Kinematics

Q.1. Define mechanics and also Differentiate between the two main branches of mechanics.

Ans: Mechanics:

Mechanics is the branch of physics that deals with the motion of objects and the forces that cause or change this motion. It helps us study and predict how objects behave when in motion or when forces are applied to them.

Two Main Branches of Mechanics:

i. Kinematics:

Kinematics is the study of motion without referring to the forces that cause it. It focuses on describing how objects move by examining parameters like displacement, velocity, acceleration, and time.

Example: Describing the motion of cars, buses, or motorcycles moving on the road without considering what causes them to move

ii. Dynamics:

Dynamics deals with the study of forces and their effect on the motion of objects. It explains why an object moves and considers the forces that cause or change this motion.

Example: The motion of an object falling from a table to the ground by analyzing the force of gravity acting on it.

Q.2. Differentiate between scalar and vector quantities with examples. 09102002

Ans: Scalars:

A scalar is a physical quantity that can be described completely by its magnitude only. Magnitude includes a number and an appropriate unit. For example, when we ask a shopkeeper for 5 kilograms of sugar, the shopkeeper fully understands the quantity we want based solely on the magnitude of the mass.

Examples:

Mass, length, time, speed, volume, work, energy, pressure, and power etc.

Addition of Scalars:

Scalar quantities can be added using simple arithmetic operations. For example:

5 meters+3 meters=8 meters

Vectors:

A vector is a physical quantity that requires both magnitude and direction to be described completely.

Examples:

Velocity, displacement, force, momentum, torque, acceleration, and weight etc.

Addition of Vectors:

Vectors cannot be added like scalars because vector quantity need magnitude and direction. Vector quantities are added by head to tail rule.

Importance in Kinematies:

Understanding the distinction between scalars and vectors is very important in kinematics because motion involves both the magnitude and direction of quantities like velocity and displacement. While scalar quantities describe "how much," vector quantities describe "how much and in which direction." This distinction helps accurately describe and analyze the motion of objects.

Q.3. How are vectors represented symbolically and graphically? Explain. 09102003

Ans: Symbolic Representation of Vectors:

Vectors are represented in textbooks using **boldface letters**, such as A, V, F, and d. However, when writing by hand, vectors are denoted with a **small arrow** over the letter, like \vec{A} , \vec{V} , \vec{F} and \vec{d} . The **magnitude** of a vector is shown using the same letter without the arrow, written in italics, such as A, V, F and d.

Graphical Representation of Vectors:

Vectors can be represented graphically by drawing a straight line with an arrowhead at one end.

- Magnitude: The length of the line corresponds to the vector's magnitude, determined according to a suitable scale.
- **Direction:** The arrowhead indicates the vector's direction.

Reference Axes for Direction:

To define the direction of a vector, we use two mutually perpendicular lines:

- Horizontal Line: Represents the eastwest direction and is called the x-axis.
- Vertical Line: Represents the northsouth direction and is called the y-axis.

N
N
N
S
A vector **v** making an angle θ towards north from east Fig 2.1 (a)

x o 30° x

A Vector F making angle 30° with x-axis
Fig. 2.1 (b)

These axes intersect at a point called the origin, denoted as O.

Figure 2.1(a) Whistrates two mutually perpendicular lines representing the east-west and north-south directions.

Drawing Vectors on Axes:

Vectors are usually drawn starting from the **origin** of the reference axes and extending toward the specified direction. The direction is defined by an **angle** θ (theta) with respect to the **x-axis**.

Figure 2.1(b) Shows the x-axis (horizontal) and y-axis (vertical) intersecting at the origin (O). A vector is chawn starting from this origin, and its direction is indicated by an angle θ with respect to the x-axis.

Measurement of Angle θ :

- The angle θ is measured from the right side of the x-axis in an anti-clockwise direction.
- This angle helps specify the vector's orientation relative to the reference axes.

Conclusion:

Vectors are represented both symbolically and graphically to illustrate their magnitude and direction. Reference axes (x and y) provide a framework for defining the vector's orientation, while the angle θ specifies its direction relative to the x-axis. Understanding this representation is essential for accurately describing vector quantities in physics.

Q.4. Define resultant vector. How vectors are added by heat-to-tail rule? Explain with the help of a suitable example.

Ans: Resultant Vector

A resultant vector is a single vector that represents the combined effect of two or more vectors. It has the same effect as all the individual vectors acting together. When we add multiple vectors, the resultant vector gives us the total effect in terms of both magnitude and direction.

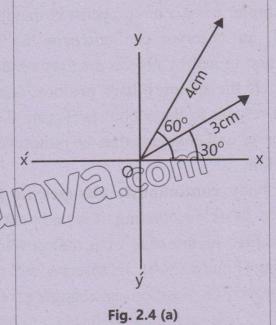
Head-to-Tail Rule:

The head-to-tail rule is a graphical method used to add vectors. It states that to add two or more vectors, redraw their representative lines such that the head of one vector coincides with the tail of the other. The resultant vector is the single vector

directed from the tail of the first vector to the head of the last vector.

Illustration of addition of vectors:

Let's take two vectors v₁ and v₂ having magnitudes of 300 N and 400 N, acting at angles of 30° and 60° with the x-axis. So,


Vector v₁: Magnitude = 300 N, Angle = 30° with the x-axis.

Vector v2: Magnitude = 400 N, Angle = 60° with

Graphical Representation:

Choosing a Scale:

The selected scale is 100 N=1 cm. Therefore, v1 is

drawn as 3 cm (300 N) and v₂ is drawn as 4 cm (400 N).

Drawing the Vectors:

Figure 2.4(a) Shows the vectors v₁ and v₂ are drawn using the head-to-tail rule, maintaining their magnitudes and angles.

Step 1: Draw v1 as a straight line, making an angle of 30° with the

x-axis.

Step 2: Draw v_2 starting from the head of v_1 and making an angle of 60° with the x-axis.

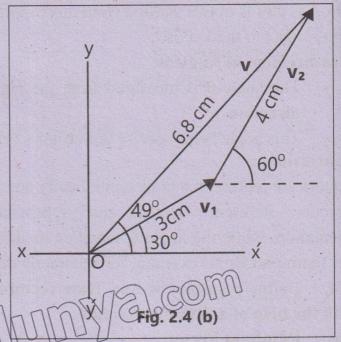

Determination of Resultant Vector:

Figure 2.4(b) Illustrates the resultant vector formed by connecting the tail of v_1 to the head of v_2 .

Magnitude:

- The resultant vector is measured as **6.8** cm.
- Using the scale (100 N = 1 cm), the magnitude of the resultant v is calculated as:

v=6.8cm×100 N/cm=680N

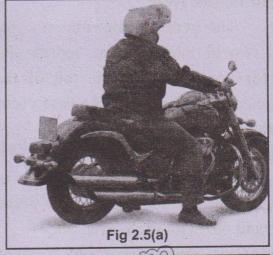
Direction:

The direction is measured as an angle of 49° with the x-axis. So, magnitude of resultant vector is 680 N and its direction is angle 49° with x-axis.

Q.5. Define and explain rest and motion with the help of example. Show that rest

and motion are relative to observer. 09102005

Ans: Rest:


If a body **does not change** its position with respect to its surrounding, it is said to be at rest.

