health trends and provide better care. Data science is unique because it combines different fields to work with data effectively. It includes: - Computer Science: For handling and organizing data. - Mathematics and Statistics: For analysing data and finding patterns. - Business Knowledge: For applying these insights to real-life problems and making informed decisions. #### **Data Science Workflow** - **Data Science Workflow:** It refers to the systematic process used by data scientists to extract insights and knowledge from data. Here are the steps of Data Science Workflow process: - **Problem Identification:** Understanding and clearly defining the problem you are trying to solve. - Data Collection: Gather information from various sources. For example, if you want to know how many students like different sports, you might conduct a survey. This is like collecting ingredients for a recipe. - Data Cleaning: After collecting data, it's important to clean it by removing errors and organizing it. Imagine your room is messy, and you need to put everything in its right place. Data cleaning involves fixing mistakes and making the data useful. - Data Analysis: This step involves looking closely at the data to find patterns or answers. For example, if you have weather data from the past month, you can analyse it to predict if it will rain tomorrow. It's like solving a puzzle by examining the pieces. - Data Interpretation: Once you have analysed the data, you need to understand it and draw conclusions. This is like reading a story and understanding its meaning. For example, after analysing survey results, you might conclude that most students prefer outdoor sports over Indoor ones. - Data Visualization: To make data easier to understand, you can create charts and graphs. - 19 Provide a comprehensive analysis on the following terms: 09509019 - Big Data - Volume - Velocity Variety - Big Data is a term used to describe extremely large and complex data sets that can't be maged with traditional tools. To understand Big Data better, we can look at its defining aracteristics, often referred to as the "Three Vs." Big Data refers to extremely large and complex sets of data that are difficult to process using ditional methods. Imagine trying to organise a huge pile of documents, photos, and videos from usands of people. Big Data involves using advanced technology to analyse and find useful formation in this massive amount of data. olume: This refers to the sheer amount of data collected. For example, consider the countless sts, likes, and comments shared on social media platforms every day. This enormous amount of formation is an example of "volume" in Big Data. It's like trying to fit a huge pile of puzzle eces into one box-they just keep coming! Velocity: This is about the speed at which data is generated and processed. For instance, this about how quickly posts are sent and received. The fast flow of this information means that data constantly being updated and processed in real-time. Imagine a busy highway with cars zoomin by, this is similar to the rapid pace at which data moves in Big Data. Variety: This refers to the different forms data can take. Data is not just numbers; it can als include text, images videos, and more. For example, a company might collect customer review as text, product photos as images, and sales figures as numbers. Just like having a mixed bag different types of candy, Big Data includes a wide range of data types and formats. Q.20 Describe Applications of Big Data. 09509021 Ans: Following are the applications of big data that plays an active role in data science: Businesses: Big Data is valuable because it helps businesses make better decisions. By analysis vast amounts of data, companies can uncover trends and patterns that might not be noticeable will smaller data sets. For instance, a retailer can use Big Data to determine which products are mospopular at different times of the year. This helps them stock the right items and improve sales. Retail: Stores use Big Data to understand what customers like and to boost sales. For example online shop might analyse your browsing history and past purchases to suggest products might be interested in. It's like how a friend might recommend books based on the ones you enjoyed before. Healthcare: Hospitals and doctors use Big Data to monitor patient health and predict discoutbreaks. For instance, by analysing patient records, they can anticipate the seasons and preparactines in advance. It's similar to preparing for a storm by checking weather patterns to ensure you're ready. Finance: Banks use Big Data to detect fraud and manage risks. For example, analystransactions helps them spot unusual activities that might indicate fraud. This is like having security system that alerts you if someone tries to break into your house. **Transportation:** Companies like Uber use Big Data to optimize routes and manage rides. The analyse data from previous trips to find the quickest routes and predict where rides will be need most. It's like a GPS system that learns the best routes based on past traffic patterns. Q.21 Which type of tools are used in data science modeling? Explain All. 0950902 Ans: Data science relies on various tools and technologies to help manage, analyse, and visual data effectively. These tools and techniques are essential for turning raw data into useful insights Data Science Tools **Excel:** Excel is a widely used spreadsheet program that helps you organise and analyse data. Fexample, if you have a list of your test scores, you can use Excel to create graphs that show progress over time. This makes it easy to see how you're improving and identify any patterns your performance. Python: Python is a popular programming language used in data science for analysing data building data models. It comes with powerful libraries like Pandas, for data manipulation Matplotlib for creating graphs. For instance, you might use Pandas to analyse data from a surand then use Matplotlib to create a chart that shows the results. R: R is another programming language designed for statistical analysis and data visualization particularly good at handling complex data and presenting it in a clear way. For example, might use R to analyse a dataset from a scientific experiment and create detailed plots that me the results easier for inderstand. SQL: SQL (Structured Query Language) is used to manage and query databases. For instantifyou need to find all students who scored above 90 on a test from a large database, SQL allowou to extract this specific information quickly. It's like asking a librarian to find all books particular author from a huge collection. These tools are important for data scientists as they help in make sense of large of data, provide valuable insights, and support informed decisions. Q.22 What are the predictions for the future of digital tools in data management and 09509022 analysis? Ans: As technology continues to advance, several exciting changes are expected in the field of data management and analysis some of these are described as follows: Enhanced Automation: In the future, data tools will be able to handle more tasks automatically, making data analysis faster and more accurate. For example, imagine a program that automatically cleans up data by fixing errors and organizing information without human intervention. Improved Data Privacy: As we collect and use more personal data, keeping it safe will become even more important. Future tools will have better security features to protect our information from unauthorized access. Integration of Al and Data Science: Artificial Intelligence (Al) will be increasingly integrated with data science tools to make analysing large amounts of data easier and faster. For example, AI-powered tools could automatically generate reports and create charts using the latest data. Advances in Visualization: Future data tools will offer innovative ways to visualize data, helping us understand complex information more easily. Q.23 Explain the differences between qualitative and quantitative data. Provide examples of each type. Ans. Data can be divided into two broad categories namely qualitative and quantitative. 1. Qualitative Data: Qualitative data refer to
