hlnklng

Student Learning OQutcomes . —\
By the end of this chapter, you will be able to:

Define computational thinking and its key components: decomposition,
pattern recognition, abstraction, and algorithms.

Explain the principles of computational thinking, including problem
understanding, problem simplification, and solution selection and design.
Describe algorithm design methods, specifically flowcharts and
pseudocode, and understand the differences between them.

Create and interpret flowcharts to represent algorithms wsually :

Write pseudocode to outline algorithms in a struc_ture?d hu -readable
format. -

Engage in algorithmic actmtles s

Conduct dry runs of flowcha
correctness

Identrfy duﬁemﬂt types of errors in algorithms, :nc!udmg syntax errors,
logical errors, and runtime errors. _
Apply debugging techniques to find and fix errors in algorithms.

Recognize common error messages encountered during LARP and learn
how to address them.

Demonstrate probi'em—s'oiving skills by applying computational thinking
principles to real- world scenarios. :

Evaluate the efficiency of different algorithms and improve them based.
on performance analysis.

P AT /

M@W@Wa s

Introduction @ ::::g

Introduction Computational thinking i isA M na ies individuals
to solve complex problema usin m processes involved in

~ computer science. ThIS efmmg computational thinking and
breaking 1t dow mental components: decomposition, pattern
rec09mt|o n and algorithms. These components are essential for

simplifying complicated problems, identifying patterns that can lead to
solutions, focusing on relevant details while ignoring unnecessary ones, and
creating step-by-step procedures for solving probiems. Understanding these
concepts is not only beneficial for computer scientists but also for anyone
looking to improve their problem-solving skills across various fields.

In_addition to defining computational thinking, this' chapter explores the
principles that guide it, such as understanding the problem at hand, simplifying it
to make it more manageable, and selecting the best solution design. The chapter
introduces different methods for designing algorithms, including the use of
flowcharts and pseudocode, and explains how to distinguish between these two

approaches Furthermore, it emphasizes the 1mportance 0 aWonthm
(Logic of

aspects of error identi ifica ng, providing techniques for
recognizing and fixin \ “ Fors encountered during the implementation
of algorithms: &%ﬁ g these skills, students will be well-equipped to tackle

awide rangedfcomputational problems efficiently and effectively:

7.1 Definition of Computational Thinking |
Computational Thinking (CT) is a problem-solving process that involves a set of |
skills and techniques to solve complex problems in a way that a can be executed
by a computer. This approach can be used in various fields beyond computer
science, such as biology, mathematics, and even daily life '

1 Computational thinking is not limited to computer science. It
is used in everyday problem solving, such as planning a trip or

organizing tasks,
d t\&QL—' U

Let's break down compui&a\i %&’\&W s

7.1.1 Decomposutlon

Decomposition is the)

smaller, more con

Decom Jmportant step in’ computational thinklng it mvoives

dwldmg ‘complex problem into smaller, manageable tasks. Let's take the

example of building a birdhouse. This task might look tough at first, but if we

break it down, we can handle each part one ata time.

Here’s howwe can decompose the task of building a birdhouse. Figure 7.1 shows

the decomposed tasks for building a birdhouse.

+ Design the Birdhouse: Decide on the size, shape, and design. Sketch a plan
and gather all necessary measurements.

» Gather Materials: List all the materials needed such as wood, nalls, pamt, and
tools like a hammer and saw.

» Cut the Wood: Measure and cut the wood into the required pieces accordmg

to the design.
* Assemble the Pieces: Follow the plan @t@@e«:es of wood

attractive for birds.

\ﬁ& N

WNN C'Figure 7.1: Building a Birdhouse

ERR SR e

2 ;é ﬂanizﬁng a school event

u maller, manageable parts, Write
your classmates how decomposition

Pattern recognition involves looking for -similarities or patterns among and
‘within problems. For instance, if you notice that you always forget your
homework on Mondays, you might recognize a pattern and set a reminder
specifically for Sundays. : :

Pattern recognition is an essential aspect of computational thinking. It involves
identifying and understanding regularities or patterns within a set of data or
problems. Let's consider the example of recognizing patterns in the areas of

squares. '
The upper row in Figure 7.2 represents the side lengths of squares, ranging from
1 to 7. The lower row shows the corresponding areas of these s Here, we

* Side Length 1: Area = 15,= ©

« Side Length 2

* Side Lengtly 3 =9(1+3+5)

