* Understand the conce

Ptofdualityin Boolean algebra,
Subtopics such ana|

©g and digital signals

L Emp#qythe-K-Mapsti) Y ini
* Introd c_-di” A

A ‘ud':u. HalT=

adder and ful|-

adder circuits,

R T —
Introduction

e ~ ..,-_.,___., (0 r:} A + ;
In this chapter, we will discuss t “{Smmj Io’@ﬁ, digital logic, and
difference between anﬁm ital\ s-We will also discuss several types
m oL 3

of gates, their truth ta n devices including half and full adders. At
the compiw Apter, you should be construct Boolean expressions,
simplify them, create truth table, and understand the basics of digital logic.

3.1 Basics of Digital Systems

Digital systems are the backbone of today's electronics and computing. They
manipulate digital information in the form of binary digits, which are eitherOor1
and are used in calculation devices such as calculators and computers, among
others, '

I g

Analog signals are signals that changes with time smoothly and continuously
over time. They can have any value within given range. Examples include voice
signal (speaking), body's temperature and radio-wave signals. Digital signals are
the signals which have only two values that are in the form of*0' @gﬁese are
utilized in digital electronics and computing 5YS %&w@@ | converter
(ADC) and digital to analog converte el

technological deve!opmg;% endg

I gglgnal | _Dllgltal Signal

: toperations in today's
ansmission and control of signals.

: Contihuous | Discrete
- - Infinite possible values | Finite (0 or 1)
- Example: Sound waves | Example: Binary data in

computers

Analog to Digital Conversion (ADC): ADC is the conversion of analog signals
into digital signals, which are discrete and can be easily processed by
computerized devices like computers and smart phones. A

Digital to Analog Conversion (DAC): DAC is the conv \‘:{E@Wanalog

b fiuman to perceive
picted in figure 3. 1.

=

the information, forinsta ng“hfgm , QKC,«M

signals are converted to digital signals, maki ’”‘q'

NOT FOR SALE-PESRP

L S— i i
F— s - —— = em—

ADC DAC

- A r . [i ©\JF L ¥
."-.‘:E-i e 3.1, ﬂ.:‘-_’.ﬁ.-:._g, to hgita! and Vice Versa

ADC and DAC Conversion: Why is it needed?
Digital to analog conversion, and vice versa, is critical since it enables data
processmg, storage, and transmission. Digital signals are i g@ ed by
noise and signal degradation and are th *# gﬁu mitting and
storing information over Eong dista a@ :
Example: Sound Waves®

Let us consider a situati person is speaking into a microphone while
the other pMﬁ g sound through speakers as illustrated in the figure

1. Mlcrophone (ADC): When you speak into the microphone, your voice
produces sound waves (analog signals) that are captured by the system. This is
done by converting the sound waves into digital form using an ADC with the
microphone. Finally, this digital data can be transmitted over long distances with
little or no degradationin quallty

2. Speakers (DAC): At the receiver end, the digital signals are then converted
back into analog signals with the help of DAC. The speakers then translate these
analog signals back into sound waves to enable you hear to the other person's
voice as if they were speaking directly to you. :

~

Is in

an actlon known as Ar@lo gtoDig
enables analog information, such s sic, to be recorded

3.1.2 Fundamentals of Digital Logic @ |

Digital logic is the basis of digital systemg|t | %E@é‘g inary numbers
thatis O and 1, to represent and i » L @m . Digital logic circuits use
of these binary value im‘a erform va #‘ perations, and they are essential to
the functioning in operat oh bf cor puters and many other electronic devices.

In digital Wﬂﬂ tWo states, 0 and 1, are represented by different voltage
levels. Co tionally, a higher voltage, such as, 5 volts refer to a binary "1, while
a low voltage, for instance, 0 volts refer to a binary ‘0", These voltage levels are
termed as the logic levels. Logic levels are needed to switch on and switch off the

devices and to define ways through which digital circuits execute operations and
-process information. : '

3.2 Boolean Algebra and Logic Gates

‘Boolean algebra is a branch of mathematics relate to logic and symbolic
computation, using two values namely True and False. It is an essential branch of
digital circuits since it is the basis for the analysis and design of circuits. Here in
this section we will cover of Boolean functions and expressions, the working, and
functions of logic gates, Building and evaluating Truth Tables and Logic