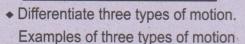
Example: when a motorcyclist is standing still on the road, an observer can compare the motorcyclist's position to nearby objects such as a building, tree, or pole. If the motorcyclist's position does not change with respect to these objects (Figure 2.5-a), then the observer will conclude that the motorcyclist is at rest.

Motion:

If a body continuously changes its position with respect to its surrounding, it is said to be in motion.

Example: In the case of a motorcyclist who starts driving (Figure 2.5 to), an observer will notice that the motorcyclist's position is changing relative to the

same surroundings, such as the building, tree, or pole. Therefore the observer will conclude that the motorcyclist is in motion.


Relativity of Rest and Motion:

The concepts of rest and motion are relative, meaning they depend on the observer's frame of reference. A body can be at rest in one frame of reference and in motion in another.

Example: Consider a person standing inside a moving train. To other passengers inside the train, the person appears to be **at rest** because their position does not change relative to the train's interior. However, an observer standing on the railway platform will see that the same person is **in motion** because their position changes relative to the stationary platform.

Q.6. Explain different types of motion and give examples. Further explain types of translatory motion.

TYPES OF MOTION

from daily life.

Online Lecture

publications.unique.edu.pk 🕜 UGI.publications 🔾 uniquenotesofficial 🗗 @Uniquepublications 🕒 0324-6666661-2-3

Ans: In our daily life, we observe various types of motion. Generally, these can be categorized into three main types:

i. Translatory Motion

ii. Rotatory motion

iii. Vibratory motion

i. Translatory Motion

If the motion of a body is such that every particle of the body moves uniformly in the same direction, it is called translatory motion.

Example:

- (i) The motion of a train or a car is translatory motion.
- (ii) Riders moving in a ferries wheel.

Types of Translatory Motion:

Translatory motion can be classified into three subtypes:

(a) Linear motion

If the body moves along a straight line, it is called linear motion.

Example:

- (i) Motion of freely falling body.
- (ii) Aeroplane flying straight in air

(b) Random motion

If the body moves along an irregular path, the motion is called random motion.

Example:

(i) The motion of bee

(ii) The motion of gas molecules along a zig-zag path.

(c) Circular motion

The motion of a body along a circle is called circular motion.

Example:

- (i) Motion of ball tied to one end of string.
- (ii) Motion of moon around the earth.

ii. Rotatory motion:

If each point of a body moves around a fixed point (axis), the motion of this body is called rotatory motion.

Example:

(i) The motion of an electric fan.

(ii) Motion of drum of a washing machine dryer.

(iii) Motion of top.

(iv) Motion of a cycle wheel.

iii. Vibratory motion:

When a body repeats its to and fro motion about a fixed position, the motion is called vibratory motion.

Example:

(i) The motion of a swing in a children park.

(ii) Motion of simple pendulum.

Q.7. Differentiate between Distance and Displacement.

09102007

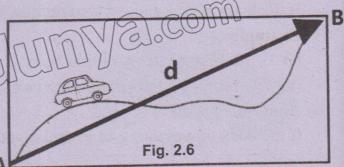
Ans: Distance:

Distance is the length of the actual path of motion.

Nature of quantity:

It is a scalar quantity, meaning it has only magnitude and no direction.

Displacement:


Displacement is shortest distance between initial and final position.

Nature of quantity:

The displacement of an object is a vector quantity whose magnitude is the shortest distance between the initial and final positions of the motion and its direction is from the initial position to the final position.

Example:

Let a person travel from Lahore to Multan in a car (Fig.2.6). On reaching Multan, the person notices on the speedometer that the distance traveled is 320 km. This represents the total path covered by the car, which is the distance. However, this is not the A

shortest distance between Lahore and Multan, as the car took many turns along the way. The displacement, in this case, would be the shortest straight-line distance from Lahore to Multan, with a direction from Lahore to Multan.

Note: Distance is always greater than or equal to the magnitude of displacement.

Explain the concepts of speed and velocity. Also discuss uniform and nonuniform velocity with an example. 09102008

Speed: Speed is defined as the distance covered in unit time.

Formula: If S is the distance covered by body in unit time 't', then.

$$Speed = \frac{Distance\ covered}{time\ taken}$$

i.e.
$$v = \frac{S}{t}$$
 or Distance = Speed × time or $S = v \times t$

Speed is a scalar quantity. The SI unit of speed is meters per second (m/s) or kilometers per hour (km/h).

Instantaneous Speed: The speed of a vehicle that is shown by its speedometer at any instant is called instantaneous speed.

Average Speed: Defined as the total distance divided by the total time taken.

Average Speed
$$\neq$$
 Total time taken or $v_{av} = \frac{S}{t}$

Velocity: The net displacement of a body in unit time is called velocity.

$$velocity = \frac{Displacement}{time}$$

i.e.
$$\mathbf{v} = \frac{\mathbf{d}}{\mathbf{t}}$$
 or $\mathbf{d} = \mathbf{v} \times \mathbf{t}$

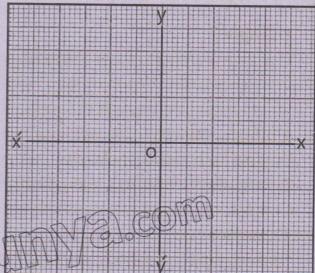
Example:

If a car is moving towards the north at the rate of 70 km/h, the speed of the car is 70 km/h, a scalar quantity. However, the velocity of the car is a vector quantity, with a magnitude of 70 km/h directed towards the north.

Uniform velocity: The velocity is said to be uniform if the speed and direction of a moving body does not change.

Non-uniform velocity: If the speed or direction or both of them changes, it is known as variable velocity or non-uniform velocity.

Example:


The example of a body moving with uniform velocity is the downward motion of a paratrooper. When a paratrooper jumps from an aeroplane, he falls freely for a few moments. Then the parachute opens. At this stage the force of gravity acting downwards on the paratrooper is balanced by the resistance of air on the parachute that acts upward. Consequently, the paratrooper moves down with uniform velocity.

Explain the concept of acceleration and its types. Also discuss uniform and non-uniform acceleration. 09102009 Ans: Acceleration: Acceleration is defined as the time rate of change of velocity. It occurs when there is a change in the magnitude or direction of velocity, or both. Types of Acceleration: Positive Acceleration: When the velocity of an object increases, it experiences positive acceleration. Example: When a car overtakes another one, it accelerates to a greater velocity. Negative Acceleration (Deceleration/Retardation): When the velocity of an object decreases, the acceleration is negative. Example: When brakes are applied to slow down a bicycle or a car, it undergoes deceleration Average acceleration = $\frac{change in velocity}{time taken}$ Formula: $a_{av} = \frac{v_f - v_i}{t}$ or $a_{av} = \frac{\Delta v}{t}$ The SI unit of acceleration is meters per second square (m/s²) If acceleration a is constant then above equation can be written as Uniform and non-uniform acceleration: Uniform Acceleration: If the fate of change of velocity is constant, the acceleration is said to be uniform. Non-uniform acceleration: If anyone of the magnitude or direction or both of them changes it is called variable or non-uniform acceleration. Q.10. What is a graph? How it is drawn? Explain.

09102010

Ans: Graphical Analysis of Motion

A graph is a pictorial diagram, represented by a straight line or a curve, that shows the relationship between two physical quantities. It is commonly drawn on graph paper with equally spaced horizontal and vertical lines. The intersection points of the horizontal lines (x-axis) and vertical (y-axis) lines is called the origin (O).

