L]

 StudentLearning ;h,-.;t'.*.@m'é:s.- &
Understand Ngtiber System:

ng systems,

ues and digits.

ly use the binary number system for data representation.

tion of data, including how data

The different numberi
their respective baseval
Why computers primari
Machine-level representa
the computer's architecture.

The representation of whole and real numbers in a computer, including binary encoding

methods for both.

How various” arithmetic operations,
division, are performed on

The concept of common &
they represent characters.
How digital data represen
audios, videos, and oth
Different file formatsan
The concept of file extensions and their i

e

The fundamentals of digital log
and store information.

Difference betweenana
various logic gates

data.

The purpose and construction of truth tables for evalu
expressions based oninput combinations.
The c_o'ncept'of switches a

input

Karnaugh maps as a visual tool for
Truth table, Boolean expression, Ci
Half-adder and Full-adder as digital syst
¥interacﬁon_among t

binary repre

tations work
er multimedia resources.
d their variations for specifi

ycecinalhs
arflow, and underflow.
QnRep _ to represent logic operations and
hetweelybinary variables.
How to construct Boolean
Common Boolean identities
The concept of duality in Bool

and simplificati

log and digital signals andu
(AND, OR, NOT, NAND, XOR) an

nd their role in digital systems,

including decimal, binary, hexadecimal, and octal, and

is stored and processed within

such as addition, subtraction, multiplication, ‘and
sentations of numbers? _
ext encoding schemes, such as ASCIl and Unicode, and How

for various forms of multimedia, such as images,

®

ions using variablesand Boolean operators.

on technigues.

ean algebra, where OR becomes AND, and O becomes 1.
ic, which involves using binary digits

nderstanding their key differences.
d their functions in processing binary

often used to represent binary

simplifying Boolean expressions.
reuit diagram of Half-adder and Full-adde

with specific gbjec

hos.e.compowr&;% =

relationships

(0 and 1) to process

ating the output of logic

NOT FOR SALE-PESRP

e e g

Introduction _ :!E!S

Understanding number systems is furg enta %ﬂ»‘ @c:ence and digital
electronics. This chapter will del %“% bering systems, their
puters. We will cover the following

applications, and how

topics:)
Differe IAg Systems: decimal, binary, hexadecimal, and octal.

Binary number system in computers, .

Machine-level data representation.

Representation of whole and real numbers.

Binary arithmetic operations.

Common text encoding schemes: ASCll and Unicode.

File formats and extensions.

Key terms in data representation.

Binary data manipulation and conversion.

10 Encoding schemes.

11. Differences between file formats.

12. Sto;lmg ml;ages auscho and video in computers. o

2.1 Numbering Systems

Numbering systems are essential i in comp in e basis for

representing, storing, and proce erlng systems help

iy

WENO VA WN

computers perform tasks fike - ;‘ * orage, and data transfer. These
systems allow comput . -.~ : varlous kinds of information, such as text,
colors,and m aﬁe s. Here is a description of a few numbering systems:
2.1.1 Dec ystem

The decimal number system is a base-10 number system that consists of digit
from 0 to 9 and we use it in everyday life. That's why each digit of the number
represents a power of 10. In the decimal system the place values starting from
the rightmost digits are 10°, 10, 10°, and so on. For example, the decimal number
523 means: _

5x10°+2x10"'+3x10°=500+ 20 + 3 =523

2.1.2 Binary System

In binary, the place values are arranged from the right to left, starting with 2°, and
ending at 2"where each position represents a power of 2. For example, the
* binary number 1011 can be converted to decimal as follows:

1 x2+0x22+1x2'+1x2°= a+o+2+1- @
Computers work in binary system espec % be G@@} its well with
g

er on or off. These

electronics, Digital circuits have t
- states are easily repre its: 1 represent ON, and 0
represnets OFF. When board the computer translates every

-

=

g are all, at their
Is later in this chapter.