Diagrams. P@m

3.2.1 Boolean Functions and Expressions - ; O\&;

Binary values are used to describe relati ' %& ween variables in the
is) T ressions are built using AND,

ways be reduced to optimize

Boolean function and Boolean expte

OR, and other logic o -”ﬂ
digital circuits. \N\ _
3.2.1.1Bing \j Vh¥ixbles and Logic Operations
Binary variables that can have only have two values, 0 and 1. Logic operations are .
basic operations implemented in Boolean algebra for processing of these binary
variables. The primary logic operations are AND, OR and NOT.
AND Operation: W e ' _
AND is the basic logical operator which is used in Boolean algebra. It requires two
binary inputs which will give a single binary output. The symbol "' is used for the
AND operation. The output of the AND operation is “1” only when both inputs
are “1”. Otherwise, the result is 0", : -

Example: -

Consider two binary variables:

A = 1(True)
B = 0 (False)

The AND operation for these variables can be written mathem at@@
P=A- ‘ V (2300
Inthis example: 2 \ @ :
RN o
Therefore, then, the res T\ operation is 0 (false).

 NOT FOR SALE-PESRP

Truth Table:
A truth table is useful in demonstra '

with all possibilities of th

the AND opération
is the truth table for the AND

operation. ‘ fN J @uu B | AANDB(P)
_ e -0
311 0
110 0
Tk 1

' Tabfe 3.1: Truth Table for AND Operation
Explanation:
- If both A and B are off, that is equal to zero then the desired output P is off
- (0)

: if Ais 0 and B is 1 the output Pis0.

When A is 1 and B is 0 P is resulting 0.

When Ais 1 and B is 1, the out utg g @G@m

OR Operation:
The OR operation is an OW r'in Boolean algebra. To be
specific this is also a fun tnary variables as input produces a
single binary . , J‘,P’ | g to Table 3.2, the OR operation yields true (1)
output when atleast of ‘1" of the inputs is true (1). The output is 0 only when both
inputsare '0’.
Example:
Consider two binary variables:
A =1 (true)
B = 0 (false)
The OR operation for these variables can be written mathematically as:
P=A+B
In this example: _
A=1 B=0
Therefore, result P of the OR gate will be 1.

Truth Table:
A truth table is useful for better understandlng of how th

organized and what the result of the O
inputvariables. Belowis the tﬁth tabl

OWn is
iants of the

i

Explanation: '
If Ais equal to 0 and Bis equal to O the c@yt w en A iszeroand B
is one, the output P is alsg one. 1tand B is equals to 0 the

values of P equal to1. W% then the output P equal to one.
A B[AORB(P)
00 0
08 1
110 1
s 33 22 1

Table 3.2: Truth Table for OR Operation -

{ In binary logic, 1 + 1 does not equal 2 but equals 1 in logical
| operation. This is because the OR operation returns a value of
1if any or both of the inputs to this operator are 1. m

a_ Q)
NOT Operation: - 'O i E \\: CAE :
The NOT operation is one basicBao n alg erations which takes a

single binary variable args

iszero and ifthei
Example: \
Consider a binary variable:
A =1 (true)
The NOT operation for this variable can be written mathematically as:
: P=A or = —A

In this example:

P=0 :
This signifies that if you have A = 1 (true), the result of NOT operation is going to
be 0 (false). : :
Truth Table: . :
The following table will illustrate the-working of NOT operation for all possible
mputs of the vanable Below is the truth table for the NOT operatlon

: @O
\[AESTAR e

ofEell ol
A K;\;\ : L‘%‘atznhe- for NOT Operation

Explanation: ' o sy
When the input A is 0, the outpu

operation performs thene Wﬂmble i. e, it gives the opposite
value. This operation digital logic design to generate more
A

complex logi i0 verify the functionality of digital circuits.
3.2.1.2 uction of Boolean Functions

Boolean functions are algebraic statements that describe the relationship
between binary variables and logical operations. These functions are particularly
important for digital logic design and are employed in formation of various
digital circuits, which are the basis of current computers, mobile phones and
even simple calculator. :

Understanding Boolean Functions: -

A Boolean function is a function which has a one or more binary inputs and
produces a single binary output.” The inputs and outputs can only have two
values: False (represented by 0) and True (represented by 1). The construction of
Boolean functions is done by employing the basic logical operations such as
. AND, OR and NOT, which connect the inputs to generate the correct output.