categories of labels used to describe the qualities or characteristics of something rather than its quantity. Key characteristics of qualitative data include non-numeric, descriptive, and categorical attributes. Non-Numeric: Qualitative data is represented by words, labels, or symbols Instead of numbers. It describes attributes rather than quantities. Examples include the names of students in a class (e.g. Ali, Badar, Qasim) and the colors of cars in a parking lot (e.g, red, blue, green), where "name" and "color are attributes. • Categorical: Qualitative data can be into categories or classes based on their characteristics. Examples include types of fruit (e.g., apple, banana, orange). job titles (e.g., manager, engineer, accountant), and book genres (e.g., fiction, non-fiction, mystery). 2. Quantitative Data: Quantitative data consists of numbers used to measure the quantity or amount of something. These data types answer questions like "How much?" or "How long?" and can be useful for mathematical calculations and statistical analyses. Key characteristics of quantitative data include being numerical, measurable, countable, and arithmetical. Numerical: Quantitative data is expressed in numbers, representing a measurable quantity. Examples include heights in centimetres, weights in kilograms, and test scores. • Measurable: Quantitative data can be measured using instruments or tools. Examples include using a ruler for length, a scale for weight, and a thermometer for temperature. • Countable: Quantitative data can be counted or enumerated, particularly for discrete data. Examples include the number of students in a class or the number of cars in a parking lot. • Arithmetical: Quantitative data can be used in arithmetic operations. For instance, multiplying the unit price of a fruit by its weight to find the total price, or calculating annual school fees by multiplying monthly fees number of months. Q.24 Compare and contrast continuous and discrete data. Use examples to show how each type of data might be used in a school setting, such as in measuring student performance or tracking attendance. Ans. Continuous Data: Continuous data consists of values that can take any number within a given range, including fractions of decimals. Examples include student heights (150.5 cm, 160.2) cm), fruit weights (1.5 kg) 2.2 kg), and room temperatures (22.5°C, 23.7°C). Example 1: For example, measuring the height of a plant, might reveal that it is 32.5 centimetres tall. If you measure how long it takes for the plant to grow from 20 to 30 centimetres, might show that it took 15 days. These measurements provide detailed information about the amount (height) or duration (growth time), helping us understand how much or how long something occurs. • Discrete Data: Discrete data consist of distinct, separate values that are countable, often in whole numbers. Discrete data answer questions like "How many?" or "How often?" For example: counting oranges in a basket might show there are 16, answering "How many? similarly, tracking the number of oranges falling from a tree each week, with counts like 5 or Monday, 7 on Wednesday, and 4 on Friday, helps answer "How often?" **Example 2: Measuring student performance** Continuous Data: Monitoring a student's GPA throughout time to identify trends in academic achievement. Discrete Data: Counting the number of assignments completed by each student during the semester. Tracking Attendance: Monitoring the percentage of attendance (e.g., 92.5%) throughout the year. Discrete data refers to the total number of days a student was present or absent Q.25 Analyze the benefits and challenges of using digital tools like Google Forms for data collection. 09509025 Ans. Google forms are often used for creating surveys since they allow you to arrange events, ask questions of your staff or clients, and collect a variety of information in an easy and effective manner. Google forms support a variety of question formats, including short responses paragraphs, multiple selection, verification boxes, pull-down, linear scale, and grids with numerous possibilities, among others. #### Benefits - 1. Advanced users can utilize regular expressions to customize the types of data that can be entered into a field. This further customizes the form. - 2. Google Forms allows us to preview how the survey will appear before sending it to the recipients. - 3. We can send the form via email, integrate it into our website, or share the link via social media or other channels. Challenges - 1. Google Forms has basic customization possibilities, but if may not have advanced tools for more complex survey designs. Users seeking highly customizable layouts or intricate question branching may find the platform too restricted. - 2. While Google Forms offers a variety of question kinds, such as multiple-choice, short answer, and drop down, it may not cover the entire range of question types required for specific research or survey needs. Users seeking sophisticated question kinds or experimental designs may need to look into alternate survey platforms. Q.26 Imagine you are tasked with organizing a school event and need to collect data on students' preferences for activities and refreshments. Ans. Collecting information about students preferences for activities and refreshments is critical when organizing a school event. Input can be gathered using a digital tool such as Google Forms or printed surveys. The survey should include areas for activities (e.g., sports, arts, games) and refreshments (checkboxes for popular items such as pizza and beverages). Once the data has been spread and collected, evaluate it to detect trends. For example, if the majority of students prefer outside games, emphasize them, and base the menu on popular beverages. Sharing the final plan with students demonstrates that their input was respected, resulting in a tailored and interesting event. Q.27 Explain the role of tables and charts in data analysis. Provide an example of how you could use a table or chart to present data about students' grades in different subjects. 09509027 Ans. Tables: Tables are rows and columns of numbers and language (mostly numbers). They enable quick access to and relatively simple comparison of data. If the data is organized chronologically (for example, sales figures over a ten-year period), the table can reveal trends—patterns of increasing or decreasing activity. Tables, on the other hand, are not always the most vivid or dramatic way to depict such trends or correlations between data; for that a line graph. Charts: Charts and graphs are simply another way to convey data that is also presented in tables. At the same time, charts and graphs provide/less detail or precision than tables. Consider the contrast between a table of sales figures over a ten-year period and a line graph of the same data. The graph provides a clearer sense of the overall trend, but not the exact monetary amount. Other forms of charts and graphs include horizontal bar charts, vertical bar charts, and pie charts. Example | Student Name | Computer | Math | Urdu | |--------------|----------|------|------| | Jawad | 85 | 75 | 58 | | Sajid | 75 | 65 | 72 | | Hammad | 76 | 66 | 78 | Q.28 Describe a situation where non-numeric data is essential. How would you collect, store, and analyze this type of data? Discuss the tools and techniques you would use to ensure the data is accurately interpreted. Ans. Non-Numeric: Qualitative data is represented by words, labels, or symbols instead of numbers. It describes attributes rather than quantities. Examples