letter to a binary. Similarly, number, tex
lowest level, reduced to binary. We sha |
When you type a letter on your ke (he‘tomputer converts it into a binary
code. Similarly, all types mbers, text, images, and sounds,

are ultimatel down into binary code. We will explore it further later in
this cha |
2.1.2.1 Conversion from Decimal to Binary

The following algorithm translate a decimal number to binary.
1. To convert decimal number to binary form, divide the decimal number by 2.
2. Record the remainder. :
3. Divide the number by 2 until the quotient which is left after division is 0.
4. Meaning it is represented by the remaindersand it's read from the bottom to
the top of the binary number. & e
Example: Convert 83 to binary

83 /2 = 41 remainder 1
41/ 2 = 20 remainder 1

The above steps are graphically shown in Figure 2.1. If the remainders are read
from bottom to top then it gives the required result in binary, which is 1010011.

M
oo
Lo

2
21 Ao=q A
- . A
2
2

e fcont
Y mm@ '
=N

~ Class 2 el @‘_”
: Eagh sfudentwil take\his or her marks from 8"
¢ T ert-them from decimal to binary. For

studantiscore 85 in Math, he/she will convert 85 to binary

2. Clock Time Conversion: Students will be given various times of the
- day and asked to convert them into binary. For instance, 3:45 PM would
be converted as follows:

Hours (15)= 1111

Minutes (45)= 101101

3. Write your sleeping time in binary.

2.1.3 Octal System

Octal is a positional numeral system with base eight, which implies that a digit to
be used ranges from 0 to 7. The last digit is a single digit power of 8 while the
~other digits are the coefficients. In the decimal system P s starting
fromthe 8’, 8', 8’ and so on. For examgle, e ans, 1x8°+ 5x

81+7X30=64+40+7=11110. .

Each octal digit repre il hre \(its) because the octal system is
base-8, and the binary m se=2. This relationship arises from the fact that
8 is a power o ,27)- S0, each octal digit can be precisely represented by
three bi (bits). This means that any value from 0 to 7 in octal can be
converted-into a 3-bit binary number. This relationship makes conversion
between binary and octal straight forward. Table 2.1 shows the correspondence
between octal and binary digits:

Example: :

Consider the 9-bit binary number 110101011. This number can be divided into
groups of three : ' ; '

Bits from right to left:

110 101 011

- Each group of three bits corresponds to a single octal digit:
' 110=6

Octal | Binary

e @@M@W =
Q al 31?
MURSS B R R

4710
I 111
Table 2.1: Correspondence between Octal and Binary Digits

So, the binary number 110101011 is equal to 653 in octal.

Note that the octal number system isn't actually used in modern computers to
do their work. Therefore, we can say that the binary number 110101011 is equal
t0 653 in octal. Whenever you have a binary number that cannot be divided into
groups of a three, you'll have to add zero up to the left end of it to make it
appropriate.

2.1.3.1 Conversion from Decimal to Octal
The algorithm below translates a decimal number;i @o@(@m
1. To convert the decimal numbe @
Tk by 8| 83

btained quotientby 8. - 8j10 —i3

until one of the numbers 211 =13 T

=

resultsin0. -

5. Octal is a base eight number and the octal number 0 — 1
is the remainder read from the bottom up to the
top.] , * Figure 2.2: Conversion from
Example: Convert 83 to octal S Decimal to Octal.
« 83/8=10remainder3
« 10/8=1remainder2
+ 1/8=0remainder 1

The above steps are graphically shown in Figure 2.2, Going up from bottom, the
remainder reading will give the desired result, that is 123 in the octal system.

T oy
Ll el

J

{'Ti.dbits_'

When converting between number systems, double-check your remainders
and sums to ensure accuracy. Practice with different numbers to become
‘more comfortable with the conversion process.

2.1.4 Hexadecimal System

The hexadecimal is a base 16 number system w;th digit number from 0 to 9 and
alphabets from A to F; each digit represents 16 to the power of the position of the
digit. The letter A to F stand for the numeric value of 10 to 1§N'[he dlgItS in

hexadecimal move from right to Ieft m pEace val 16 16°..
anothers. For example, the hexad represented in
decimalas: %

1x162+Ax16‘}@j%m 6+10x16+3x1=256+160+3 =419,

The hexadecimal number system is not directly used by computers either. -
However, it provides an even more compact representation than octal. This
makes it easier for us to read and write large binary numbers.