Axes Representation:

(Horizontal): Represents independent variable, usually time (t).

Fig. 2.7

Positive values are plotted to the right, and negative values to the left of the origin. Y-axis (Vertical): Represents the dependent variable, such as distance (S). Positive values are above the origin, and negative values are below.

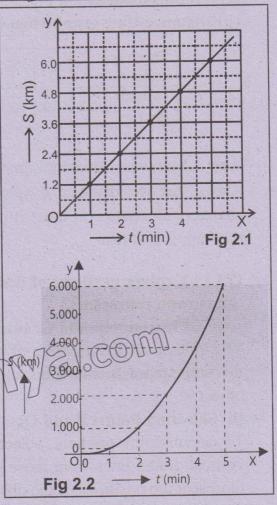
Steps to Draw a Distance-Time Graph:

- (i) Select Axes: Place time (t) on the x-axis and distance (S) on the x-axis
- (ii) Choose a Suitable Scale: Based on the minimum and maximum values of the data, select appropriate scales for both axes (e.g., 1 minute = 1 cm on the x-axis, 1.2 km = 1 cm on the y-axis).
- (iii) Mark Values: Mark values according to the selected scale along both axes.
- (iv) Plot Data Points: Plot points for each pair of time and distance values.
- (v) Draw the Line or Curve: Join the plotted points to create a straight line or curve, depending on the motion type.

Q.11. What is distance-time graph? Explain steps to draw a graph on a paper.

09102011

Ans: Distance-Time Graph


Distance-time graph shows the relation between distance S and time t taken by a moving body.

Let a car be moving in a straight line on a motorway. Suppose that we measure its distance from starting point after every one minute, and record it in the table given below:

Time t (min)	0	1.	2	3	94c(OFFI
Distance S (km)	0	1.2	77.45	[3.6]	C4.8	6.0

Follow the steps given below to draw a graph on a centimetre graph paper.

- (i) Take time t along x-axis and distance S along y-axis.
- (ii) Select suitable scales (1 minute = 1 cm) along x-axis and (1.2 km = 1 cm) along y-axis. The graph paper shown here is not to the scale.
- (iii) Mark the values of each big division along x and y axes according to the scale.
- (iv) Plot all pairs of values of time and distance by marking point on the graph paper.
- (v) Join all the plotted points to obtain a best straight line as shown in Fig. 2.8. from the table, we can observe that car has covered equal distance in equal intervals of time. This shows that the car moves with uniform speed. Therefore, a straight line graph between time and distance represents motion with uniform speed.
- (a) Now consider another journey of the car as recorded in the table given below:

Time t (min)	0	1	2	3	400	OF THE
Distance S (km)	0	0.240	0.960	2.160	3.840	6.000

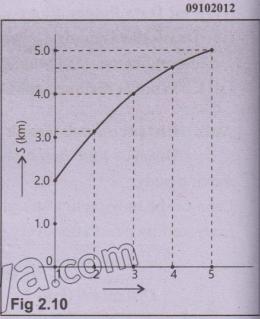
Table shows that speed goes on increasing in equal intervals of time. This is very obvious from the graph as shown in Fig. 2.9. The graph line is curved upward. This is the case when the body (car) is moving with certain acceleration.

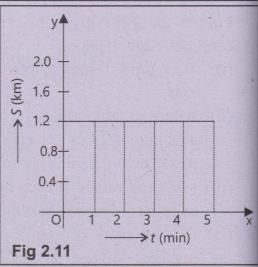
Q.12. Explain distance time graph for an object:

- (i) When speed of object decreases
- (ii) When object is at rest

Ans: (i) Distance time graph when speed of an object

decrea


Time t (min)	0	1	2	3	4	5
Distance (km)	0	2.0	3.1	4.0	4.6	5.0


The slope of graph is curved downward. This shows that distance travelled in the same interval of time goes on decreasing, so speed is decreasing. This is the case of motion with deceleration or negative acceleration as shown in Fig. 2.10

(ii) Distance-time graph when object is at rest:

	NI	1111	110			
Time	11/2 3	1	2	3	4	5
Distance (km)	1.2	1.2	1.2	1.2	1.2	1.2

Ans: Slope is horizontal in this case (Fig 2.11). It shows that the distance covered by the car does not change with change in time. It means that the car is not moving; it is at rest.

Q.13. Explain gradient of distance-time graph. What does the gradient of distance-time graph represents?

09102013

Ans: (i) Introduction to Gradient and Distance-Time Graph:

The gradient is the measure of the slope of a line on a graph. For a distance-time graph, this slope represents how distance changes with respect to time, indicating the speed of an object.

(ii) Selecting Points Pand O:

To calculate the gradient, select any two points in time, t_1 and t_2 , on the x-axis. Draw vertical dotted lines from these points to meet the graph at points **P** and **Q**. These points represent the positions of the object at times t_1 and t_2 .

(iii) Drawing Horizontal Lines for Distance:

From points P and Q, draw horizontal lines to intersect the y-axis at points S₁ and S₂. These intersections represent the distances S₁ and S₂ covered by the object at times t₁ and t₂, respectively.

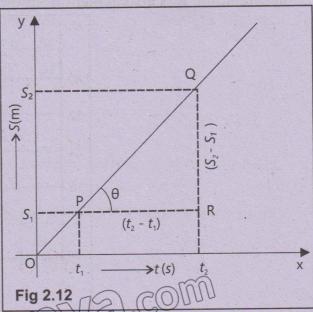
(iv) Calculating the Change in Distance and Time:

The distance covered in the interval is given by:

$$S_2 - S_1 = \Delta S$$

The time taken for this interval is:

$$t_2 - t_1 = \Delta t$$


(v) Determining the Gradient (Slope):

The slope or gradient of the line connecting points P and Q is calculated using:

Slope =
$$\frac{PQ}{PR}$$

Slope = $\frac{change\ in\ distance}{change\ in\ time} = \frac{S_2 - S_1}{t_2 - t_1} = \frac{\Delta S}{\Delta t}$

(vi) Relationship with Average Speed:

The average speed of the object is:

This is the same as the slope of the distance-time graph. Therefore, the gradient of the distance-time graph is equal to the average speed.

(vii) Tangent 0 and Graph Line:

The slope of the graph line is also expressed as the tangent of the angle θ formed between the graph line and the time axis:

$$\tan \theta = \frac{\Delta S}{\Delta t}$$

Conclusion: Gradient of distance-time graph is equal to the average speed of the body.

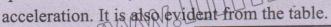
Q.14. Explain speed-time graph when an object:

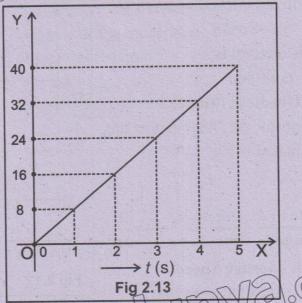
09102014

- (i) moving with uniform acceleration
- (ii) moving with constant speed

Ans: Speed Time Graph

Suppose we can note the speed of the same car after everyone second and record it in the table given below, we can draw the graph between speed versus time t. This is called speed-time graph.

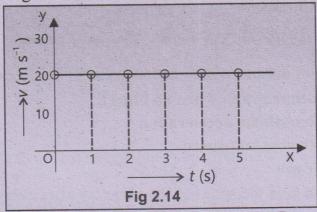

(i) When an object moving with uniform acceleration:


[[] [] [] [] [] [] [] [] [] [111111	Table				
Time t's	0	1	2	3	4	5
Speed v(ms ⁻¹)	0	8	16	24	32	40

Take t along x-axis and v along y-axis. Scale can be selected as 15 T cm (x-axis)

and speed 10ms⁻¹= 1 cm along y-axis.