« S hd:Area=4=16(1+3+54+7)

» Side Length 5: Area = 5°= 25 (1 + 3 + 5+ 7 + 9)

+ Side Length 6: Area = 6°=36 (1 + 3+ 5+ 7+ 9 + 11)

.+ Side Length 7:Area=7=49(1+3+ 5+ 7+ 9 + 11+ 13) :
‘We can see that the area of each square can be calculated by adding consecutive
odd numbers. For example, the area of a square with a side length of 3 can be
found by adding the first three odd numbers: 1 +3 +5=9,
Visual/Numerical Pattern

can observe a pattern in how the areas increase. W@Q@

Goesup by 1.
+1 41 +#1 +1 +1 +
A A_A

4 |5 6|7

) 11625 |36 i?f.@e@m

6125 |
.i@ @.‘.mer starting at 3

Feak bi-Squares with sides from 1 to 7

= , ey AT —— ; FGRSALE'PESW

7.1.3 {:can : :
Abstraction is a fundamental concept.in problem solving, especially in computer
science. It involves simplifying complex problems by breaking them down into
smaller, more manageable parts, and focusing only on the essential details while
ignoring the unnecessary ones. This helps in understanding, designing, and
solving problems more effi ciently.

* Definition: Abstraction is the process of hiding the complex details while

exposing only the necessary parts. It helps reduce complexity by allowing us

A L
y

i 45

to focus on the high-level overview without getting lostin the details,

* Example: Making a Cup of Tea - High-level Steps: 1. Boil water.
leaves or a tea bag. 3. Steep for a few minutes. 4. P

milk/sugar if desired.

wofels

and focus on th
better and.fi

b

cihe T\T\T\m% d_:.: TldbitS)

r 9
When solving compie)ﬁmm%k them down into smaller parts
“Thi
g

s will helps you understand the problem
lution more easily. By using abstraction, we can tackle
complex problems by dealing with them at a higher level.

o

7.1.3 Algorithms

An algorithm is a step-by-step
collection of instructions to solve a
problem or complete a task similar to
following a recipe to bake a cake..

An algorithm is a precise sequence of
instructions that can ‘be followed to
achieve a specific goal, like a recipe or a
set of directions that tells you exactly
what to do and in what order.

2) Gather the ingredients
4) Mix together the ingredients

- HOW TO BAKE A CAKE?
1) Preheat the oven f

3) Measure out the ingredients

igorithm example: Recipe

)

Example 1: Baking a Cake: In Figure 3 bz
recipe provides a list of i -py-step instructions to mix
them and bake th m% aﬁf’exampie of an algorithm because it

outlmes a cl eps toachieve the goal of baking a cake.

ng a Tree: Here is a simple algorithm to plant a tree, an

actw: that can be very meaningful and beneficial:

Choose a suitable spot in your garden.

Dig a hole that is twice the width of the tree’s root ball. -

Place the tree in the hole, making sure itis upright.

Fill the hole with soil, pressing it down gently to remove air pockets.

Water the tree generously to help it settle,

Add mulch around the base of the tree to retain moisture.

7. Waterthe tree regularly until it is established.

This algorithm gives clear instructions on how to plant a tree, making it easy
to follow for anyone.

oOUhWwn =

brushmg your -
you follow £

Did you know that algorithms are not just used in compute@
They are everywhere! When you follow directions to your
friend’s house or play a board game with rules, you are using
algorithms. Algorithms help us solve problems logically.

g

Class activity

= Qutline an algorithm for applying to the Board of Intermediate and
_ Secondary Education (BISE) for 9" Grade Examination.
Algorithm Challenge |
« Work in pairs to create an algonthm for a corpmon
a sandwich or gettlng rea y tEbr Y
then exchang% ‘- rithm
exactly as wrltt enand s

each step clearly,
t' “‘1 palr Fo!iow their algorithm
e if . can complete the task.