This is because the hexadecimal system is base-16 and the binary system is base- -
2, therefore every single hexadecimal digit equals four binary bits. This
relationship stems from the fact that 16 is a power of 2 (16= 2%. This means that
any hexadecimal number between 0 and 15 then it can be converted into 4-bit
binary number.

Table 2. 2 illustrates conversion of hexadecimal to binary digits. Each group of
four bits corresponds to a single hexadecimal digit.

Example:

Therefore, the binary number 1101011010110010 equals to the hexadecimal
number D6B2. In case a binary number cannot be ruped our bits add

zero(s) to the left of the number tom fit.
- Q\\W\ ;i 0010

RS 0000

W 2 0010

: 3 0011

4 0100

5 0101

& 0110

7 0111

8 1000

9 1001

. A 1010

B 101"1

SN 3 ,ﬂo@(@m
. D O \Y\\Mt'aﬂ‘ﬂ 3
Tz AL AT
o R 1111 |
Table 2-.Mndenca between Hexadecimal and Binary Digits

1101 =D
0110 =6
1011 =B
0010=2

2.1.4.1 Convertmg Declmai to Hexadecimal
The following algorithm converts a decimal number to hexadecnmalf

1.
2.
S

4.

Convert the decimal number to an absolute value by dlwdmg it hy 16.
Record the quotient and the remainder.

Continue dividing the quotient by 16 and write down tk

guotient is zero. o (
The hexadecimal number, as ﬁ% e gliesse
from bottom to to

Examplwo mxadeclmal

8/16 =

WWWO 0i— 88

Figure 2.3: Decimal
to Hexadecimal

- The above steps are graphically shown in Figure 2.3. Reading the remainders
fro .boom to top gives the required result, i.e,, 8F9 in hexadecimal.

4 Class activity

. &

2297 /16 = 143 remainder 9 \é
143/ 16 =%%r}r@“m@@® 43— 9 => 9

16

Find the following values and express them in hexadecimal, Discus:
~ findings with your classmates:
| "' MmimumAggtgmm

2.2 Data Represgptatinn'‘in Computing Systems
SFARproce and store alot of information. In the following section we

‘ntimeric data representation. :

2.2.1 Binary Encoding of Integers (Z) and Real Numbers (R)

When we store data in computers, especially numbers, it's important to

understand how they are represented and stored in memory. Let's explore how

different sizes of integer values are stored in 1, 2, and 4 bytes, and how both

positive and negative integers are handled. '

2.2.2 Whole Numbers (W) and Integers (2)

Integers, also known as whole numbers, are important elements in both

mathematics and computer science. Knowledge of these concepts is important

for primary computations, solving problems through programming, working

with data and designing algorithms.

2.2.2.1 Whole Numbers (W) -

Whole numbers are a set of non-negative integers, T @@@Md all the

positive integers. Mathematically, the set of who - L _

W={0,123,..}

In computing, whole nfm used to represent quantities that can't
m- b

be negative. Exa in number of students in a school, a person's age

balances. O

A 1-byte integer has s :
maximum value, 111 5. If all bits are off, it represents the

minlmum va ;ch Is U,U Similarly, using 2 or 4 bytes, we get more
bitsto s Iowmg us to store bigger values. If n is the number of bits, the
maximum value that can be represented is 2" -1 for examples |

» 1-Byte whole number (8 bits): Maximum value = 2°-1 = 255

e 2-Byte whole number (16 bits): Maximum value = 2" - 1 = 65,535

* _4-Bytewhole number (32 bits): Maximum value = 2*-1 = 4,294, 967 295
2.2.2.2 Integers (Z)

