CHAPTER FUNDAMENTALS

OF CHEMISTRY

Topic Nd.	Title	Page No.
Waa	Introduction	2
1.1	Branches of Chemistry	2
1.2	 Basic Definitions Elements, Compounds and Mixtures Atomic Number and Mass Number Relative Atomic Mass and Atomic Mass Unit How to Write Chemical Formula? Empirical Formula Molecular Formula Molecular Mass and Formula Mass 	5
1.3	 Chemical Species Ions (Cations and Anions), Molecular Ions and Free Radicals Type of Molecules 	26
1.4	Gram Atomic Mass, Gram Molecular Mass and Gram Formula Mass	31
1.5	Avogadro's Number and Mole	33
1.6	Chemical Calculations	1536 (
*	 Exercise Solution Multiple Choice Questions Short Question Answers Long Question Answers Numericals 	42
MAN	Additional Conceptual Questions	54
14.2.2	Terms to know	56
*	Self Test	57

7

CON

(K.B)

INTRODUCTION

Q.1 What is science?

Ans:

<u>SCIENCE</u>

Science (Latin Scientia meaning knowledge). "The knowledge that provides understanding of this world and how it works is called science".

"The systematic study of nature based on observation, inference, prediction and experimentation is called science".

Q.2 Define chemistry also explain its advantages and disadvantages. (GRW 2017 G-I)(K.B) Ans: <u>CHEMISTRY</u>

Detiniooa:

•

"The branch of science that deals with the composition, structure, properties and reactions of matter is called chemistry". It deals with every aspect of life.

ADVANTAGES OF CHEMISTRY

Following are advantages of chemistry:

- Petrochemical products
- Medicines and drugs
- Soap and detergents
- Paper and plastics
- Paints and pigments
- Insecticides and pesticides
- It improves our health and environment
 - It helps to explore and conserve the natural resources.

DISADVANTAGES OF CHEMISTRY

Following are some major disadvantages of chemistry:

- Generation of toxic waste materials
- Contaminated water
- Polluted air and contaminated food
- Dangerous war weapons

1.1 BRANCHES OF CHEMISTRY

Q.1 Describe the various branches of chemistry.

 Chemistry.
 (U.B+K.B+A.B)

 (DGK 2017, FSD 2016,17, SWL, MTN 2016, LHR 2017 G-I)

Ans:

BRANCHES OF CHEMISTRY

Chemistry is divided into following main branches:

(i) <u>Physical Chemistry:</u>

"The branch of chemistry that deals with the relation ship between the composition and physical properties of matter along with the changes in them is called physical chemistry."

Scope:

Structure of atoms or formation of inclocules, behavior of gases, liquids and solids and the study of the effects of temperature or radiations on matter.

(ii) <u>Organic Chennstry</u>

We branch of chemistry that deals with the study of covalent compounds of carbon and undrogen (hydrocarbons) and their derivatives is called organic chemistry.

Scope:

Organic chemists determine the structure and properties of these naturally occurring as well as synthesized compounds. Scope of this branch covers petroleum, petrochemicals and pharmaceutical industries.

(iii) **Inorganic Chemistry:**

"The branch of chemistry that deals with the study of all elements and their compounds except those of compounds of carbon and hydrogen (hydrocarbons) and their derivatives is called inorganic chemistry."

Applications/ Scope:

It has applications in every aspect of the chemical industry such as glass, cement, eramics and metallurgy (extraction of metals from ones)

Biochemistry: (iv)

"The branch of chemistry that deals with the study of structure, composition, and chemical reaction: of substances found in living organisms is called biochemistry."

Scope:

It covers all chemical processes taking place in living organisms such as synthesis and metabolism of biomolecules like carbohydrates, proteins, fats etc.

Emergence of Biochemistry as a Separate Discipline:

Biochemistry emerged as a separate discipline when scientists began to study:

- How living things obtain energy from food?
- How the fundamental biological changes occur during a disease?

Applications:

Applications of biochemistry are in the fields of medicine, food science and agriculture.

Industrial Chemistry: (v)

"The branch of chemistry that deals with the manufacturing of chemical compounds on commercial scale, is called industrial chemistry."

Applications/scope:

- It deals with the manufacturing of basic chemicals such as oxygen, chlorine, ammonia, caustic soda, nitric acid and sulphuric acid.
- Use of these chemicals to provide the raw materials for many other industries such as • fertilizers, soap, textiles, agricultural products, paints and paper etc.

Nuclear Chemistry: (vi)

"The branch of chemistry that deals with the radioactivity, nuclear processes and properties is called nuclear chemistry."

Main concern:

The main concern of this branch is with the atomic energy and its uses in daily life. The chemical effects resulting from the absorption of radiation within living animals, plants, and other materials are also studied in this branch.

Applications/Scope:

It has vast applications in medical treatment (radiotherapy), preservation of food and generation of electrical power through nuclear reactors.

Environmental Chemistry: (vii)

"The branch of chemistry that deals with the study about components of the environment and the effects of human activities on the environment is called environmental chemistry." Applications/Scope:/

Environmental chemistry is related to other branches like biology, geology, ecology, soil and water.

The incided of chemical processes taking place in environment is necessary for its inprovement and protection against pollution.

Analytical Chemistry:

"The branch of chemistry that deals with separation and analysis of a sample to identify its components is called analytical chemistry. The separation is carried out prior to qualitative and quantitative analysis."

Qualitative Analysis:

"It provides the identity of a substance (composition of chemical species)"

Quantitative Analysis:

"It determines the amount of each component present in the sample

Application/Scope:

- In this branch different techniques and instruments used for analysis are studied. •
- The scope of this branch covers food, water, environmental and clinical analyses.

BRANCHES OF CHEMISTRY

SHORT QUESTIONS

N	SHORT	QUESTIONS	
UVU.	Denne analytical chemistry and discus	s qualitative and quantitative analysis.	(K.B)
Ans:	Answer given on pg # 03		
Q.2	What is the scope of industrial che	mistry?	(A. B)
Ans:	Answer given on pg # 03		
Q.3	Write the application of inorganic	chemistry.	(A.B)
Ans:	Answer given on pg # 03		
Q.4	Define industrial chemistry.		(K . B)
	(SG	D 2017, D.G.K 2016, BWP 2016, SWL 2017, RWI	P 2017 G-I)
Ans:	Answer given on pg # 03		
Q.5	Define nuclear chemistry.	(LHR 2016 G-I, MTN	2017)(K.B)
Ans:	Answer given on pg # 03		
Q.6	Define biochemistry.	(DGK 2016, GRW 2016 G-I, LHR 2016	6 G-I)(<i>K.B</i>)
Ans:	Answer given on pg # 03		
Q.7	Define environmental chemistry.		(K . B)
Ans:	Answer given on pg # 03		
Q.8	Define physical chemistry.		(K . B)
Ans:	Answer given on pg # 02		
	1.1 BRANCH	ES OF CHEMISTRY	
			20
1.	The branch of science which deal	s with the composition, structure, prope	rties and
	reactions of matter:	$\int \int dn dn \int \partial f (2)$	$O_{(K.B)}$

(A) Physics

- (C) Physical chemistry
- 2. The branch of chemistry which deals with the study of all elements and their compounds except compound of carbon and hydrogen and their derivatives: (**K**.**B**) (A) Organic chemistry (B) Physical chemistry

(B) Analytical chemistry

(D) Chemical analysis

(D) Chemistry

- **(C)** Inorganic chemistry (D) Biochemistry
 - Which one of the following provides the identity of a substances? (U.B)(B) Clinical analysis
 - (A) Qualitative analysis
 - (C) Quantitative analysis

Chapter-1

	4.	Which one of the following is applicable in chemi	cal industry like metallurgy,		
		ceramics and glass?			
		(A) Organic chemistry (B) Inorganic			
	-	(C) Industrial chemistry (D) Nuclear			
	5.	Industrial chemistry dea's with the manufacturing of a			
		(A) In laboratory (B) On micro			
		(C) Or commercial scale (D) On econo			
	6.	Metabolism of biomolecules is stadied in:	(U.B+K.B+A.B)		
		(A) I nvirolunen al chemistry (B) Biochem	istry		
	NNN	(C) Physical chemistry (D) Analytic	al chemistry		
U	92	1.1 TEST YOURSELF	-		
	i.	In which branch of chemistry behavior of gases and lic			
	Ans:	•	-		
	ii.	Which branch of chemistry deals with preparation of pa			
	Ans:	• • • • •			
	iii. In which branch of chemistry are the metabolic processes of carbohydrates				
		proteins studied?	(A.B)		
	Ans:	-			
	iv.	Which branch of chemistry deals with energy of atoms	•		
	Ans:		•		
	1 11150	use in daily life.	when the atomic chergy and its		
	v.	Which branch of chemistry deals with the structure	e and properties of naturally		
		occurring molecules?	(U.B+A.B)		
	Ans:		with the structure and properties		
		of naturally occurring molecules.			
		1.2 BASIC DEFINITION	NS		
	Q.1	Define the following terms.	(K.B)		
		(A) Matter (B) Substance (C) Mixture			
	Ans:	<u>MATTER</u>	$\sim 15 (C(0))$		
		Definition:	211001000		
		"Anything that has mass and occupies space is called ma	tler".		
		Examples:			
		Our bodies as well as an things (sir, water, chair etc.) arou	and us are examples of matter.		
		Physics: States of Matter.			
	-	Matters can exist in any of three physical states:			
-	M	(i) Solids (ii) Liquids (iii) Gas			
$\langle \rangle$	UU	SUBSTANCE			
U		Definition:			
		"A piece of matter in pure form is called substance".	antias on allowed an intiger		
		Every substance has a fixed composition and specific prop	perties or characteristics.		