Slope of the graph is shown in Fig. 2.13. It is a straight line rising upward. This shows that speed increases by the same amount after every one second. This is a motion with uniform



(ii) When an object moving with constant speed

Now consider another case. The observations are recorded in the table given below:

Time t (s)	1777	- 1	2	3	4	5
Speed v(ms-1)	20	20	20	20	20	20

In this case, graph line in horizontal (Fig 2.14) parallel to time x-axis. It shows that speed does not change with change in time. This is a motion with constant speed.

Q.15. Explain gradient of speed-time graph. What does gradient of speed-time represent? Find the gradient of speed-time graph for an object moving with constant speed.

Ans: The gradient (or slope) of a speed-time graph provides essential information about the acceleration of a moving object. Depending on the nature of the motion, the slope varies and reflects either a constant acceleration or constant speed.

Let's analyze these two scenarios in detail.

Motion with Constant Acceleration:

In this scenario, the speed of an object changes uniformly over time. Consider the speeds at times t_1 and t_2 as v_1 and v_2 , respectively. The change in speed (Δv) over the time interval (Δt) is expressed as:

$$\Delta y = y_P + |w_1|$$
 and $\Delta t = t_2 - t_1$

The gradient (slope) of the speed-time graph is calculated as:

Slope =
$$\frac{change in speed}{change in time} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

From the definition of average acceleration (a):

$$a = \frac{\Delta v}{\Delta t}$$

Hence, the gradient of the speed-time graph equals the average acceleration of the object.

Motion with Constant Speed:

When the object's speed does not change with time, it moves with **constant speed**. In this case, the speeds at times t_1 and t_2 are the same:

$$v_2 - v_1 = 0$$

Slope= $\frac{v_2 - v_1}{t_2 - t_1} = \frac{0}{\Delta t} = 0$

This shows that the acceleration of this motion is zero. It is the motion without the change in speed.

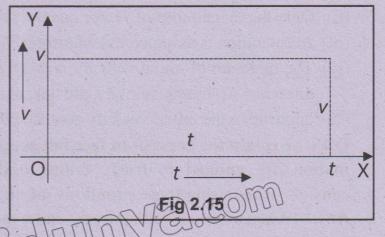
Q.16. Show that the area under speed-time graph is numerically equal to the distance covered by an object.

Ans: The distance moved by an object can be determined by calculating the area under a speed-time graph.

(i) Distance for Motion with Constant Speed:

When an object moves with a constant speed (v) over a time interval (t), the speed-time graph is a horizontal line at speed v, as shown in Figure 2.15.

The distance covered (s) is given by the equation: S=v×t


The speed-time graph forms a rectangle with Base (t) and Height (v)

The area of the rectangle is given by:

Hence, the area under the graph is numerically equal to the distance covered by the object.

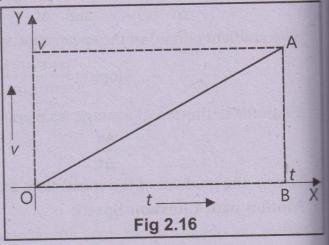
(ii) Distance for Motion with Uniformly Increasing Speed:

If the speed of an object increases uniformly from 0 to v over time t, the speed-time graph forms a right-angled triangle (as shown in Figure 2.16).

The average speed (vav) is given by:

$$v_{av} = \frac{0+v}{2} = \frac{1}{2}v$$

The distance covered can then be calculated using the equation:


Distance covered Average speed \times time= $\frac{v}{2} \times t$

The speed-time graph forms a triangle, with base (t) and Height (v)

The area of the triangle is given by:

Area =
$$\frac{1}{2}$$
 × base × height
Area = $\frac{1}{2}$ × t × v = $\frac{v}{2}$ × t

Hence, the area under the graph equals the distance traveled by the body.

Q.17. Explain the three equations of motion used to solve problem of motion, and what are the assumptions made while applying these equations.

09102017

Ans: Three equations of motion are used to solve problems for motion of bodies. If vi is the initial velocity of the body, vi is the final velocity, this the time taken, S is the distance covered and a is the acceleration, then

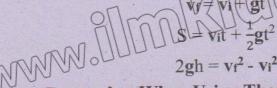
$$\mathbf{v_f} = \mathbf{v_i} + \mathbf{at}$$

$$S = v_i t + \frac{1}{3} at f$$

$$2as = v_f^2 - v_i^2$$

Assumptions in Applying the Equations:

- (i) Motion is always considered along a straight line
- (ii) Only the magnitudes of vector quantities are used.
- (iii) Acceleration is assumed to be uniform.
- (iv) The direction of initial velocity is taken as positive. Other quantities which are in the direction of initial velocity are taken as positive. The quantities in the direction opposite to the initial velocity are taken as negative.


Q.18. Explain the concept of free fall acceleration and describe how the equations of motion are applied to freely falling bodies? What are the important points to consider when using these equations for objects in free fall?

Opinion 18

Ans: When a body is falling freely under the action of gravity, the acceleration acting on it is called gravitational acceleration, denoted by g. This acceleration always acts downward towards the Earth. The standard value of gravitational acceleration is 9.8 m/s², but for convenience, it is often approximated as 10 m/s².

Since the body moves vertically downward in a straight line with uniform acceleration due to gravity, the three equations of motion can be applied to describe the motion of

freely falling bodies. In these equations, the acceleration a is replaced by g, the acceleration due to gravity. The three equations of motion for freely falling bodies are:

Important Points to Remember When Using These Equations:

It should be remembered that while using these equations, the following points should be kept in mind:

- (i) If a body is released from some height to fall freely, its initial velocity v_i will be taken as zero.
- (ii) The gravitational acceleration g will be taken as positive in the downward direction. All other quantities will also be taken as positive in the downward direction. The quantities in the direction opposite to the acceleration will be taken as negative.
- (iii) If a body is thrown vertically upward, the value of g will be negative and the final velocity will be zero at the highest point.

Example 2.1

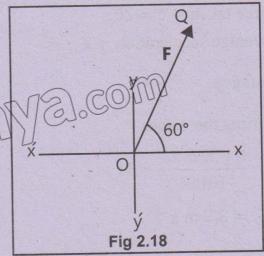
Examples

at an angle of 60° to the east of Draw the velocity vector y a velocity of 300 m/s

north.

Solution:

- (i) Draw two mutually perpendicular lines indicating N. S. E& W.
- (ii) Select a suitable scale. If $100 \text{ ms}^{-1} = 1 \text{ cm}$, then $300 m s^{-1}$ are represented by 3cm line.
- (iii) Draw 3 cm line OP at an angle of 60° starting from N towards E.
- N Fig 2.17
- (iv) Make an arrow head at the end of line OP. The OP is the vector v.


Example 2.2

09102020

Draw a force vector F having magnitude of 350 N and acting at an angle of 60° with x-axis.

Solution:

- (i) Draw horizontal and vertical lines to represent x-axis and y-axis as shown in Fig.
- (ii) Scale: If 100 N = 1 cm, then
- (iii) Draw 3.5 cm time Quat an angle of 60° with x-axis.
- (iv) Make an arrow head at the end of the line OQ. The OO is the vector F.