Integers extend the concept of whole numbers to include negatwe numbers. In

computer programming, we call them signed integers. The set Ff integers is
represented as:

in years, and grades, provided there are no HEW@ @g !EEdit point
its

are on, it represents the

Z={.,-3 -2-10123.}
To store both posnwe and negatwe values, one bit is reserved as the sign bit (the
most significant bit). If the sign bit is ON(1), the value is negative; otherwise, it is
posmve Usmg this system, the maxlmum positive val iethe bms redina
o available to stored a
valueisn 1 hence the maximum, yalug wilhbe e can use this formula to

compute the maxim :
Negative values s

section. W

2.2.2.3 Wegative Values and Two's Complement

To store negative values, computers use a method called two's complement. To
find the two's complement of a binary number, follow these steps:

1. Invert all the bits (change Os to 1s and 1sto 0s).

2. Add 1 to the Least Significant Bit (LSB).
Example: Let's convert the decimal number -5 to an 8-bit binary number:

1. Start with the binary representation of 5:00000101..

2. Invertall the bits: 11111010,.

3. Add1:11111010, + 1, = 11111011,

So, -5in 8-bit two's complementis 11111011..

Lhe following

Minimum Integer Value -

For an 8-bit integer, we switch on the sign bit for the negative val nd turn all
bits ON. resulting in 11111111,. Except ’che first bit, we ta plement
and get 10000000, which is 128, Th[gs Tivahue asigned integer is
-128,i.e.-2”. The minim mva! a-2"", wherenis

the total number ofb |
« 2- Byte I'sfllmmumwalueﬂ----.'Z15 -32,768'

* 4-ByteInteger (32 bits): Minim lue = -2°
ey .sm"i&zg@f/@ﬁ

\

The reaib%l 158\ binary-and these ranges is that computers
e trs r§ \the ave two states: ON (1) and OFF (0). This

. riiBrysystem forms the foundation of all digital computing!
Top Tip: When working with different integer types, always
check whether the data type is signed or unsigned to avoid
unexpected results, especially when dea]mg with large values or
negative numbers. - /

Understanding how integers are stored in memory helps you appreciate the -
- inner workings of computers and ensures you can effectively work with different
data types in programming.

2.3 Storing Real Values in Computer Memory

In computers, real values, also known as floating-point numbers, are used to
represent number with fractions and/or decimals. - m

2.3.1 Understanding Floating-Paqj
Floating-point numbers (real val : similarly to scientific

notation as given bel@% | < |
A floating-poin ;% N x mantissa x 2 **", According to the above

formula, esented as 1.4375 x 2. To convert the fractional part of a real
(floating-point) number from decimal (base-10) to binary (base-2), multiply the
fractional part by 2 and write down the integral part of the result. Repeat this
process with the new fractional part until the value of the fractional part becomes

zero or until the required precision is achieved.
Steps for Conversion:
1. Identify the Fractional Part: Get the fractional part of the decimal number. For

instance, in the number 4.625, the integral part is 4 and the fractional part is 0.

625.
2. Convert the Fractional Part to Binary: Multiply the fractional part by 2, and -

write down the integer that is obtained. Repeat this process with the new
fractional part till it gets to 0 or untll then required number of imal places
is achieved. - @ @

Example: Converting 0.375 to Binany @W

1. Identify the Fractional art: F %{\&ﬁ\g@&@

2.Convertthe Fractlo

0.375x2 = 0.75 (Integer part: 0 @@@EH
0.75x2 =15 (Inte . W

Thej morded are 0, | S 02

3. Combi ts: Combine the binary representations of the integer parts
fromtopto bottom

0.375,,= 0.011,

In computing, it is critical to express real numbers in a binary form since it

facilitates computing and storage. This process involves converting both the

integer (decimal) and the fractional parts of a given number into binary. Two
commonly use standards for this representation are "Single precision (32-bit)"
and "Double Precision (64-bit)".

2.3.1.1 Single Precision (32-bit)

In this standard, 4 bytes (or 32 bits) are assigned where the 1st bit is the sign bit,
‘and the next 8 bits are for the exponent and the remaining 23 b| -
“mantissa.