Ans:

PHYSICAL PROPERTIES

Definition:

"The properties that are associated with the **physical state of a metter** are called physical properties".

Explanation:

When ice is heated, it melts to form water. When water is further heated, it boils to give steam. In this entire process only the **physical state of water changes** where as its **chemical composition remains the same**.

Examples:

Colour, sme'l, 'a sto, hardness, shape of crystal, solubility, melting or boiling point. CHEMICAL PROPERTIES

Definition:

"The properties that depend upon the **composition of the substance** are called chemical properties".

Explanation:

When a substance undergoes a chemical change, its **composition changes** and a new substance is formed.

Examples:

- Rusting of iron
- Decomposition of water is a chemical change as it produces hydrogen and oxygen gases.

	SI COTPILEASEDEFINITIONS	
	SHORT QUESTIONS	
21	Define n after and give examples.	(K . B + A . B)
Ans:	Answer given on pg # 05	
Q.2	Define substance.	(K.B)
Ans:	Answer given on pg # 05	
Q.3	Define mixture and give examples.	(K . B + A . B)
Ans:	Answer given on pg # 06	
Q.4	Write a short note on physical property. Give examples.	(K.B + A.B)
Ans:	Answer given on pg # 06	
Q.5	Write a short note on chemical properties.	(K . B)
Ans:	Answer given on pg # 06	

I.2.1 ELEMENTS, COMPOUNDS AND MIXTURES

- Q.1 Define an element and classify the elements with examples. (Ex-Q.1)(*K.B*)
- Ans:

<u>ELEMENT</u>

Number of Elements in Early Ages:

In the early ages, only **nine elements (carbon, gold, silver, tin, mercury, lead, copper, iron and sulphur)** were known.

Old Definition of Element:

"The substance that could not be broken down into simpler units by ordinary chemical processes."

Number of Elements Till the End of 19th Century:

Until the end of 19th century **63 elements** had been discovered.

Present Number of Elements:

Now **118 elements** have been discovered, out of which **92 are naturally occurring** elements.

Modern Definition of Tlen ert:

"The substance made up of same type of atoms, having same atomic number and it connot be deconposed into simple substances by ordinary chemical means."

Note: Each element is made up of unique atoms that have very specific properties.

Occurrence of Elements:

Elements occur in nature in free or combined form. All the naturally occurring elements found in the world have different percentages in the Earth's crust, oceans and atmosphere.

	Crust of Ea	rth	Oceans		Atmosp	here	(mn)
	Oxygen	47%	Oxygen	86%	Nitrogen	78%	0000
	Silicon	28 %	Hydrogen	1.%	Cxygen	21%	
	Aluminium 7	8 %	Chlorine	1.8 %	Argon	0.9%	
MMA	Physical States of Elements in av be: (i) Solid Solids:	<u>Elemonts.</u> (ii) Liqui	d	(iii) C	bas		
00-	Majority of elemen	its exist as so	olids (sodium, co	opper, zin	c and gold).		
	<u>Liquids:</u>						
	There are very few \tilde{a}	elements wh	nich occur in liqu	id state (n	nercury and bron	nine).	
	Gases: A few elements exi	ist as gases (1	nitrogen, oxyge	n, chlorin	e and hydrogen).		
	Classification of E						
	On the basis of th	1 1			l into metals, no	on-metals and	
metalloids. About 80% of the elements are metals.Q.2 Define the symbol. How symbols can be assigned?						(U.B+K.B)	
Q.2 Ans:	Define the symbol	. How Symb	SYMBC			(U.D+ A .D)	
1 1110.	Definition:			<u></u>			
	"An abbreviation f	for the name	of element is ca	lled symbo	ol. "		
	Examples:						
	Symbols for hydrogen, nitrogen and sodium are H, N and Na, respectively.						
	Derivation of Sym A symbol is taken t		a of that alaman	t in Englig	h Latin Greek o	r German	
	Methods to Write			t III Englis	SII, Latill, Oleek O	German.	
	In case of one-lette			s taken as	symbol e.g. H for	r Hydrogen, N	
	for Nitrogen, and C	•	-				\sim
	In case of two let	•	, only first lette	r is capita	ll e.g. Ca for Ca	lcium, Na for	50001
	Sodium and C <i>l</i> for				0000		0000
	Significance of Sy		aleant D	700	$\left(\right) $	200	
	It represents theIt indicates one	61		()	$ \rangle\rangle$		
Q.3			/ / \ \ \ \ \ \	of valence.	(DGK 2016, MTN	N 2017) <i>(U.B+K.B)</i>)
	Define valency. Write a detailed note on concept of valence. (DGK 2016, MTN 2017) <i>(U.B+K.B)</i> GR Explain the valency of elements is simple covalent and ionic compounds.(SGD 2017 G-II)						
Ans	The unique propert	y of an elem	<u>VALEN</u> ent is valency.	<u>CY</u>			
01/100	Definition:	-	,				
00	"The combining co	apacity of an	element with ot	her elemen	nts is called valen	су. "	
	Dependence:	number ef	alaatrana 41-	-	st shall		
	It depends upon the	e number of	electrons in the	outermo	st shell.		

In simple ionic compounds valency is defined as: "*The number of electrons gained or lost by an atom of an element to complete its octet.*"

Elements Having Less Than Four Electrons in Valence Shell:

Elements having **less than four electrons in the valence shell** prefer to **lose the electrons** to complete their octet.

Examples:

Na, **Mg** and **Al** have valance electrons 1, 2 and 3, respectively and they lose 1, 2 and 3 electrons to have valency of **1**, **2** and **3**, respectively.

Elements Having More Than Four Electrons in Valence Shell:

Elements having **four or more than four electrons in their valence shell, gain electrons** to complete their octet.

Examples:

Nitrogen, oxygen and **chorine** have 5, 6 and 7 electrons in their valence shells respectively. They gain 3, 2 and 1 electrons respectively to complete their octet. Hence they show valency of **3**, **2** and **1**, respectively.

Radical:

"A radical is a group of atoms that has some charge."

Example:

- Hydroxide: OH⁻
- Sulphate: SO₄²⁻

VARIABLE VALENCY

"Some elements show more than one upper of valency. The valency of such elements is called variable valency"

<u>Examples</u>

In $F \in SO_4$ th e valency of iron is 2.

• In $Fe_2(SO_4)_3$ the valency of iron is 3.

Note:

Generally, the Latin or Greek name for the element (e.g. Ferrum) is modified to end in 'ous' for the low valency (e.g. Ferrous) and to end in 'ic' for the higher valency (e.g. Ferric).

(C(0))

	Element / Radical	Symbol	Valency	Element / Radical	Symbol	Valency
	Sodium	Na	1	Hydrogen	HUK	S 160
	Potassium	K	1	Chlorine	6	01000
	Silver	Ag	10	Bromine	Br	1
	Magnesium	Mg	$\sqrt{2}$	Iodine	P	1
	Calcium	Ca	NZL	Oxygen	0	2
	Barium	Ba	2	Sulphur	S	2
NN	Vine of the	Zn	2	Nitrogen	N	3
90	Copper	Cu	1, 2	Phosphorus	Р	3,5
	Mercury	Hg	1,2	Boron	В	3
	Iron	Fe	2, 3	Arsenic	As	3
	Aluminium	Al	3	Carbon	С	4
	Chromium	Cr	3	Carbonate	CO_{3}^{2-}	2
	Ammonium	NH_4^+	1	Sulphate	SO_{4}^{2-}	2
	Hydronium	H_3O^+	1	Sulphite	SO_{3}^{2-}	2
	Hydroxide	OH⁻	1	Thiosulphate	$S_2O_3^{2-}$	2
	Cyanide	CN^-	1	Nitride	N ³⁻	3
	Bisulphate	HSO_4^-	1	Phosphate	PO_{4}^{3-}	3
	Bicarbonate	HCO_3^-	1	Bisulphite	HSO ₃ ^{1–}	1
	Table: Some Ele	ements an	d Radicals	s with their Symbols a	and Comr	non Valencies

Q.4 Do

Describe the compound. Write its properties. COMPOUND

(U.B+K.B)

Ans:

Definition:

"Substance made up of two or more elements chemically combined together in a fixed ratio by mass is called compound."

Examples:

- Carbon dioxide is a compound formed by a chernical combination between carbon (C) and oxygen (O) in a fixed ratio of 12:32 or 3.8 by mass
- Water is a compound formed by a chemical combination between hydrogen and oxygen in a fixed ratio of 1:8 by mass

PROPERTIES

The properties of compounds are as follows:

- (i) In compounds, elements lose their own properties and produce new substances (compounds) that have entirely different properties.
- (ii) Compounds can't be broken down into its constituent elements by simple physical methods.
- (iii) Elements chemically combine together in a **fixed ratio** by mass and form compound.
- (iv) All compounds are represented by a simple chemical formula.

Classification of Compounds:

Compounds can be classified as:

(i) Ionic compounds

(ii) Covalent compounds

(i) <u>Ionic Compounds:</u>

"Compounds that contain oppositely charged ions need together by ionic boulds are called ionic compounds."

Properties:

- The properties of ionic compounds are as follows:
- (i) Ionic compound do not exist in independent molecular form.
- (i) They form a three-din ensional crystal lattice, in which each ion is surrounded by popositely charged ons.
- (ii) They have **high melting and boiling points** due to strong attraction between oppositely charged ions.

(iii)These compounds are represented by formula units.

Examples:

- Sodium chloride (NaCl)
- Potassium bromide (KBr)
- Copper sulphate (CuSO₄)
- Ferrous sulphate (FeSO₄)

(iii) <u>Covalent Compounds:</u>

"Compounds formed by the sharing of electrons between different atoms are called covalent compounds."