Example 2.3

An eagle dives to the ground along a 300 m path with an average speed of 60 m s^{-1} . How long does it take to cover this distance?

Solution:

Total distance covered = S = 300 m

Average speed = $v_{av} = 60 \text{ m s}^{-1}$

Total time taken = t=?

Using the equation $v_{av} = \frac{S}{t}$

or
$$t = \frac{S}{v_{av}}$$

putting the values $t = 300 \text{ m} / 60 \text{ m s}^{-1} = 5 \text{ s}$

Example 2.4:

09102022

A plane starts running from rest on a run-way as shown in the figure below. It accelerates down the run-way and after 20 seconds attains a velocity of 252 km h⁻¹. Determine the average acceleration of the plane.

t = 20 s

Solution:

Initial velocity $= v_i = 0$

Final velocity = $v_f = 252 \text{ km h}^{-1}$

$$=\frac{252\times10^3 \text{m}}{60\times60\text{s}}=70\,\text{m}\,\text{s}^{-1}$$

Time taken = t = 20 s

Average acceleration = a_{av} =?

Using
$$a_{av} = \frac{v_f - v_i}{t}$$

$$t = \frac{0 - 30 \,\mathrm{m \, s^{-1}}}{-10 \,\mathrm{m \, s^{-2}}} = 3 \,\mathrm{s}$$

$$a_{av} = 3.5 \text{ m/s}^{-1}$$

Example 2.5

An iron bob is dropped from the top of a tower. It reaches the ground in 4 seconds. Find: (a) the height of the tower (b) the yelocity of the ball as it strikes the ground.

Solution:

For freely falling body.

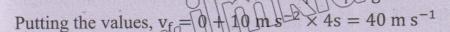
Initial velocity
$$= v_i = 0$$

Acceleration
$$= g = 10 \text{ m s}^{-2}$$

Time
$$= t = 4 s$$

Height (distance)
$$= S = h = ?$$

Final velocity
$$= v_f = ?$$


(a) According to second equation of motion,

$$S = v_i t + \frac{1}{2} g t^2$$

Putting the values,
$$h = 0 \times 4s + \frac{1}{2} \times 10 \,\text{m}\,\text{s}^{-2} \times (4)^2 \,\text{s}^2$$

$$h = 80 \text{ m}$$

(b) From the first equation of motion, we have

Example 2.6

09102024

An arrow is thrown vertically upward with the help of a bow. The velocity of the arrow when it leaves the bow is 30 m s⁻¹. Determine time to reach the highest point? Also, find the maximum height attained by the arrow.

Solution:

Initial velocity
$$= v_i = 30 \ m \ s^{-1}$$

Final velocity
$$= v_f = 0$$

Acceleration
$$= g = -10 \text{ m s}^{-2}$$

Time
$$= t = ?$$

Height
$$S = h = ?$$

From first equation of motion:

putting the values of
$$t = \frac{0-30 \,\mathrm{m \, s^{-1}}}{-10 \,\mathrm{m \, s^{-2}}} = 3 \,\mathrm{s}$$

Exercise

(A) Multiple Choice Questions (Exercise)

1. The numerical ratio of displacement to distance is:

09102025

09102026

- (a) always less than one
- (b) always equal to one
- (c) always greater than one
- (d) equal to or less than one
- 2. If a body does not change its position with respect to some fixed point, then it will be in a state of:
 - (a) rest
 - (b) motion
 - (c) uniform motion
 - (d) variable motion
- 3. A ball is dropped from the top of a tower, the distance covered by it in the first second is: 09102027

(a) 5 m

(b) 10 m

(c) 50 m

- (d) 100 m
- A body accelerates from rest to a velocity of 144 km h⁻¹ in 20 seconds.
 Then the distance covered by it is:

09102028

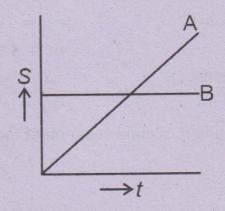
(a) 100 m

(b) 400 m

(c) 1400 m

- (d) 1440 m
- 5. A body is moving with constant acceleration starting from rest. It covers a distance S in 4 seconds. How much time does it take to cover one-fourth of this distance?

0910


(a) 1 s

(c) 4 s

6. The displacement time graphs of two objects A and B are shown in

the figure. Point out the true statement from the following:

09102030

- (a) The velocity of A is greater than B
- (b) The velocity of A is less than B
- (c) The velocity of A is equal to that
- (d) The graph gives no information in this regard
- 7. The area under the speed-time graph is numerically equal to:

09102031

- (a) velocity
- (b) uniform velocity
- (c) acceleration
- (d) distance covered
- 8. Gradient of the speed-time graph is equal to: 09102032
 - (a) speed
 - (b) velocity
 - (c) acceleration
 - (d) distance covered
 - Gradient of the distance-time graph is equal to the: 09102033
 - (a) speed
 - (b) velocity
 - (c) distance covered
 - (d) acceleration

10. A car accelerates uniformly from 80.5 kmh⁻¹ at t = 0 to 113 kmh Which graph best describes the motion of the car? (d) (a) Answer Key 5. (b) (b) 4. 3. (a) 2. 1. (b) (a) 10. (c) 9. 8. (c) (a) 7. (d) 6. (a) SLO based Additional MCQs Types of Motion Displacement 4. Motion of a screw of rotating fan is: 1. Change in position of a body from (())\\09102038 initial to final point is called: (a) Circular motion 09102035 b) vibratory motion (a) distance (c) Random motion (b) displacement (d) Rotatory motion (c) Speed (d) Velocity Acceleration 2. A girl walks 3 km towards west and 5. A cyclist is travelling in a westward 4km towards south. What is the produces and magnitude of her total distance and direction deceleration of 8 m/s² to stop. displacement respectively? 09102039 09102036 (b) East (a) North (a) 7km, 7km (d) West (c) South (b) 1km, 7km 6. A ball is thrown straight up, what is (c) 7km, 1km the magnitude of acceleration at the (d) 7km, 5km 09102040 top of its path? Displacement-time graph (b) 9.8m/s^2 (a) zero $7(d) 19.6 \text{m/s}^2$ (c) 4.9m/s^2 slope of a body's 3. When the In 55 a car accelerates so that its displacement-time graph increases velocity increases by 20 m/s. The the body is moving with; 09102037 acceleration is: 09102041 (a) increasing velocity (b) 4 m/s^2 (a) 0.25 m/s^2 (b) decreasing vetocity (d) 100 m/s^2 (c) 25 m/s^2 (c) constant velocity (d) all of these

Velocity

8. A rider is training a horse. Horse moves 60 meters towards right in 3 seconds. Then it turns back and travels 30 meters in 2 seconds. Find its average velocity. 09102042

(a) 6m/s

(b) 18m/s

(c) 35m/s

- (d) 0m/s
- 9. If a cyclist has acceleration of 2m/s² for 5 seconds, the change in velocity of the cyclist is: 09102043

(a) 2m/s

- (b) 10m/s
- (c) 20m/s
- (d) 15m/s
- 10. A car is moving with velocity of 10m/s. If it has acceleration of 2m/s²

for 10 seconds. What is final velocity

of the car?