Here the exponent can be range

The approximate rang%{\

Value fion | Sign Bit | Exponent (8 bits) Mantissa (23 bits) [:
| Grouping fs 1 bit 8 bits 23 bits |
5.75 14375 x 22 0 10000001 1011100000000000000000 |
-5 75 - 1.4375 x 2% 1 10000001 1011 100000d00000000000 I
0.15625 125 x 273 0 01111101 0100000000000000000000
015625 | 125x7° i ! 01111101 0100000000000000000000

Table 2.3: 32-bit Floating Point Representation

Explanation:

Table 2.3 illustrates how 32-bit floating point values are represented in binary
form. Each floating point value is broken down into three main components: the
sign bit, the exponent, and the mantissa. \ (€O}

1. Grouping: This row explalns th%)blt i @3 bit floating point

format: 1 bit for the si rid 23 bits for the mantissa.

. 5.75: Representation: 14375x -

129, which is 10000 @a& representation of 0.4375 is
10111000000000

2. -5.75:Re MTS x 2° - Sign Bit: 1 (negative) - Exponent: 2 + 127
= 12%@@000@012 - Mantissa: The binary representation of 0.4375 is
10111000000000000000000,

3. 0.15625: Representation: 1.25 x 2 - Sign Bit: 0 (positive) - Exponent: -3 +127
= 124, which is 01111101, - Mantissa: The binary representation of 0.25 is
0100000000(}000000000000 ; |

4. -0.15625: Representation: -1.25 x 2° - Sign Bit: 1 (negative) - Exponent: -3
+127 = 124, whichis 01111101, - Mantissa: The binary representation of 0.25
is 01000000000000000000000,

This breakdown helps illustrate how floating point values are stored and

manipulated in computer systems

2.3.1.2 Double Precision (64-bit)

In double precision, the exponent is re
stored in a biased form, wrth abias
values can be determi 5

- Bias: 1023

. Waﬁ. The actual exponent values range from -1022 to +1023.
Therefore; the smallest and largest possible exponent values in double-
precision are.

» Minimum exponent: -1022

« Maximum exponent: +1023

We can perform the same steps given for the single-precision, except the
difference of the abovementioned values.

e exponent is
Al e of the actual exponent

The smallest positive number representable in single
precision is approximately 1.4 x 104 and in double
precision is approx1mately4 9x 107

When performing co
consider possible ro

g this operation, discuss with classmates

"
LSSl

The information about how real values is stored in computer memory help us
understand the precision and limitations of digital computation. With this
understanding of floating-point representation, it becomes possible to control

and manipulate these numbers in different ways.
2.4 Binary Arithmetic Operations

Arithmetic operations include addition, subtraction, multiplication jand division,
and are performed on two numbers at a time. Binary arithmetic operations are

similar to decimal operations but follow binary rules. Here's a-brig
the basic operations: ' = o@@
2.4.1 Addition & @ |

Binary addition uses on

Binary addition follows these simple rules:
1.0+0=0
2. 0+1=1
3.1+0=1 :
4. 1+ 1=0(withacarryof 1tothe next higher bit)

Example of Binary Addition
Example 1:

1101
+1011

11000 a
In this example: "o \o
+ 1+1=0(carry 1) O@@@ﬂ
« 0+1+1¢(ﬁ
e 1+0+ 1: E 1)
WF\J =1(carry 1)

)

cofn

rview of

re, we will learn how to add binary

numbers and how to .Yaa\; the & n ition of negative binary numbers.
%
| Binary A ules '

2.4.2 Subtraction
In binary arithmetic, Siibtraction can also-be carried out by adding the two's

complementor th a ofthe's
Exampﬁw 5from 9in Binary
: inuend =9,,= 1001,

Subtrahend = 6,0—0110
Step 1: Find the Two's Complement of the Subtrahend
* Invertthe bitsof 0110,;
Inversion: 1001,
« Add 1tothe inverted number;
1001, + 1,=1010,=-6,,
Step 2: Add the Mmuend and the Two's Complement of the

