WWW. CONTENTS

Unit No.	Units	Page No.
01	Real Numbers	01
02	Logarithms	30
03	Set and Functions	54
04	Factorization and Algebraic Manipulation	93
05	Linear Equations and Inequalities	CO117
06	Trigonometry	153
97 ₀ (N	Coordinate Geometry	201
08	Logic	237
09	Similar Figures	252
10	Graphs of Functions	288
11	Loci and Construction	316
12	Information Handling	345
13	Probability	382
		- Sulli

A COUNTY OF THE PARTY OF THE PA

Introduction to Real Numbers

The history of numbers comprises thousands of years, from ancient civilization to the modern Arabic system.

Sumerians: (4500–1900BCE) used a sexagesimal (base 60) system for counting. The Sumerians used a small cone, bead, large cone, large perforated cone, sphere and perforated sphere, corresponding to 1, 10, 60 (a large unit), 600.

OTHER DESIGNATION	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	the same of the sa	THE RESERVE OF THE PERSON NAMED IN		
1	. 7	111	(1	100	Y Y-
2	17	12	(11)	200	M.
8	TIT	20	<<	800	1111-
4	W	30	///	400	WY-
5	W	40	ile	500	W Y-
6	TH .	50	1	600	# 1-
7	***	60	K	700	甲1-
8	₩	70	KK	800	₩Y-
9	Ħ	80	1	900	₩ l.
10	<	90	146	1000	THE
				7111	AHY

Egyptians: (3000–2000 BCE) used a decimal (base 10) system for counting. Here are some of the symbols used by the Egyptians, as shown in the figure below: The Egyptians usually wrote numbers left to right, starting with the highest denominator. For example, 2525 would be written with 2000 first, then 500, 20, and 5.

Romans: (500BCE-500CE) used the Roman materials system for counting. Roman numerals represent a number system that was widely used throughout Europe as the standard writing system until the late Middle ages. The ancient Romans explained that when a number reaches 10 it is not easy.

MM.

to count on one's fingers. Therefore, there was a need to create a proper number system that could be used for trade and communications. Roman numerals use 7 letters to represent different numbers. These are I, V X, L,C,D and M which represent the numbers 1,5,10,50,100,500 and 1000 respectively.

Indians: (500-1200)CE developed the concept of zero (0) and made a significant contribution to the decimal (base 10) system.

Ancient Indian mathematicians have contributed immensely to the field of mathematics. The invention of zero is attributed to Indians, and this contribution outweighs all others made by any other nation since it is the basis of the decimal number system, without which advancement in mathematics would have been possible. The number system used today was invented by Indians, and it is still called Indo-Arabic numerals because Indians invented them and the Arab merchants took them to the Western world.

-	=	=	Ŧ	1	4	7	4	2			
1	2	3	4	5	6	1	8	9			
œ	0	7	4	J	1	X	0	0			
10	20	30	40	50	60	70	80	90			
7	7.		+ 74		9	9	7	94			
100		200	500		1,000	4.0	00	70.000			

Arabs: (800-1500CE) introduced Arabic numerals (0-9) to Europe. The Islamic world underwent significant developments in mathematics. Muhammad bin Musa al-

Khwarzimi played a key role in this transformation, introducing algebra as a distinct field in the 9th century. Al-Khwarzimi's approach departing from earlier arithmetical traditions, laid the groundwork for a arithmetization of algebra, influencing mathematical thought for an extended period. Successors like Al-Karaji expanded on his work, contributing to advancements in various mathematical domains. The practicality and broad applicability of these mathematical methods facilitated the dissemination of Arabic mathematics to the West, contributing substantially to the evolution of Western mathematics.

Modern era (1700-present): Developed modern number systems e.g., binary system base -2) and hexadecimal system (base-16).

The Arabic system is the basis for modern decimal system used globally today. Its development and refinement comprise thousands of years from ancient Sumerians to modern mathematicians.

Combination of Rational and

In the modern era, the set [1,2,3,...] was adopted as the counting set. This counting set represents the set of natural numbers was extended to set of real numbers which is used most frequently in everyday life.

Real Numbers:

The set of Real numbers is the union (combination) of the set of rational numbers and irrational numbers i.e., $R = Q \cup Q'$

Rational Numbers

The set of rational numbers is defined as the set of numbers that contains those elements which can be expressed as quotient of two integers. For example, $\frac{2}{3}, \frac{4}{5}, \frac{6}{7}$...etc.

$$Q = \left\{ \frac{p}{q}; p, q \in Z \land q \neq 0 \right\}$$

Irrational Numbers:

The set of irrational numbers Q' contains those elements which can not be expressed as quotient of integers.

$$Q' = \left\{ x \neq \frac{p}{q}; p, q \in Z \land q \neq 0 \right\}$$

For example, $\pi, e, \sqrt{2}, \sqrt{3}, \sqrt{5}$ and $\sqrt{7}$ etc. are irrational numbers.

Decimal Representation of Rational

Numbers

(i) Terminating Decimal Numbers:

A decimal number with a finite number of digits after the decimal point is called a terminating decimal number.

For example
$$\frac{1}{4} = 0.25$$
, $\frac{8}{25} = 0.32$, $\frac{3}{8} = 0.375$,

$$\frac{4}{5} = 0.8$$

are all terminating decimals.

(ii) Recurring and Non-Terminating Decimal Numbers

The decimal numbers with a repeating pattern of digits after the decimal point are called recurring decimal numbers.

For example,

 $\frac{1}{3} = 0.333... = 0.\overline{3}$ (the 3 repeats infinitely)

 $\frac{1}{6} = 0.1666... = 0.1\overline{6}$ (the 6 repeats infinitely)

Example 1: Identify the following decimal numbers as rational or irrational numbers:

- (i) 0.35 09301001 (ii) 0.444... 09301002
- (iii) 3.5 09301003
- (iv) 3.36788542...

09301004

(v) 1.709975947...

09301005

Solution:

(i) 0.35 is a terminating decimal number, therefore it is a rational number.

- (ii) 0.444... is a recurring decimal number, therefore it is a rational number.
- number, therefore it is a rational number.
- (iv)3.3678542... is a non-terminating and non-recurring decimal number. Therefore, it represents an irrational number.
- (v) 1.709975947... is a non-terminating and non-recurring decimal number, it is an irrational number.

Representation of Real Numbers on number line

publications.unique.edu.pk () UGI.publications () uniquenotesofficial () () Uniquepublications () 0324-666661-2-

Representation of rational and irrational numbers on number line

Example 2: Represent \$\sqrt{5}\$ on a number line. 09301006

Solution:

 $\sqrt{5}$ can be located on the real line by geometric construction. As $\sqrt{5} = 2.236...$ which is near to 2. Mark a perpendicular line of $m\overline{AB} = 1$ unit at A, where $m\overline{OA} = 2$ units, and we have a right-angle triangle OAB. By using Pythagoras theorem

$$\left(m\overline{OB}\right)^2 = \left(m\overline{OA}\right)^2 + \left(m\overline{AB}\right)^2$$

$$\Rightarrow m\overline{OB} = \sqrt{(2)^2 + (1)^2} = \sqrt{4+1} = \sqrt{5}$$

$$\Rightarrow m\overline{OB} = \sqrt{5}$$

Draw an arc of radius $m \overline{OB} = \sqrt{5}$ taking O as centre, we got point "P" representing $\sqrt{5}$ on the number line

So,
$$|\overline{OP}| = \sqrt{5}$$

Example 3: Express the following recurring decimals as the rational number $\frac{p}{q}$, where p and q are integers.

(i) 0.5 09301007 (ii)

09301008

(i) **0.5**

Solution:

0.5

Let $x = 0.\overline{5}$

x = 0.5555

Multiply both sides by 10

10x = 10(0.5555...) 10x = 5.555...

Subtracting eq. (i) from eq. (ii)

$$10x - x = (5.555...) - (0.5555...)$$

$$9x = 5$$

$$\Rightarrow x = \frac{5}{9}$$

Which shows the rational number in the form $\frac{p}{a}$.

(ii) 0.93

Solution

0.93

x = 0.93939393... (i

Multiply both sides by 100, we get

100x = 100 (0.93939393...

100x = 93.939393...

Subtracting (i) from (ii)

100x-x (93.939393...) - (0.93939393...)

99x = 93

 $x = \frac{93}{99}$ which is a rational number in

the form of $\frac{p}{q}$

Example 4: Insert two rational numbers

between 2 and 3.

09301009

Solution

There are infinite rational numbers between 2 and 3.

We find any two of them

For this, find the average of 2 and 3

DANN. []

So, $\frac{5}{2}$ is a rational number between 2 and 3,

to find another rational number between 2

and 3 we will again find average of $\frac{5}{2}$ and 3

i.e

$$= \left(\frac{5}{2} + 3\right) \div 2$$

$$=\left(\frac{5+6}{2}\right)\div\frac{2}{1}$$

$$=\left(\frac{11}{2}\right) \times \frac{1}{2} = \frac{11}{4}$$

Hence two rational numbers between 2 and

3 are
$$\frac{5}{2}$$
 and $\frac{11}{4}$.

Try Yourself

What will be the product of two irrational numbers?

The product of two irrational numbers may or may not be an irrational number.

In most cases, the product of two irrational numbers will be irrational numbers but not always.

Two irrational numbers may multiply to form a rational number.

For example,

$$\sqrt{2} \times \sqrt{8} = \sqrt{16} = 4$$
 (rational) and

$$\sqrt{2} \times \sqrt{3} = \sqrt{6}$$
 (irrational)

Properties of Real Numbers

All calculations involving addition, subtraction, multiplication, and division of real numbers are based on their properties. In this section, we shall discuss these properties.