_ NN

NOT FOR SALE-PESRP

7.2 Principles of Computatio
Computational thinking involves sevé
problem-solvinginas
7.2.1. Proble ing ;
Understardi roblem involves identifying the core issue, defining the
requirements, and setting the objectives. Understanding the problem is the first
and most important step in problem-solving, especially in computational
thinking. This involves thoroughly analyzing the problem to identify its key
components and requirements before attempting to find a solution,
“If I had an hour to solve a problem I'd spend 55 minutes thinking about the
problem and 5 minutes thinking about solutions”, — Albert Einstein
Importance of Problem Understanding: _
* Clarity and Focus: By fully understanding the problem, you gain clarity on
what needs to be solved. This helps you focus on the right aspects without

getting distracted by irrelevant details, @”@\
» Defining Goals: Proper understandin W@ou to define
ﬁ%i i

clear and achievable goals. Yo % e final outcome should

look like and set spegif atoutcome.

« Efficient Solutio “ shiyou comprehend the problem well, you can
devise W and effective solutions. You ¢an choose the best
method tools to address the problem, saving time and resources.

* Avoiding Mistakes: By thoroughly understanding the problem, you can
avoid commoan pitfalls and mistakes. Misunderstanding the problem can lead
toincorrect solutions and wasted effort,

Example: Building a School Website :

Imagine you are asked to build a website for your school. Before jumping into

coding, you need to understand the problem: '

1. Identify Requirements: What features does the website need? For example,
pages for news, events, class schedules, and contact information.

2. User Needs; Who will use the website? Students, teachers, parents?
Understanding your audience helpsin designing user-friendly j effages.

3. Technical Constraints: What resources and tog | ilabte?Do you have
accesstoa web server and the necdary sdftw: :

By understanding these aspects; you'can plar'and build a website that meets the

~ needs of your school cg

solve it. Ask quest

foundational stepwil
QTQWD

7.2.2 Problem Simplificatian

Simplifying a problem involves breaking it down into smaller, more manageable
sub-problems. Example: To design a website, break down the tasks into
designing the layout, creating content, and coding the functionality.

7.2.3 Solution Selection and Design

Choosing the best solution involves evaluating different approaches and
selecting the most efficient one. Designing the solution requires creating a
detailed plan or algorithm.

7.3 Algorithm Design Methods

Algorithm design methods provide a range of toels and techm 0 tackle

various computational problems effectively. Each met CImgths and

weaknesses, making it suitable for d@ﬁe : ?ns Understanding
' t appropriate approach for a

given problem, leading’

of these mW
7.3.1 Flo

" Flowcharts are visual representations of the steps in a process or system,
depicted using different symbols connected by arrows. They are widely used in
various fields, including computer science, engineering, and business, to model

" processes, design systems, and communicate complex workflows clearly and

effectively.

7.3.1.1. Importance of Fiowcharts

» Clarity: Flowcharts provide a clear and concise way to represent processes,
making them easier to understand at a glance.

« Communication: They are excellent tools _fdr communicating complex
processes to a wide audience, ensuring everyone has_a.common

understanding. Z’; @@
« Problem Solving: Flowchart ei @%’;} d mefﬁc:enc:es ina
process, aiding in p%
ss

. Documentatmn. ent:al documentat:on for systems and

The first standardtzg! ifs)
1947bytheAm an

Kb s Ametioa _
PR\ ‘
7.3.1.2 Flo (Wasbiole
Flowchart ols are visual representations used to

illustrate the steps and flow
ofa process or system as shown'in Table 7.1. '
Eymbo! Name Description

Oval (Terminal)

)

Represents the start or end of a
process. Often labeled as
"Start” or "End."

Rectangle
(Process)

o)

AN

Represents a process, task, or

operation that nee@ﬁ%e

= Mite!

a2
Parall \3\9

(8]

perfo.

Represents data input or
output (e.g., reading input from
a user or displaying output on
a screen),

Diamond
(Decision)

<O

Represents a decision point in
the process where the flow can
branch based on a yes/no
question or true/false
condition.

Arrow (Flowline)

I

Shows the direction of flow
within the flowchart,

conner.‘tmg t Cm :
ence of steps.

TRy

*)mhuh

_ Class activity

Create a flowchart for a daily routine activity, such as getting ready for
school. Include decision points like choosing what to wear based on
the weather.

Example: A Shop Near Your House: SHpf
messages. The flowchart in Fig

I M€ order processing steps. The
input is the order, an

e item delivery or a notification to the

Decisions are made regarding item availg bl|l :
customer does not accept the item or'A

the shop, and the cu K

increases by 1if the em. lfthe item is unavallable the shop notifies
- thecusto se, the shcp picks, packs, and ships the item.