include the names of students in a class (e.g. Ali, Badar, Qasim) and the colors of cars in a parking for (e.g., red, blue, green), where "name" and "color are attributes. More advanced tools, such as NVivo or ATLAS. They specialize in storing and maintaining qualitative data. NVivo is a strong qualitative data analysis software that organizes, analyses, and visualizes non-numerical data. ATLAS like NVivo, is a powerful qualitative data analysis program that enables researchers to manage, analyze, and visualize massive amounts of unstructured or qualitative data ## **Topic Wise Short Questions (Additional)** ## Data & Its Components Q.1 Differentiate between Qualitative and **Nominal Data:** Ans. Qualitative data refers to categories or that describe labels qualities characteristics rather quantities. Nominal data is used to label or categorize items without implying any order. O.2 Distinguishes between Structured and Unstructured data. 09509030 Ans. Structured Data is organized and formatted for easy searching and analysis: examples include data in spread-sheets and traditional databases. Unstructured Data is more free-form and doesn't fit into a specific format. Q.3 What is Spreadsheet? Ans. A spreadsheet is a digital application or software tool that organizes, analyzes, and stores data in tabular format. It is downlosed of a grid of rows and collimns, with each intersection forming a cell Q.4 Define Data Backup. 09509032 Ans. A backup is a copy of important data or files stored separately from the original, used to protect against data loss. Q.5 What do you know about NoSOL? 09509033 Ans. NoSQL stands for "Not Only SQL" and refers to a variety of database technologies designed to handle different types of data that may not fit well into traditional databases. Q.6 Define Data Pre-Processing. 09509034 Ans. Data pre-processing is the initial and important step in working with data. It involves cleaning and organizing it for analysis. Q.7 What does represent Ordinal data? Ans. Ordinal data represents categories with a meaningful order though the differences between categories are not uniform. Q.8 Define data science. 09509036 Ans. Data science is the branch knowledge, in which computer programming skills along with mathematics and statistics are used to extract meaningful information from a collection of data. O.9 What is
a computer system? 0950905 Ans. A computer system is a fundamental and important part of modern life. It revolutionized the way communicate, learn, and entertain ourselves In today's world, we are surrounded by a of data, which may be on our computer system or otherwise. Q.10 Describe the role of big data in the Internet of Things (IoT). Ans. Big data plays a significant role in Internet of Things (4oT) ecosystem enabling the coffection, storage, processing and analysis of massive volumes of generated by IoT devices. IoT devices generate continuous data. O.11 Describe data visualization. Ans. Data visualization is the graphical representation of data to get meaning insights, trends, and patterns from data. The visual elements which help visualization are charts, graphs, mass figures, and dashboards, etc. Q.12 What are the online data sources Give example. Ans. These include websites, databases, digital tools where you can find and collection information. For example, researching the most popular pets, you might use the internet to find statistics or article about pet ownership 0.13 What is a Survey? Ans. It is a method of collecting information from individuals. The basic purpose of survey is to collect data to describe different characteristics such as usefulness, quality 095091- price, kindness, etc. Q.14 Distinguishes between Primary data collection and Secondary data collection. Ans. 09509042 • Primary Data Collection: Involves the collection of original data directly from the data source or via direct interaction with the respondent. • Secondary Data Collection: Involves data collection using existing data collected by someone else for some purpose. Such data is usually available in the form of published material like research papers, books, websites, etc. Q.15 How the process of data collecting can be measured? Ans. Data collection is the systematic process of gathering, documenting, and organizing data from a variety of sources to extract significant insights, facilitate informed decision-making, or allow for rigorous analysis. Q.16 Describe the role of data science. Ans. Data Science plays a crucial role in determining the place of various products in various shelves of the supermarket. Data science involves gathering, analysing, and interpreting large amounts of data to find patterns and useful information. ## Statistics Q.17 What do you know about summary statistics? 09509045 Ans. It is information about the data in a sample. It can help understand the values better. It may include the total number of values, minimum value, maximum value, along with the mean value and the standard deviation corresponding to a data collection. Q.18 Define the term Statistics and Probability? Ans. Statistics is the analysis of the frequency of past events and probability is to predict the likelihood of future events. Statistics is used in various fields such as science, business, economic, social sciences, and more, to understand patterns, trends, and relationships within data. Q.19 Define E-Commerce. 09509047 Ans. E-commerce, short for electronic commerce, refers to the buying and selling of goods and services over the internet. It encompasses a wide range of online transactions, including retail sales, business-to-business (B2B) transactions, online auctions, and digital downloads of products like software, music, and books. ### Big Data Q.20 What are the three Vs of big data? 09509048 Ans. The three Vs of big data are: • Volume: Refers to the amount of data. Big data deals with huge volumes of lowdensity, unstructured data. Velocity: Refers to the speed of data, which is the fast rate at which data is received. Variety: Refers to the various formats and types of data that are available. Traditional data types were structured and fit neatly in a relational database. Q.21 Describe any two benefits of big data. 09509049 Ans. • Predictive Maintenance: It is a maintenance strategy that uses the analysis of existing data to predict when equipment, machinery, or a product is likely to fail. • Fraud and Compliance: Big data analytics can identify and detect unusual suspicious patterns and anomalies. Quantitative analysis Q.22 Define Range. 09509050 Ans. The range is the simplest measure of spread. It is the difference between the highest and lowest values. For example, for the test scores 60, 75, 83, 91, and 95, the range is 95-60=35. | 0.23 | Defin | e Va | rian | ce. | |-------------------|-------|----------------|-----------|-----| | Mile Mileston Co. | | and the second | IN MUSELA | | Ans. Variance measures how spread out the values are from the mean. It gives a sense of how much the values in a dataset vary from the mean. Formula for the variance is: Q.24 Write the formula Standard Deviation. 09509052 Ins. Formula for standard deviation is: $$S = \sqrt{\frac{\sum (xi - \bar{x})^2}{n - 1}}$$ ## **Topic Multiple Choice Questions (Additional)** Choose the correct option ## Data & Its Analysis - 1. How many types of data analysis are available? - (a) 1 (b) 3 - - (c) 2 - (d) None of these - 2. Which statistical measure provides a measure of the central tendency of a dataset? - (a) Standard deviation - (b) Variance - (c) Mean - (d) Median - 3. What is the primary function collection in the context of data science? - (a) Data analysis - (b) Data storage - (c) Data generation - (d) Data retrieval - 4. Which industry heavily relies on IoT for supply chain optimization and resource allocation? 