Example 1: Simple Boolean Function ~ @0@(@ _ :

Consider a Boolean function with ' @ . We can construct a -

function F that represe@jﬂm : .
woad

F(AAB)=A.B

Output
Input F(A.B)=A -B —>

B

Figure 3.2: Simple Boolean Function

The diagram shown above demonstrates a basic digital circuit, which is an AND
gate. The box symbolizes the AND function F (A, B) = A. B. This box IWO inputs

A and B. If both A and B are 1, the output will be rm @@ . the output
to\the b

’ O~ .
will be 0. The input are shown at th m}@ j while the output is
depicted at the exit of ﬂm or this function is as follows:
SRPEL UL | |

B\
e
WP o

0

WN] =

0
1 1 1
Table 3.4: Truth Table for F(A.B) = A.B

Example 2: Now, let us construct a more complex Boolean func’uon with three
inputs, A, B,and C:

FIABC=A.B+A.C
This function uses AND, OR and NOT at the same time. The truth table for this
functionis as follows:
Explanatlon. {
The parameters A, B, and C are included in the following example as the input
columns.
+ The results of AND operation between two variable A and B are pr ted in

the column A- B,

« The column A standing for the NOT operati w

» Every value in the column A - C disp)a D operatron between
the values in the Fifth colUmmand

* The final column F

40 QIR 75T aa]

e output of the Boolean function
A-C |F(A, B, C) |
0

A
1
1
1
T
0
0
0

alalalalololole
.;.cwo-n-noo
e ocoéo

c:.c:: o | ik b | [0
—_- e OO =[O —

0| O
Table 3.5: Detailed Truth Table for F | ﬂ B, f‘) = (A.B) + ‘E

Usage in Computers:
There are many uses of Booleanfu
operations. Here are some g

. Arithmetic Operatl

O,

@@%@es for various

multlphca, and even division. sz

NOT FOR SALE-PESRP |

- Data Processing: Boolean functlon
memory and storage dewces,

partso

retrieval. m : -
« Control Logic: E@ ul sare applied in computers to control various

“operation to function in co-ordinated manner.

2

Boolean functions are also present in our everyday devices
like cell phones and calculators:

Cell Phones: In cell phone processing, when you dail a
number, or press a button on a phone, a Boolean function
evaluates these inputs as true or false and makes the
necessary output.

Calculators: Basic calculators use Boolean functions. When you feed it
with numbers and the operations to be performed Boolean Iogu: is
\gu sed to arrive at the nght result.

el one or calculator on danfy bas;s

£ . \ BH ST '
'group mmbers how Boolean functlens may be utilized inthe background

George Boole, a mathematician who invented Boolean algebra
was born in Lincoln, England in the year 1815. His work laid the
debate and the basis for future digital revolution and computer
science as well as subsequent technologies of the future.

3.2.2 Logic Gates and their Functions
@m“ﬂean

Logic gates are physical devices in electronic circ ﬁ
operations. Each type of Ioglc ga caﬂir %

Examples of the logic g
AND Gate: Implemen
.are True (1

oolean operation.

on It outputs true only when both inputs

Imagine HW?MIC circyit with an AND gate If you press two switches
(both mustbe ON), a light bulb will turn on. : :

e Switch 1: ON (True)

» Switch 2: ON (True)

+ Lightbulb: ON (True) because both switches are ON

If either switch is OFF, the light bulb will be OFF.

OR Gate: Implements the OR function. It outputs true when at least one input

is true.
: A

A+B

2 @@‘f@

NOT Gate: Implement
See Figure o

ion. It outputs the opposite of the input.

Figure 3.5: NOT Gate
- NAND Gate: Th{S gate is achieved when an AND gate is combined with a NOT
gate. It generates true when at least one of the inputs is false. In other words,
it is the inverse of the AND gate, as presented in Figure 3.6.

o

Example r‘\u*
Imagine a safety syste

mﬁ%{ L larvshould go on if either one of two sensors
detectsaniss o\ : '
« Senso r%mpsue (False)

« Sensor 2:Issue detected (True)
« Alarm: ON (True) because one sensor detects an issue.

XOR Gate:

The XOR (Exclusive OR) gate outputs true only when exactly one of the inputs is
true. It differs from the OR gate in that it does not output true when both inputs
are true. It is shown in Figure 3.7.