Properties:

The properties of covalent compounds are as follows:

(i) The covalent compounds mostly exist in molecular form.

(ii) A molecule is a true representative of the covalent compounds.

(iii) They are represented by molecular formulae.

Examples:

Water (H₂O), Hydrochloric acid (HCl), Sulphuric (H₂SO₄), Methane (CH₄)

Compound	Chemical Formula	
Water	H ₂ O	
Sodium chloride (common salt)	NaCl	
Silicon dioxide (sand)	SiO ₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sodium hydroxide (caustic soda)	NaOH	RON
Sodium carbonate (washing soda)	Na ₂ CG ₃ ,10H ₂ O	Ger
Calcium oxide (quick lime)	Call Cac	
Calcium carbonate (lime s one)	CaCO ₃	
Sugar	C ₁₂ H ₂₂ O ₁₁	
Suplaric acid	H ₂ SO ₄	
Ammonia	NH ₃	
Table: Some Common C	Compounds with their Formulae	

<u> </u>				
Q.5	1 01	(SGD 2016,17, BWP, SWL 2017, MTN 2016)(U.B+K.B)		
Ans:		<u>IIXTURE</u>		
	Definition:			
	A mixture is made up of two or more of physically without any fixed ratio	elements or compounds (sul stances) mixed up		
	Properties:			
		O I U U U U		
		r own chemical identities and properties.		
		arent components by physical methods such as		
NI	distillation, filtration, evaporation, Types of Mizture:	crystallization or magnetization.		
W.	Mixture can be classified as:			
9	(i) Homogeneous mixture (ii)	Heterogeneous mixture		
(i)	Homogeneous Mixture:			
	"Mixture that has uniform composition throu	ughout is called homogenous mixture ".		
	Examples:			
	Air, Gasoline, Ice cream			
	(ii) <u>Heterogeneous Mixture:</u>			
		mposition throughout is called heterogeneous		
	mixture".			
	Examples:			
	Soil, Rock, Wood			
Q.6	What is the difference between compo	und and mixture? (MTN 2016, SWL 2017)(U.B)		
X ••	-	R		
	· · ·	oounds can be distinguished from mixtures.		
		017 G-II, FSD 2017 G-II, BWP 2017 G-I)(Ex-Q.2)(U.B)		
Ans:	<u>DIFFE</u>	<u>RENTIATION</u>		
The di	fferences between compound and mixture	are as follows:		
	Compound	Mixture		
	Form	ation		
• It	is formed by a chemical combination of	• Mixture is formed by the simple mixing up		

- It is formed by a chemical combination of atoms of elements.
- The constituents lose their identity and form a rew substance having entirely lifterent properties from them.
- Mixture shows the properties of the
 - Mixture shows the properties of th constituents.

of the substances.

• Compounds always have fixed composition by mass. • Mixtures do not have fixed compositions.

Ratio

	Separation of	Components
	he components cannot be separated by hysical means.	• The components can be separated by simple physical methods.
	represe very compound is represented by a nemical formula	 It consists of two or more components and does not have any chemical formula.
INN	Comp	osition
	ompounds have homogeneous omposition.	• They may be homogeneous or heterogeneous in composition
	Meltin	g Point
	compound has a sharp and fixed melting point.	• A mixture does not have a sharp and fixed melting point.
Q.1 Ans: Q.2 Ans:	SHORT QU Define an element. Answer given on pg # 07 Name two elements (a metal and a non -m Mercury (a metal), Bromine (a non- meta	(LHR 2016 G-I, BWP 2016 G-I)(<i>K.B</i>) netal) which exist in liquid state. <i>(K.B)</i>
Q.3 Ans: Q.4	• • • •	ich element? (Do you know Text Book Page. # 6)(K.B) of water i.e. 65% to 80% by mass.
Ans:	Six elements constitute about 99% of our(i) Oxygen 65%(ii) Carbon(iii) Hydrogen 10%(iv) Nitroge(v) Calcium1.5%(v) Phospho	body mass, namely: 18%
Q.5 Ans:	Define the symbol. Answer given on pg # 08	$\bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \bigcup_{i$
Q.6 Ans: Q.7	Define variable valency give example. Answer given $on pg # 09$ What is the modern definition of eleme	(K.B) ent? (BWP 2017)(K.B)
Ans:	Answer given on pg # 07 Virite down the names of elements whi A. Air (B) Milk (C)	ch are present in: (K.B) Soil (D) Brass
Ans:	<u>Air:</u> Air is a mixture of nitrogen oxygen carb	(Do you know Text Book Page. # 9)

Air is a mixture of nitrogen, oxygen, carbon dioxide, noble gases and water vapours.

Soil

	Soil:			- 100			
	Soil is a mixture of sand, clay, mineral salts, water and air.						
	Milk:						
	Milk is a mixture of water, sugar, fat, proteins, mineral salts and vitamins.						
	Brass: Brass is a mixture of copper and z	\bigcirc $()$ $()$ $()$ $()$ $()$ $()$	111				
Q.9	Define valency in ionic compounds with a	n example.	(LHR 2016 G-II)(I	K.B+U.B)			
Ans:	Answer given on pg # 09						
Q.10	Define radical.			(K . B)			
Ans:	Answer given on pg # 09						
	VN.@+ELEMENTS, COMP	OUNDS AND N	AIXTURES				
00		CE QUESTION	S				
1.	Anything that has mass and occupies sp			(K . B)			
1.	(A) Substance (B) Matter	(C) Element	(D) Atomic ma	, ,			
2.	Piece of matter in pure form is called:			(K . B)			
	(A) Mixture (B) Matter	(C) Substance	(D) Compound				
3.	Which one of the following can be sepa		· / I	(U.B)			
	(A) Mixture (B) Element	(C) Compound	(D) Radical				
4.	Impure matter is called:			(K . B)			
	(A) Atom (B) Compound	(C) Substance	(D) Mixture				
5.	Which one of the following is chemical	property?		(K . B)			
	(A) Color (B) Smell	(C) Taste	(D) Composition	on			
6.	The number of elements known in early	y ages is:	· · · -	(K . B)			
	(A) 118 (B) 109	(C) 63	(D) 9				
7.	Until the end of 19 th century how many	elements were disco	vered?	(K . B)			
	(A) 9 (B) 63	(C) 92	(D) 118				
8.	Which one of the following element is li		rature?	(K . B)			
	(A) Bromine (B) Mercury	(C) Nitrogen	(D) Both A and				
9.	The quantity of potassium, magnesium		•	S: (K.B)			
	(A) 0.2% (B) 0.6%	(C) 0.8%	(D) 0.4%				
10.	A substance whose atoms have the sam			(K . B)			
	(A) Element (B) Substance	(C) Mixture	(D) Compound	- 10			
11.	How many elements occur naturally?		(LHR 2016 G	- H);(K.B)			
	(A) 92 (B) 96	(C) 98	(D) 190 (GON-			
12.	Total number of elements which have b			(<i>K</i> . <i>B</i>)			
10	(A) 110 (B) 115 (A) (B) 115 (C) (B) 115 (C) (B) 115 (C) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	- (C) 118	(D) 162	(0, 71 7)			
13.	Which one of the following eleraen's is fo			st? <i>(K.B)</i>			
14	(A) Oxygen (B) Aluminium	(C) Silicon	(D) Iron				
14.	Human body has carbon upto (A) 18 (B) 19	%. (C) 20	(D) 21	(K . B)			
15	(A) 18 (B) 19 The nost al undant element occurring	· /	. ,	-2)/(V,D)			
15.	(A) Oxygen (B) Hydrogen	(C) Nitrogen	(GRW 2016)(Ex (D) Silicon	(A.B)			
<u> </u>	which of the following shows variable	, .		(K . B)			
0.0	(A) Ca (B) Fe	(C) B	(D) I	(A . D)			
17.				$(\boldsymbol{V} \boldsymbol{D})$			
1/.	HSO ^{-4} is the symbol of which one of the	0	(\mathbf{D}) \mathbf{D}' 1	(K . B)			
	(A) Ammonium ion (B) Cyanide	(C) Bisulphate	(D) Bicarbonat	e			
				11			

Chapter-1

	18.	The symbol of nit	ride radical is:			(K.B)
		(A) CO_3^2	(B) N^{3-}	(C) PO_4^{3-}	(D) $S_2 C_3^{2-}$	aonn
	19.	After gaining one	electron chlorine a	tom becomes:	(GRW 2	a 15) a b
		(A) Cation	(B) Anion	(C) Mclecular cation	(D) Molecula	r amon
	20.	The mixture whic	h has uniform com	position throughout is ca	lled:	(K . B)
		(A) Simple mixture	e \\/7[\	(B) Hornogeneous m	niz ture	
		(C) Heterogeneous	mixture	(D) Compound, mix	ture	
	21.	Which of the follo	owing has sharp and	fixed melting point?		(U.B)
		(A) Compound	(B) Mixture	(C) Both	(D) None of t	hese
	22.	Which is heteroge	neous mixture?			(K . B)
N	INP	(A) 5 0?	(B) Gasoline	(C) Sugar solution	(D) Salt solut	ion
$ \rangle$	23.	A good example o	f homogenous mixt	ture is:		(A . B)
)		(A) Rock	(B) Wood	(C) Soil	(D) Ice cream	l
	24.	The most abunda	nt element occurrin	ng in the ocean is		(K . B)
		(A) Nitrogen	(B)Silicon	(C) Hydrogen	(D) Oxygen	
			1.2 TEST	YOURSELF		

- i. Can you identify mixture, element or compound out of the followings? (U.B+A.B) Coca cola, petroleum, sugar, table salt, blood, gun powder, urine, aluminium, silicon, tin, lime and ice cream.
- Ans: Identification of mixture, element or compound is as follows:

Element	Compound	Mixture
Aluminium	Sugar	Petroleum
Silicon	Table salt	Blood
Tin Lime		Gun powder
		Urine
		Ice cream
		Coca cola

ii. How can you justify that air is a homogeneous mixture? Identify substances present in it. (U.B+K.B)

Ans:

AIR IS A HOMOGENEOUS MIXTURE

Justification:

Air is a homogeneous mixture because it has uniform composition throughout. Air consists of different gases having a uniform composition i.e. 76% mitroger, 21% oxygen, 0.9% argon, 0.037% carbon dioxide along with other node gases and water vapours. These gases have their identity and can be separated

iii. Name the elements represented by the following symbols: Hg, Au, Fc, Ni, Co, W, Sn, Na, Ba, Br, Bi

 \sim

(**K**.**B**)

Ans:

	Symbol	Name	Symbol	Name
0		Mercury	Sn	Tin
MAM	N OR	Gold	Na	Sodium
11/1/10 ,	Fe	Iron	Ba	Barium
0 -	Ni	Nickel	Br	Bromine
	Со	Cobalt	Bi	Bismuth
	W	Tungsten		

•

Name a solid, a liquid and a gaseous element that exits at the room temperature.(K,B)iv.