09509056 - (a) Healthcare - (b) Finance - (c) Retail (d) Transportation - 5. What is the primary purpose of data visualization in data science? - (a) Data Collection - (b) Data exploration - (c) Extracting insights - (d) Data modeling - 6. Which of data represents categories with a order but inconsistent intervals between them? 09509058 - (a) Nominal - (b) Binary - (c) Ordinal - (d) Interval - 7. Which of the following is an example of interval scaled attribute? 09509059 - (a) Age - (b) Temperature in Celsius - (c) Height - (d) Weight Big Data - 8. Which of the following is not one of the characteristics of big data? 09509060 - (a) Veracity - (b) Kelocity - (c) Validity Odd Wolume - Which is one of the key applications of big data in business? - (a) Social media management - (b) Customer behavior analysis - (c) Weather forecasting - (d) Artistic creativity - 10. How does data science add value to big data? - (a) By creating more data - (b) By making data storage more efficient - (c) By extracting insights and predictions from data - (d) By ensuring data quality and consistency - 11. In the context of big data, what does the 3Vs refer to? 09509063 - (a) Veracity, Velocity, Veracity - (b) Volume, Value, Velocity - (C) Validity, Variety, Volume - (d) Variety, Velocity, Volume Data Science 12. Which of the following key concepts involves transforming raw data into structured format that is suitable for analysis? | (a) Data modeling (b) Data exploration (c) Data collection (d) Data ethics 3. What is the role of domain knowledge in data sciences in the concept of big data technology is commonly used to store and process large datasets in a distributed manner? (a) SQL databases (b) Hadoop (c) Relational databases (d) Data that is stored on traditional databases (e) Data that is stored on traditional databases (b) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional dataprocessing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (b) Hat is the primary purpose of data processing in big data analytics? (b) Slow processing in big data analytics? (a) Java (b) Limited availability of data visualization tools 18. What is the primary purpose of data processing in big data analytics? (a) Data visualization of big data. (b) Unlimited growth of data (c) Data visualization of big data. (a) Data lating data (c) Data visualization of big data. (b) Unlimited growth of data (c) Data visualization of data (c) Data visualization of big data. (c) Data visualization of big data. (d) Data hiding (e) Data wisualization of big data. (e) Ordinal data (c) Data visualization of big data. (e) Ordinal data (c) Data visualization of o | | |
--|--|--| | (d) Data ethics in data science? (a) Writing code for data analysis (b) Conducting statistical tests (c) Understanding the specific context of data (d) Visualizing data (e) Understanding the specific context of data (d) Visualizing data (e) Understanding the specific context of data (d) Visualizing data (e) Understanding the specific context of data (d) Visualizing data (e) Understanding the specific context of data (d) Visualizing data (e) Understanding the specific context of data (d) Visualizing data (e) Understanding the specific context of data (d) Visualizing data (e) Understanding the specific context of data (d) Visualizing data (e) Data base (f) Data base (g) Data and Information (h) Information 10. (a) Data base (b) Dataset (c) Data and Information (d) Information 20. (a) Data base (b) Dataset 21. (a) Data base (b) Dataset (d) Database (d) Database (d) Data base (d) Database (e) Data visualization (d) Data base (e) Data visualization (d) Data base (e) Data visualization (f) Data base (h) Information (d) Information (d) Information (e) Information (d) (e) Data base (e) Data visualization (d) Data base (e) Data visualization (d) Data base (e) Data visualizat | (b) Data exploration | (b) To reduce the volume of data | | in data science? (a) Writing code for data analysis (b) Conducting statistical tests (c) Understanding the specific context of data (d) Visualizing data 4. Which big data technology is commonly used to store and process large datasets in a distributed manner? (a) SQL databases (b) Hadoop (c) Relational databases (d) Data warehouses 15. Which of the following best describes the concept of big data? (e) Data that is stored in traditional databases (b) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (c) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (b) Processed collection of data unsually associated with a unique body of work. (c) Data and Information (d) Information (d) Information (20. Terefers to the process of carefully examining and studying data to identify patterns, draw conclusions, or make the data meaningful. (e) Data analytics (b) Data predictions (c) Data analytics (d) Data base (b) Data and Information (d) Information (d) Information (20. Terefrs to the process of carefully examining and studying data to identify patterns, draw conclusions, or make the data meaningful. (e) Data analytics (b) Data predictions (c) Data analytics (d) Data base (o) Data visualization (d) Data visualization (d) Data visualization (d) Data visualization (d) Data wisualization (d) Volume (b) Velocity (c) Variety (d) Vision 21. Gallowas pre | (d) Data ethics | vigualization | | (a) Writing code for data analysis (b) Conducting statistical tests (c) Understanding the specific context of data (d) Visualizing data (d) Which big data technology is commonly used to store and process large datasets in a distributed manner? (a) SQL databases (b) Hadoop (c) Relational databases (d) Data warehouses 15. Which of the following best describes the concept of big data? (a) Data that is stored in traditional databases (b) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (b) Python (c) Data with a unique body of work. (b) Data base (b) Dataset (c) Data and Information (d) Data analytics (b) Data analytics (b) Data predictions (c) Data predictions (c) Data visualization (d) Data hat is the graphical representation of data through use of common charts, plots, infographics and animations (a) Data cleaning (b) Missing values (c) Data visualization (d) Data hiding 22. is the graphical representation of data through use of common charts, plots, infographics and animations (a) Data cleaning (b) Missing values (c) Data visualization (d) Data hiding (d) Data hiding (e) Data visualization (d) Data hiding (e) Variety (d) Vision (a) Statistical data (b) Continuous data (c) Ovalinal data (d) Referral data (e) Data visualization (d) Referral data (e) Data visualization (d) Predictive maintenance | 3. What is the role of domain knowledge | is a structured or | | (b) Conducting statistical tests (c) Understanding the specific context of data (d) Visualizing data 4. Which big data technology is commonly used to store and process large datasets in a distributed manner? (a) SQL databases (b) Hadoop (c) Relational databases (d) Data warchouses 15. Which of the following best describes the concept of big data? (a) Data that is stored in traditional databases (b) Data that is stored in traditional databases (b) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics? (a) Data base (b) Dataset (c) Data and Information (d) Information 20. refers to the process of carefully examining and studying data to identify patterns, draw conclusions, or make the data meaningful. (a) Data analytics (b) Data predictions (c) Dataset (d) Data predictions (c) Dataset (d) Data predictions (c) Data cleaning use of common charts, plots, infographics and animations (d) Data data trough use of common charts, plots, infographics and animations (d) Data data is equipment of data through use of common charts, plots, infographics and animations (d) Data data technology (e) Data that is stored in traditional data received and acted on. (a) Data analytics (b) Data predictions (c) Data visualization (d) Data data technology (d) Data data technology (a) Data data technology (b) Missing values (c) Data visualization (d) Data data trough use of common charts, plots, infographics and animations (a) Data calaning (b) Missing values (c) Data visualization (d) Data data trough use of common charts, plots, infographics and animations (a) Data calaning (b) Missing values (c) Variety (d) Vision (d) Data data (e) Data visualization (d) Volume (b) | in data science of the data analysis | processed collection of data usually | | (c) Understanding the specific context of data data data analytics (c) Data base (b) Dataset (c) Data and Information (d) (e) Data datasets in a distributed manner? (a) SQL databases (b) Hadoop (c) Relational databases (d) Data warehouses 15. Which of the following best describes the concept of big data? (a) Data that is stored in traditional databases (b) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited
availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? Instituted manner? (a) Data base (b) Dataset (c) Data base (c) Data studying data to identify patterns, draw conclusions, or make the data meaningful. 09509073 (a) Data analytics (b) Data predictions (c) Dataset (d) Data harding (d) Data through use of common charts, plots, infographics and animations (a) Data cleaning (b) Missing values (c) Data visualization (d) Data hiding (c) Variety (d) Vision (a) Volume (b) Velocity (c) Variety (d) Vision (a) Volume (b) Velocity (c) Variety (d) Vision (a) Statistical data (b) Continuous data (c) Ordinal data is imitation of big data. (a) Statistical data (b) Continuous data (c) Data visualization (d) Predictive maintenance | (b) Conducting statistical tests | associated with a unique body of work. | | data (d) Visualizing data (e) Data and Information (d) Information (d) Information (e) Data characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (e) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (e) C++ (e) C++ (f) Ruby (g) Bata and Information (d) (a) Information (c) Pata and Information (d) Information (d) Information (a) Information (c) Pata and Information (d) Information (c) Information (a) Information (a) Information (c) Information (d) Information (c) Information (d) Information (c) Information (d) Information (c) Information (a) Information (d) Information (c) Information (d) Information (a) Information (d) Information (a) Information (d) Information (c) Information (d) (a) Information (d) Information (a) Data analytics (b) Data that is data that is dear that is dearth at is dearth at its information in identify paterns, draw conclusions, or make the data meaningful. (e) Data predictions (e) Data predictions (e) Data visualization (d) Data that is identify paterns, draw conclusions (e) Data visualization (d) Data that is identify paterns, draw conclusions (e) Data visualizatio | (c) Understanding the specific context of | (a) Data base (b) Dataset | | (d) Visualizing data 4. Which big data technology is commonly used to store and process large datasets in a distributed manner? (a) SQL databases (b) Hadoop (c) Relational databases (d) Data warehouses 15. Which of the following best describes the concept of big data? (c) Data that is stored in traditional databases (d) Data that is stored in traditional databases (e) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional dataprocessing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (a) Java (b) Python (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? | data 09509066 | (c) Data and Information | | large datasets in a distributed manner? (a) SQL databases (b) Hadoop (c) Relational databases (d) Data warehouses 15. Which of the following best describes the concept of big data? (a) Data that is stored in traditional databases (b) Data that is too small to be analyzed effectively (c) Data that is only generated by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? | (d) Visualizing data | (d) Information | | large datasets in a distributed manner? (a) SQL databases (b) Hadoop (c) Relational databases (d) Data warehouses 15. Which of the following best describes the concept of big data? (a) Data that is stored in traditional databases (b) Data that is too small to be analyzed effectively (c) Data that is only generated by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? | 4. Which big data technology is | 20. refers to the process of | | manner? (a) SQL databases (b) Hadoop (c) Relational databases (d) Data warehouses 15. Which of the following best describes the concept of big data? (a) Data that is stored in traditional databases (b) Data that is too small to be analyzed effectively. (c) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Data that is received and acted on. 09509074 (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (b) Pothon (c) Data state data meaningful. (a) Data analytics (b) Data predictions (c) Data state (d) Database (d) Data bata sequition of data the unitation of data the proposed of data wisualization (d) Data hiding 22 is the fast rate at which data is received and acted on. 09509075 (a) Volume (b) Velocity (c) Variety (d) Vision 23 includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (c) Ordinal data (d) Referral data (e) Ordinal data (e) Ordinal data (f) Unlimited growth of data (c) Data visualization (d) Predictive maintenance | commonly used to store and process | corefully examining and studying data | | (a) SQL databases (b) Hadoop (c) Relational databases (d) Data warehouses 15. Which of the following best describes the concept of big data? (a) Data that is stored in traditional databases (b) Data that is too small to be analyzed effectively. (c) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? (a) Data analytics (b) Data predictions (c) Dataset (d) Datahase is the graphical representation of data through use of common charts, plots, infographics and animations (a) Data cleaning (b) Missing values (c) Data visualization (d) Data hiding 22. is the graphical representation of data through use of common charts, plots, infographics and animations (a) Data cleaning (b) Missing values (c) Variety (d) Vision 23. includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (e) Continuous data (e) Ordinal data (f) Ordinal data (g) Statistical data (h) Unlimited growth of data (c) Data visualization (d) Predictive maintenance | manner? 09509067 | to identify patterns, that conclusions, | | (b) Hadoop (c) Relational databases (d) Data warehouses 15. Which of the following best describes the concept of big data? (a) Data that is stored in traditional databases (b) Data that is constructed by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional dataprocessing techniques when dealing with big data? (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of datavisualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (d) Ruby 18. What is the primary purpose of datapreprocessing in big data analytics? (b) Data predictions (c) Dataset (d) Database (d) Database is the graphical representation of data through use of common charts, plots, infographics and animations (a) Data cleaning (b) Missing values (c) Data visualization (d) Data hiding 22 | () GOT detahagag | (a) Data analytics | | (c) Relational databases (d) Data warehouses 15. Which of the following best describes the concept of big data? (a) Data that is stored in traditional databases (b) Data that is too small to be analyzed effectively. (c) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with