Additive properties

ditive properties		TE COM
Name of the property	$\forall a, b, c \in R$	Examples
Closure	a+b=R 0 0	$2+3=5\in R$
Commutative %	a+b+a	2+5=5+2
and IIII		7 = 7
Associative	a+(b+c)=(a+b)+c	2 + (3 + 5) = (2 + 3) + 5
1000		2 + 8 = 5 + 5
		10 = 10
Identity	a+0=a=0+a	5+0=5=0+5
Inverse	a + (-a) = -a + a = 0	6 + (-6) = (-6) + 6 = 0
Name of the property	$\forall a, b, c \in \mathbf{R}$	Examples
Closure	$ab \in R$	$2 \times 5 = 10 \in R$
Commutative	ab=ba	$2 \times 3 = 3 \times 2 = 6$

Name of the property	$\forall a, b, c \in \mathbf{R}$	Examples
Closure	$ab \in R$	$2 \times 5 = 10 \in R$
Commutative	ab=ba	$2 \times 3 = 3 \times 2 = 6$
Associative	a(bc) = (ab)c	$2 \times (3 \times 5) = (2 \times 3) \times 5$ 2 \times 15 = 6 \times 5 30 = 30
Identity	$a \times 1 = 1 \times a = a$	$5 \times 1 = 1 \times 5 = 5$
Inverse	$a \times \frac{1}{a} = \frac{1}{a} \times a = 1$	$7 \times \frac{1}{7} = \frac{1}{7} \times 7 = 1$

Do you know?

0 and 1 are the additive and multiplicative identities of re numbers respectively.

Remember!

 $0 \in R$ has no multiplicative Inverse.

Distributive Properties

For all real numbers a, b, c

- (i) a(b+c) = ab + ac is called left distributive property of multiplication over addition.
- (ii) a(b-c) = ab-ac is called left distributive property of multiplication over subtraction.
- (iii) (a+b)c = ac + bc is called right distributive property of multiplication over addition.
- (iv) (a-b)c = ac-bc is called right distributive property of multiplication over subtraction.

Properties of Equality of Real number

i.	Reflexive property	$\forall a \in R, a = a$
ii.	Symmetric property	$\forall a,b \in R, a=b \Rightarrow b=a$
iii.	Transitive property	$\forall a,b,c \in R, \ a=b \land b=c \Rightarrow a=c$
iv	Additive properly.	$\forall a,b,c \in R, a=b \Rightarrow a+c=b+c$
v.	Multiplicative property	$\forall a,b,c \in R, a \Rightarrow b \Rightarrow ac \Rightarrow bc$
vi.	Cancellation property w.r.t addition	$\forall a, b, c \in R, a+c=b+c \Rightarrow a=b$
vii.	Cancellation property w.r.t multiplication	$\forall a,b,c \in \mathbb{R}$, and $c \neq 0$ ac = bc $\Rightarrow a = b$

Order Properties

Prope	erties	18 COUNT
i.	Trichotomy property	$\forall a,b \in \mathbb{R}$, either $a = b$ or $a > b$ or $a < b$
ii.	Transitive Property	₩a,b,c∈R
	DOWN JULIA	$a > b \land b > c \Rightarrow a > c$
M	1/	• $a < b \land b < c \Rightarrow a < c$
iii.	Additive property	$\forall a,b,c \in R$
		$a > b \Rightarrow a + c > b + c$
		$a < b \Rightarrow a + c < b + c$
iv	Multiplicative property	$\forall a, b, c \in R$ $a > b \Rightarrow ac > bc \text{ if } c > 0$
		$a > b \Rightarrow ac < bc \text{ if } c > 0$
		$a > b \Rightarrow ac < bc \text{ if } c < 0$
		$a < b \Rightarrow ac > bc \text{ if } c < 0$
		$a > b \land c > d \Rightarrow ac > bd$
		$a < b \land c < d \Rightarrow ac < bd$
v	Division property	$\forall a,b,c \in R$
		• $a < b \Rightarrow \frac{a}{c} < \frac{b}{c}$ if $c > 0$
	700.70	• $a < b \Rightarrow \frac{a}{c} < \frac{b}{c}$ if $c < 0$
	I MITTIN I	Mac c c
W	mw.allian	• $a > b \Rightarrow \frac{a}{c} > \frac{b}{c} \text{ if } c > 0$
		• $a > b \Rightarrow \frac{a}{c} < \frac{b}{c} \text{ if } c < 0$
vi	Reciprocal property	$\forall a, b \in R$ and have same sign
ne		• $a < b \Rightarrow \frac{1}{a} > \frac{1}{b}$
	nb.	
iou	orida	• $a > b \Rightarrow \frac{1}{a} < \frac{1}{b}$

Example 5: If $a = \frac{2}{3}$, $b = \frac{3}{2}$, $c = \frac{5}{3}$ then verify the distributive property over addition. **Solution:** (i) Left distributive property

L.H.S = a(b+c) R.H.S = ab+ac= $\frac{2}{3} \left(\frac{3}{2} + \frac{5}{3} \right)$ = $\left(\frac{2}{3} \right) \left(\frac{3}{2} \right) + \left(\frac{2}{3} \right) \left(\frac{5}{3} \right)$

a(b+c) = ab+ac

$$= \frac{2}{3} \left(\frac{19}{6} \right) = \frac{9+10}{9}$$

$$= \frac{19}{9}$$

$$= \frac{19}{9}$$

L.H.S = R.H.S Hence proved

(ii) Right distributive property

$$(a+b)c = ac+bc$$

L.H.S =
$$(a+b)c$$
 R.H.S = $ac+bc$
= $\left(\frac{2}{3} + \frac{3}{2}\right)\frac{5}{3}$ = $\left(\frac{2}{3}\right)\left(\frac{5}{3}\right) + \left(\frac{3}{2}\right)\left(\frac{5}{3}\right)$
= $\left(\frac{4+9}{6}\right)\frac{5}{3}$ = $\frac{10}{9} + \frac{15}{6}$
= $\left(\frac{13}{6}\right)\left(\frac{5}{3}\right)$ = $\frac{20+45}{18}$
= $\frac{65}{18}$ = $\frac{65}{18}$

L.H.S = R.H.S

Hence Proved

Example 6: Identify the property that justifies the statement

(i) If a > 13 then a + 2 > 15(ii) If 3 < 9 and 6 < 12 then 9 < 21(iii) If 7 > 4 and 5 > 3 then 35 > 12(iv) If $-5 < -4 \Rightarrow 20 > 16$

Solution

(i) a > 13Add 2 on both sides a+2>13+2a+2>15

(order property w.r.t addition)

- (ii) As 3 < 9 and 6 < 12 $\Rightarrow 3 + 6 < 9 + 12$ 9 < 21(order property w.r.t addition)
- (iii) 7 > 4 and 5 > 3 $\Rightarrow 7 \times 5 > 4 \times 3$ $\Rightarrow 35 > 12$ (order property w.r.t multiplication)
- (iv) As -5 < -4Mulyplying both sides by $-5 \times -4 \times 4 \times 4$

(order property w.r.t multiplication)

Exercise 1.1

Q.1 Identify each of the following as a rational or irrational numbers:
Solution:

Rational numbers

- (i) 2.353535 09301015 (ii) 0.6 09301016
- (ix) $\frac{15}{4}$ 09301017 (x) $\left(2-\sqrt{2}\right)(2+\sqrt{2})$

Irrational numbers

- (iii) 2.236067...09301019 (iv) $\sqrt{7}$ 09301020
- (v) e 09301021 (vi) π 09301022
- (vii) $5 + \sqrt{11}$ 09301023 (viii) $\sqrt{3} + \sqrt{13}$ 09301024
- Q.2 Represent the following numbers on number line:

(i) $\sqrt{2}$ Solution:

09301025

 $\sqrt{2}$ can be located on the real line by geometric construction. Mark a perpendicular line of $\overline{MAB} = 1$ unit at A, where $\overline{MOA} = 1$ unit, and we have a right-angle triangle OAB. By using Pythagoras theorem

$$(m\overline{OB})^{2} = (m\overline{OA})^{2} + (m\overline{AB})^{2}$$

$$\sqrt{(m\overline{OB})^{2}} = \sqrt{(m\overline{OA})^{2} + (m\overline{AB})^{2}}$$

$$m\overline{OB} = \sqrt{(1)^{2} + (1)^{2}} = \sqrt{1+1} = \sqrt{2}$$

Taking O as centre, draw an arc of radius $m \overline{OB} = \sqrt{2}$ Which cut the number line at P. W e get point "P" representing $\sqrt{2}$ on the number line

So,
$$|\overline{OP}| = \sqrt{2}$$

(ii)
$$\sqrt{3}$$
 09301026 Solution:

 $\sqrt{3}$ can be located on the real line by geometric method. Mark a line of $m\overline{AB} = 1$ unit at A, With centre at A draw an arc of radius 2 units above the line. From point B draw a perpendicular line segment so that it cuts the arc at C. Join A to C. We have a right-angled $\triangle ABC$ in which $m\overline{AB} = 1$ unit and $m\overline{AC} = 2$ units. By using Pythagoras theorem.

$$(m\overline{AC})^{2} = (m\overline{AB})^{2} + (m\overline{BC})^{2}$$

$$(2)^{2} = (1)^{2} + (m\overline{BC})^{2}$$

$$4 = 1 + (m\overline{BC})^{2}$$

$$4 - 1 = (m\overline{BC})^{2}$$

$$3 = (m\overline{BC})^{2}$$

$$\sqrt{(m\overline{BC})^{2}} = \sqrt{3}$$

$$m\overline{BC} = \sqrt{3}$$

Now consider B is at 0. Taking B as centre, draw an arc of radius $m \overline{BC} = \sqrt{3}$, which cut the number line at P. We get point "P" representing $\sqrt{3}$ on the number line

So,
$$|\overline{BP}| = \sqrt{3}$$

(iii) $4\frac{1}{3}$ 09301027

Point P represents $4\frac{1}{3}$ on the number line.

(iv)
$$-2\frac{1}{7}$$
 09301028

Solution:

Point P represents $-2\frac{1}{7}$ on the number line.