Enhancing Flowchart by Using Customer Rating o
Note that while the customer ra’tmg is included in the flowchart shown in Figure
74, it is not utilized. Let's revise the flowchart to ensure only customers with a

rating greater than 0 are attended to. The updated flowchart is shown in Figure
71.5.

- Modify -' .5 to ensure that customer ratings
. rangeof0to S5, inclusive. Ratings cannot be negati

Example: A flowchart for a login system showing steps such as inputting a
username and password, verifying creédentials, and granting access shown in
Figure 7.6. A user can make a maximum of five attempts. :

7.3.2 Pseudocode

Pseudocode i aih -ﬁglrepresenting an algorithm using simple and informal
language that'is easy to understand. It combines the structure of programming

clearity with the readability of plain English, makiréit e&f@@@pol for planning
: o
& AO

and explaining algorithms. 1
iy

Whatis Pseudocode?
Pseudocode is notactuatlcod 1LCan-u€ run on a computer, but rather away to
describe the steps of @n \algSrithm in a manner that is easy to follow. It helps
progra dents focus on the logic of the algorithm without worrying
ab ntax of a specific programming language. :
Example-1 ' :
Determining whether a number is even or odd is a fundamental task in
programming and computer science. An even number is divisible by 2 without
any remainder, whereas an odd number has a remainder of 1 when divided by 2.
Below is the pseudocode for this process, followed by an explanation.
Algorithm 1 Pseudocode for determining if a number is even or odd.
1. Procedure CheckEvenOdd(number)

. Input: number {The number to be checked}
Output: “Even” if number is even, *Odd" if number is odd
Begin

if (number % 2 == 0) then 0\3@
S I
-

10: End

Explanation |

1. Procedure Declaration: The pseudocode begins with the declaration of the
procedure 'CheckEvenOdd' which takes a single input, 'number’.

2. Input: The procedure accepts a variable ‘number’ which is the integer to be
checked. -

3. Output:The procedure outputs "Even"” if the number is even, and "Odd" if the
number is odd. , -

4. Begin: Mark the start of the procedure. .

5. Condition Check: The condition 'if (number % 2 == 0)' checks if the
remainder of the number when divided by 2 is zero. The m%q operator '%'
is used for this purpose. —

6. Even Case: If the condition : ;@En

7. Odd Case: If the condition 4 ® prints "Odd".

e 8B LR S

Example-2
Determining whether a number is prime 5&1 he %j@ﬁumber theory
and computer science. A prime numberi - r greater than 1 that

has no positive divisors ot (1 and itseif. Below is the pseudocode for this
process, followed b :

Algorithm 2 ' for determiningifa number is prime.
1: = Procedure Is Prime(number)
Input: number {The number to be checked}
Output: True if number is prime, False otherwise
Begin
 if(number <= 1) then
return False
endif
forifrom 2 to sgrt(number) do
9: , if (number%i == 0) then
10: - return False
1: end if

12: endfor K@@QX@W@ @.

i :3- refy W
Explanatlon WW %%

- Procedure Declaration: The pseudocode begins with the declaration of the
procedure 'IsPrime" which takes a single input, ‘number,

2. Input: The procedure accepts a variable 'number’, the integer to be checked.

3. Output: The procedure will output 'True' if the number is prime, and 'False’
otherwise. :

4. Begin: Markthe start of the procedure.

5. Initial Checl: The condition 'if (number <= 1)’ checks if the number is less
than or equal to 1. If true, the procedure returns 'False’ because numbers less
than orequal to 1 are not prime, _

6. Loop Through Possible Divisors: The 'for' loop iterates from 2 to th
root of the integer. This is because a greater factor of t |p!e

- of a previously tested smaller facto

7. Divisibility Check: Ins%“

0

AP D BN

.
f“\

|f num ber %i==0)

checks if the number is
procedure returns
itself.

8. Priw ation: If no divisors are found in the loop, the procedure
returns True’, confirming the number is prime. :
9. End:Marks the end of the procedure.

'V_i it % {
alse -‘ atise the-number has a divisor other than 1 and

Class activity

Create Your Own Pseudocode: Divide the students inta small groups and
assign each group a different simple problem, such as finding the
maximum number in a list or calculating the factorial of a number. Ask
them to write the pseudocode for their assigned problem and then
present it to the class. s : e

RO
& ed in software development before

theactual code to ensure that the logic is sound and to
acilitate communication between team members who may
be using different programming languages.