big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (d) Database (in traditional data through use of common charts, plots, infographics and animations (a) Data cleaning (b) Missing values (c) Data visualization (d) Data hiding 22. is the fast rate at which data is received and acted on. 09509075 (a) Volume (b) Velocity (c) Variety (d) Vision 23. includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (e) Ordinal data (f) Data visualization (d) Predictive maintenance | (b) Hadoon | (b) Data predictions | | (a) Data that is stored in traditional databases (b) Data that is too small to be analyzed effectively (c) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? 18. What is the primary purpose of data preprocessing in big data analytics? (a) Data that is stored in traditional common charts, plots, infographics and animations (a) Data cleaning (b) Missing values (c) Data visualization (d) Data hiding 22 is the fast rate at which data is received and acted on. 09509075 (a) Volume (b) Velocity (c) Variety (d) Vision 23 includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (e) Ordinal data (f) Statistical data (g) Statistical data (g) Statistical data (g) Statistical data (g) Data visualization (d) Predictive maintenance | (c) Relational databases | (c) Dataset | | (a) Data that is stored in traditional databases (b) Data that is too small to be analyzed effectively (c) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? 18. What is the primary purpose of data preprocessing in big data analytics? (a) Data that is stored in traditional common charts, plots, infographics and animations (a) Data cleaning (b) Missing values (c) Data visualization (d) Data hiding 22 is the fast rate at which data is received and acted on. 09509075 (a) Volume (b) Velocity (c) Variety (d) Vision 23 includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (e) Ordinal data (f) Statistical data (g) Statistical data (g) Statistical data (g) Statistical data (g) Data visualization (d) Predictive maintenance | (d) Data warehouses | (d) Database (O) | | (a) Data that is stored in traditional databases (b) Data that is too small to be analyzed effectively. (c) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (b) What is the primary purpose of data preprocessing in big data analytics? (d) Predictive maintenance (e) Data visualization (i) Data hiding (i) Data hiding (ii) Data hiding (ii) Data hiding (iv) Data visualization | 15. Which of the following best describes | iso the graphical | | databases (b) Data that is too small to be analyzed effectively (c) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (b) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? and animations (a) Data cleaning (b) Missing values (c) Data visualization (d) Data hiding 22. is the fast rate at which data is received and acted on. 09509075 (a) Volume (b) Velocity (c) Variety (d) Vision 23. includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (e) Ordinal data (f) Data visualization (d) (e) Variety (c) Variety (d) Vision 23. is the fast rate at which data visualization (d) Productive maintenance | (a) Data that is stored in traditional | representation of data through disc of | | (a) Data cleaning (b) Missing values (c) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Statistical data (b) Missing values (c) Data visualization (d) Data hiding 22. is the fast rate at which data is received and acted on. (e) Variety (f) Vision 23. includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (e) Ordinal data (f) Referral data (a) Statistical data (b) Unlimited growth of data (c) Ordinal data (d) Predictive maintenance | | and animations 09509074 | | (c) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? (b) Data visualization (d) Data hiding 22. is the fast rate at which data is received and acted on. (e) Variety (d) Vision 23. includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (e) Ordinal data (f) Predictive maintenance | (b) Data that is too small to be analyzed | | | (c) Data that is characterized by high volume, velocity, and variety (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (d) Ruby (b) Unlimited growth of data (c) Data visualization (d) Data hiding (d) Data hiding 22 is the fast rate at which data is received and acted on. (a) Volume (b) Velocity (c) Variety (d) Vision 23 includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (e) Statistical data (f) Unlimited growth of data (c) Data visualization (d) Data hiding 24 is the fast rate at which data is received and acted on. (b) Velocity (c) Variety (d) Vision 23 includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (e) Statistical data (f) Data visualization (d) Predictive maintenance | | (b) Missing values | | (d) Data that is only generated by social media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (b) Python (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? 22. is the fast rate at which data is received and acted on. (a) Volume (b) Velocity (c) Variety (d) Vision 23. includes the data which can only take certain values and cannot be further subdivided into smaller units. (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (e) Volume (b) Velocity (a) Volume (b) Velocity (c) Variety (d) Vision 23. is limitation of big data which data (b) Continuous data (c)
Ordinal data (d) Referral data (e) Ordinal data (f) Ordinal data (g) Statistical data (g) Statistical data (g) Statistical data (g) Predictive maintenance | (c) Data that is characterized by high | (c) Data visualization | | media platforms 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? (a) Volume (b) Velocity (c) Variety (d) Vision 23 | volume, velocity, and variety | (d) Data hiding | | 16. What is the primary challenge associated with traditional data processing techniques when dealing with big data? (a) Volume (b) Velocity (c) Variety (d) Vision 23 | (d) Data that is only generated by seeing | 22. Is the last rate at which | | associated with traditional data processing techniques when dealing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (d) Ruby (c) Variety (d) Vision 23 | 16 What is the primary challenge | (a) Volume (b) Velocity | | processing techniques when dearing with big data? (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? 23 | associated with traditional data | (c) Variety (d) Vision | | (a) Lack of storage capacity (b) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (a) Statistical data (b) Unlimited growth of data (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? (a) Limited availability of data (b) Continuous data (c) Ordinal data (d) Referral data (e) Data visualization (d) Predictive maintenance | processing techniques when dealing | includes the data which | | (a) Slow processing speed (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (a) Statistical data (a) Statistical data (b) Unlimited growth of data (c) Ordinal data (d) Referral data (e) Ordinal data (f) Ordinal data (g) Statistical data (g) Predictive maintenance | With his date. | can only take certain values and cannot be | | (c) Inability to handle diverse data types and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data 24. is limitation of big data. (a) Statistical data (b) Unlimited growth of data (c) Ordinal data (d) Referral data (e) Ordinal data (f) Ordinal data (g) Statistical data (h) Unlimited growth of data (c) Data visualization (d) Predictive maintenance | (a) Lack of storage capacity | further subdivided into smaller units. | | and large volumes (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Statistical data (b) Continuous data (c) Ordinal data (d) Referral data (a) Statistical data (b) Unlimited growth of data (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? (a) Statistical data (b) Unlimited growth of data (c) Data visualization (d) Predictive maintenance | (b) Slow processing speed (c) Inability to handle diverse data types | 09509076 | | (d) Limited availability of data visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (b) Referral data (c) Ordinal data (d) Referral data (a) Statistical data (b) Unlimited growth of data (c) Data visualization (d) Predictive maintenance | and large volumes | | | visualization tools 17. Which programming language is commonly used for big data analytics and machine learning tasks? (a) Java (b) Rythom (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? (c) Ordinal data (d) Referral data (a) Statistical data (b) Unlimited growth of data (c) Data visualization (d) Predictive maintenance | (d) Limited