(v)
$$\frac{5}{8}$$
 09301029

Solution:

0.4

Solution:

Let
$$x = 0.\overline{37}$$
 $x = 0.37373737$

Multiplying both sides by "100"

 $100x = 100 \ (0.37373737...)$
 $100x = 37.373737...$

(ii)

Subtracting eq.(i) from (ii)

 $100x - x = (37.373737...) - (0.37373737...)$
 $99x = 37$
 $x = \frac{37}{99}$
 $\Rightarrow 0.\overline{37} = \frac{37}{99}$

(iii) 0.21 Solution:

09301033

Let $x = 0.\overline{21}$

x = 0.21212121... (i)

Subtracting eq.(i) from (ii) 100x - x = (21.212121...) - (0..21212121...)

99x = 21 $x = \frac{21}{99} = \frac{7}{33}$ $\Rightarrow 0.\overline{21} = \frac{7}{33}$

Name the property used in the following.

09301034

Sr. No.		Property Name
(i)	(a+4) + b = a + (4+b)	Associative property w.r.t addition
(ii)	$\sqrt{2} + \sqrt{3} = \sqrt{3} + \sqrt{2}$	Commutative property w.r.t addition
(iii)	x-x=0	Additive Inverse
(iv)	a(b+c) = ab + ac	Left distributive property of multiplication over addition
(v)	16+0=16	Additive Identity
(vi)	100×1 = 100	Multiplicative identity
(vii)	$4 \times (5 \times 8) = (4 \times 5) \times 8$	Associative property w.r.t multiplication
(viii)	ab = ba	Commutative property w.r.t multiplication.

the 5. Name the property used following:

Solution:

(i) $-3 < -1 \Rightarrow 0 < 2$ 09301035 Additive property of inequality

(ii) If a < b then Reciprocal property

(iii) If a < b then a+c < b+c09301037 Additive property of inequality

(iv) If ac < bc and c > 0 then a < bCancellation property of inequality w.r.t multiplication.

(v) If ac < bc and c < 0 then a > b 09301038 Cancellation property of inequality w.r.t multiplication.

(vi) Either a > b or a = b or a < bTrichotomy property

6. Insert two rational numbers between

(i)
$$\frac{1}{3}$$
 and $\frac{1}{4}$

Solution:

Two rational numbers between $\frac{1}{2}$ and

Average of $\frac{1}{3}$ and $\frac{1}{3}$ $=\left[\frac{4+3}{12}\right]\times\frac{1}{2}$ $=\frac{7}{12}\times\frac{1}{2}=\frac{7}{24}$

Now we find average of $\frac{1}{2}$ and $\frac{7}{24}$

Average of $\frac{1}{3}$ and $\frac{7}{24} = \left(\frac{1}{3} + \frac{7}{24}\right) \div 2$ $=\frac{8+7}{24}\times\frac{1}{2}$ $=\frac{15}{24} \times \frac{1}{2} = \frac{15}{48} = \frac{5}{16}$

Thus $\frac{5}{16}$ and $\frac{7}{24}$ are two rational numbers

between $\frac{1}{3}$ and $\frac{1}{4}$.

(ii) 3 and 4

09301040

Solution: Two rational numbers between 3 and 4.

Average of 3 and $4 = \frac{3+4}{2} = \frac{7}{2}$

Average of
$$\frac{7}{2}$$
 and $4 = \left(\frac{7}{2} + 4\right) \div 2$

$$= \left(\frac{7 + 8}{2}\right) \div \frac{2}{1}$$

$$= \frac{15}{2} \times \frac{1}{2}$$

$$= \frac{15}{4}$$

Thus $\frac{7}{2}$ and $\frac{15}{4}$ are two rational numbers between 3 and 4.

(iii) $\frac{3}{5}$ and $\frac{4}{5}$

09301041

Solution:

Two rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$

Everage of $\frac{3}{5}$ and $\frac{4}{5} = \left(\frac{3}{5} + \frac{4}{5}\right) \div 2$ $=\left(\frac{3+4}{5}\right)\times\frac{1}{2}$ $=\frac{7}{5}\times\frac{1}{2}=\frac{7}{10}$

Average of $\frac{7}{10}$ and $\frac{4}{5} = \left(\frac{7}{10} + \frac{4}{5}\right) \div 2$ $=\left(\frac{7+8}{10}\right)\times\frac{1}{2}$ $=\frac{15}{10}\times\frac{1}{2}$ $=\frac{15}{20}=\frac{3}{4}$

Thus $\frac{7}{10}$ and $\frac{3}{4}$ are two rational numbers

Radical Expressions

If n is a positive integer greater than 1, and a is a real number, then any real number $x \supseteq$ such that $x = \sqrt[n]{a}$ is called nth root of a Here \(\) is called radical \(\) and \(n \) is the

index of radical A real number under the radical sign is called a radicand. \$\sqrt{5}, \$\sqrt{7}\$ are examples of radical form.

Laws of Radicals and Indices

Laws of Radical

(i)
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

(ii)
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

(iii)
$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

(iv)
$$(\sqrt[n]{a})^n = (a^{\frac{1}{n}})^n = a$$

Laws of Indices

(i)
$$a^m . a^n = a^{m+n}$$

(ii)
$$(a^m)^n = a^{mn}$$

(iii)
$$(ab)^n = a^n b^n$$

(iv)
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$(v) \frac{a^m}{a^n} = a^{m-n}$$

(vi)
$$a^0 = 1$$

Example 7

Simplify the following:

(i)
$$\sqrt[4]{16x^4y^8}$$

$$\sqrt[4]{16x^4y^8}$$

$$= (16x^4y^8)^{\frac{1}{4}}$$

$$= (16x^4y^6)^4$$

$$= (16)^{\frac{1}{4}} (x^4)^{\frac{1}{4}} (y^8)^{\frac{1}{4}}$$

$$= 2^{4 \cdot \frac{1}{4}} \times x^{4 \cdot \frac{1}{4}} \times v^{8 \cdot \frac{1}{4}}$$

=
$$2xy^{-1}$$

(ii) $\sqrt[3]{27x^6y^9z^3}$

 $\sqrt[n]{a} = a^{\frac{1}{n}}$

$$\therefore (ab)^m = a^m b^m$$

$$\therefore (a^m)^n = a^{mn}$$

09301043

Solution:

$$\sqrt[3]{27x^6y^9z^3}$$

$$= \left(27x^6y^9z^3\right)^{\frac{1}{3}}$$

$$\therefore \sqrt[n]{a} = a^{\frac{1}{n}}$$

$$= (27)^{\frac{1}{3}} (x^{6})^{\frac{1}{3}} (x^{9})^{\frac{1}{3}} (z^{3})^{\frac{1}{3}} (z^{3})^{\frac{$$

$$=3^{3\times\frac{1}{3}}\cdot x^{6\times\frac{1}{3}}\cdot y^{9\times\frac{1}{3}}.z^{3\times\frac{1}{3}}$$

$$=3x^2y^3z$$

(iii)
$$(64)^{-\frac{4}{3}}$$

09301044

Solution:

$$(64)^{-\frac{4}{3}}$$

$$= \frac{1}{(64)^{\frac{4}{3}}}$$

$$= \frac{1}{(4)^{\frac{4}{3}}} = \frac{1}{4^{3 \times \frac{4}{3}}}$$

$$=\frac{1}{4^4}=\frac{1}{256}$$

Surds and their Applications

An irrational radical with rational radicand is called a sund. For example: $\sqrt{7}$, $\sqrt{2}$, $\sqrt[3]{11}$ are surds but $\sqrt{\pi}$, \sqrt{e} are not surds.

The different type of surds are as follow:

- (i) A surd that contains a single term is called a monomial e.g., $\sqrt{5}$, $\sqrt{7}$
- (ii) A surd that contains the sum of two monomial surds is called a binomial surd e.g., $\sqrt{3} + \sqrt{5}$, $\sqrt{2} + \sqrt{7}$ etc.
- (iii) $\sqrt{a} + \sqrt{b}$ and $\sqrt{a} \sqrt{b}$ are conjugate surds of each other.

Rationalization of denominator

To rationalize a denominator of the form $a + b\sqrt{x}$ or $a - b\sqrt{x}$, we multiply both the numerator and denominator by the conjugate factor.

Example 8: Rationalize the denominator

$$\frac{3}{\sqrt{5} + \sqrt{2}} = \frac{3}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}$$

$$= \frac{3(\sqrt{5} - \sqrt{2})}{(\sqrt{5})^2 - (\sqrt{2})^2}$$

$$= \frac{3(\sqrt{5} - \sqrt{2})}{5 - 2}$$

$$= \frac{3(\sqrt{5} - \sqrt{2})}{3}$$

$$= \sqrt{5} - \sqrt{2}$$

Solution (ii):
$$= \frac{3(\sqrt{5} + \sqrt{3})}{(\sqrt{5})^2 - (\sqrt{3})^2}$$

$$= \frac{3(\sqrt{5} + \sqrt{3})}{(\sqrt{5})^2 - (\sqrt{3})^2}$$

$$= \frac{3(\sqrt{5} + \sqrt{3})}{5 - 3}$$

$$= \frac{3(\sqrt{5} + \sqrt{3})}{2}$$

Exercise 1.2

Rationalize the denominator of following:

(i)
$$\frac{13}{4+\sqrt{3}}$$

Solution:

$$\frac{13}{4+\sqrt{3}}$$

 $\frac{13}{4+\sqrt{3}}$ Multiplying and dividing by $4-\sqrt{3}$

$$= \frac{13}{(4+\sqrt{3})} \times \frac{(4-\sqrt{3})}{(4-\sqrt{3})}$$

$$= \frac{13(4-\sqrt{3})}{(4)^2-(\sqrt{3})^2}$$

$$= \frac{13(4-\sqrt{3})}{16-3}$$

$$=\frac{13\left(4-\sqrt{3}\right)}{13}$$

(ii)
$$\frac{\sqrt{2} + \sqrt{5}}{\sqrt{3}}$$
 0930104
Solution:

Solution:

$$\frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}}$$

Multiplying and dividing by $\sqrt{3}$

$$= \frac{\sqrt{2} \times \sqrt{3} \times \sqrt{3}}{\sqrt{3}}$$

$$= \frac{\sqrt{2} \times \sqrt{3} + \sqrt{5} \times \sqrt{3}}{\left(\sqrt{3}\right)^2}$$

$$= \frac{\sqrt{6} + \sqrt{15}}{3}$$

(iii)
$$\frac{\sqrt{2}-1}{\sqrt{5}}$$

Solution:

$$\frac{\sqrt{2}-1}{\sqrt{5}}$$

Multiplying and dividing by " $\sqrt{5}$ "

$$= \frac{\left(\sqrt{2}-1\right)}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$$

$$=\frac{(\sqrt{2}-1)\sqrt{5}}{(\sqrt{3})^2}$$

$$= \frac{\sqrt{5}(\sqrt{2}-1)}{5}$$

$$= \frac{\sqrt{10}-\sqrt{5}}{5}$$
(iv) $\frac{6-4\sqrt{2}}{6+4\sqrt{2}}$
Solution:

Solution:

$$\frac{6-4\sqrt{2}}{6+4\sqrt{2}}$$

Multiplying and dividing by $(6-4\sqrt{2})$

$$= \frac{\left(6 - 4\sqrt{2}\right)}{\left(6 + 4\sqrt{2}\right)} \times \frac{\left(6 - 4\sqrt{2}\right)}{6 - 4\sqrt{2}}$$

$$= \frac{\left(6 - 4\sqrt{2}\right)^2}{\left(6\right)^2 - \left(4\sqrt{2}\right)^2} \quad [\because (a-b)^2 = a^2 + b^2 - 2ab]$$

$$= \frac{(6)^{2} + (4\sqrt{2})^{2} - 2(6)(4\sqrt{2})}{36 - 16(2)}$$

$$= \frac{36 + 16(2) - 48\sqrt{2}}{36\sqrt{32}}$$

$$= \frac{36+16(2)-48\sqrt{2}}{36\sqrt{32}}$$

$$= \frac{36+32-48\sqrt{2}}{4}$$

$$=\frac{68-48\sqrt{2}}{4}$$

$$= \frac{4\left(17-12\sqrt{2}\right)}{4}$$

$$=17-12\sqrt{2}$$

(v)
$$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$

09301051

Solution:

$$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$

Multiplying and dividing by $(\sqrt{3} - \sqrt{2})$

$= \frac{(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})^2} \times \sqrt{3} - \sqrt{2}$ $= \frac{(\sqrt{3} - \sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2} [\because (a-b)^2 = a^2 + b^2 - 2ab]$ $= \frac{(\sqrt{3})^2 + (\sqrt{2})^2 - 2(\sqrt{3})(\sqrt{2})}{3 - 2}$ $=\frac{3+2-2\sqrt{6}}{1}$

$$=\frac{1}{5-2\sqrt{6}}$$

$$=5-2\sqrt{6}$$

$$vi) \frac{4\sqrt{3}}{\sqrt{7} + \sqrt{5}}$$

$$\frac{4\sqrt{3}}{\sqrt{7} + \sqrt{5}} \times \frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} + \sqrt{5}} \times \frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} + \sqrt{5}} \times \frac{\sqrt{7} - \sqrt{5}}{\sqrt{5}} \times \frac{\sqrt{7$$

$$= \frac{4\sqrt{3}(\sqrt{7} - \sqrt{5})}{7 - 5}$$

$$= \frac{2\cancel{\cancel{4}}\sqrt{3}(\sqrt{7} - \sqrt{5})}{\cancel{\cancel{2}}}$$

$$= 2\sqrt{3}(\sqrt{7} - \sqrt{5})$$

Q.2 Simplify the following

$$(i) \left(\frac{81}{16}\right)^{-\frac{3}{4}}$$

09301052

Solution:

$$\left(\frac{81}{16}\right)^{-\frac{3}{4}}$$

$$=\left(\frac{16}{81}\right)^{\frac{3}{4}}$$

$$=$$
 $\left(\frac{2^4}{3^4}\right)^{\frac{3}{4}}$

$$\frac{3^4}{2^{4 \times \frac{3}{4}}}$$

$$= \frac{2^3}{3^3} = \frac{2 \times 2 \times 2}{3 \times 3 \times 3}$$

$$= \frac{8}{27}$$

(ii)
$$\left(\frac{3}{4}\right)^{-2} \div \left(\frac{4}{9}\right)^3 \times \frac{16}{27}$$

$$\left(\frac{3}{4}\right)^{-2} \div \left(\frac{4}{9}\right)^3 \times \frac{16}{27}$$

$$= \left(\frac{4}{3}\right)^2 \times \left(\frac{9}{4}\right)^3 \times \frac{2^4}{3^3}$$

$$= \left(\frac{2^{2}}{3}\right)^{2} \times \left(\frac{3^{2}}{2^{2}}\right)^{3} \times \frac{2^{4}}{3^{3}}$$

$$= \frac{2^{4}}{3} \times \left(\frac{3^{2}}{2^{2}}\right)^{3} \times \frac{2^{4}}{3^{3}} \times \frac{2^{4}}$$

$$= \frac{2^{4+4} \times 3^6}{2^6 \times 3^{2+3}}$$

$$= \frac{2^8 \times 3^6}{2^6 \times 3^5}$$

$$= 2^{8} \times 3^{6} \times 2^{-6} \times 3^{-5}$$

$$= 2^{8-6} \times 3^{6-5}$$

$$= 2^2 \times 3^1$$

$$= 4 \times 3$$

(iii)
$$(0.027)^{-\frac{1}{3}}$$

Solution:

$$(0.027)^{-\frac{1}{3}}$$

$$= \left(\frac{27}{1000}\right)^{\frac{1}{3}} \cdot \cdot \left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m}$$

$$= \left(\frac{10^3}{3^3}\right)^{\frac{1}{3}}$$
$$= \frac{10^{\frac{3\times\frac{1}{3}}{3}}}{\frac{3\times\frac{1}{3}}{3\times\frac{1}{3}}}$$

$$=\frac{10}{3}=3\frac{1}{3}$$

(iv)
$$\sqrt[7]{\frac{x^{14} \times y^{21} \times z^{35}}{y^{14}z^7}}$$

09301055

$$\sqrt[3]{x^{14} \times y^{21} \times z^{35} \times y^{-14} \times z^{-7}}
= \sqrt[3]{x^{14} \times y^{21-14} \times z^{35-7}}
= \left(x^{14} \times y^{7} \times z^{28}\right)^{\frac{1}{7}}
= x^{14 \times \frac{1}{7}} \times y^{7 \times \frac{1}{7}} \times z^{28 \times \frac{1}{7}}$$

(v)
$$\frac{5 \times (25)^{n+1} - 25 \times (5)^{2n}}{5 \times (5)^{2n+3} - (25)^{n+1}}$$

Solution:

 x^2yz^4

$$\frac{5 \times (25)^{n+1} - 25 \times (5)^{2n}}{5 \times (5)^{2n+3} - (25)^{n+1}}$$

$$= \frac{5 \cdot (5^2)^{n+1} - (5^2)(5^{2n})}{5 \cdot (5)^{2n+3} - (5^2)^{n+1}}$$
1:

12

13

14

$$= \frac{5 \times (5^{2n+2}) - 5^{2n+2}}{5 \times (5^{2n+2} \times 5^1) - 5^{2n+2}}$$

$$= \frac{5 \times 5^{2n+2} - 5^{2n+2}}{5^{2n+2} \times 25 - 5^{2n+2}}$$

$$= \frac{5^{2n+2}(5-1)}{5^{2n+2}} \sqrt{5^{2n+2}}$$

$$= \frac{3}{5^{2n+2}(25-1)}$$

$$=\frac{4}{24}$$

(vi)
$$\frac{(16)^{x+1} + 20(4^{2x})}{2^{x-3} \times 8^{x+2}}$$

Solution:

$$\frac{(16)^{x+1} + 20(4^{2x})}{2^{x-3} \times 8^{x+2}}$$

$$= \frac{\left(2^4\right)^{x+1} + \left(5 \times 2^2\right) \left(2^2\right)^{2x}}{2^{x-3} \times \left(2^3\right)^{x+2}}$$

$$= \frac{2^{4x+4} + (5 \times 2^2)(2^{4x})}{2^{x-3} \times 2^{3x+6}}$$

$$= \frac{2^{4x+4}}{2^{3x+6+x-3}}$$

$$= \frac{2^{4x+4} + 5 \times 2^{4x+2}}{2^{4x+3}}$$

$$= \frac{2^{4x+2} \times 2^2 + 5 \times 2^{4x+2}}{2^{4x+2} \times 2^1}$$

$$= \frac{2^{4x+2} \times (2^2+5)}{2^{4x+2} \times (2)}$$

$$= \frac{4+5}{2}$$

$$=\frac{9}{2}$$

(vii) $(64^{-\frac{2}{3}} - 9)^{\frac{-3}{2}}$

09301058\

Solution:

$$(64)^{-\frac{2}{3}} \div (9)^{-\frac{3}{2}}$$

$$= \frac{(64)^{-\frac{2}{3}}}{(9)^{-\frac{3}{2}}}$$

$$= \frac{9^{\frac{3}{2}}}{64^{\frac{2}{3}}} \qquad \left(\because \frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m} \right)$$

$$= \frac{\left(3^2\right)^{\frac{3}{2}}}{\left(2^6\right)^{\frac{2}{3}}}$$

$$= \frac{3^{2 \times \frac{3}{2}}}{2^{6 \times \frac{2}{3}}}$$

$$=\frac{1}{2^4}$$

$$=\frac{27}{16}$$

(viii)
$$\frac{3^n \times 9^{n+1}}{3^{n-1} \times 9^{n-1}}$$

09301059

Solution:

$$3^n \times 9^{n+1}$$

$$3^{n-1} \times 9^{n-1}$$
$$3^n \times (3^2)$$

$$= \frac{3^{n} \times (3^{2})^{n+1}}{3^{n-1} \times (3^{2})^{n-1}}$$

$$=\frac{3^n\times 3^{2n+2}}{3^{n-1}\times 3^{2n-2}}$$

$$=\frac{3^{n+2n+2}}{3^{n+2n+2}}$$

$$3^{n-1+2n-2}$$
 3^{3n+2}

 $3^{3n+2} \times 3^{-3n+3}$

$$= 3^{3n+2-3n+3} \qquad \left(\because \frac{a^m}{a^n} = a^{m-n} \right)$$

$$= 3^5$$

 $=3\times3\times3\times3\times3$

(ix)
$$\frac{5^{n+3}-6.5^{n+1}}{9\times 5^n-4\times 5^n}$$

09301060

Solution:

Solution:

$$\frac{5^{n+3} - 6.5^{n+1}}{9 \times 5^n - 4 \times 5^n}$$

$$= \frac{5^n \times 5^3 - 6.5^n.5^1}{9 \times 5^n - 4 \times 5^n}$$

$$= \frac{5^n (5^3 - 6 \times 5)}{5^n (9 - 4)}$$

$$= \frac{5^3 - 6 \times 5}{9 - 4}$$

$$= \frac{125 - 30}{9 - 4}$$

$$= \frac{95}{5}$$

(i)
$$x + \frac{1}{x}$$

(ii)
$$x - \frac{1}{x}$$

(i)
$$x + \frac{1}{x}$$
 (ii) $x - \frac{1}{x}$ (iii) $x^2 + \frac{1}{x^2}$

(iv)
$$x^2 - \frac{1}{x^2}$$

(v)
$$x^4 + \frac{1}{x^4}$$

(iv)
$$x^2 - \frac{1}{x^2}$$
 (v) $x^4 + \frac{1}{x^4}$ (vi) $\left(x - \frac{1}{x}\right)^2$

Solution:

$$x = 3 + \sqrt{8}$$

$$\frac{1}{x} = \frac{1}{3 + \sqrt{8}}$$
(i)

$$\frac{1}{x} = \frac{1}{\left(3 + \sqrt{8}\right)} \times \frac{\left(3 - \sqrt{8}\right)}{\left(3 - \sqrt{8}\right)}$$

$$\frac{1}{x} = \frac{3 - \sqrt{8}}{\left(3\right)^2 - \left(\sqrt{8}\right)^2}$$

$$\frac{1}{x} = \frac{3 - \sqrt{8}}{9 + 8}$$

$$\frac{1}{x} = \frac{3 - \sqrt{8}}{1}$$

$$\frac{1}{x} = 3 - \sqrt{8}$$
(ii)

(i) Finding $x + \frac{1}{x}$

09301061

Adding eq. (i) and (ii)

$$x + \frac{1}{x} = 3 + \sqrt{8} + 3 - \sqrt{8}$$

 $x + \frac{1}{x} = 6$ _____(iii) (ii) Finding $x - \frac{1}{x}$

09301062

Subtracting eq.(i) from (ii)

$$x - \frac{1}{x} = (3 + \sqrt{8}) - (3 - \sqrt{8})$$

$$x - \frac{1}{2} = 3 + \sqrt{8} - 3 + \sqrt{8}$$
 (iv)

(iii) Finding $x^2 + \frac{1}{x^2}$

Taking square of eq. (iii)

$$\left(x+\frac{1}{x}\right)^2 = \left(6\right)^2$$

$$(x)^2 + \left(\frac{1}{x}\right)^2 + 2(x)\left(\frac{1}{x}\right) = 36$$

$$x^2 + \frac{1}{x^2} = 36 - 2$$

$$x^2 + \frac{1}{x^2} = 34$$
----(v)

(iv) Finding $x^2 - \frac{1}{x^2}$

We know that

$$x^{2} - \frac{1}{x^{2}} = (x)^{2} \cdot \left(\frac{1}{x}\right)^{2}$$

$$x^{2} + \left(x + \frac{1}{x}\right)(x - \frac{1}{x})$$

Putting the values from (iii) and (iv)

$$x^2 - \frac{1}{x^2} = (6)(2\sqrt{8}) = 12\sqrt{8}$$

(v) Finding $x^4 + \frac{1}{4}$

Taking square of equation (v

$$\left(x^2 + \frac{1}{x^2}\right) = (34)^2$$

$$(x^2)^2 + (\frac{1}{x^2})^2 + 2(x^2)(\frac{1}{x^2}) = 1156$$

$$x^4 + \frac{1}{x^4} + 2 = 1156$$

$$x^4 + \frac{1}{x^4} = 1156 - 2$$

$$x^4 + \frac{1}{x^4} = 1154$$

(vi) Finding $\left(x-\frac{1}{x}\right)^2$

Taking square of equation (iv)

$$\left(x - \frac{1}{x}\right)^2 = \left(2\sqrt{8}\right)^2$$

$$\left(x - \frac{1}{x}\right) = \left(2\sqrt{8}\right)$$

$$\left(x - \frac{1}{x}\right)^2 = \left(2\sqrt{8}\right)^2$$

$$\left(x - \frac{1}{x}\right)^2 = 4(8)$$

$$\left(x - \frac{1}{x}\right)^2 = 32$$

Q.4 Find the rational numbers p and q

such that
$$\frac{8-3\sqrt{2}}{4+3\sqrt{2}} = p + q\sqrt{2}$$

Solution:

$$p + q\sqrt{2} = \frac{8 - 3\sqrt{2}}{4 + 3\sqrt{2}}$$

P+q
$$\sqrt{2} = \frac{\left(8 - 3\sqrt{2}\right)}{\left(4 + 3\sqrt{2}\right)} \times \frac{\left(4 - 3\sqrt{2}\right)}{\left(4 - 3\sqrt{2}\right)}$$

 $=\frac{32-36\sqrt{2}+9(2)}{16-9(2)}$ $=\frac{32-36\sqrt{2}+18}{16-18}$

$$= \frac{50 - 36\sqrt{2}}{-2}$$
$$= \frac{50}{-2} - \frac{36\sqrt{2}}{-2}$$

 $p+q\sqrt{2} = -25 + 18\sqrt{2}$

By comparing both sides.

$$\Rightarrow$$
 p = -25, q = 18

Q.5 Simplify the following:

(i)
$$\frac{(25)^{\frac{3}{2}} \times (243)^{\frac{3}{5}}}{(16)^{\frac{5}{4}} \times (8)^{\frac{3}{3}}}$$

$$\frac{(25)^{\frac{3}{2}} \times (243)^{\frac{3}{5}}}{(16)^{\frac{5}{4}} \times (8)^{\frac{4}{3}}}$$

$$(16)^{\frac{3}{4}} \times (8)^{\frac{4}{3}}$$

$$= \frac{\left(5^2\right)^{\frac{7}{2}} \times \left(3^5\right)^{\frac{5}{5}}}{\left(2^4\right)^{\frac{5}{4}} \times \left(2^3\right)^{\frac{4}{3}}}$$

$$= \frac{5^{2 \times \frac{3}{2}} \times 3^{5 \times \frac{3}{5}}}{2^{4 \times \frac{5}{4}} \times 2^{3 \times \frac{4}{3}}}$$

$$= \frac{5^3 \times 3^3}{2^5 \times 2^4}$$

$$= \frac{(5 \times 3)^3}{2^{5+4}}$$

$$\left(:: a^{m} \times a^{n} = a^{m+n} \right)$$

09301065

243

81

27

$$=\frac{(15)^3}{2^9}$$

(ii)
$$\frac{54 \times \sqrt[3]{(27)^{2x}}}{9^{x+1} + 216(3^{2x-1})}$$

	111	1111	الال	_
Solution:	OU	110-		
54× 3/(27)2	2	54	2.	216
$9^{x+1} + 216(3^{2x-1})$	3	27	2	108
9 +210(3)	3	9	2	54
$(2\times3^3)\times\sqrt[3]{(3^3)^{2x}}$	3	3	3	27
		1	3	9
$(3^2)^{x+1} + 2^3 \times 3^3 (3^{2x-1})$			3	3
(-)(-)		uc		1
$(2\times3^3)\times\sqrt[3]{(3^{2x})^3}$,		
		20		
$3^{2x+2} + 2^3 \times 3^{2x-1+3}$				
223. 22x	1.	. m/ m	_ ~)	
$= \frac{2 \times 3^3 \times 3^{2x}}{2}$	1.	· \mam{a}^m	$=a_{j}$	
$3^{2x+2} + 2^3 \times 3^{2x+2}$		in the same		
$2 \times 3^{2x+3}$				
$3^{2x+2}(1+2^3)$		ijx Ur		
$2\times 3^{2x+3-2x-2}$ $\left(\cdot \cdot \underline{a''} \right)$	1	m-n		
$=\frac{1}{(1+8)}$ $\frac{1}{a^n}$	-= 0	1	-	0

$$= \frac{2 \times 3^1}{9}$$

$$=\frac{6}{9}$$

$$=\frac{2}{3}$$

(iii)
$$\sqrt{\frac{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}}}{(0.04)^{\frac{-3}{2}}}}$$

Solution:

$$\sqrt{\frac{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}}}{(0.04)^{\frac{-3}{2}}}} = \sqrt{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}} \times (0.04)^{\frac{3}{2}}}$$

$$= \sqrt{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}} \times (0.04)^{\frac{3}{2}}}$$

$$= \sqrt{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}} \times (0.04)^{\frac{3}{2}}}$$