- Names of elements in solid, liquid and gaseous state, at room temperature: Ans:
 - Iron, gold, silver etc. Solid •
 - Mercury, bromine etc. Liquid • Gas
 - Hydrogen, oxygen, nitrogen etc.
- What elements do the following compounds contain? Sugar, common salt, lime v. water and chalk. (K.B)

Ans:

1 1100			
	Compound	MULL Benents	Formula
M	Sugar	Carbon (C), Hydrogen (H), Oxygen (O)	$C_{6}H_{12}O_{6}$
90,	Common Salt	Sodium (Na), Chlorine (Cl)	NaCl
	Lime water	Calcium (Ca), Oxygen (O), Hydrogen (H)	Ca (OH) ₂
	Chalk	Calcium (Ca), Carbon(C), Oxygen (O)	CaCO ₃

1.2.2 ATOMIC NUMBER AND MASS NUMBER

Q.1 Define atomic number and mass number. Explain with the help of examples. (U.B+K.B) Ans: **ATOMIC NUMBER**

Definition:

"The number of protons present in the nucleus of an atom of the element is called atomic number." **Representation:**

It is represented by symbol 'Z':

Explanation:

As all atoms of an element have the same number of protons in their nuclei, they have the same atomic number. Hence each element has a specific atomic number termed as its identification number.

Examples:

All hydrogen atoms have 1 proton, their atomic number, Z = 1.

All carbon atoms have 6 protons, their atomic number, Z = 6.

All oxygen atoms have 8 protons, their atomic number, Z = 8.

All sulphur atoms have 16 protons, their atomic number, Z = 16.

In a neutral atom: Atomic number = Number of protons = Number of electrons MASS NUMBER

Definition:

"The sum of number of protons and new trons present in the nucleus of an atom is called mass number."

Representation:

It is represented by symbol

Explanation:

Mass number = Number of protons + number of neutrons

It is calculated as: $\mathbf{A} = \mathbf{Z} + \mathbf{n}$ where n is the number of neutrons. Each proton and neutron this one unit of mass.

Examples:

Hydrogen atom has one proton and zero number of neutron in its nucleus, therefore mass number of hydrogen is: A = I + 0 = I

Carbon atom has 6 protons and 6 neutrons, hence its mass number is A=12.

Representation:

By convention, the mass number is written at the top left corner of the symbol of the atom and atomic number is written at the bottom left corner. ${}_{z}^{A}X$

Examples:

 ${}_{6}^{12}$ C, ${}_{11}^{23}$ Na etc.

Element	Number of Protons	Nutiber of Neutrons	Atomic Number Z	Mass Number A
Hychogen	<u>U LI LI L</u>	0	1	1
Carbon		6	6	12
Nitrogen	7	7	7	14
Oxygen	8	8	8	16
Fluorine	9	10	9	19
Sodium	11	12	11	23
Magnesium	12	12	12	24
Potassium	19	20	19	39
Calcium	20	20	20	40
Table: Some	Elements Along	With Their Atom	ic Numbers and N	Aass Numbers

Q.2 Explain the relative atomic mass and atomic mass unit. (DGK 2016)(*U.B+K.B*)

Ans: <u>Relative Atomic Mass (A_r):</u>

"The average mass of atoms of an element as compared to 1/12th (one-twelfth) the mass of one atom of carbon-12 isotope is called relative atomic mass".

Examples:

- A_r of carbon = 12 amu
- A_r of oxygen = 16 amu

Isotope: "Atoms of an element having different mass number but same atomic number". **Representation of atomic mass as relative atomic mass:**

The mass of an atom is too small to be determined practically. However, certain instruments enable us to determine the ratio of the atomic masses of various elements to that of carbon-12 atoms. This ratio is known as the relative atomic mass of the elements. The standard of relative atomic mass is based on carbon-12 standard; the mass of an atom of carbon is 12 and 1/12th of it comes to be one. When we compare atomic masses of other elements with carbon-12 atoms, they are expressed as relative atomic masses of those elements.

Unit of Ar (Relative Atonuc Massi:

"The unit for relative atomic mass is called ctomic mass unit."

Atomic Mass Unit.

"One atom is mass unit is 1.12^{th} the mass of one atom of carbon 12. The atomic mass unit is abbreviated as **amu**."

On atomic mass scale, the atomic mass of **carbon-12** is taken as **12.00 amu**.

1 amu =
$$\frac{1}{12}$$
 × mass of carbon-12 atom
1 amu = **1.66 x 10⁻²⁴g**

					j
	Atomic Masses of Subat	tomic Particles:			
	• Mass of a proton =	1.0073 amu	or 1.67	2×10^{-24} g	- mini
	• Mass of a neutron =	1.0087 amu		4×10^{4}	(C(0))
	• Mass of an electron =	5.486×10^{-4} m	u or 9.10	5×10^{-28} g	000
	1.2.2 ATOM	6-NUMBERA	ND MASS N	UMBER	
				0	
0.1	00000		<u>STIEKS</u>		
Q.1 Ans:	What is the relative ator	m c mass? How it is RELATIVE ATOM			(U.B+K.B)
Alls.	Definition.	RESATIVE ATOM	IC MADE		
AN	"The cverage mass of at	oms of an element a	s compared to 1/1	2 th (one-twelfth)	the mass
NN	of one atom of carbon-12	isotope is called rel	lative atomic mass.	"	
0	Unit of Relative Atomic Atomic Mass Unit: "One	<u>Mass:</u> Its unit is atom	nic mass unit, with $\frac{1}{12}$	symbol amu.	12^{th}
	<u>Atomic Mass Onic</u> One <u>Representation in Grams</u>	• When this atomic mass	ass unit is expressed	ie alom of carbo	<i>m-12</i> .
	<u>Representation in Gruns</u>	$1 \text{ amu} = 1.66 \times$	10^{-24} g	in granns it is.	
Q.2	Define atomic mass unit	t. Why is it needed?		(U.B	+ K . B + A . B)
Ans:	Definition:	ici (1/10 th) c.1	c 1 12 /	• 11 1 / •	• , • •
	<i>"The mass equal to one twee</i> The atomic mass unit is a		of a carbon -12 atom	is called atomic m	ASS UNIT.
		$mu = 1/12 \times mass$ or	f C-12 atom		
	The mass of one atom of				
	Need of amu:				
0.2	It is the unit used for the rela				
Q.3 Ans:	How many neutrons are	UMBER OF NEUT		(BWP 2017	$G-\Pi$)($U.B$)
1 111,5 •		r of neutrons = Mass		umber	
			6 = 6 neutrons		
	<u>NU</u>	MBER OF NEUTR	RONS IN C-13		
	Numbe	er of neutrons = Mass -12	s number – atomic $\delta = 7$ neutrons	number	
Q.4	Give mass of proton and				(K . B)
Ans:	-	a neutron în aniu a	nu granns.		(A . D)
Alls.	· · ·				
	1.2.2 ATOM	C NUMBER A	IND MASS N	UMBER	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	MULT	IPLE CHOICE	QUESTION	S	COUNT
1.	1 amu (atomic mass uni	t) is equivalent to			(A.B)
-) 1.66×10^{-24} g ((C) 1.65×10^{-21} g	(D) 1.65×10 ⁻	-
2.	The mass of one molecu (A) 19 mm (D)			T) 101-	(K . B)
3.	(A) 18amu (B Mass of an electron is:		(C) 18mg	(D) 18kg	2014)(K.B)
J.	(A) 5.486×10^{-4} amu (B)) 9.105×10 ⁻²⁴ ame	C) 1.67×10^{-24} g	(D) 1.677×10	$\int_{-24}^{-24} g$
4.	Mass of proton is equiv	alent to:			(K.B)
	(A) 1.672×10^{-14} anu (B)		(C) 1.672×10^{24} g	(D) 1.672×10	0
aAA	Which one of the follow	ing is a molecular r) 53.12×10 ⁻²⁴ amu (mass of O_2 in amu	(LHR 2014) (D) 192.64×	(U.B+K.B)
VVV	Atomic number is repre		(C) 1.92×10 annu	(D) 192.04×. (FSD 2017	
•) Y ((C) A	(D) a	
7.	Element with least atom	nic number is:	. ,		(K . B)
	(A) Carbon (B) Sodium ((C) Hydrogen	(D) Helium	

(SGD 2017G-I)(U.B+K.B)

Steps to Write Down Chemical Formula:

- (i) <u>Side-by-side:</u> Symbols of two elements are written side-by-side, in the order of positive ion first and negative ion later.
- (ii) <u>Valency of ions</u>: The valency of each ion is written on the right top corner of its symbol, e.g. Na^+ , Ca^{2+} , Cr^{3+} and O^{2-} .
- (iii) <u>Cross-exchange method</u>: This valency of each ion is brought to the lower right corner of other ion by cross-exchange method and Na^+Cl^- , Na^-Cl^- , $NaCl^-$, $Ca^{+2}Cl^-$, $Ca^{+2}O^{-}$

NaCl

- (iv)<u>Offset:</u> If the valencies are same, they are offset and are not written in the chemical formula. But if they are different, they are indicated as such at the same position <u>Example:</u>
 - In case of sodium chloride both the valencies are offset and formula is written as NaCl,
 - Calcium chloride is represented by formula CaCl₂.
- (v) <u>Radical:</u> If an ion is a combination of two or more atoms which is called radical, bearing net charge on it. e.g. SO_4^{2-} (sulphate ion) and PO_4^{3-} (phosphate ion) then the net charge represent the valency of the radical writing the negative radical within the parenthesis.