Subtrahend
1001,+1010,= 10011,
Step 3: Discard the Carry Bit
10011, Discard carry 0011,=3,, '
So, 9-6=3. | @O@m

2.4.3 Multiplication
Binary numbers are base
binary numbers follo '
with simple , we will learn how to multiply binary numbers wrth
example.
Steps to Multiply Bmary Numbers
1. 'Write down the binary numbers, aligning them by the least significant bit
~ (rightmost bit).
2. Multiply each bit of the second number by each bit of the first number, similar
to the long multiplication method in decimal.
3. Shift the partial results one place to the left for each new row, starting from
the second row.
4. Add all the partial results to get the final product.
Example
Let's multiply two binary numbers: 101,and 11,.
101
x 11

i
o ﬁéz\&mﬁ@@m@ G@
RS

NOT FOR SALE-PESRP (L3T..

g of only 0s and 1s. Multiplying

-

S s
e W&Umt (CPU) of a computer performs
\N ik inary multiplications every second to execute

2.4.3 Division - .
Binary division is similar to decimal division but only involves two digits: 0 and 1.
It follows steps like comparing, subtracting, and shifting, akin to long division in
the decimal system.

Steps of Binary Division
1. Compare: Compare the divisor with the current portion of the devidend.

2. Subtract: Subtract the divisor from the dividend portion if the dl soris Eess
than or equal to the dividend.

3. Shift: Shift the next binary digit from the dividend dow@ @

4. Repeat: Repeatthe process until all dlg of

Example @ -
Divide 1 TO ‘g@

10 ﬁ@m ep 1: Compare 10 with first two 11, subtract 10 from 11)

\ (Step 2: Bring down the next digit 0)

(Step 3: Compare 10 with 10, subtract 10 from iO) _
(Step 4: Bring down the next digit 0, no more (digits left)

der.
used. -

-10
7
Result: 1100,/10, =110,

_ Cl ctivity
Practicing Binary Division ez

‘Objective: To practice and understand binary division through hands-on
‘examples.-

Instructions:

1 Form groups of three to four students.
iz, Each group will solve the following binary division problems _

(a) 10101.+10;

(b) 11100,11, | | @W@ @.
© 190110;_*1012

3 eazh'stepafiyo -_ nprocess r:learly

- Text encoding schemes are et

2.5 Common Text Encoding

T Me ing characters from various
Qs\ N tthat computers can understand and process.

st common text encoding schemes used in computers:

languages and sy
Hereareso

2.5.1 ASCH

ASCIl is an acronym that stands for American Standard Code for Information
Interchange. It is a character encoding standard adopted for representing in
devices such as computers and similar systems that use text. Each alphabet,
number or symbol is given a code number between 0 and 127 as shown in Table
24, :

ASCIl enables different computers and devices to exchange text information
reliably. Let's encode the name of our country using ASCII,

"+ TheASClicodeforan upper case letter "P" is 80. -

* Thecodeforletter'a'in ASCllis 97. @ @YS@ :
8]

* TheASCll code for the letter 'kis

e ltisinteresting to ‘ @Mr eletter 'i'is 105.

t
. intheASCIlco neletter 's' hasacode of 115.

The ASCII code is a numerical representation of characters in computer-based
system, particularly for alphabetic characters.
For example, the ASCII code of the character 'n'is 110.

‘Class activity
Write down your name. |
Find the ASCII code for each letter in your name. You can use
the ASCll tableto for your help.

O

SlaIalswiw

.._.
e |

3 ‘
* }»-—t'\r

)
@

2
3 or
-
s

—QmiNX> =~ - ol

%ZI‘“‘—ITIU@@,V.A

o

onm%%‘\fli\b 2t 81
a3
85

S
‘ U ‘
86 ' W 87
i Y
[
]