 $\sqrt{2^{3\times\frac{2}{3}}\times3^{3\times\frac{2}{3}}\times5^{2\times\frac{1}{2}}\times\left(\frac{1}{25}\right)^2}$ $\sqrt{2^2 \times 3^2 \times 5^1 \times \frac{1}{(5^2)^{\frac{3}{2}}}}$ $\sqrt{(2\times3)^2\times5^1\times\frac{1}{5^3}}$ $\sqrt{(6)^2 \times \frac{1}{5^{3-1}}}$

$$\left(a^{\frac{1}{3}} + b^{\frac{2}{3}}\right) \times \left(a^{\frac{2}{3}} - a^{\frac{1}{3}}b^{\frac{2}{3}} + b^{\frac{4}{3}}\right)$$

$$= \left(a^{\frac{1}{3}} + b^{\frac{2}{3}}\right) \times \left[\left(a^{\frac{1}{3}}\right)^{2} - \left(a^{\frac{1}{3}}\right)\left(b^{\frac{2}{3}}\right) + \left(b^{\frac{2}{3}}\right)^{2}\right]$$

$$\therefore (x+y)(x^{2} - xy + y^{2}) = x^{3} + y^{3}$$

$$\therefore = \left(a^{\frac{1}{3}}\right)^3 + \left(b^{\frac{2}{3}}\right)^3$$
$$= a^{\frac{1}{3}\times3} + b^{\frac{2}{3}\times3}$$

Applications of Real Numbers in Daily Life:

Example 9: The sum of two real numbers is 8, and their difference is 2. Find the 09301069

Solution:

Let a and b be two real numbers then

$$a+b=8$$
 -----(i)
 $a-b=2$ -----(ii)

Add eq. (i) and eq. (ii)

$$2a = 10$$

$$\Rightarrow a=5$$

Put it in eq. (i)

$$\Rightarrow 5-b=2$$

$$\Rightarrow -b=2-5$$
 for digital and it she significant

$$\Rightarrow -b=-3$$

$$\Rightarrow b=3$$

So, 5 and 3 are required real numbers

Temperature Conversions

In the figure, three types of thermometers are shown

Section 4 Marie 1	lvin	Celsius scale(°C)	Fahrenheit scale(°F)
Boiling point of H ₂ O —	373.	15 100	212
Body	310.	15 37	96.6
Freezing point of H ₂ O —	273.1	15 0	32
Absolute zero		-273.	15 -459.67

We can convert three temperature scales Celsius, Fahrenheit and kelvin with each

Conversion formulae are given below:

(i)
$$K = {}^{\circ}C + 273$$

(ii)
$$^{\circ}C = \frac{5}{9}(F-32)^{\circ}$$

(iii)
$$^{\circ}F = \frac{9^{\circ}C}{5} + 32$$

Where K,C and F shows the kelvin, Celsius and Fahrenheit scales respectively.

Example 10: Normal human body temperature is 98.6 F. Convert it into Celsius and kelvin scale. 09301073

Solution:

Given that

9F = 98.6

So Convert it into Celsius scale, we use

$$^{\circ}$$
C = $\frac{5}{9}$ (F-32) $^{\circ}$

$$^{\circ}C = \frac{5}{9}(98.6-32)^{\circ}$$

$$^{\circ}$$
C = $\frac{5}{9}$ (66.6) $^{\circ}$

$$^{\circ}$$
C = (0.55) (66.6) $^{\circ}$

°C = 37°

Hence, normal human body temperature at Celsius scale is 37°

Now, we convert it into Kelvin scale

$$K = C + 273^{\circ}$$

$$K = 37^{\circ} + 273^{\circ}$$

K = 310 Kelvin

Profit and Loss: The profit and loss can be calculated by the following formula.

(i)Profit = Selling price - Cost Price Profit = SP-CP

Profit
$$\% = \left(\frac{\text{Profit}}{CP} \times 100\right)\%$$

(ii)Loss = Cost Price - Selling Price Loss = CP - SP

Loss
$$\% = \left(\frac{loss}{CP} \times 100\right)\%$$

Example 11: Hamail purchased a bicycle for Rs. 6590 and sold it for Rs. 6850. Find the profit percentage.

Solution:

Cost Price = CP = Rs. 6590

Selling Price = SP = Rs. 6850

Profit = SP - CP

=6850-6590

= Rs 260

Now, we find the profit percentage

$$= \left(\frac{260 \times 100}{6590}\right) \%$$

= 3.94% ≈ 4% Example 12: Umair bought a book Rs. 850 and sold it for Rs. 720. What was his loss percentage?

Solution:

Loss percentage =
$$\left(\frac{Loss}{CP} \times 100\right)\%$$

= $\left(\frac{130}{850} \times 100\right)\%$
= 15.29%

Example 13: Mr. Saleem, Nadeem, and Tanveer earned a profit of Rs. 450,000 from a business. If their investments in the business are in the ratio 4: 7: 14, find each person's profit.

Solution:

Profit earned = Rs. 450,000 Given ratios 14:7:14

= Rs. 72,000

Nadeem earned profit =
$$\frac{7}{25} \times 450,000$$

= Rs. 126,000

Tanveer earned profit =
$$\frac{14}{25} \times 450,000$$

= Rs. 252,000

Example 14: If the simple profit on Rs. 6,400 for 12 years is Rs. 3,840. Find the rate of profit.

09301077

Solution:

To find the rate we use the following formula

Rate =
$$\frac{amount\ of\ profit \times 100}{time \times principal}$$

$$\frac{3840 \times 100}{12 \times 6400}$$

= 5%

Thus, rate of profit is 5%.

Exercise 1.3

The sum of three consecutive integers is forty-two, find three integers.

Solution:

Let x, x + 1, x+2 be three consecutive integers

By condition

$$x + (x + 1) + (x + 2) = 42$$

$$x + x + 1 + x + 2 = 42$$

$$3x + 3 = 42$$

$$3x = 42-3$$

$$3x = 39$$

$$x = \frac{39}{3}$$

x = 13

Now the 1st integer

 2^{nd} integer = x+1 = 13+1 = 14 3^{rd} integer = x+2=13+2=15

Thus 13,14 and 15 are required three consecutive integers.

The diagram shows right angled 0.2 AABC in which the length of AC is $(\sqrt{3}+\sqrt{5})$ cm. The area of \triangle ABC is $(1+\sqrt{15})$ cm², Find the length AB in the form $(a\sqrt{3}+b\sqrt{5})$ cm where a and b are integers.

Solution:

Given

$$m\overline{AC} = (\sqrt{3} + \sqrt{5})$$
cm

Area of
$$\triangle ABC = (1 + \sqrt{15}) \text{ cm}^2$$

To find = $m\overline{AB} = ?$

We know that, Area of $\Delta = \frac{1}{2} (b \times h)$

Area of
$$\triangle ABC = \frac{1}{2} \left(m\overline{AC} \times m\overline{AB} \right)$$

$$1 + \sqrt{15} = \frac{1}{2} \left[\left(\sqrt{3} + \sqrt{5} \right) \times m\overline{AB} \right]$$

$$\Rightarrow \frac{2(1+\sqrt{15})}{\sqrt{3}+\sqrt{5}} = m\overline{AB}$$

 \Rightarrow Multiplying and dividing by $(\sqrt{3} - \sqrt{5})$

NAM AIIITA

$$\Rightarrow m\overline{AB} = \frac{\left(2 + 2\sqrt{15}\right)}{\left(\sqrt{3} + \sqrt{5}\right)} \times \frac{\left(\sqrt{3} - \sqrt{5}\right)}{\sqrt{3} - \sqrt{5}}$$

$$= \frac{2\sqrt{3} - 2\sqrt{5} + 2\sqrt{15} \sqrt{3} 2\sqrt{15} \times \sqrt{5}}{(\sqrt{3})^2 - (\sqrt{5})^2}$$

$$\therefore a^2 - b^2 = (a+b)(a-b)$$

$$= \frac{2\sqrt{3} - 2\sqrt{5} + 2\sqrt{45} - 2\sqrt{75}}{35}$$

$$= \frac{2(\sqrt{3}-\sqrt{5}+\sqrt{9\times5}-\sqrt{25\times3})}{2}$$

$$= \frac{\sqrt{3} - \sqrt{5} + 3\sqrt{5} - 5\sqrt{3}}{-1}$$

$$=\frac{-4\sqrt{3}+2\sqrt{5}}{-1}$$

$$= 4\sqrt{3} - 2\sqrt{5}$$

Thus
$$m\overline{AB} = (4\sqrt{3} - 2\sqrt{5})$$
 cm.

Q.3 A rectangle has sides of length

$$(2+\sqrt{18})m$$
 and $(5-4)m$ Express

the area of the rectangle in the form $a + b\sqrt{2}$ where a and b are integers.

Solution:

Let length of rectangle = $L = (2 + \sqrt{18}) m$

Width of rectangle = W =
$$\left(5 - \frac{4}{\sqrt{2}}\right)$$
m

We know that

Area of Rectangle = $A = L \times W$

$$A = \left(2 + \sqrt{18}\right) \times \left(5 - \frac{4}{\sqrt{2}}\right)$$

$$A = \left(2 + \sqrt{9 \times 2}\right) \times \left(5 - \frac{2 \times 2}{\sqrt{2}}\right)$$

$$A = (2 + 3\sqrt{2}) \times (5 - 2\sqrt{2}) \qquad \left(\because \frac{a}{\sqrt{a}} = \sqrt{a} \right)$$

$$A = 10 - 4\sqrt{2} + 15\sqrt{2} - (3\sqrt{2})(2\sqrt{2})$$

$$A = 10 + 11\sqrt{2} - 6\sqrt{4}$$

$$A = 10 + 11\sqrt{2} - 6\sqrt{4}$$

$$A = 10 + 11\sqrt{2} + 6(2)$$

$$A = 10 + 11\sqrt{2} + 12$$

$$A = -2 + 11\sqrt{2}$$

Thus area of rectangle is $\left(-2+11\sqrt{2}\right)m^2$

Q.4 Find two numbers whose sum is 68 and whose difference is 22. 09301081 Solution:

Sum = 68

Difference = 22

Let x and y be required numbers

By given conditions:

Sum:
$$x + y = 68$$
 (i)

Diff.
$$x - y = 22$$
 (ii)

Adding eq. (i) and (ii),

$$x + \cancel{x} = 68$$

$$x-x=22$$

$$2x = 90$$

$$x = \frac{90}{2}$$

$$x = 45$$

Put it in eq. (i),

$$x + y = 68$$

$$45+y = 68$$

$$y = 68 - 45$$

$$y = 23$$

Thus required numbers are 45 and 23.