09102044

(a) 30m/s

- (b) 20m/s (d) 15m/s
- 11. Ball dropped freely from a tower reaches ground in 4s, the speed of impact of ball is:

 09102045

(a) 0 m/s

(b) 2.45 m/s

09102047

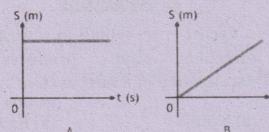
(c) 19.6 m/s

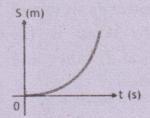
. (d) 39.2 m/s

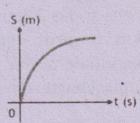
Speed Time Graph

- 12. Area under speed-time graph is equal to _____ of moving body:
 - (a) distance
 - (b) change in velocity
 - (c) uniform velocity
 - (d) acceleration

Distance Time Graph


13. slope of distance -time graphis:


(a) velocity (b) acceleration


(c) speed

(d) displacement

14. Which of following distance time graphs represents increasing speed of a car?

Answer Key

1	(b)	2	(d)	3	(a)	4	(d)	5	(b)
6	(b)	7	(b)	8	(a)	9	(b)	10	(a)
11	(d)	12	(a)	13	(c)	14	(c)		

(B) Short Questions (Exercise) COM

2.1 Define scalar and vector quantities.

Ans: Scalar

A scalar is a physical quantity that can be described completely by its

magnitude only. Magnitude includes a. number and an appropriate unit.

Examples: Mass, length, time and speed, etc.

Vector:

A vector is a physical quantity that requires both magnitude and direction to be described completely.

Examples: Velocity displacement and

force etc. Velocity Misplacement and

2.2 Give 5 examples each for scalar and vector quantities. 09102050

Ans: Scalar quantities: volume, work, energy, pressure, power

Vector quantities: force, momentum, torque, acceleration, weight

2.3 State head-to-tail rule for addition of vectors. 09102051

Ans: The head-to-tail rule is a graphical method used to add vectors. It states that to add two or more vectors, redraw their representative lines such that the head of one vector coincides with the tail of the other. The resultant vector is the single vector directed from the tail of the first. vector to the head of the last vector.

2.4 What are distance-time graph and speed-time graph? 09102052

Ans: Distance-Time Graph: Shows how distance changes over time. The slope of this graph represents speed.

Speed-Time Graph: Shows how speed changes over time. The slope of this graph represents acceleration, and the area under the curve represents distance traveled.

2.5 Falling objects near the Earth have the same constant acceleration. Does this imply that a heavier object will fall faster than a lighter object?

Ans: No, a heavier object does not fall faster than a lighter object when dropped from the same height near the Earth's surface, assuming air resistance is

negligible. Both objects will fall at the same rate. Near the Earth's surface, all objects fall with a constant acceleration of approximately 10ms⁻², regardless of their mass. This is because gravity acts on all objects uniformly.

2.6 The vector quantities are sometimes written in scalar notation (not boldface). How is the direction indicated?

09102054

Ans: When vector quantities are written in scalar notation (without boldface), their direction is indicated through various means.

- i. Positive and Negative Signs
- ii. Directional Words
 (North, south, east) west)

iv. Unit Vectors

2.7 A body is moving with uniform speed. Will its velocity be uniform? Give reason.

09102055

Ans: No, a body moving with uniform speed may not have uniform velocity. Velocity includes both magnitude and direction, if the direction changes, the velocity changes even if the speed remains constant.

- 2.8 Is it possible for a body to have acceleration? When moving with:
 - (i) constant velocity
 - (ii) constant speed 09102056

Ans: (i) Constant velocity:

No, a body moving with constant velocity (both speed and direction remain unchanged) has zero acceleration.

Acceleration is the rate of change of velocity, so if the velocity does not change, the acceleration is zero.

(ii) Constant speed:

Yes, a body moving with constant speed can have acceleration if its direction is changing. For example, an object moving in a circular path with constant speed is continuously changing direction, which results in centripetal acceleration directed toward the center of the circle, even though the speed remains constant.

SLO based Additional Short Questions

Speed and velocity

2.1 The car while moving on a circular road may have constant speed, but its velocity is changing at every instant. Why?

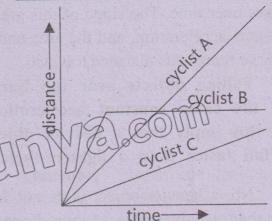
09102057

Ans: The car's velocity changes at every instant on a circular road because velocity is a vector quantity. While the speed remains constant, the direction of motion changes continuously along the circular path, causing a change in velocity.

Free fall acceleration

- 2.2 Write down the equations of motion for freely falling bodies. 09102058
 Ans:
- (i) $v_f = v_i + gt$
- (ii) $h = v_i t + \frac{1}{2} g t^2$
- (iii) $2gh = v_f^2 v_i^2$
- 2.3 With the help of daily life examples, explain the situations in which:

 09102059
- (i) Acceleration is in the direction of motion
- (ii) Acceleration is against the direction of motion
- (iii) Acceleration is zero and body is in motion


Ans. Following are the three daily life examples in which acceleration is in the

direction of motion, against the direction of motion and zero.

Explanation:

- (i) A freely falling object has direction of motion downward and acceleration due to gravity is also downward. An apple falling from a tree is an example of acceleration in the direction of motion.
- (ii) A body throwing upward has direction of motion upward and direction of acceleration downward. An upward throwing cricket ball is an example of acceleration against the direction of motion.
- (iii) A uniformly moving body is a fixed direction has zero acceleration. A uniformly moving car in the right direction is an example of zero acceleration and the body is in motion.

Graphical analysis of motion

2.4 (a) What does each line on the graph represent? 09102060

- (b) Which cyclist traveled the most distance?
- (c) Which cyclist traveled at the greatest speed? The lowest speed? At constant speed?

 Ans:

(a) Each line on the graph represents the motion of a cyclist (A, B, and C) in terms of the distance traveled over time at a constant speed.

(b) Cyclist A traveled the most distance as its line is the highest on the graph.

(c)

- The greatest speed: Cyclist A (steepest slope).
- The lowest speed: Cyclist C (least steep slope).
- All cyclists traveled at constant speeds as their lines are straight.
- distance-time graph represent? 09102061

 Ans: The gradient of a distance-time graph represents the speed of the object. A steeper gradient indicates a higher speed, while a flatter gradient indicates a lower speed.
- 2.6 What does the gradient of a speed-time graph represent?_09102062

Ans: The gradient of a speed-time graph represents the acceleration of the object. A positive gradient indicates increasing speed (positive acceleration), while a negative gradient indicates decreasing speed (negative acceleration)

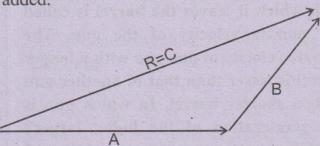
2.7 What does the area under a speed-time graph represent? 09102063

Ans: The area under a speed-time graph

represents the distance traveled by an object.

Distance and Displacement

2.8 Is it possible that displacement is zero but not the distance? Under what condition displacement will be equal to distance?


09102064

Ans. If a body starts motion and finally reaches its initial position, then in such a case displacement is zero but not the distance.

Displacement and distance are equal when the body goes straight from initial point to the final point. A car moves straight to the school. Hear distance and displacement are equal.

2.9 Define resultant vector. 09102065

Ans. We can add two or more vectors to get a single vector. This is called as resultant vector. It has the same effects as the combined effect of all the vectors to be added.