availability of data | | | commonly used for big data analytics and machine learning tasks? (a) Java (b) Rythom (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? (a) Statistical data (b) Unlimited growth of data (c) Data visualization (d) Predictive maintenance | visualization tools | | | and machine learning tasks? (a) Java (b) Rython (b) Unlimited growth of data (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? (a) Statistical data (b) Unlimited growth of data (c) Data visualization (d) Predictive maintenance | 17. Which programming language is | (d) Referral data | | (a) Java (c) C++ (d) Ruby (b) Unlimited growth of data (c) Data visualization (d) Predictive maintenance (d) Predictive maintenance | commonly used for big data analytics | | | (c) C++ (d) Ruby 18. What is the primary purpose of data preprocessing in big data analytics? (b) Oliminted growth of data (c) Data visualization (d) Predictive maintenance | | (a) Statistical data | | 18. What is the primary purpose of data preprocessing in big data analytics? (c) Data visualization (d) Predictive maintenance | (c) C++ (d) Ruby | (b) Unlimited growth of data | | preprocessing in big data analytics? | 18 What is the primary purpose of data | (c) Data visualization | | | preprocessing in big data analytics? | (a) Predictive manifement | | | 07307011 | | 25. Customer satisfaction level such as 26. is a method of collecting information from individuals. satisfied, dissatisfied, and neutral are (a) Survey examples of data type. (a) Ordinal data (b) Data hiding (b) Continuous data (c) Data visualization (c) Numerical data (d) Data finding (d) Discrete data Answer Key 1 3 6 11 12 13 19 d 14 h 15 16 17 18 2 h 21 22 23 24 25 b 26 . C h a Solved Exercise Choose the correction option. 6. How can you organise data to make it 1. What is data? easier to analyse? (a) Processed information (a) By writing it in long paragraphs (b) Raw facts gathered about things (b) By creating tables, charts, and graphs (c) A collection of numbers only (c) By storing it in random files (d) A list of observed events-(d) By keeping it in a messy notebook 2. Which of the following is an example 7. Which tool can be used to create of qualitative data? (a) Temperature readings in degrees surveys online? Celsius (a) Microsoft Word (b) Number of students in a class (b) Google Forms (c) Favourite ice cream flavours (c) Excel Spreadsheets (d) Test scores out of 100 (d) Adobe Photoshop 3. What type of data involves distinct, separate values that are countable? 09509082 collection? (a) Nominal Data (b) Ordinal Data (c) Discrete Data (c) Types of fruits (a) Ordinal Data (d) Continuous Data 4. What is an example of continuous data? (a) Number of cars in a parking lot (b) Height of students in centimetres (d) Shirt sizes (small, medium, large) 5. What type of data is used to categorize items without implying any order? (c) Nominal Data (d) Continuous Data (b) Discrete Data 8. What is the main purpose of data 09509087 10 20 (a) To create random numbers (b) To gather information to answer questions or make decisions (c) To delete old data (d) To format text documents 9. What is the primary purpose of data visualization? 09509088 (a) To convert text into data (b) To generate random numbers (c) To make data easier to understand by turning it into pictures (d) To hide complex data 10. Which tool is specifically designed for creating detailed and interactive visualizations? (a) Microsoft Excel (b) Google Sheets (c) Tableau (d) PowerPoint 11. What is the first step in the data science process? 09509090 (a) Data Cleaning (b) Data Analysis (c) Data Collection (d) Understanding the problem 12. What does the 'Volume' characteristic of Big Data refer to? 09509091 (a) The speed at which data is generated (b) The different forms data can take (c) The sheer amount of data being collected (d) The way data is processed 13. What is an outlier in a dataset? 09509092 - (a) The most frequent value - (b) The average of all values - (c) An unusual or extreme value that doesn't fit the pattern. - (d) The middle value when all values are arranged in order ## 14. What does data encryption do? 09509093 - (a) It converts data into a code to prevent unauthorized access. - (b) It makes data available to everyone online. - (c) It automatically deletes old data. - (d) It speeds up internet connection. ## Answer Key | | | | | | | | | | | | | | | OC |) (| CU | 1100 | | | |----|---|----|---|----|---|----|---|---|---|-----|----|-------|-----|----|-----|----|------|----|---| | 1 | b | 2 | c | 3 | c | 4 | b | 5 | c | 65 | b | 177 | b | 8 | S)B | 9 | c | 10 | c | | 11 | d | 12 | c | 13 | c | 14 | a | | M | O)[| IC | الالر | U L | J | | |
| | | ## **Short Questions** ## Q.1 What is the difference between qualitative and quantitative data? 09509094 Ans. Qualitative data refer to categories or labels used to describe the qualities or characteristics of something rather than its quantity. Quantitative data consists of numbers used measure the quantity or amount of something. These data types answer mestions like "How much?" or "How long?". Q.2 Give an example of continuous data and explain why it is considered continuous. Ans. Continuous data consists of values that an take any number within a given range, cluding fractions of decimals. Examples clude student heights (150.5 cm, 160.2) cm), fruit weights (1.5 kg, 2.2 kg), and room temperatures (22.5°C, 23.7°C). Q.3 Which method would you use to collect opinions from a large group of people about a new school policy? 09509096 Ans. Questionnaires are similar to surveys but are often written forms that people fill out. They usually usually have a set of questions that need to be answered. Q.4 What type of data is the number of students in your class? 09509097 Ans. The number of students in your class is quantitative (numerical) data, specifically discrete data, because it represents a countable quantity. Q 5 Why is it important to organize data into tables or charts before analyzing it? Ans. Proper organization saves time. Think about searching for a book in a messy room versus a neatly arranged bookshelf. Similarly, when data is organized, it's easier to find and analysis. Q.6 What is one advantage of using online tools like Google Form for collecting survey data? Ans. A free tool from Google that helps you create surveys and collect responses online. Link for Google Forms is https://forms.google.com Q.7 Why might you need to integrate data from different sources when working on a project? 09509100 Ans. Data integration involves combining information from different sources to get a complete perspective. 1. Organize Data: Put all your saved information into one place, such as a document or spreadsheet. 2. Compare and Merge: Review data from different sources and find common themes. For instance, if many sources say that social Q.8 Describe a scenario where discrete data might be more useful tha continuous data. 0950910 Ans: When a school organizes mar activities and wishes to track the number students who attend each one, discrete data more relevant than continuous data. Q.9 Explain why data visualization important. How does it help understanding complex information? Ans: Data visualization is important because it makes understanding data much easier Imagine trying to understand a list hundreds of numbers. It's tough, right? But those numbers are displayed as a bar character to see what's going on. Q.10 Describe what a line graph is use for and provide an example of data th could be displayed using a line graph. Ans: Line graphs, often known as line char or line plots, are data visualization tools. It a type of graph that depicts data in graphical format, making the raw data mo intelligible. Example: A chart displaying the number students in a class that attend school eve day for a week. Q.11 Explain the use of scatter plots in visualizing continuous data. Provide an example a situation