%
B
=
=1
il
: @%

89
91
93
95
97
103
165 =
107
109
. 111
113
115
111
119
121

100

1
o

F
o

b=
e
ic
=

T = Al O3] >~ N X <
£

.:45
%a

—

—

o
~i<|s|le|ln|olo|3|~|-| &

(2§

o mﬁjﬁ\j\ﬁf’ﬁﬂ_ 127

— NI XX|<|lalalgl ol =1
-
i
o

Y
Se
2
e
)

l
B

2.5.1 Extended ASC e % : ;
While the standard (ﬂk &}é\rﬁ:ﬁ%\es 128 characters, there is an|extended
version thatin 56 characters. This extended ASCII uses 8 bits and includes
additional » accented letters, and other.characters. However, the original
128 characters are the most commonly used and serves as the basis for text
representation in computers. - '

2.5.2 Unicode

Unicode is an attempt at mapping all graphic characters used in dny of the

. world's writing system. Unlike ASCII, which is limited to 7bits and can represent

Example: The letter ‘A’ is\Uni esented as, U+0041, is 01000
- binary formatan i sor 1 byte.
Let'slooka etters are represented in UTF-8;

only 128 characters, Unicode can represent over a million characters through

- different forms of encodings such as, UTF-8, UTF-16, and UTF-32. UTF is an

acronym that stands for Unicode Transformation Format.

without any problems. Therefore, ifwe

with ASCII. It means it can understand and t
perfectly fine with UTF-8 @

Example: The Urdu letter '.' is represented in Unicode as U+0628; its binary
formatis 11011000 10101000, means it takes 2 bytes. ' :

2.5.2.2 UTF-16 i
UTF-16 is another variable character encoding mechanism, althou%l:ﬁit uses
either 2 bytes or 4 bytes per character at most. Unlike UTE-8, it is not ¢ patible
with ASCIl, meaning it cannot translate ASCII code. |
Example: The letter Ain UTF-16is equal to 00000000 01000001 in binary or 65 in
decimal (2 bytes). : :
For Urdu:

Example: The right Urdu letter '’ in UTF-16 is represented as is qOOOOHO
00101000 in binary, which occupies 2 bytes of memory.

. 15 cOT
2.5.2.3 UTF-32 T @E@Eﬁ@“@
UTF-32 is a method of encoding Kg&\e;@ ength, with all characters

i
pe Ll

may look a little compli _ When it comes to space usage. |
Example: w et “A’ in UTF-32 is represented in binary as 00000000
00000000 00000000 07000001 whichis 4 bytes. I

stored in 4 bytes per cha very simple but at the same time it

2 6 Stormglmag | and \
Haveyoww‘ﬂ d how your favorite photos, songs, and movies are stored
on your uter or phone? Let's dive into. the fascinating world of digital

storage to understand how computers manage these different types of files.

Data size is usually expressed in byte and its mult:pies.
* 1Byte(B) =8Bits
« 1Kilobyte (KB) = 1024 Bytes
* 1Megabyte (MB) = 1024 Kilobytes
~ + 1Gigabyte (GB) = 1024 Megabytes
« 1Terabyte (TB) = 1024 Gigabytes
« 1 Petabyte (PB) = 1024 Terabytes
« 1Exabyte (EB) = 1024 Petabytes

+ 1Zettabyte (ZB) = 1024 Exa a @@YS@
\ AR ‘IYottabyte %\@ m %
L=

\N"h 2 irp”of tiny dots called pixels. Each pixel has a color, and the
combination of all these pixels forms the complete picture. Computers store
images using numbers to represent these colors.

Color Representation: - In a color image, each pixel's color can be represented -
by three numbers: Red, Green, and Blue (RGB). Each of these numbers typically
ranges from 0 to 255. - For example, a pixel with RGB values (255, 0, 0) will be
bright red.

Image File Formats: The following are Commonly used image formats for
photos - JPEG (Joint Photographic Expert Group). It compresses the image to
save space but might lose some quality. - PNG (Portable Network Graphics):
Supports transparency and maintains high quality without losing data. - GIF
(Graphics Interchange Format): Used for simplée animations and images with few
colors.

e

2.6.4 How Comrﬁuters ‘?i't}re “*”he-;e F!!@f
All these files (|mages, audio, and videg)are -
they are represented by sequences-of s\ qn
Storage Devices: \

+ Hard Disk Dl'l (K

State Drive (SSD) Uses flash memory for faster access times and

At performance.