Why Use Pseudocode?
Using pseudocode has several benefits:

« Clarity: It helps in understanding the logic of the algorithm without worrying
about syntax. ;
» Planning: It allows programmers to outline their thoughts and plan the steps
of the algorithm. = :
» Communication: It is a universal way to convey the steps of an algorithm,
. making it easier to discuss with others.

7.3.3 Differentiating Flowcharts and Pseudocode Ca g@@m

Flowcharts and pseudocode are botht

do so in different way 't
ry

Unde
which method is morﬁ?\x |
W (@]

NOT FOR SALE-PESRP

s

ere
our scenario.

e |t is read"|i \éJa-story, with each
step is written out sequentially.

e Pseudocode communicates the
steps in-a detailed, narrative -like
format. _

o It is particularly useful for
documenting algorithms in a way
that can be easily converted into
actual code in any programming

language.

Pseudocode Flowcharts 1<\ A@@\N‘\E‘

* Pseudocode uses plain languageO i Elg%ﬁéﬁ%z Eﬁs%’u raphical symbols

_ and structured formm Q S nd arrows to represent the flow
the steps of r of an algorithm., : '

® It is like watching a movie, where
each symbol (such as rectangles,
diamonds, and ovals) represents
a different type of action or
decision, and arrows indicate the
- connection and direction of the flow.
e Flowchart communicates the
process in a visual format, which

§ rall flow

e They are useful for identifying the
steps and decisions in an

can be more |

algorithm at a glance.

Table 7.2 Difference between

Example-3

Pseudocode and Flowcharts

Algorithm 3 presents the pseudocode for checking a valid username and

password.
1.
2.
3.
4.
.
6.
7.

Input: username, password
Output: Validity message

Begm

if (username == vali

Procedure CheckCredentials(username, password)

8: if (password

o s
10:
i@{WO print "Invalid password"

: endif
13: else
14: print "Invalid username”
15: endif
16: End

7.4 Algorithmic Activities

7.4.1 Design and Evaluation Techniques

Techniques to essential algorithms are essential to understand how efficiently
they solve problems. In this section, we will explore different techniques for

evaluating algorithms, focusing on their time and spac%o\m@@'%@
A0

7.4.1.1 Time Complexity ﬂ |
@@ . m performs. It shows how

Time Complexity measures ho
the running time o | es as the size of the input increases.

it

Here's an easy | _

Imaginw fist of names, and you want to find a specific name. If you
have 10 names, it might only take a few seconds to look through the list. But what
if you have 100 names? Or 1,000 names? The time it takes to find the name

- increases as the list gets longer. Time complexity helps us understand this
increase. -

Time complexity is usually expressed using Big O notation,
like O(n), O(logn), or O(n?). It helps us compare different
algorithms to see which one is faster!

 Think of a simple tas

i .
Some algorithms can perform the same task much faster than
others. For example, sorting a list of 100 items might take one
algorithm 1 second and another algorithm 10 seconds!

7.4.1.2 Space Complexity -
Space complexity measures the amount of memory an algorithm uses relative to
input size. It is essential to consider both the memory required for the input and
"any extra memory used by the algorithm. | -
Designing and evaluating algorithms involves activities like dry runs and
simulations to ensure they work as intended. TRTErK

7.5 Dry Run :

A dry run involves manually going through e W@ngmple data to
identify any errors. Q&“ u :

7.5.1 DryRunofaFlow _

agr: S manually walking
o J L Stép-by-step to understand how
rks without using a computer. This helps

through the

the algorithm? |

identify any logical errors and understand the flow of .
comr;{ R /Input first no. A/
ﬁ):la:“mbg::: Calculating the Sum of Two [ipkzndne]

Consider the flowchart given in figure 7.7 for adding two
numbers:

Steps to dry run this flowchart:

1. Start :
2. Inputthe first number(e.g., 3)

3. Input the second number (e.g., 5)
4. Addthetwonumbers(3+5=8)

5. Output the result (8)
6. Stop
7.5.2 DryRun of Pseudocode
A dry run of pseudocode invg
pseudocode line-by-lifé

Exampie ndin aximum of Two Numbers o
- Considerthe pseudocode for finding the maximum of two numbers:

Did you know that different algorithms can solve the .same_\
| problem more efficiently? For instance, one algorithm might
quickly find the highest marks in a list, while another.might take
Zanlf | much longer. Learning how to evaluate and choose the best

W™ algorithmis a key skill in computer science!