2.10 How a vector is represented graphically? Explain. 09102066

Ans. A vector can be represented graphically by drawing a straight line with an arrow head at one end. The length of line represents the magnitude of the vector quantity according to a suitable scale while the direction of arrow indicates the direction of the vector.

Relativity

2.11 What is meant by universal speed limit?

Ans. In 1905, famous scientist Albert Einstein proposed his revolutionary theory of special relativity which modified many of the basic concepts of physics. According to this theory, speed of light is a

universal constant Its value is approximately 3 × 10 ms⁻¹. Speed of olight remains the same for all motions. Any object with mass cannot achieve speeds equal to or greater than that of light. This is known as universal speed limit.

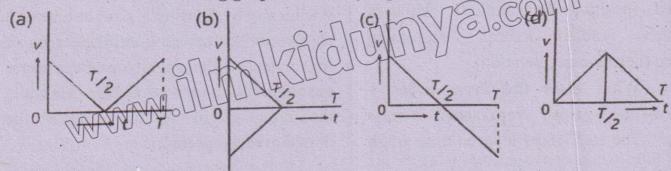
(C) Constructed Response Questions

2.1 Distance and displacement may or may not be equal in magnitude. Explain this statement. 09102068

Ans: Distance and displacement may or may not be equal in magnitude. Distance is the total path length traveled, while displacement is the straight-line distance between the initial and final positions, with direction. They are equal in magnitude only if the object moves in a straight line without changing direction. If the object changes direction, the distance will be greater than the displacement.

2.2 When a bullet is fired, its velocity with which it leaves the barrel is called the muzzle velocity of the gun. The muzzle velocity of one gun with a longer barrel is lesser than that of another gun with a shorter barrel. In which gun is the acceleration of the bullet larger? Explain your answer.

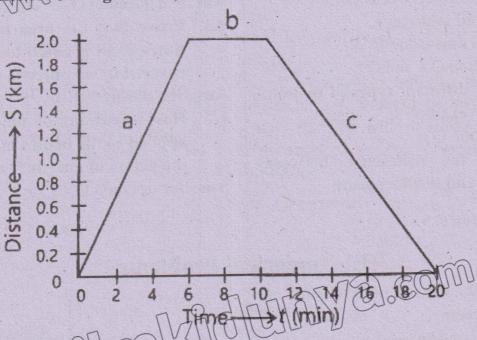
Ans: The acceleration of the bullet is larger in the gun with the shorter barrel. This is because the bullet has less distance and time to reach its muzzle velocity, resulting in a higher acceleration compared to a gun with a longer barrel, where the bullet has more time to recelerate and reaches a higher velocity.


relocity was calculated. Its value came out to be positive. Is it possible that its instantaneous velocity at any time during the trip had the negative value? Give justification of your answer.

09102070

Ans: Yes, the instantaneous velocity can be negative even if the average velocity is positive. The average velocity is based on the overall displacement, but at any given moment, the object could be moving in the opposite direction, resulting in a negative instantaneous velocity.

2.4 A ball is thrown vertically upward with velocity v. It returns to the ground in time T. Which of the following graphs correctly represents the motion?


09102071

Ans. Graph d is correct because it shows a triangular shape, indicating a constant rate of change of velocity in both directions. This graph is correct because it accurately reflects the constant acceleration due to gravity and the symmetry of the upward and downward motion

2.5 Figure given below shows the distance-time graph for the travel of a cyclist.

Find the velocities for the segments a, b and c.

Ans. i. Segment a (0 to 5 minutes):

This segment shows a steady increase in distance, indicating constant velocity. The velocity can be calculated as the slope of the distance-time graph.

$$v = \frac{\text{change in distance}}{\text{change in time}} = \frac{2km - 0km}{5min - 0min} = \frac{2}{5} = 0.4 \text{ km/min}$$

ii. Segment b (5 to 10 minutes):

This segment shows a **constant distance** (a flat line), meaning there is no movement during this time. Therefore, the velocity is: $\mathbf{v} = \mathbf{0} \, \mathbf{km} / \mathbf{min}$

iii. Segment c (10 to 20 minutes):

This segment shows a decrease in distance, indicating the cyclist is moving back towards the starting point. The velocity is negative since the cyclist is moving in the opposite direction:

$$v = \frac{change\ in\ distance}{change\ in\ time} = \frac{0km - 2km}{20min - 10min} = \frac{-2}{10} - 0.2\ km/min$$

2.6 Is it possible that the velocity of an object is zero at an instant of time, but its acceleration is not zero? If yes, give an example of such a case.

On object to be zero at an instant, but its acceleration is not zero.

Example: When an object is thrown upwards. At the highest point of its motion, the velocity is zero for an instant, but the object still has acceleration due to gravity, acting downward. This shows that velocity and acceleration are independent and can have different values at a given time.

(D) Comprehensive Questions

2.1 How a vector can be represented graphically? Explain. 09102074

Ans: See question Q.3

2.2 Differentiate between: 09102075
(i) rest and motion

(ii) speed and velocity

Ans: See question Q.5 and Q.8

2.3 Describe different types of motion.
Also give examples. 09102076

Ans: See question Q.6

2.4 Explain the difference between distance and displacement.

09102077

Ans: See question Q.7

2.5 What do gradients of distance-time graph and speed-time graph represent? Explain it by drawing diagrams.

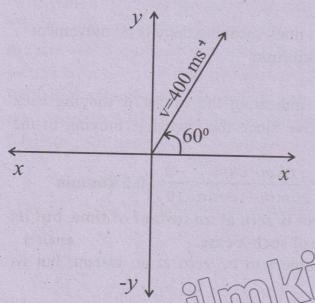
Ans: See question Q.15 and Q.18

2.6 Prove that the area under speedtime graph is equal to the distance covered by an object. 09102079

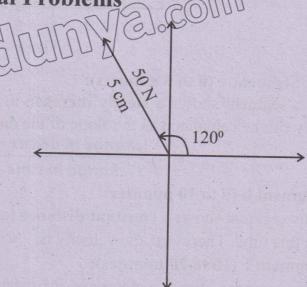
Ans: See question Q.16

2.7 How equations of motion can be applied to the bodies moving under the action of gravity? 09102080

Ans: See question Q.18


(E) Numerical Problems

2.1 Draw the representative lines of the following vectors: 09102081


(a) A velocity of 400 ms making an angle of 60° with x axis

(b) A force of 50 making an angle of 120° with x – axis.

Solution:(a) Scale: $1 \text{ cm} = 100 \text{ ms}^{-1}$

(b) Scale: 1 cm = 1 M

2.2 A car is moving with an average speed of $72 \text{ km } h^{-1}$. How much time will it take to cover a distance of 360 km?

Given Data:

Average speed = $g = 12 \text{ kmh}^{-1}$ Distance covered = S = 360 km

To Eind:

Time = t = ?

Solution:

As we know that

Distance = speed \times time

50,

$$Time = t = \frac{distance}{speed}$$

$$t = \frac{360 \text{ km}}{72 \text{kmh}^{-1}}$$

t = 5 hours

Result:

The car will take 5 hours to cover 360 km.

A truck start from rest. It 2.3 reaches a velocity of 90 kmh-1 in 50 seconds. Find its average acceleration.

Given data:

Initial velocity = $v_i = 0 \text{ms}^{-1}$

final velocity =
$$v_f$$
 = 90 kmh⁻¹ = $90 \times \frac{1000}{3600}$
= 25 ms⁻¹

Time = t = 50 sec

To find:

Average acceleration = ?