A

Example: | %
Imagine a scenario whe' W r play video games or do homework, but

not both at th

] P!ay vudeo games: Yes (True) -
» Do homework: No (False)
» Allowed? Yes (True) because only one activity is being done.

Class activities

Let's make learning these loglcal functions funwith an activity!
1. AND Adventure: Form pairs and give each pair two conditions they
need to meet to win a prize (like both wearing a specific color shirt).
2. OR Options: Make a list of fun activities. If at least one actlvrty is
possible, the class gets extra playtime.
. NOT Nagaﬁvu Ask true/false questlans and ham students shau‘t

Simplification of Bool ; : 2. particularly important process in

designing an efficient \) Such simplified functions require fewer
gates makin Neo in size, energy efficient and faster than the
complicat -Simplification means applying of some Boolean algebra rules
to make the functions less complicated. Fes T
Basic Boolean Algebra Rules:
Here are some fundamental Boolean algebra rules used for simplification:;
' e A+0=A
1. ldentity Laws S 1 =4
A+1=1
2. Null Laws A 0= 0
A+A=
3. Idempotent Laws X e

&=

| | a @oﬂ’@
g ol ®W

i SRS

tn

)

T A.B+O=A.B+A.0
7. Distributive Laws A+(B.O=(A+B).A+O

A+(A.B)=A
"A.A+B)=A

=AB

F @ \!7@ @@m

| 10. Double h‘legation];an“g{_\\ -

8. Absorption Laws

=+

b S
o

9. De Morgan's Theorems

’“’l

o

Simplification Examples B r”“ﬁ\ﬂgo@'“ ! —

0

Example 1 @U\j\l il
Simplify the (ﬁ |
Soluti :

= (A +A)* (A + B) . (Distributive Law) :
=1«(A+8B) | (Complement Law) |
=A+B | (Identity Law)

Example 2 = . ..

Simplify the expression A+ B + A = B. it }

Solution: : . |
AB+A-B=A+B+A-B : (De Morgan’s Theorem) -
= (A+B) Since A is already present in
it ' (A.B), we can use absorption law
: | ieA+(A. B) A
Example 3 (é ; W _ ; g
Simplify the exp w&%& : :
Solution;
A + B) = A{(A+B)+B+ (A+B) (Distributive Law) \
=A+A'B+B+B | (Absorption Law) : |
=A+A+B ': (Identity Law) |
=A=+(1+B)]| (Distributive Law) - 5
e i (Null Law) S
A (identity Law)
1
Example 4 i
Simplify the expression A+Be(A+ B)‘
Solution: 1
R T ! (De Morga @orem)
=A-§-A+A-'—'% ﬁf@g@@ |
=A+B + ‘@ @:&\JX dempotent Law) ‘
W& @ (dentity Law) | |
P ﬁ E : ; j
LAY & :

3.4. Creatmg Logic Dragr & 1\ " .

The logic diagrams dep of a digital circuit through symbols that
represent to its mdw: o create a logic diagram:
« Find out eeded forthe Boolean function.

. Arran tes to perform the operations as defined by the function of the
* circuit.

* Connectthe inputs and the output of the gates correctly.

To summarize, knowledge of Boolean algebra and logic gates is crucial when it
comes to the creation and study of digital circuits. If students understand those :
concepts, they can build efficient and effective digital systems.

3. Appllcatlon of Digital Logic
Digital logic is an essential aspect for the functioning of several modern
electronic systems, such as computers, smart phones, and other digital gadgets.
Digital logic optimize in many ways in order to create and enhance urcurts mearnit
to perform various tasks. Two important applications of dlgltal are the
design of adder circuits and the use of Kamaugh maps fe ification.

3.5.1 Ha%f—aud@ a;llj Full-add
Adder circuits are wi
- calculations. There are

and full adder

3.5.1.1 Ha der Circuits ;
A half adder is a basic circuitry unit that performs addition of two smgte bit
binary digits. It has two inputs, usually denoted as A and B, and two outputs: the

sum (S) and the carry (C).
Truth Table for Half-adder: s
| A| Bl Sum(S) | Carry (C)

010 0 ' 0 -

0.+ 1 0

1 0 1 0

1 1 0 1

: Tabile 3.6: Truth Table for Ha f @@Tﬁm
‘Boolean Expressions for Half-adder: A
@)

In this case the sym i% ts the XOR operation. The sum output is high
when onlW fhiputs is high, while the carry output is high when both

|nputs are

Boolean Expressions:

CARRY

Table 3.8: Half-Adder Circuit

3.5.1.2 Full-adder Circuits

A full-adder is a more complex circuit that adds three single-bit binary numbers:
two bits that belong to the sum and a carry bit from a previous addition. It has .
three inputs, denoted as A, B; and C, (carry input), and two outputs: called the
sum (S) and the carry (Cout) with both being integer values.