Q.5 The weather in Lahore was unusually warm during the summer of 2024. The TV news reported temperatures as high as 48° C. By using the formula, $({}^{\circ}F = \frac{9}{5}{}^{\circ}C + 32)$ find the

temperature as Fahrenheit scale. 09301082

Solution:

Temperature in degree centigrade = 48°C

formula: °F =
$$\frac{9}{5}$$
 °C+32

Temperature in Fahrenheit,

$$^{\circ}F = \frac{9}{5} \times 48 + 32$$

$$^{\circ}F = 9 \times 9.6 + 32$$

$$^{\circ}F = 86.4 + 32$$

$$^{\circ}F = 118.4$$

Q.6 The sum of the ages of the father and son is 72. Six years ago the father's age was 2 times the age of the son. What was Son's age six years ago?

09301083

Solution:

Let father's age = x

Son's age
$$= y$$

By condition:

$$x+y = 72$$
 _____(i)

Six year ago,

Father's age = x-6

Son's age =
$$y - 6$$

By condition:

Father's age = 2 times the son's age

$$(x-6) = 2 (y-6)$$

$$x - 6 = 2y - 12$$

$$x - 2y = 6 - 12$$

$$x-2y=-6$$
 (ii)

Subtracting eq. (ii) from (i)

$$x + y = 72$$

$$y = \frac{78}{2}$$

$$y = 26$$

Put y = 26 in eq.(i)

$$x + 26 = 72$$

$$x = 72 - 26$$

$$x = 46$$

Six years ago,

Son's age = y - 6 = 26 - 6 = 20 years Father's age = x - 6 = 46 - 6 = 40 years

Q.7 Mirha bought a toy for Rs.1500 and sold for Rs.1520. What was her profit percentage? 009301084

Solution:

The cost price=CP=Rs.1500

The selling price=SP=Rs.1520

The profit amount=SP - CP

=Rs.1520 - Rs.1500=Rs.20

Profit percentage = Profit C.P × 100%

Profit percentage = $\frac{20}{1500} \times 100\%$

$$= \frac{20}{15 \times 100} \times 100\% = 1.33\%$$

Q.8 The annual income of Tayab is Rs. 960,000, while the exempted amount is Rs. 130,000. How much tax would he have to pay at the rate of 0.75%.

Solution:

Annual income = Rs.9,60,000/Exempted amount = Rs.130,000/-

Tax rate = 0.75%

We know that

Taxable income

= Annual income – exempted amount

Taxable income = 960,000 - 130,000

Taxable income = 830,000

= 0.75% of Taxable income Tax amount

$$= \frac{0.75}{100} \times 830,000$$

830,000 Rs.6.225

Thus Tayab will pay tax of Rs.6,225.

Find the compound markup on Rs. 375,000 for one year at the rate of 14% compounded markup annually.

Solution:

Principal amount = P = Rs.375,000/-

Time, = t = 1 year

Rate.

R = 14%

We know that

Compound markup = $P \times T \times R$

 $= 375,000 \times 1 \times 14\%$

 $=375,000 \times \frac{14}{100}$

 $=3,750 \times 14$ = Rs. 52,500/-

Thus compound mark up is Rs. 52,500

Review Exercise 1

09301088

09301090

Choose the correct option.

i. $\sqrt{7}$ is $\sqrt{1}$

09301087

- (a) Integer
- (b) Rational number
- (c) Irrational number
- (d) Natural number
- ii. π and e are:
 - (a) Natural number
 - (b) Integers
 - (c) Rational number
 - (d) Irrational number
- iii. If n is not a perfect square then \sqrt{n} is:
 - (a) Rational number
 - (b) Natural number
 - (c) Integer
 - (d) Irrational number

iv. $\sqrt{3} + \sqrt{5}$ is:

(a) Whole number

- (b) Integer
 - (c) Rational number
 - (d) Irrational number
- v. For all $x \in R$, x = x is called:
 - (a) Reflexive property
 - (b) Transitive number
 - (c) Symmetric property
 - (d) Trichotomy property

vi. Let $a,b,c \in R$ then a > b and b > c

 $\Rightarrow a > c$ is called

property.

- (a) Trichotomy
- (b) Transitive
- (c) Additive
 - (d) Multiplicative

 $2^{x} \times 8^{x} = 64$ then x =

09301092

viii.	Let $a, b \in R$ then	a = b and b	o = a	is	x	. The	produ	ct of	3+4500	(5) is:
Ca	alled pr	operty.	093010	94	In.	777	2	110	7.00	09301096
	(a) Reflexive	(b) Symmetri		200	101		Prime		er	
	(c) Transitive	(d) Additive	2/10	(1)	10		odd ni			
ix.	$\sqrt{75} + \sqrt{27} =$	11111	093010	95			Irratio			
	(a) \102\N	18 9 3				(d)	Ration	ial nun	nber	
	(c) 5\3	(d) $8\sqrt{3}$								
				Ans	swer l	Key			and the second	
		i c	ii	d	iii	d i	v d	v	a	
		vi b	vii	a	viii	b i	x d	X	d	
		Multiple	Cho	nice	Oue	estio	ns (A	ddit	ional)	
		The state of the s			Y"					
		Real numbers							(d) Binar	
1.	Which number sy	stem was used	by the	•	8				ice the num	erals (0-9)
	Sumerians?		093010	197			Europe			09301104
	(a) Decimal		nal						(b) Egyp	
	(c) Sexagesimal						Sumer	-1/	1 /2/////	1110
2.	The sexagesimal		mber		100		011	1110	lowing is c	ne of the
	system with the b	ase:	093010	980	12/	1 1 1 1			systems?	09301105
	(a) 2	(b) 10 ~~	2/1	(1)	NOT	(a)	Roma	n Nun	nerals	
	(c) 16	(d) 60 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	11717	M	,	(b)	Egypt	ians nu	imerals	
3.	Which number sx	stem was used	by the	9			The second second second		system	
	Egyptians?	900	093010)99		(d)	hexad	ecimal	system	
	(a) Decimal	(b) hexadecin	nal					Posl	numbers	
	(c) Sexagesimal					10 0	∪Q'=	THE PERSON NAMED IN	numbers	09301106
4.	How many letters	s are used in R	oman			io. Q	υğ -			09301100
	numeral system?		09301	100			01		(1) (1)	
	(a) 3	(b) 5					Q'		(b) Q	
	(c) 7	(d) 10				(c)	R		(d) \(\phi \)	
5.	In Roman counting	ng the letter "L	"			11. Q	$\cap Q' =$			09301107
	represents the nur	mber:	09301	101		(a)	Q'		(b) Q	
	(a) 10	(b) 50				(c)	R		(d) \(\phi \)	
	(c) 100	(d) 500					and Q'a	are		09301108
6.	The invention of	zero is attribut	ed to:				disjoin		(b) over	
		ave	09301	102			interse			
		(b) Egyptian	S						~	~A\
_	(c) Sumerians		T	1	-	13. Fo	r each	11/	number P,	VP is an:
7.	Which number sy		as in	0-01	1/4	7 7	Irratio	nnal	(b) Ratio	
	Arabic numerals?		~ 11	75	(0)	Ug	Real	5	(d) Who	
	(a) Decimal	(b) hexadecin	man	171	11	(0)	recur		(3) 11110	
	-010	WILLIAM	7							
	- DAMAI	900-			24					
1000	00.				ت					

Properties of real numbers

- 14. Name the property of real numbers used in $\pi + (-\pi) = 0.$
 - (a) Additive inverse
 - (b) Multiplicative inverse
 - (c) Additive identity (1)
 - (d) Multiplicative identity
- 15. Name the property of real numbers used

$$\operatorname{in} \frac{1}{2} \times 1 = \frac{1}{2}$$

- (a) Additive identity
- (b) Additive Inverse
- (c) Multiplicative identity
- (d) Multiplicative Inverse
- 16. If x < y and z < 0 then:

- (a) x z < y z (b) x z > y z
- (c) x.z = yz
- (d) $\ddot{x} > y$
- 17. If a, $b \in R$ then only one of a = b or a < bor a > b holds is called --- property.
 - (a) Trichotomy (b) Transitive
 - (c) Additive
- (d) Multiplicative

Radical Expressions

- 18. In $r\sqrt{a}$, the symbol \sqrt{a} is called: 09301
 - (a) radical sign (b) index
 - (c) exponent
- (d) base
- 19. In "\a" is eatled:

- (a) base
- (b) radical sign
- (c) index
- (d) radical
- 20. $(27x)^{\frac{2}{3}}$ =

- (a) $\frac{\sqrt[3]{x^2}}{0}$ (b) $\frac{\sqrt{x^3}}{0}$
- (c) $\frac{\sqrt[3]{x^2}}{9}$
- (d) $9\sqrt[3]{x^2}$
- 21. Write $\sqrt[5]{x}$ in exponential form 09301117
 - (a) x
- (b) x3
- (c) x^5
- (d) x^2

- (b) $\sqrt{m^3}$
- (c) $\sqrt[2]{m^3}$
- (d) $\sqrt{m^6}$
- 23. In $\sqrt[3]{5}$, the radicand is:

- (a) 3
- (c) 5
- (d) 35.