Examples:

- Chemical formula of aluminum sulphate is written as Al₂(SO₄)₃
- Calcium phosphate as $Ca_3(PO_4)_2$
- Q.2 What is the significance of chemical formula?
- Ans:

MMM

SIGNIFICANCE OF CHEMICAL FORMULA The significance of chemical formula is as follows:

- It represents the **name of the substance** e.g., H₂O (water)
- It tells the **name of the elements** as present **in the compound**.
- It indicates the **mass of an element or a compound in amu or grams**.
- It also represents one mole of the molecule or formula unit in the balanced chemical equation
- It is in fact one molecule or formula unit of the substance.
- Q.3 Define empirical formula. Describe the empirical formula of ibric and covarient compounds. IBWP 2016, S VI. 2016,17. DGK 2017)(U.B+K.B)

Ans:

Definition:

"A formula that indicates the simplest whole number ratio of atoms of different elements present in a compound is called an empirical formula."

Determination of Empirical Formula:

The englisical formula of a compound is determined by knowing the percentage composition of a compound.

Empirical Formula of Covalent Compounds:

"It is simplest whole number ratio of atoms of each element present in a compound"

Examples:

The covalent compound silica (sand) has simplest ratio of 1:2 of silicen and oxygen respectively. Therefore, its empirical formula is SiO₂.
 Silica or sand (silicon dioxide)

SiO

C: H: O

6:12:6 1:2:1

CH₂O

Thus empirical formula of silica

• Glucore has simplest ratio 1:2:1 of carbon, hydrogen and oxygen respectively. Hence its empirical formula is CH_2O

=

=

=

Thus empirical formula of glucose

Empirical Formula of Ionic Compounds:

The ionic compounds exist in **three dimensional network** forms. Each ion is surrounded by oppositely charged ion in such a way to form **electrically neutral compound**. Therefore, the **simplest unit** taken as a **representative** of an ionic compound is called **formula unit**.

<u>Formula Unit:</u>

"The simplest whole number ratio of ions, as present in an ionic compound is called formula unit."

In other words, ionic compounds have only empirical formulae.

Glucose

Examples:

- Formula unit of **common salt** consists of one Na⁺ and one Cl[−] ion and its empirical formula is **NaCl**.
- Formula unit of **potassium bromide** is **KBr** which is also its empirical formula.
- Q.4 What is molecular formula? Write down the relationship between molecular and empirical formula. (MTN 2016)(*U.B+K.B*)

Ans:

MOLECULAR FORMULA

Definition:

"A formula that indicates actual number of atoms of each element present in a molecule of that compound is called molecular formula."

Examples:

Molecular formula of water, benzene, chlorine and sulphur are H_2O , C_6H_6 , Cl_2 and S_8 respectively.

Derivation of Molecular Formula:

(Relationship between molecular formula and empirical formula) Molecular formula is derived from empirical formula by the following relationship:

Molecula: formula = n × (Empirical formula)

molecular formula mass

empirical formula mass

whole collar formula of a compound is determined experimentally. The value of 'n' may be 1, 2, 3, 4, 5, 6 and so on.

Examples:

Where

Molecular formula of **benzene** is C_6H_6 which is derived from the **empirical formula CH** where the value of **n** is **6**.

Explanation:

- The molecular formula of a compound may be same or a multiple of the empirical formula. •
- A few compounds having different empirical and molecular formulae. •
- Some compounds may have same empirical and molecular formula e.g water • (H₂O), hydrochloric acid (HCl) etc.

Table: Compounds with their empirical and molecular formulae:

N		Empirical Formula	Molecular Formula
1	Hydrogen peroxide	НО	H_2O_2
	Benzene	СН	C ₆ H ₆
	Glucose	CH ₂ O	$C_6H_{I2}O_6$

Q.5 Describe molecular mass and formula mass in detail.

(U.B+K.B)

3].COľ

Ans:

MOLECULAR MASS

Definition:

"The sum of atomic masses of all the atoms present in one molecule of a molecular substance is its molecular mass."

Examples:

 $H_2O = 2(1 \text{ amu}) + 1(16 \text{ amu})$

 $= 2 \times 1 + 16$

=2+16

=18 amu

- Molecular mass of carbon oxide (CO_2) is 44 amu.
- Molecular mass of chlorine (Cl_2) is 71 anu. •

Definition:

"The sum of atomic masses of all the atoms present in one formula unit of an ionic compound is colled formula mass."

FCRMULA MASS

Some ionic compounds that form three-dimensional solid crystal, are represented by their formula units. Formula mass in such cases is the sum of atomic mass.

Examples:

- Formula mass of **sodium chloride** is **58.5 amu.**
- Formula mass of calcium carbonate is 100 amu. •

	1.2.4 HOW TO WRITE CHEMICAL FORMULA? 1.2.5 MOLECULAR MASS AND FORMULA MASS (CONT					
		1.2.5 MOLI				COUL
			SHORTQU		MOJ	
	Q.1		l fortuula of silica 2nd	glucose.	(GR W 2017 G-II)	(U.B+K.B)
	Ans:	Answer given on pg #		JULI	D	
	Q.2	What is molecular m		JIE	(GRW 2016 G-I)((K.B+A.B)
	Ans:	Answer given on pg # Define for nula unit.				
	Q.3 Ans:	Answer giver on pg #				(K . B)
000						
NNI	ମ୍ବାର	1.2.4 HOW				
00	-	1.2.5 MOL	ECULAR MASS	AND FORMU	LA MASS	
	1.	Al ₂ (SO ₄) ₃ is the form				(K . B)
		(A) Aluminium sulph	ate	(B) Aluminium phos	-	
	-	(C) Calcium sulphate	•	(D) Calcium phospha	ate	
	2.	The valency of ion is	written on:			(K . B)
		(A) Top left corner		(B) Top right corner		
	2	(C) Bottom right corn		(D) Bottom left corne	er	
	3.	CaO is the chemical		(\mathbf{C}) \mathbf{C} and \mathbf{C}	(\mathbf{D}) \mathbf{O}_{12} \mathbf{i}_{12} \mathbf{i}_{13}	(K . B)
	4.	(A) Lime stone	(B) Lime water	(C) Caustic soda	(D) Quick lim	
	4.	substance?	mowing shows the s	implest whole numb		<i>U.B+K.B</i>)
		(A) Molecular formul	9	(B) Empirical formul	,	U.D+K.D
		(C) Chemical formula		(D) Covalent formula		
	5.	Chemical formula of			u	(K . B)
		(A) $Na_2CO_3.H_2O$	(B) $Na_2CO_3.10H_2O$	(C) $Na_2CO_3.7H_2O$	(D) Na_2CO_3	(112)
	6.	The empirical formu	() = = =	(-)	. ,	2015)(K.B)
		(A) CH	(B) CH_2O	(C) OH	(D) H_2O_2	
	7.	Which one of the fol	lowing is empirical fo			\sim
				(LHR 2016, (LHR 201		G-II)(<i>K B</i>)
		(A) $C_6H_6O_2$	$(B) C_3H_3O$	(C) C_6H_6	(D)CH	C(0)UUUU
	8.	Silica is also known		1 mm	N/CON	(K.B)
	0	(A) Silicate	(B) Clay	(C) Sand	(D) Sulphate	
	9.	In silica the ratio of s	(P) 1:2		U 2.2	(K . B)
	10.	(A) 2:2 Molor mars is usual		(C) 2:1 (C) 2:1 (C) 2:1	(D) 2:3	or moss
	10.	of O_2 in anu?	ly expressed on gram	s which one of the fo	-	(U.B)
		$(A) \leq 2$ and		(B) 53.2×10 ⁻²⁴ amu	(E2	(U.B)
-	nR	(C) 1.92×10^{-25} amu		(D) 192.64×10^{-25} am	111	
AM	AVA (The molar mass of H	I₂PO₄ is:		(GRW 2017G-II)((U.B+K.B)
MN,	00	(A) 58.5g	(B) 98g	(C) 40g	(D) 98 amu	,
~	12.	The formula mass of	() U	×	· /	(U.B+K.B)
		(A) 174amu	(B) 174g	(C) 170amu	(D) 170g	