Solution:

Solution:

$$a = \frac{v_f - v_i}{t}$$

$$a = \frac{25 - 0}{50}$$

$$a = \frac{25}{25}$$

 $a = 0.5 \text{ ms}^{-2}$

Result:

The average acceleration of the truck is 0.5 ms⁻²

A car passes a green traffic signal while moving with a velocity of 5 m s⁻¹. It then accelerates to 1.5 m s⁻². What is the velocity of car after 5 seconds?

Given data:

Initial velocity = $v_i = 5 \text{ ms}^{-1}$ Acceleration = $a = 1.5 \text{ ms}^{-2}$

Time = t = 5 sec

To Find:

Final velocity = $v_f = ?$

Solution:

By using first equation of

 $v_1 + |at|$ VE 5 + (1.5) (5)

 $v_f = 5 + 7.5$

 $v_f = 12.5 \text{ ms}^{-1}$

Result:

The velocity of car after 5 second is 12.5 ms⁻¹.

2.5 A motorcycle initially travelling at 18 km h-1 accelerates at constant rate of 2 ms⁻². How far will the motorcycle go in 10 seconds?

Given data:

Initial velocity = v_i = 18 km h⁻¹ = 18× $\frac{1000}{3000}$

 $V_i = 5 \text{ms}^{-1}$

Acceleration = $a = 2 \text{ ms}^{-2}$

Time = t = 10 sec

To find: Distance S

Solution:

By using 2nd equation of motion

$$S = v_i t + \frac{1}{2} a t^2$$

$$S = (5)(10) + \frac{1}{2}(2)(10)^2$$

$$S = 50 + (1)(100)$$

S = 150 m

Result: The motor cycle travel 150 m in 10 sec.

A wagon is moving on the road with a velocity of 54 km h-1. Brakes are applied suddenly. The wagon covers a distance of 25m before stopping. Determine the acceleration of the

Solution:

Given data:

Initial velocity = v_i = 54 kmh⁻¹ =

 $v_i = 15 \text{ ms}^{-1}$

Distance = S = 25m

Final velocity = $v_f = 0 \text{ ms}^{-1}$

To find:

Acceleration = a = ?

By using 3rd equation of motion

$$2as = v_f^2 \sqrt{v_f^2}$$

$$2(a)(25) = (0)^2 - (15)^2$$

$$(50)a = -225$$

$$a = -\frac{225}{50}$$

$$a = -4.5 \text{ ms}^{-2}$$

Result:

The acceleration of the wagon is -4.5ms⁻². (The negative sign indicates deceleration)

A stone is dropped from a height of 45m. How long will it take to reach the ground? What will be its velocity just before hitting the ground?

09102087

Solution:

Given data:

Height = h = 45 m

Gravitational acceleration = g = 10 ms⁻² Initial velocity = $v_i = 0 \text{ ms}^{-1}$

To find:

- (a) Time = t = ?
- **(b)** Final velocity = v_f =?
- (a) For time.

By using 2nd equation of motion

$$h = v_i t + \frac{1}{2} g t^2.$$

$$45 = (0)(t) + \frac{1}{2}(10)(t)^2$$

$$45 = (5)(t)^2$$

$$\frac{45}{5} = t^2$$

$$t^2 = 9$$

taking square root on both si

$$\sqrt{t^2} = \sqrt{9}$$

$$t = 3 \text{ mg}^{-1}$$

(b) For final velocity:

By using 1st equation of motion

(10)(3)

 $v_f = 0 + 30$

 $v_f = 30 \text{ ms}^{-1}$

Result:

Time to reach the ground in 3 sec and velocity just before hitting the ground is 30ms⁻¹.

2.8 A car travel 10 km with an average velocity of 20 ms-1. Then it travels in the same direction through a diversion at an average velocity of 4 ms⁻¹ for the next 0.8 km. Determine the average velocity of the car for the total journey. 09102088

Solution:

Given data:

(a) First part of journe

Distance = $d_1 = 10 \text{km} = 10000 \text{m}$ Average velocity = $v_1 = 20 \text{ ms}^{-1}$

(b) Second part of the journey: Distance = d_2 = 0.8 km = 800m Average velocity = $v_2 = 4 \text{ms}^{-1}$

To find:

Average velocity of car for total journey = $V_{av} = ?$

First of all we calculate the time for each part of journey.

Time for first part of journey (a)

$$t_1 = \frac{d_1}{v_1} = \frac{10000}{20} = 500$$
 seconds

(b) Time for second part of journey

$$t_2 = \frac{d_2}{v_2} = \frac{800}{4} = 200 \text{ seconds}$$
Now, we calculate total distance and total

Total distance = $d_1 + d_2$

= 1000 + 800

= 10800 m

Total time = $t_1 + t_2$

=500 + 200

So, Average velocity =
$$V_{av} = \frac{d_{total}}{t_{total}}$$

$$V_{av} = \frac{10800}{700}$$

Result:

The average velocity of total journey is 15.4 ms⁻¹.

2.9 A ball is dropped from the top of a tower. The ball reaches the ground in 5 seconds. Find the height of the tower and the velocity of the ball with which strikes the ground.

09102089

Solution:

Given data:

Time to reach the ground = t = 5 sec Acceleration due to gravity = g = 10ms⁻² Initial velocity = $V_i = 0$ ms⁻¹

To find:

- (1) Height of tower = h
- (2) Velocity of ball with which it strikes the ground it

By using 2nd equation of motion

$$h = v_i t + \frac{1}{2} g t^2$$

$$h = (0)(5) + \frac{1}{2}(10)(5)^2$$

$$h = (0) + (5)(25)$$

$$h = 5(25)$$

$$h = 125 \text{ m}$$

Now, for finding "final velocity" we will use 1st equation of motion:

$$V_f = v_i + gt$$

 $V_f = (0) + (10)(5)$
 $V_f = 0 + 50$
 $V_f = 50 \text{ ms}^{-1}$

Result:

- (i) Height of tower is 123
- (ii) Velocity of ball with which it strikes the ground is 50 ms⁻¹.

2.10 A cricket ball is hit so that it travel straight up in the air. An observer note that it took 3 seconds to reach the highest point. What was the initial velocity of the ball? If the ball was hit 1m above the ground, how high did it rise from the ground?

09102090

Solution:

Given data:

Time to reach maximum height = t = 3 sec Velocity at maximum height = $v_f = 0$ ms⁻¹ Acceleration due to gravity = -10 ms⁻² Height from which the ball is hit from the ground = $h_o = 1$ m

To find:

Initial velocity of ball = v_i=?

Total height from ground = h_{total}=?

By using 1steq of motion

Velocity of ball = v_i=?

$$0 = v_i + (-10)(3)$$

$$0 = v_i - 30$$

$$v_i = 30 \text{ ms}^{-1}$$

Now by using 2nd equation of motion

$$h = v_i t + \frac{1}{2} g t^2$$

$$h = (30)(3) + \frac{1}{2} (-10)(3)^2$$

$$h = (90) - (5)(9)$$

$$h = 90 - 45$$

$$h = 45 m$$

This is height from the paint where the ball was hit. To find the total height from the ground, we add the initial height ho

$$h_{total} = h + h_0$$

= 45 + 1
 $h_{total} = 4600$

Result:

30ms⁻¹ and total height the ball reaches from the ground is 46m