Surds

- 24. Which of the following is a Surd?
 - (a) $\sqrt{7}$
- (b) $\sqrt{9}$
- (c) $\sqrt{\pi}$
- (d) √e
- 25. Which of the following is a binomial Surd?
 - (a) $4\sqrt{3}$
- (b) √16
- (c) $7 + \sqrt{\pi}$ (d) $2 \sqrt{3}$
- 26. A surd which contains a single term is called surd.
 - (a) Monomial
- (b) Binomial
- (c) Trinomial
- (d) None
- 27. Conjugate factor of the Surd $a + b\sqrt{x}$ is:
 - (a) $a+b\sqrt{x}$ (b) $a-b\sqrt{x}$

 - (c) $-a-b\sqrt{x}$ (d) $-a+b\sqrt{x}$
- 28. $(4+\sqrt{2})(4-\sqrt{2})$ is equal to: 09301124

 - (a) 14
- (b) -14
- (c) 12
- (d) 81 00 1 0+ 0 (f)
- 29. $(\sqrt{x} + \sqrt{y})(\sqrt{x} \sqrt{y})(x+y) = \dots$
 - (a) (x+y)
- (b) (x-y)
- (c) $(x^2 + y^2)$ (d) $(x^2 y^2)$
- 30. $\frac{1}{2-\sqrt{3}} = ---$

09301126

- (c) $-2+\sqrt{3}$

Answer Key

1	c	2	d	3	a	4	c	13/	10	(6)	d	M	a	18	a	9	d	10	c
11	d	12	a	13	a	14	an	1/5	8	16	b	17	a	18	a	19	c	20	d
21	c	22	a	23	6	24	a	25	d	26	a	27	b	28	a	29	d	30	a

Q.2 If
$$a = \frac{3}{2}$$
, $b = \frac{5}{3}$ and $c = \frac{7}{5}$ then verify

that

(i)
$$a(b+c) = ab + ac$$

Solution:

$$a(b+c) = ab + ac$$

L.H.S =
$$\frac{3}{2} \left(\frac{5}{3} + \frac{7}{5} \right)$$

= $\frac{3}{2} \left(\frac{25 + 21}{15} \right)$
= $\frac{3}{2} \left(\frac{46}{15} \right)$
= $\frac{23}{5}$ (i)

Now, R.H.S =
$$ab+ac$$

$$= \frac{3}{2} \times \frac{5}{3} + \frac{3}{2} \times \frac{7}{5}$$

$$= \frac{5}{2} + \frac{21}{10}$$

$$= \frac{25 + 21}{10}$$

$$= \frac{46}{10}$$

$$= \frac{23}{10}$$
(ii)

From (i) and (ii), L.H.S = R.H.S

Hence a(b+c) = ab + ac

(ii)
$$(a+b) c = ac + bc$$

09301128

Solution

$$(a+b)c=ac+bc$$

L.H.S =
$$(a+b)$$
 c
= $\left(\frac{3}{2} + \frac{5}{3}\right) \times \frac{7}{5}$
= $\left(\frac{9+10}{6}\right) \times \frac{7}{5}$
= $\frac{19}{6} \times \frac{7}{5}$
= $\frac{133}{30}$ (i)

Now, R.H.S = ac + bc

MANN.

$$= \frac{63 + 70}{30}$$

$$= \frac{133}{30}$$
 (ii)

From (i) and (ii), L.H.S = R.H.S Hence (a+b)c = ac + bc is proved

Q.3 If
$$a = \frac{4}{3}$$
, $b = \frac{5}{2}$, $c = \frac{7}{4}$, then verify

the associative property of real numbers w.r.t addition and multiplication. 09301129 Solution:

(i) Associative property w.r.t addition.

$$(a+b)+c = a + (b+c)$$

L.H.S = $(a+b)+c$
= $(\frac{4}{3}+\frac{5}{2})+\frac{7}{4}$

$$= \frac{23}{6} + \frac{7}{4}$$

$$= \frac{46 + 21}{12}$$

$$= \frac{67}{12}$$
 (i)

2	6-4
2	3-2
3	3-1
	1-1

R.H.S. =a+(b+c)

Now,
$$=\frac{4}{3} + \left(\frac{5}{2} + \frac{7}{4}\right)$$

 $=\frac{4}{3} + \left(\frac{10+7}{4}\right)$
 $=\frac{4}{3} + \frac{17}{4}$
 $=\frac{16+51}{12}$ (ii)

From(i) and (ii) L.H.S = R.H.S. Hence a+(b+c) = (a+b)+c

(ii) Associative property w.r.t multiplication. $(a \times b) \times c = a \times (b \times c)$ 09301130 Solution:

L.H.S =
$$(a \times b) \times c$$

= $\left(\frac{4}{3} \times \frac{5}{2}\right) \times \frac{7}{4}$
= $\frac{20}{6} \times \frac{7}{4}$
= $\frac{10}{3} \times \frac{7}{4}$
= $\frac{70}{12}$
= $\frac{35}{6}$ (i)
Now, R.H.S = $a \times (b \times c)$

$$= \frac{4}{3} \times \left(\frac{5}{2} \times \frac{7}{4}\right)$$

$$= \frac{4}{3} \times \left(\frac{35}{8}\right)$$

$$= \frac{\frac{1}{4}}{3} \times \left(\frac{35}{8}\right)$$

$$= \frac{35}{6} \qquad \text{(ii)}$$

From (i) and (ii) L.H.S R.H. Hence, $(a \times b) \times c = a \times (b \times c)$

Is 0 a rational number? Explain.

09301131

Solution:

Yes, 0 is a rational number.

Explanation

A number in the form $\frac{p}{q}$, p where p, $q \in Z$

= d q \neq 0 is a rational number. The number

Can be written as $\frac{0}{1}, \frac{0}{2}, \frac{0}{3}, \dots$ Here $0 \in \mathbb{Z}$

= 1,2,3, \in z so we can say that 0 is a amonal number.

Q5 State trichotomy property of real 11mbers. 09301132

Solution: Hang ham been For all values of $a, b \in \mathbb{R}$

Either a > b or a = b or a = b

This property is called trichotomy property.

Q.60 Eind Dtwo rational numbers between 4 and 5. 09301133

Solution:

Average of 4 and $5 = \frac{4+.5}{2} = \frac{9}{2}$

Now we find.

Average of
$$\frac{9}{2}$$
 and $5 = \left(\frac{9}{2} + 5\right) \div 2$

$$= \left(\frac{9 + 10}{2}\right) \times \frac{1}{2}$$

$$= \frac{19}{2} \times \frac{1}{2}$$

$$= \frac{19}{4}$$

Thus two rational number between 4 and 5

Simplify the following:

(i)
$$\sqrt[5]{\frac{x^{15}y^{35}}{z^{20}}}$$
 09301134

09301134

Solution:

$$\sqrt[5]{\frac{x^{15}y^{35}}{z^{20}}} = \left(\frac{x^{15}y^{35}}{z^{20}}\right)^{\frac{1}{5}}$$

$$= \frac{x^{15 \times \frac{1}{5}}y^{35 \times \frac{1}{5}}}{z^{20 \times \frac{1}{5}}}$$

$$= \frac{x^{3} \cdot y^{7}}{z^{4}}$$

(ii)
$$\sqrt[3]{(27)^{2x}}$$

09301135

Solution:

S.com

$$= \sqrt[3]{\left(3^{2x}\right)^3}$$

$$= 3^{2x} \qquad \therefore \sqrt[3]{a^3} = a$$

(iii)
$$\frac{6(3)^{n+2}}{3^{n+1}-3^n}$$

Solution

$$\frac{6(3)^{n+2}}{3^{n+1}-3^n}$$

$$= \frac{6(3^n \times 3^2)}{3^n 3^1 - 3^n \times 1} \qquad \left(\because a^{m+n} = a^m \times a^n \right)$$

$$= \frac{3^n \times 6 \times 3^2}{3^n \left[3^1 - 1\right]}$$

$$= \frac{3^n \times 3^{-n} \times 6 \times 9}{2}$$

$$= \frac{3^{n-n} \times 6 \times 9}{2}$$

$$= \frac{3^0 \times 54}{2}$$

$$(::3^0=1)$$

Q.8 The sum of three consecutive odd integers is 51. Find the three integers.

09301137

Solution:

Sum = 51

Let x, x + 2, x + 4 be three consecutive odd numbers.

By condition:

$$(x) + (x + 2) + (x + 4) = 51$$

$$x+x+2+x+4=51$$

$$3x+6=51$$

$$3x = 51-6$$

$$3x = 45$$

$$x = \frac{45}{3}$$

$$x = 15$$

 1^{st} odd number = x = 15 2^{nd} odd number = x + 2

 3^{rd} odd number = x + 4

$$= 15+4 = 19$$

Thus, 15, 17 and 19 are required three consecutive odd numbers.

Q.9 Abdullah picked up 96 balls and placed them into two buckets. One bucket has twenty-eight more balls than the other bucket. How many balls were in each bucket?

09301138

Solution

Total balls = 96

Let balls in 1^{st} and 2^{nd} bucket be x and y respectively.

By 1st condition:

$$x+y = 96-----(i)$$

By 2nd condition:

Adding eq.(i) and (ii)

$$x + x = 96$$

$$x-x=28$$

$$2x = 124$$

$$x = \frac{124}{2} = 62$$

x = 62Put it in eq. (i)

$$62 + y = 96$$

$$y = 96 - 62$$

$$y = 34$$

Thus 1st bucket has 62 balls and 2nd bucket has 34 balls.

Q.10 Salma invested Rs. 350,000 in a bank, which paid simple profit at a rate

 $7\frac{1}{4}\%$ per annum. After 2 years, the rate

was increased to 8% per annum. Find the amount she had at the end of 7 years.

Solution:

Time period = 7 years.

We divide the period of 7 years into two parts 2 years and 5 years.

Finding profit for 2 years

Principal amount = P = Rs.350,000/-

Profit rate =
$$R = 7\frac{1}{4}\%$$
 or 7.25%

Time = t = 2 years

We know that

Profit =
$$P \times T \times R$$

$$=350,000\times2\times7.25\%$$

$$=700,000 \times \frac{7.25}{100}$$

$$=700,000 \times \frac{725}{100 \times 100}$$

$$= 70 \times 725$$

Finding the profit for 5 years

Principal amount = P = Rs.350,000/-

Profit rate = R = 8%

Time period = T = 5 years

We know that

Profit = $P \times T \times R$

 $= 350,000 \times 5 \times 8\%$

$$= 1,750,0000 \frac{8}{100}$$

= Rs. 140,000/-

Finding the total profit:

Total profit = Rs. (50,750+140,000)

= Rs. 190,750

Finding the total amount:

Total amount at the end of 7 years

$$=$$
 Rs. $(350,000 + 190,750)$

$$= Rs. 540,750/-$$