A | B |G, |Sum (S)| Carry (Coud ® m

0/0j0] 0 H T\ QWQW@C}@O |

o [0 01 V(080

o | AL~ -
Ww a9 o 1

C T 1 0

e 0 1

1110 0 1

: 38 0 e e 1 1

Tabie 3.7: Truth Table for Full-adder

Boolean Expressions:

Sum = AG@EB@Cin
Carry= (A.B) + (Cin . (ADB))

A_

, = / A
W &m@riatﬁh dder Circuit)

MNOT FOR SALE-FESRP

A S o

The sum output is high if the number of high inputs i
outputishigh if the number of high inputs i ﬁ} o, \ob
3.5.2 Karnaugh Map{ K-Man) @ -
A Karnaugh map (I(_~ma A ‘- hical representation which can be used to
solve Boolean algg &, oris and minimize a logic function where algebraic
computati 10t employed. It is a technique in which the truth value of
Boolean function is plotted to ‘enable the identification of patterns and to
perform term combining for simplification.

Minterm [Variables Combination|Minterm Expression

.m0 | A=0,B=0C=0 ~ABC
m1 A=0,B=0,C=1 s AR
m2 A=0,B=1C=0 ABC
m3 | A=0B=1C=1 :| - . ABC
m4 A=1,B=0C=0 ABC _
ms | A=1B=0C=1 | - Olo@@m
m6 A=1,B=fig=0(0\ UV 4 BIC
m7 | OANEA AT ABC

\(Rble @\ 8 Possible Minterms for A,.B and C
'3.5.2.1-Str \N e of Karnaugh Maps

A K-map is a matrix where each square is a cell, which corresponds to a
positioned combination. These cells are filled with '1' or '0" in reference to the
truth table of the Boolean function. The size of the K-map depends on the
number of variables: i : _

« 2Variables: 2x2 grid

» 3Variables: 2x4 grid

* 4 Variables: 4x4 grid least

» 5S5Variables: 4x8 grid (less common for manual simplification)

Every cell in the K-map represents a minterm, and the cells in each row of the K-
map differ by only one bit at any particular position, following the gray code
sequence.

3.5.2.2 Minterms in Boolean Algebra _ %: @@@
In Boolean algebra, a minterm is a @grt'f: @fﬁﬁ " whereby every

cu
variable of the function is present in'e 'gfjj: (its its complement. Each

of variable values that makes the

—

___ NOTFORSALE-PESRP

Consider a Boolean functlon F(A,

. Tocreate ow these steps
1. Create agrid based on the number of variables that exists in the system.
2. Letuscomplete the grid using the output values in the truth table.
3. Arrange the 1sinthe grid in the largest possible groups of size 1, 2,4, 8 and so

on. Every group must have one or more 1s, must be a power of two and they
must be in a continuous rows or columns.

Example: Simplifying a Boolean Expression witha K-map
To snmphfy the Boolean expressionA.B+A.B+A.B using a Karnaugh map (K-
map):

Possible Minterms for \
3523 CW

1.Expression:A.B+A.B+A.B

Step 1: Draw the K-map Grid @@@

Fortwovar_iab!esAand B: Q@ @X@@WO
WWW oQ K;?@c. ; ke ? :
A=A 1

Step 2: Fill in the K-map -
Determine the output for each combination of A and B based on the

exprgssmn e ;

. ForA=0and B=0: F=A.B+A.B+A.B= 1.0+0.0+0.0=0
« ForA=0andB=1: F=A.B+A.B+A.B= 0.0+1.1+0.1=1
» ForA=1andB=0: F=A.B+A.B+A.B= 1.1+0.0+1.0=1
« ForA=landB=1: F=A B+A.B+A.B= 1.0+0.1+1.1=1

Step 3: Group the 1s in the K-map
Group adjacent 1s to simplify the expression

From the K-map, ive'-

1. Groupoftwo 1sii %; :
A.B+,WW}>. 1.B=8
2. Groupoftwo 1sinthesecondrow:A.B+A.B
A.B+A.B=(B+B).A=1.A=A
Final Simplified Expression

FAAB)=B+A

Practical Usage: :

Karnaugh maps are extensively used in digital circuit design to minimize the
number of gates needed for a given function. This leads to circuits that are faster,
cheaper, and consume less power.