Fundamentals of Chemistry

mapic	2 1 - 1		Fundamentais c	or Chemistr
		Exa	mple	
-	• The empirical $(C_6H_{12}O_6)$ is CH	formula of glucose	The formula unit of social is NaCl.	um chloride
_			onpound	<u>j_660</u>
	• Both covalent a have empirical for	and ion's compound	Cnly cnic compounds ha	ave formula
Ļ	SHE	ALAU		1.9 (1.1
1	How can you amere	DIFFERENTL	ılar formula and empirical fo ATION	rmula: (U.E
N			and molecular formula are as fo	llows:
UΝ	Empirica	l Formula	Molecular Formul	a
5		ula is the simplest	• The formula that shows ac	tual number
	whole number	ratio of atoms of	of atoms of each element	
		ents present in a	molecule of that compour	nd is called
	compound.		molecular formula.	
-	• The Empirical (C ₆ H ₁₂ O ₆) is CH	formula of glucose $_2O$.	• The molecular formula of $C_6H_{12}O_6$.	f glucose is
		ed on the basis of	• It is derived from empirica	l formula by
		omposition of a	the following relationship.	
	compound.		• Molecular formula = n × empir	
	• It can be written molecular compo	n both for ionic and ounds.	• It can only be written for substances i.e. elements and	
			a unit or molecular formulae:	(U.1
	H_2O_2 , CH_4 , $C_6H_{12}O_6$	$_{5}, C_{12}H_{22}O_{11}, BaCO_{3}, H_{12}O_{12}O_{12}$		
s:		IDENTIFICATION O		
	Molecular Formu			
	$\frac{\text{H}_2\text{O}_2}{\text{CH}_4}$	BaCO ₃ KBr	BaCO ₃ KBr	
	$C_6H_{12}O_6$	KDI	CH ₄	
	$C_{12}H_{22}O_{11}$		0114	
V		mula of acetic acid (CH ₃	COOH)? Find out its molecular	mass. <i>(U.B+A.</i>
:		EMPIRICAL I	FORMULA	
) has simplest whole nu	mber ratio CH_2O . Thus empirid	cal formula
	cetic acid is CH ₂ O. Molecular mass of a	cotic scid.		
	CH ₃ COOH)		1(12) + 1(10) + 1(16) + 1(1)	2105
	()	= 12+3+12+16		\mathcal{N}^{-}
		= 60amu		
	Calculate the formu	le masses of Na2SO4, 2		(U.B+A.1
:	Selfa	FORMULA M		
	N2 2 SO4	= 2(23) + 1(32) - 46 + 32 + 64 = 142 amu	+ 4(10)	
		= 142 amu		
N	CIISO4	= 1(65) + 1(32)	+4(16)	
1	, <u> </u>	= $65 + 32 + 64$. /	
	~ ~ ~ ~	= 161 amu		
	CuCO ₃	= 1(63.5) + 1(12)		
	CuCO ₃	$= 1(63.5) + 1(12) \\ = 63.5 + 12 + 48$		
	CuCO ₃	= 1(63.5) + 1(12)		2

	Cha	nrge
• I	t is electrically neutral.	• It has a net charge (either negative or positive) on it.
	Txa	mle
• (C, Al	• A ³⁺ , C ²⁻
Q.3	Write a note on molecular ion.	(BWP 2016)(U.B+K.B)
Ans:	MOLECUI	<u>AR ION</u>

Definition:

'A **colecular ion** is a specie having **positive or negative charge on it.** When a **molecule loses or gains an electron**, it forms a molecular ion."

Types of Molecular Ions:

Molecular ions are of two types:

- (i) Cationic molecular ion
- (ii) Anionic molecular ion

Note: Cationic molecular ions are more abundant than anionic molecular ions.

(i) <u>Cationic Molecular Ion:</u>

"The molecular ions which carry positive charge are called cationic molecular ions". They are formed by losing of electron.

Examples:

 $\overline{N_2^+}$, He⁺, $\overline{C}H_4^+$ etc.

(ii) Anionic Molecular Ion:

"The molecular ions which carry negative charge are called anionic molecular ions." They are formed by gaining of electron.

Examples:

 N_{2}^{-} , O_{2}^{-2} etc.

Generation or Formation of Molecular Ions:

When gases are bombarded with high-energy electrons in a discharge tube, they ionize to give molecular ions.

Q.4 Differentiate between molecule and molecule ion. (FSD 2016, GRW 2016 G-II)(U.B) DIFFERENTIATION

The differences between molecule and molecular ion are as follows:

	Molecule	Molecular Ion				
	Definition					
	• It is the smallest particle of a substance	• It is formed by gain or loss of electrons by				
	which can exist independently and show	a morecule.				
	all the properties of the substance					
Charge						
S F	• it is always neutral.	• It can have negative or positive charge.				
V	Form	ation				
V	• It is formed by the combination of atoms.	• It is formed by the ionization of a molecule.				
	Stability					
	• It is a stable unit.	• It is a reactive specie.				

4.2.4					
1.3.1		AND ANIONS), MO			œ
		JLTIPLE CHOI			
1.		of atoms having posit			(K . B)
	(A) Cation	(B) Anion	(C) Moieci le	(D) Atom	
2.	The symbol of nir		<u></u>		(K . B)
	(A) CC_{3}^{2-}	(B) N ² -	(C) PO_4^{3-}	(D) $S_2O_3^{2-}$	
3.15		ollowing is a reactive	specie?		(U.B)
11/1	(A) Molecule	(B) Molecular ion	(C) Compound	(D) Formula u	nit
4.	An atom or group	of atoms having odd 1	number of electrons	is called:	(K . B)
	(A) Radical	(B) Ion	(C) Free radical	(D) Molecular	ion
5.	The removal of ele	ctron from an atom g	ives:		(U . B)
	(A) Cation	(B) Anion	(C) Molecular	(D) Molecular	. ,
6.	CH ₄ ⁺ is an example				K.B+A.B)
	(A) Free radical	(B) Molecular ion	(C) Cation	(D) Anion	
7.	Which of the follow	wing specie is generate	ed by heat or light?		(U.B)
	(A) Ion	(B) Molecular ion	(C) Free radical	(D) Molecule	
8.	Free radicals are g	enerated by	breakage.		(U.B)
	(A) Homolytic	(B) Heterolytic	(C) Unequal	(D) All of thes	se
9.	It is a stable unit:				(U.B)
	(A) Ion	(B) Molecular ion	(C) Molecule	(D) Free radic	al
10.	Which molecular i	on is more abundant?			(U . B)
	(A) Cationic	(B) Anionic	(C) Both A & B	(D) None	
	1	.3.2 TYPES OF	MOLECULES		
Q.1	Define and explain	molecule and its type	es.		

(BWP 2016, 17, MTN 2017, FSD 2017 G-I, BWP 2017 G-II)(U.B+K P)

Ans:

MOLECULE

Definition:

"It is the smallest particle of a submance which can exist independent and shows all the properties of that substance (element or a compound)".

Formation:

 \cap

A malecule is formed by chemical combinations of atoms.

TYPES OF MOLECULES

On the Basis of Number of Atoms:

On the basis of number of atoms types of molecules are as follows:

(i) <u>Monoatomic Molecule:</u>

"A molecule consisting of only one atom is called monoatomic molecule"

Examples:

The inert gases helium, neon and argon all exist independently in atomic form.

(ii) **Diatomic Molecule:**

"A molecule consisting of two atoms is callea distortic molecule

Examples:

Hydrogen (H_2) , oxygen (O_2) , chlorir e (Cl_2) and hydrogen chloride (HCl).

(iii)<u>Triatomic Melecule:</u>

"A nolecule consisting of three atoms is called triatomic molecule."

Exernples:

H₂O, CO₂, etc.

(iv) **Polyatomic Molecule:**

"A molecule consisting of many atoms is called polyatomic molecule."

Examples:

Methane (CH₄), sulphuric acid (H_2SO_4) and glucose ($C_6H_{12}O_6$).

On the Basis of Types of Atoms:

On the basis of types of atoms types of molecules are as follows:

(i) <u>Homoatomic Molecule:</u>

"A molecule of same types of atoms is called homoatomic molecule.

Examples: consisting

Hydrogen (H₂), ozone (O₃), sulphur (S₈) and phosphorus (P₄).

(ii) Heteroatomic Molecule:

"A molecule consisting of different kinds of atoms is called heteroatomic molecule."

Examples:

CO₂, H₂O and NH₃.

1.3.2 TYPES OF MOLECULES

SHORT QUESTIONS

Q.1 Differentiate between homoatomic and heteroatomic molecules.

Ans:

<u>DIFFERENTIATION</u>

The differences between homoatomic and neteroatomic molecules are as follows:

	Homoatomic Molecyles	Heteroatomic Molecules		
	O Petir	ition		
	• A molecule containing same type of	• A molecule consists of different kinds of		
~	ntorns is called homoatomic molecule.	atoms is called a heteroatomic molecule.		
N	Examples			
	• Hydrogen (H_2) , Oxygen (O_3) and	• CO_2 , H_2O and NH_3		
	 sulphur (S₈) These are molecules of elements. 	• These are molecules of covalent compounds.		

 $\partial (\mathbf{A})$

GRAM MOLECULAR MASS

"The molecular mass of an element or a compound expressed in grams is called gram molecular mass. or gram molecule. It is also called a mole."

Examples:

- 1 gram molecule of water = 18.9 g = 1 mol of water
- 1 gram n olecule of H_2SO_4 = 98.0 g = 1 mol of sulphuric acid
- Number of gram molecules of a substance = $\frac{\text{Mass of substance}}{\text{Molecular mass of substance}}$

GRAM FORMULA MASS (GRAM FORMULA OR MOLE)

"The formula mass of an ionic compound expressed in grams is called gram formula mass or gram formula. This is also called a mole."