« Cloud Storage: Stores files on remote servers accessible via the internet,
providing flexibility and backup options.

~IBM created the first hard drive in 1956 which weighed over a ton }

and could only store 5,000,000 bytes which is much less than the
| storage required for even one high-quality song today.

This leads us to an understanding and appreciation of how images, audio and
videos are stored in the computers, allowing us to marvel at the underiymg
technology of our current digital age. Whether you're taking pictures, enjoying
music, or watching films, it all stems how computers manage information!

Summary
¢ In computing, numbering systems are cru @m foundation

for representing, storing,
+ Decimal numb

whlch base is 10 and the

digits involved o\ e commonly used in our daily lives,
. Binary is 2 ber system that compnses of only the digits 0 and 1.
“Eachgho gsentsa power of two.

: ctal number system is another number system that has eight as its
base; thus, it has eight digits 0 to7. Each digit represents a power of 8, this
can be expressed as 8 digit.

» The Hexadecimal numbering system is another type of number system with
base of 16, where the number 0 to 9 and alphabets A-F are used.

« Integers refers to the set of non-negative whole numbers, while whole
numbers are the complete numbers. They include zero and all the positive
integers, also positive zero.

- To store negative values, computers employ a techmque commonly known

astwo's complement.
» In computers, real values, which are nicknamed as ﬂoatmg point numbers

are used to represent numbers with fraction or decimal polnt
« Arithmetic operations mean addition, subtra on uttiplication, and
division performed on numbers in gi w arithmetic involves
performing these operatians &n n rm, or base 2.
. ASCII is an -. for (A andard Code for Information
Interchange. tt% i

NOT FOR oo __Ilgﬁﬁqldh_. i He

AT = é the nDrirmars £t T il
b wnartis lh,; :f”'_r\-',_:,_l. Cilte er ce Detwi aen cir

(a) Uﬁsigned integs
(b) Signedhintege a larger range
(c) | are stored in ﬁoating-pointformat

ntegers are only used for positive numbers
e NNYleprecision, how many bits are used for the exponent?
(a) 23 bits (b) 8bits () 11 bits . (d) 52 bits

et e o R e y 5 =i ot = - | 1ei £l o - - i 3
- 5 The approximate range of values for single-precision floating-point

(a) 1.4x10%to03.4 x 10% (b) 1.4x10%t03.4x 10*
SR 4.9:»(‘l(’.)"?'z"'ﬂ::v'l.8}a<103'3ﬂ (d) 4.9:(10’“1501.8}(10"‘2‘ ,
. What are the tiny A0ts that make up an image called? _
(@ Pixels (b) Bits (c) Bytes (d) Nodes
U.Inan RGB color modei. what does RGB stand for? '

(a) Red, Gfeen,_ Blue (b) Red, Gray, Black
(©) Right, Green, Blue (d) Red,G -Ef@{@m
Short Questions . - o '

What is the primary purpose of NCll e g scheme?

o

‘Whatis \{N"f\! 2ot values foran unsigned 2-byte integer?

Explain how a negative integer is represented in binary.

What is the benefit of using unsigned integers?

How does the number of bits affect the range of integer values? _
Why are whole numbers commonly used in computing for quantities that
cannot be negative? |

Pﬂ:‘d.m?'.#-w.m.—-‘

Long Questions .
1. Explain how characters are encoded using Unicode, Provide EXaﬁgles of

characters from different languages and their correspondin e code
paints. S o > :
2. Describe in detail how integersa }@@i@m memory.

3. Explain the process, decimal integer to ijts binary
representation aﬁg\ﬂv Include examples of both positive and

LD

(6]

negative intge
4. Performthe following blnary ari
a. Multiplication afT01.byh

by

1100
+ 1011

7. Convert the following numbers to 4-bit binary and add them:
(@) 7+(-4) |
(b) -5+3
8. Solve the following

& o W\@m

@@“@

(¢) 1000,-D

() Hggg