Algorithm 4 FindMax

1. Input: num1, num2

2. ifnum1 > num2then -
3. max=numl

5.
6. endif o
7

Figure 7.8: Flowchart for finding
maximum of two numbers

Steps to dry run this pseudocode:
1. Inputnum1and num2 (e.g., 10 and 15)

2. Checkifnumi > num2 (10> 15: False) _ m :
3. Since the condition is False, max = num2 (m @0@ i
‘4. Outputmax(15) m@ﬁ } |

T T T T O

k| RS

Jori h%’ﬁelps cat;:hi-ng_errors\

protessional programmers and computer scientists
e'dry running as a debugging technique to ensure their
algorithms work correctly!

4

7.5.3 Simulation _ _
Simulation is we use of computer programs to create a model of a real-world
process or system. This helps us understand -how things work by testing different
ideas or algorithms without needing to try them out in real life.
Why Use Simulation? _
- 1. Testing Algorithms: We can use simulation to see how well an algorithm
works with different types of data. For example, if we want to test a new way

to sort numbers, we can simulate it with different sets of numb to see how

fastitis. : @)

2. Exploring Scenarios: Simul@io I %5 reéate many different
situations to see what happens é.f) , In-a science experiment about
plant growth, w \ ' - Hterent amounts of water or sunlight to find

out whic ionshelp plants grow best.
Benefi ation
* Cost-Effective: It is often cheaper and faster to run simulations than to

conduct real experiments, ;

+ Safe: We can test dangerous situations, like a fire in a building, without
putting anyone at risk.

* Repeatable: We can run the same simulation muiltiple times with different
settings to observe how things change.

Examples of Simulation .

1. Weather Forecasting: Meteorologists use simulations to predict the
‘weather. They input data about temperature, humidity, and wind speed into a
computer model to see how the weather might change over the next few
days.)

i . =l
2. Traffic Flow: City planners can simulate t Qs @w@a anges to roads or
traffic lights might affect th Ips them design better roads
‘and reduce t}afﬁg@m : : _
_) & _ |
NO‘I_‘F?R_!.:»_AFL_E-PESRP

3

7.6 Introduction to LARP (Logic of Algo@@g@ﬁ:on of
p

roblems) - O w |
LARP stands for Logic orAlgorithms for on of Problems. It is a fun and
interactive way to learn(} qlgorithms work by actually running them and
'seeing the res inloefit as a playground where you can experiment with
differentalg and understand how they process data. :

_‘\
For the latest versions and updates of LARP software, check

trusted- educational and coding platforms, or search for
“LARP software download" on your favorite search engine.

v

7.6.1 Whyis LARP Important?
~ LARP helps you:

* Understand how algorithms work. For instance, refer to-Fi @@@whieh
lllustrates an algorithm designed to determi Wgﬁm@of tax on the
annual salary of a person. @@ .

* Seethe effect of differ _ put.)

* Practice Wﬁg&g@bur own algorithms,

7.6.2 Writing Algorithms e :
Writing algorithms using LARP involves a structured and simplified approach to
developing logical solutions for computational problems. LARP employs a clear
syntax that begins with a START command and ends with an END command,
ensuring that each step of the algorithm is easy to follow. Within this framework,
instructions are provided in a straightforward manner, such as using WRITE to
display messages, READ to input values, and conditional statements like
IF..THEN...ELSE to handle decision-making processes. By breaking down
complex problems into manageable steps, LARP allows learners to focus on the
logical flow of the algorithm without getting stuck on complex coding syntax.
This method not only aids in understanding the fundamental ts of
algorithm design but also enhances problem-solvin ski "j}% g clear
and logical thinking,

o A
Here's an example of a Sim%@%@é\ﬁé umber is even or odd:

2 R e A W, _'!.".;'¥-;.“h

| READ number
" IFnumber%2==0THEN
~ WRITE "The number is even”
ELSE s |
- WRITE "The numberis odd”
ENDIF

END
763 Drawing Flowcharts in LARP - ‘ ;
Drawing flowcharts in LARP involves visually representing the algorithm's ste
usmg sl:andard flnwchart symbﬁis such as rectangles for pr -esses, dia

and see its step-by-step execution. For@xa sle-Figura 7/9 shows a flowchart for

determining whether a student's ‘ :
flowchart to verify it é&ﬁ '
understanding of works