Examples:

- 1 gram formula of NaCl = 58.5 g = 1 mol of sodium chloride
- 1 gram formula of $CaCO_3 = 100 \text{ g} = 1 \text{ mol of calcium carbonate}$

1.4 GRAM ATOMIC MASS, GRAM MOLECULAR MASS AND GRAM FORMULA MASS

SHORT QUESTIONS

	GHENI		
Q.1	Define gram atomic mass and give e	xample.	(K.B+A.B)
Ans:	Answer given on pg # 31		
Q.2	Define gram molecular mass and give	e example.	(K.B+A.B)
Ans:	Answer given on pg # 32		
Q.3	Define gram formula mass and give	example.	(K.B+A.B)
Ans:	Answer given on pg # 32		
1.4	4 GRAM ATOMIC MASS,	GRAM MOLE	ECULAR MASS AND
	GRAM FOI	RMULA MAS	S
		OICE QUEST	TIONS
1.	The molar mass of H ₂ SO ₄ is:		(GRW 2016) (LHR 2015)(K.B+U.B)
	(A) 98g	(B) 48amu	~ 100 COV
	(C) 4.8g	(D) 98amu	
2.	The mass of one molecule of H ₂ O is:		(LHR 2015)(K.B+U.B)
	(A) 18amu	(B) 18gm	
	(C) 18 C	(D) 18kg	

3. 36 g of water is equal to: (A) 1 mcle

> (C) I mole **1 mole of CaCO₃ is equal to:** (A) 58.5 g

(C) 99 g

CHEMISTRY-9

(B) 2 mole

(B) 100 g

(D) 50 g

(D) 1.5 mole

(U.B)

(U.B)

Chapter-1 **1.5 AVOGADRO'S NUMBER AND MOLE** Explain the Avogadro's number. (1.WF 20.16)(U.s+.(.B))0.1 Ans: AVOGADRO'S NUMBER **Introduction:** It is a huge number. It was suggested by an It. dial scientist Amae/lo Avagadro. Definition "The number of particles in one noie of a substance is called Avogadro's Amaedo Avogadro ramb ?r. '` (1776-1856) was **Reviewitation and Numerical Value:** an Italian scholar. Avogadro's number is represented by symbol ' N_A '. Its numerical He is famous for value is 6.02×10^{23} . molecular theory commonly known **Explanation:** as Avogadro's law. In simple words 6.02×10^{23} particles are equal to one mole as In tribute to him. twelve eggs are equal to one dozen. To understand the relationship the number of particles (atoms, between the Avogadro's number and the mole of a substance. molecules, ions) in **Relationship Between Avogadro's Number and Mole:** mole of a Gram atomic mass of C = 12g = 1 mole of C = 6.02×10^{23} atoms of C • substance 6.02×10²³ is known Gram molecular mass of $H_2O = 18g = 1$ mole of $H_2O = 6.02 \times$ as the Avogadro's 10^{23} molecules of H₂O constant. Gram formula mass of NaCl = 58.5g = 1mole of NaCl= $6.02 \times$ 10^{23} formula units of NaCl. **Importance of Avogadro's Number:** In chemistry we deal with substances which are composed of atoms, molecules or formula units. The counting of these particles is not possible for the chemists. The concept of Avogadro's number facilitated the counting of particles contained in the given mass of a substance. Avogadro's number is a collection of 6.02×10^{23} particles. **Explanation:** For further explanation about number of atoms in molecular compounds or number of ions in ionic compounds. **Examples:** One molecule of water is made up of 2 atoms of hydrogen and 1 atom of oxygen, hence $2 \times 6.02 \times 10^{23}$ atoms of hydrogen and 6.02×10^{23} atoms of oxygen constitute one mole of

- water. One formula unit of sodium chloride consists of one sodium ion and one chloride ion. So there are 6.02×10^{23} number of Na⁺ ions and 6.02×10^{13} Cl⁻ ions in one mole of sodium chloride. Thus, the total number of ions in 1 mcle of NaCl is 12.04×10^{23} or 1.204×10^{24} .
- Define mole and what is the relationship between mole and substance? Q.2 (U.B+K.B) OR

Mole is SI unit for the amount of a substance. Define it with examples. (Ex-Q.2) **MOLE (CHEMIST SECRET UNIT)**

Definition:

Ans:

"A mole is defined as the amount (mass) of a substance that contains 6.02×10^{23} number of particles (atoms, molecules or formula units) is called a mole." **Quantitative Definition:**

"The atomic mass, molecular mass, formula mass or ionic mass of a substance expressed in grams is called a mole".

	1.5 AVOGADRO'S NUMBER AND MOLE	6
	MULTIPLE CHOICE QUESTIONS	0000
1.	The number of particles in one mole of a substance is called:	
	(A) Atomic number (B) Particle nu nber (C) Av gad c's nu m'zer (D) Mass number	
2.	Total number of ions in one mele of NaCī is. (U.B) (A) 12 04 \times 10 ²³ ima (D) 1 20) \times 12 ² mass (C) C 04 \times 10 ²³ ima (D) (1 04 \times 10 ²³ ima)
3.	(A) 12.04×10^{23} ions (E) 1.204×10^{22} ions (C) 6.04×10^{25} ions (D) 61.04×10^{23} ions The symbol of Avegad o s number is: (GRW 2017 G-I)(<i>K.B</i>))
5.	(A) N_A (B) A_n (C) N_x (D) N_y)
00	Which term is used to represent the mass of 1 mole of molecules of a substance? (U.B)	
)
<u>JO</u> 0	Gram molecular mass or gram molecule is used to represent the mass of 1 mole of	f
	molecules of a substance.	
	Example:	
	Mass of 1 mole of molecule of water is gram molecular mass i.e. 18 g.	
ii.	How many atoms are present in one gram atomic mass of a substance? (U.B))
An		
	One gram atomic mass of a substance is expressed in grams. It is equivalent to 1 mole of $\frac{1}{2}$	-
	an element. Thus it consists of Avogadro's number (6.02×10^{23}) of atoms.	
iii.	Explain the relationship between mass and mole of a substance. (U.B))
An		
	Number of moles = $\frac{\text{Given mass of a substance}}{1}$	
	Molar mass of a substance	
	Mass of a substance = Number of moles x Molar mass of a substance	
iv.	Find out the mass of 3 moles of oxygen atoms: (U.B+A.B)	1
An		
	<u>Solution:</u> Given data:	
	Number of moles of O-atoms = 3 mol	
	To Find:	\sim
	Mass of 3 moles of O-atoms $= ?$	1000
	Calculations:	1000
	Mass of oxygen = Number of moles Kinplar mass of oxygen O-aroni	
	$=$ 3 mole \times 16g mol ⁻¹	
	→ ↓ / 748g (() () U U U U	
	<u>Result</u>	
	Thus mass of 3 moles of oxygen is 48 g.	
v.	How many inclucives of water will be present in half mole of water? (U.B+A.B))
- mp		
MV	Solution:	
10	<u>Given Data:</u>	
	Number of moles of water $=\frac{1}{2}$ mole	
	2	_

iv.	Is the mass of 1 mole of O and 1 mole of S	same?	(1
Ans:	As Mass of 1 mole of $O =$	16g	,
	Mass of 1 mole of $S =$	32g	and C
	Hence, the mass of 1 mole of O and 1 mole	0	not the same.
v.	What do you mean by 1 atom of C and 1 s		
Ans:	ON A TOM AND ON	ECRA	MAJOMOEC
	1 atom of carbon means single smallest parti	icle of c	arbon with mass 12 amu.
	On the other hand, I gran atom means it.		
	carbon atoms.		ç
vi.	If 16g of exygen contains 1 mole of exyge	en atom	is calculate the mass of one atom
- 05	oxygen in grans.		(U.B +A
1M	NUMERIC	CAL	
UU	Solution:		
9	Given Data:		
	16 g of oxygen = 1 mole of oxygen atoms		
	To Find:		
	Mass of 1 atom of oxygen in grams = ?		
	<u>Calculations:</u>	1023	
	$\overline{16g} \text{ of oxygen} = 1 \text{ mole of oxygen} = 6.02 \times$	10^{-5} ato	ms ~
	Therefore, mass of 6.02×10^{23} atoms of oxyg	en = 10	-
	Mass of 1 atom of oxygen	=	16
			6.02×10^{23}
		=	2.65×10^{-23} g
vii.	How many times is 1 mole of oxygen atoms		
Ans:	OXYGEN AND HY	DROG	
	Mass of 1 mole of oxygen atoms	=	16g
	Mass of 1 mole of hydrogen atoms		lg
	Therefore, 1 mole of oxygen atoms is 16 times		
viii.	Why does 10 g nitrogen gas contain the sa	ame nu	
	monoxide?		(U.B+A
Ans:	Number of moles of nitrogen gas	=	Given mass of substance
			Molar mass of substance
		_	<u>10</u>
		_	28
		=	0.35 mol
	Number of molecules of nitrogen gas (N_2)	=	number of mole
		7-	$0.35 \times 0.02 \times 10^{23}$
	\sim	-1-	2.107 \times 10 ²³ molecules
	n 96	////	Given mass of substance
	Number of moles of carbon nonoxide	=	
		2	Molar mass of substance
	XIII'N IIINN	_	$\frac{10}{28}$
. 6		=	0.35 mol
M	Wambr of molecules of CO	=	number of mole $\times N_A$
UV	0-	=	$0.35 \times 6.02 \times 10^{23}$
		=	2.107×10^{23} molecules
	Hence it is proved that 10g nitrogen gas	contai	ns the same number of molecules
	Free of the provide that rog mit ogen gas	contai	is the sume manifer of morecures

Hence it is proved that 10g nitrogen gas contains the same number of molecules as 10g of carbon monoxide because both gases have same molar mass that is i.e. 28g.