Class Activity

Activity: Construct a digital circuit that includes both half-adders s
- full-adders to add two 4-bit binary numbers. the trytl
Boolean expressions, and circuit di—a%ra 1s foreachStep, o |\ o
T I et
O vmnma

+ Digital syste basis of the present-day electronics and
_ ' S‘N] Sy pF al datainform of'0'and '1",

* Anal -'5"%4 ghals are continuous time varying signal.

« ADC (Analog to Digital Converter) is the process of converting the
continuous signals into discrete signals that can be processed by digital
devices for example computers and smart phones, .

* DAC (Digital to Analog Converter) converts the digital signal back to the
analog signal. :

* Digital logic is the basis of all digital systems. This is the technique we use
to process digital information in the form of binary numbers, '

* Boolean algebra is a sub-discipline of mathematics based on operations
involving binary variables.

* Inthe case of AND operation the output is 1 only when both input values
are 1. Otherwise, the outputis 0. N

* In an OR gate, the result is 0 only when both the input @Iﬁ@am 0.

Otherwise, the outputis 1. % 2 @
» The NOT operation the simples i olean algebra,
which accept a single binary inputs | site as the outputs.

* Boolean functions ™ Expressions that represent logical

operations involyi ary vat S. :
« A C!‘UCWI igital circuit design is the logic diagram, which
repres e structure of the circuit by showing connections between

_ NOT FOR SALE-PESRP

T . e

logic gates. : :
* Adder circuits are wldely used in the digi s with the

principal application in arithm
* A half-adder is a

| b anda carry bit from a previous addltion
* AKarnaugh map (K-map)is a graphic aid thatis employed in snmpllf cation
of Boolean expressions and minimizing logic functlons without the used
for complex algebraic operations.
¢ Aminterm in Boolean algebra is a specific product (AND) form of a Boolean
expression that includes all of the function's variables, either in their
~ normal or complemented form. :

Multiple- Choice Questions (MCQs)

1. Which of the following Boolean expressions represents the %@@tion?
@ A'B ® A+B (cg Ou B

2. What is the dual of the Booleat
DA.1=A @ "A.0=0

@ A+1=1 m : YA 1=
. Which logic gate g t = nly if both inputs are true?
{ta (b) AND gate (¢) XOR gate - (9) NOT gate

4 In a half- qdc'vr circuit, the carry is generated by which operation?

(@ XOR operation (b) AND operation

(c) OR operation (d) NOT operation
s. What is the decimal equivalent of the binary number 11017

@ 11 (b) 12 (c) 13 (d) 14
Short Questions , ;
1. Define a Boolean function and give an example.
2. Whatis the significance of the truth table in digital logic?
3. Explain the difference between analog and digital signals. .
4. Describe the function of a NOT gate with its truth table.
5. Whatisthe purpose of a Karnaugh map in simplifying Boolean expressions?
Long Questions _ ‘
‘1. Explain the usage of Boolean funct %ns COMmE o@©\§®
2. Describe how to construct a or \a \Bogliean expression with an

example. O\j
NOT FOR SALE PESRP S \

8.

9.
(a) § - m
(b) (A +B). (A +8B) | -©)
QA+A.(B+C) = @W@D@
A B+A.B Q& @@

A.B)+ (AB) C@m ,

(e)

. Describe the concept of duali
e

toillustrate it.

. Compare and cot ast.nali-adders and full-adders, including their truth
 tables, Mxiong and circuit diagrams. -

How do Karnaugh maps simplify Boolean expressions? Provide a detailed
example with steps. . '
Design a 4-bit binary adder using both half-adders and full-adders. Explain
each step with truth tables, Boolean expressions, and circuit diagrams.
Simplify the following Boolean function using Boolean algebra rules:
, , FA B =A.B+A.B

Use De Morgan's laws to simplify the following function:

' FABCQO=A+B+AC
Simplify the following expressions
A+B .(A+B)