where a scatter plot would be useful. Ans: A scatter plot is a useful tool for displaying the relationship between two variables ar recognizing patterns like positive, negative, or no association. Example ## **Long Questions** 1. Explain the differences between qualitative and quantitative data. Provide examples of each type. Ans. Long Question No. 23 2. Describe the process of conducting a survey to gather data about students' favorite extra curricular activities. Ans. Long Question No. 7 (Point Number 1) 3. Compare and contrast continuous and discrete data. Use examples to show how each type of data might be used in a school setting, such as in measuring student performance or tracking attendance. Ans. Long Question No. 24 4. Analyze the benefits and challenges of using digital tools like Google Forms for data collection. Ans. Long Question No. 25 5. Imagine you are tasked with organizing a school event and need to collect data on 09509109 students' preferences for activities and refreshments. Ans. Long Question No. 26 6. Explain the role of tables and charts in data analysis. Provide an example of how you could use a table or chart to present data about students grades in different subjects. Ans. Long Question No. 27 7. Describe a situation where non-numeric data is essential. How would you collect, store, and analyze this type of data? Discuss the tools and techniques you would use to ensure 09509111 the data is accurately interpreted. Ans. Long Question No. 28 8. Explain the concept of data visualization. How does it help in understanding complex data? Provide examples of different types of visualizations and their applications in reallife scenarios. Ans. Long Question No. 11 9. Discuss the importance and benefits of data visualization. Why is it essential for businesses and decision-makers to use charts, graphs, and dashboards? Ans. Long Question No. 12 10. Differentiate between nominal, ordinal, discrete, and continuous data. For each type, describe a suitable visualization technique and provide a specific example of how this technique can be used to represent that type of data effectively. Ans. Long Question No. 4 ## Activities Activity 1 **Exploring Data Types** Activity Type: Group Task Details: Group Formation Divide the class into small groups. Assign each group a type of data (Qualitative, Quantitative, Nominal, Ordinal, Discrete, Continuous). Research and Design: Each group researches their assigned data type and creates a poster or presentation. They should include: 3) COM 1. Definition: Clear explanation of the data type. 2. Characteristics: Key features of the data type. 3. Examples: Real-life examples or scenarios where this data type is used. 4. Operations: Possible operations or analyses that can be performed with this data type. Presentation: Each group presents their poster to the class explaining their data type and answering any questions from classmates. Class Discussion: Facilitate a class discussion on how different data types are used in various reallife situations and data analysis. For more activities, you can visit, https://mentossacademia.com Ans. Class Work/ Lab Work/ Practical Work Activity 2 **Data Collection and Organization Activity Type:** Individual **Activity Task Details: Create Survey:** 1. Design a short survey with clear, specific questions on a topic of choice (e.g., favorite school subject). 2. Ensure questions are designed to gather meaningful data. Collect Responses: 1. Share the survey link with classmates or a small group to gather 2. Collect data over a specified period. **Organise Data:** 1. Enter the collected data into a spreadsheet. 2. Organise the data into tables and use basic spreadsheet functions to clean and prepare it. Create Visuals: 1. Use spreadsheet tools to create at least one chart or graph (e.g., bar chart, pie chart). 2. Label charts clearly and ensure they represent the data accurately. **Share Findings:** 1. Present the findings to the class. 2. Explain the visuals and what they reveal about the data. Ans. Class Work/ Lab Work/ Practical Work **Activity 3 Analysing and Interpreting Data Activity Type:** Group **Activity Task Details Data Organization** 3).COM 1. Each group receives a data set (e.g., student test scores). 2. Organise the data into a structured table. **Create Graphs** 1. Use graphing tools or paper to create graphs (e.g., bar chart, line graph) to represent the data visually. 2. Ensure graphs are appropriately labelled and scaled. 1. Analyse the graphs to identify trends, patterns, or outliers in the data. **Analyse Results** 18, com 2. Discuss possible interpretations of the results. Report Findings 1. Prepare a brief report summarizing the analysis 2. Share the report with the class, highlighting key findings and insights. Ans. Class Work/ Lab Work/ Practical Work **Activity 4** Visualizing Data Types Activity Type: Group **Activity Task Details: Assign Data Types** 1. Divide the class into groups, each assigned a specific data type (nominal, ordinal, discrete, continuous). **Create Visualizations** 2. Each group creates a poster using appropriate charts or graphs for their assigned data type: Nominal Data: Bar charts or pie charts. Ordinal Data: Bar charts or stacked bar charts. Discrete Data: Histograms or dot plots. Continuous Data: Line graphs, scatter plots, or box plots. **Present Findings:** 1. Each group presents their poster and explains why the chosen visualization method is appropriate. 2. Discuss the effectiveness of different visualizations for different data types. Ans. Class Work Lab Work Practical Work 09509117 Activity 5 **Data Cleaning and Validation** Activity Type: Individual **Activity Task Details: Evaluate Data:** 1. Review a data table with intentional errors (e.g., incorrect values, missing entries). 2. Identify errors, missing values, and outliers. Clean Data: 1. Apply techniques to correct errors (e.g., correcting incorrect values). 2. Fill in missing values using reasonable methods. 3. Address outliers by investigating and deciding on appropriate actions. **Explain Changes:** 1. Write a brief explanation of the changes made. 2. Justify why each correction was necessary for accurate analysis. Ans. Class Work/ Lab Work/ Practical Work 09509118 **Activity 6 Exploring Online Data Source** Activity Type Individual or Pair Activity Task Details: Data Gathering: 1. Choose a topic (e.g., impact of social media on teenagers). 2. Use online databases and resources to find relevant and reliable information. #### • Data Extraction: 1. Extract key pieces of information from source 2. Save the data in a document or spreadsheet. ## • Data Integration - 1. Organise the collected
data into a coherent report or summary. - 2. Include any charts or graphs that represent the data. #### • Presentation: 1. Present findings to the class. 2. Explain the sources of information and how the data supports the conclusions. ## Ans. Class Work/ Lab Work/ Practical Work Activity 7 Design Your Own Survey Objective: Learn how to design and analyse a survey for data collection. Required Material: Paper and pencils, Access to survey creation tools (optional: Google Forms or similar tools) ### **Activity Task Details:** Survey Design: 1. Students design a survey on a topic of interest (e.g., favourite books, study habits). 2. Include a variety of question types (e.g., multiple-choice, short answer). Collect Responses:) 1. If possible, use an online tool to distribute the survey to classmates or friends. Alternatively, gather responses on paper. • Analyse Data: 1. Compile the survey results into a data table. 2. Create visual representations (e.g., bar charts, pie charts) to display the survey results. ## • Report: 1. Write a brief report summarizing the survey results. 2. Include insights or trends observed from the data. For more activities visit, https://mentorsacademia.com Ans. Class Work/ Lab Work/ Practical Work MAMAN SILITARIS COMM