7.7 Erro u:atlon and Debugging
When we write algorithms or create flowcharts in LARP we sometimes make
mistakes called errors or bugs. These mistakes can prevent our algorithms from

functioning correctly. Error handling and debugging are processes that help us
find and fixthese errors.

s hands-on approach reinforces

R S o — e ey s =y e —_'——"".‘-ﬂ.': i|
,t- Fg_whwﬂmm-ﬂuﬂ . '
cemodlibEorHAR ML Fﬂnimm _& x 4
L _Browser 1l “
12 SRR :.::

i}w : i ;é ; ,

{ ' = "l

B o —

B e

pr—— i = i 2

:
&
3
2
ﬁ

1
i
i |
il

.'. ; E SO ﬂ_:_. g | o

| Compiiing pmj.ct
| Compiling module IAI! o
| ninking project...

]
| Bxecuting ack... ___. _‘l
Figure 7.10: Flowchart in LAEP

(1)

T !}h-l.‘u :fn EERY

7.¥.1 TypesofErrors

There are three main types of errors you mtght encounter; @
* Syntax Errors: These occur when@v @ﬁt rrectly in our

algorithm or flowcha For or using the wrong
symbol. J \:
* Runtime Er pen when the algorithm or flowchart is being

uowonsm&-manp dae i

executed. For example, trying to perform ani ﬁ I@@@n such as

dividing by zero.
* Logical Errors: Thes re algorithm that cause it to
behave incorrectl ng the wrong condition in a decision step.

oy ‘“oW" 2
NI Y Syntax errors are the easiest to find because the LARP tool
usually points them out. However, logical errors are the
hardest to find because the algorithm still runs but does not
procedure correct answers.

- 4

7.7.2 Debugging Techniques

Debugging is the process of fmdlng and fixing errors in an algonthm or

flowchart. Here are some common debugging techniques: ;

« Trace the Steps: Go through each step of your algorfthm or flowchart to see
identity where it goes wrong.

« Use Comments: Write comments or notes in your al orrth@%@)lam what

{ e =

(Tldbits)“—-
Always read error messages carefully. They often tell you exactly where
the problem is.

7.7.3 Common Error Messages in LARP

Here are some common error messages you might see in LARP and what they

mean:

» Missing Step - You probably forgot to mclude an important step in your
algorithm.

» Undefined Variable - You are using a variable that hasn't been med yet.

» Invalid Operation - You are trying to perf @F at is not
“allowed, like dividing by zero,, © (l @@W
o“mmﬂ A i

NOT FOR SALE-PESRP

=
The term "debugging" comes from an actual bug—a |
moth—that was found causing problems in an early
computer. The moth was removed, and the process was
called "debugging"

'

>

Summary .
Computational thinking is important skill that enables individ to solve
c@ﬁ%@olved in

smaller, more man@gea

complex problems using methods that mirror t & ProGes
computerscience. v o :
Decomposition is the proces ‘ a complex problem into

ves-looking for similarities .or patterns among

s simplifying complex problems by breaking them
more manageable part, and focusing only on the
essential details while ignoring the unnecessary ones, . ;

An algorithm is a step-by-step set of instructions to solve a problem or
complete a task. ; : 2
Understanding the problem is the first and most important step in
problem-solving, especially in computational thinki ng. :
Simplifying a problem involves breaking it down into smaller, more
manageable sub-problems. -

Choosing the best solution involves evaluating different approaches and
- selecting the most efficient one. :
Flowcharts are visual representations of the steps in a process or system,

~ depicted using different symbols cor.mected barrgs\ 5

using simple and
(es the structure of
programming la pility of plain English, making it a

useful tool fo g andexplaining algorithms,
Timwmls a way to measure how fast or slow an algorithm
performs. It tells us how the rug&bg time of an algorithm changes as the

NOT FOR SALE-PESRE

amount of memory an algorithm uses in
e. It is important to consider both the memory

relation
Me input and any additional memory used by the algorithm.

e Addry run involves manually going through the algorlthm with sample
data to identify any errors.

¢ Simulation is when we use computer programs to create a model ofareal-
world process or system,

e LARP stands for logic of Algorithm for Resolution of Problems. It i is a fun
and interactive way to learn how algorithms work by actually running
them and seeing the results.

* Debugging is the process of finding and fixing errors in an algorithm or

Space cofnpl

flowchart. [q

Multiple Choice Questions @@

1. Which of the following bestdeflr’@s ?\g?
(a) Amethodo solving proble atlcalcalculatzonson!y
(b) A proble ‘ 1\approach that employs systematic, algorithmic,

kg

nique used exclusively in computer programmmg
(d) An approach that ignores real-world applications,
2. Why is problem decomposition important in computational thinking?
(a) It simplifies problems by breaking them down into srnaller, more
manageabl parts.
(b) It complicates problems by adding more details.
(c) Iteliminates the need for solving the problem.
(d) Itis only useful for simple problems.
3. Pattern recognition involves:
~ (a) Finding and using similarities within problems
(b) Ignoring repetitive elements

(c) Breaking problems into smaller pieces v@ @Qm

and i

(d) Writing detarfed alg |th@!5

4. Which term lEfE’S(.B e etalls to focus on the main
ldea?
i ion (b) Pattern recognition

stractlon (d) Algorithm design

5. Which of the following is a pringiy

(a) Ignoring p,

(¢) Avoiding s%

‘l L\H\ l?_-. ims are O .
(a)
(b) - Graphical representations
(c) Step-by-step instructions for solving a problem

-(d) Repetitive patterns -

-) Problem srmplrﬂcatlon
: (d)lmplementmg random solutions

7. \Which of the following is the first step in ;:,.r.-:ub!em—_f.ﬁ!wmg according to
computational thinking?

(@) Writingthesolution = (b) Understanding the problem

(c) Designing a ﬂowchart (d) Selecting a solution
8. Flowcharts are usedt -

(a) Codea program
(b) Representalgorithms graphically
() Solve mathematical equations

I - (d) Identify patterns _ @ m
Q Pw»?ii:)am deis: | ﬂ @@@Wa

~(b) gorithm using plain Ianguage
(c)
(d)
10.Dry running a flowchart involves:
(@) Writingthe codeina programmmg !anguage
(b) - Testing the flowchart with sample data
(c) Converting the flowchart into pseudocode
(d) Ignoring the flowchart details
Short Questlons
- Define computational thmkmg
What is decomposition in computational thmkmg?
Explain pattern recognition with an example.
Describe abstraction and its importance in problem- -solving.
What is an algorithm?
How does problem understanding help in computat:ona @Wg?
What are flowcharts and how are they useii}

Explain the purpose of psetidatode

How do you differentiate befied d pseudocode?
10. Whatrsadryru @ timportant?
« 11 Descnb nificance in learning algorithms.

. Ll ntwo debuggmg techniques.

NOT FOR SALE-PESRP

‘-"P“:“JF’*P‘:’*P’!"T‘

Long Questions

1. Write an algorithm \ Vg\;w based on the marks obtained by a
- student.The m followsthesecrlterla
g above: A+
* 80t089:A
70t079:B
« 60t069:C
« Below60:F

2. Explain how you would use algorithm design methods, such as flowcharts
and pseudocode, to solve a complex computational problem. lllustrate your
explanation with a detailed example.

3. Define computational thinking and explain its mgmﬁcance in modern -

problem-solving. Provide examples to illustrate how computational thinking
can be applied in different fields.

4. Discuss the concept of decomposmon in computaﬂonai thinkin @Why is it

important?
5. Explain pattern recognition in the co {(\t mklng How
does identifying patterns help ving?
6. Whatisan abstractl % mkmg? Discuss its importance and
ra

provide exampl ﬁ' ction can be used to simplify complex
prob|er

7. Describg'what an algorithm is and explain its role in computational thinking.
Provide a detailed example of an algorithm for solving a specific problem,

and draw the corresponding flowchart.
8. Compare and contrast flowcharts and pseudocode as methods for algorithm

design. Discuss the advantages and disadvantages of each method, and

provide examples where one might be preferred over the other.

9. Explain the concept of a dry run in the context of both flowcharts and
pseudocode. How does performing a dry run help in validating the
correctness of an algorithm?

10. What is LARP? Discuss its importance in learning and practicing algorithms.

11.How does LARP enhance the understanding and application of
computational thinking principles? Provide a scenario where LARP can be

used to improve an algorithm. /\(,&6\ ,/;3) \g
(Q&
o >

RO