			i ulua	amentals of onemistry
		EXERCISE	SOLUTION	5
	MU	LTIPLE CHO		
1.		deals with the ma	nufacturing of compo	unds:
	(\mathbf{A}) In the laboratory	(GRW 2016 G-I,		G-1, II, 2017 G-II)(U.B+K.B)
	(A) In the laboratory (C) On commercial sc	ala \\/7[\((E) On micro scale (D) On economic s	
2.			rated by physical me	
2.	Winch Sitt Of Inc. Sh		(BWP 2016,	17 G-II, SGD 2016 G-I)(U.B)
		(B) Element	(C) Compound	(D) Radical
AN	The west abundant e			(K . B)
NN	(I) WP 2017 G-II, MTN 2016 G-II, FSD 2016 G-I		017 G-II, SWL 2017 G-II	I, RWP 2016, 17 G-II, GRW
0	(A) Oxygen	(B) Hydrogen	(C) Nitrogen	(D) Silicon
<i>4</i> .			, j	undance in the Earth's
	crust?	0		(MTN 2016 G-II)(K.B)
	(A) Oxygen	(B) Aluminum	(C) Silicon	(D) Iron
5.	The third abundant			(DGK 2017 G-II)(K.B)
-	(A) Carbon monoxide		(C) Nitrogen	(D) Argon
6.	One amu (atomic ma	(D) 1 ((10^{-24}	ent to: $(C) = 1 (C) = 10^{-21}$	(RWP 2017 G-I)(<i>K</i> . <i>B</i>) (D) $1 < \zeta = 10^{-23}$
7.			(C). 1.66×10^{-21} g	(D) 1.66×10^{-23} g
7.	All of the following a	6 G-II. RWP 2017 G-	L SGD 2017 G-IL BWP 2	016 G-II, FSD 2016 G-I)(<i>U.B</i>)
	(A) H ₂	(B) O_3	(C) H_2O	(D) CO_2
8.	The mass of one mole	cule of water is:(L	HR 2016, 17 G-I,II, DGK	2016 G-I, FSD 2016, G-II) <i>(K.B)</i>
	(A) 18 amu	(B) 18 g	(C) 18 mg	(D) 18 kg
9.	The molar mass of H			-I, MTN 2016 G-I)(U.B+K.B)
10	(A) 98 g	(B) 48 amu	(C) 4.8 g	(D) 98 amu
10.	of O_2 in amu?	y expressed in gra	ams, which one of the	following is molar mass
	(A) 32 amu		(B) 53. 2×10^{-24} at	(U.B)
	(C) 1.92×10^{-25} amu		(D) 192.64×10^{-25}	
11.		of moles are equiv	valent to 8 grams of C	
			(BWP 2	017 G-I, DGK 2016 G-I)(U.B)
	(A) 0.15	(B) 0.18	(C) 0.21	(D) 0.24
12.		01	ne same number of ion	ns? (LHP 2016 (7-1)(.7.B)
	(A) 1 mole of NaCl ar(B) 1/2 mole of NaCl			VI(01000
	(C) $1/2$ mole of NaCl			
	(D) $1/3$ mole of NaCl			- U
13.	Which one of the foll			(SWL 2017 G-I)(U.B)
	(A) 1 n ole of CO and		(B) 1 mole of CO a	and 1 mole of CO_2
	(C) 1 mole of O_2 and C_2	1 mole of N_2	(D) 1 mole of O_2 as	nd 1 mole of CO_2
NAA	VNOLUU	ANSW	ER KEY	
UN/	00-			
\checkmark	1 c 3 a	5 d 7	a 9 a 11	b 13 a
	2 a 4 a	6 b 8	a 10 a 12	c

8. Explain why are hydrogen and oxygen considered elements whereas water as a compound.(U.B)

Ans:

H AND O AS ELEMENTS AND H2O A COMPOUND

Elements:

Hydrogen and oxygen are elements because they have same type of atoms, having same atomic number and it cannot be decompose in osimple substances by chemical means.

<u>Compound:</u>

Water is considered as compound because it is a substance made up of two or more elements chemically combined together in a fixed ratio by mass. As a result of this combination oxyget and hydrogen lose their own properties and produce new substance (H₂O).

What is the significance of the symbol of an element?

(**U.B**)

(U.B)

Ans:

SIGNIFICANCE OF SYMBOL

Symbols are used for elements instead of writing of their complete names. So, it takes less time/saves time and element can be recognized by that symbol in all over the world.

(i) Symbol represents the name of an element.

(ii) It represents one atom of the element

(iii)It helps to write and understand chemical equation for different chemical reactions.

(iv)Periodic table is based on symbols of different elements.

Examples:

- Oxygen (O)
- Sulphur (S)
- Nitrogen (N)

10. State the reasons, soft drink is a mixture and water is a compound.

Ans:

DIFFERENTIATION

The reasons for soft drink is a mixture and water is a compound are as follows:

	Soft Drink (Mixture)	Water (Compound)			
	Combination				
	• Soft drink is made up of simple	• Water is formed by chemical	0)[[[[[
	mixing up of substances without any	combination of atoms of elements			
	fixed ratio.	hydrogen and oxygen in a fixed ratio of			
		1:8 by mass.			
	Composition				
	• Solt drink has heterogeneous	• Water has homogeneous composition.			
	composition.				
Separation of Components					
)	• Its components can be separated by	• Its components can't be separated by			
	physical means.	physical means			

- 11. Classify the following into element, compound and mixture:
 - He and H₂
 - CO and CO₂
 - Water and milk
 - Gold and brass
 - Iron and steel

Ans:

(iii)

Ans:

(i) <u>He and H_2 :</u>

He and H₂ are elements.

CO and CO₂:

CO is a compound and CO₂ is an element.

- (iii) <u>Water and Milk:</u> Water is a compound and milk is a mixture.
- (iv) <u>Gold and Brass:</u> Gold is an element and brass is a mixture.
- (v) <u>Iron and Steel:</u> Iron is an element and steel is a mixture.
- 12. Define atomic mass unit. Why is it needed?

(**K**.**B**+**A**.**B**)

(U.B+A.B)

Definition:

"It is one twelfth of the mass of a carbon -12 atom is called atomic mass unit." The atomic mass unit is abbreviated as amu.

1 amu = $1/12 \times \text{mass of C-12}$ atom

NEED OF ATOMIC MASS UNIT

ATOMIC MASS UNIT

The mass of an atom is too small to be determined practically. However relative atomic mass (ratio of atomic mass of certain element to that of C-12 atom). The unit of relative atomic mass is amu.

13. State the nature and name of the substance formed by combining the following: (UE)
i. Zinc + Copper ii. Water + Sugar iii. Aluminium + Sulphun
iv. Iron + Chromium + Nickel

Ans:

- NATURE AND NAMES OF SUBSTANCES
- (i) <u>Zinc + Copper:</u> It is a mixture or alloy. The name of alloy is brass.
- (ii) <u>Water + Sugar:</u>
 - It is a mixture. The name of mixture or solution is syrup.

(jū) <u>Aluminium + Sulphur:</u>

It forms compound. The name of compound is aluminium sulphide.

(iv) <u>Iron + Chromium + Nickel:</u>

It is a mixture or alloy. The name of alloy is nichrome.

		Differentiate between homoatomic and heteroatomic molecules with examples. (U.B) <u>DIFFERENTIATION</u>					
		The differences between homoatomic molecules and heteroatomic molecules are as follows					
		Homoatomic Molecules Heteroatomic Molecules					
		Detinition					
		• A molecule containing same yie of • A molecule consisting of different kinds					
		atoms is called homoatomic molecule.					
		<u> </u>					
		• These are molecules of elements. • These are molecules of compounds.					
	T	Examples					
ann	11	Hydrogen (H ₂) Carbon dioxide (CO ₂)					
1100	\cup	• Oxygen (O ₃) • Water (H ₂ O)					
-		Sulphur (S ₈) Ammonia (NH ₃)					
19.		In which one of the following, the number of hydrogen atoms is more? 2 moles of					
		HCl or 1 mole of NH ₃ (Hint: 1 mole of a substance contains as much number of moles of atoms as are in 1 molecule of a substance). (U.B)					
An		moles of atoms as are in 1 molecule of a substance). (U.B) NUMBER OF HYDROGEN ATOMS					
		Number of moles of hydrogen in 1 mole of HCl $= 1$ mole					
		Number of moles of hydrogen in 2 moles of HCl = 2 moles					
		Whereas number of moles of hydrogen in 1 mole of $NH_3 = 3$ moles					
		Hence 1 mole of NH_3 contains 3 moles of hydrogen and will have more hydrogen atoms					
		than 2 moles of hydrogen present in 2 moles of HCl.					
		EXERCISE LONG QUESTIONS					
1							
1.		Define element and classify the elements with examples. $(U.B+K.B)$ Answer given on $pg \ \# \ 07$ $(U.B+K.B)$					
An 2.							
Z. An		Mole is SI unit for the amount of a substance. Define it with examples?(K.B)Answer given on $pg \# 33$					
3.		List five characteristics by which compounds can be distinguished from mixtures.(U.B)					
		Answer given on $pg \# 12$					
4.		Differentiate between the following with examples: (U.B)					
		(A) Molecule and gram molecule (B) Atom and gram atom					
		(C) Molecular mass and molar mass (D) Chemical formula and gram formula	11				
An	ns:	$= 2 \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \right) \left(\frac{1}{2}$	U				
		A. <u>Molecule and gram molecule:</u>					
		DIFFERENTIALION					
		The differences between molecule and gram molecule are as follows:					
		Gram Molecule					
		• It is the smallest particle of substance • The molecular mass of an element or					
20	R	which can exist independently and a compound expressed in grams is					
	Ľ	shows all the properties of that called gram molecule or gram					
A DA		substance (element or compound). molecular mass.					
		Examples					
		One molecule of water = H_2O Gram molecule of water = 18g					

	r undamentais or orientistry
B. Atom and gram atom	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DIFFERENTI	
The differences between atom and gram atom	
Atom	10 TI Gran Mon Jo
• The smallest particle of 25 element	• The atomic mass of an element
which can take part in cherrical	expressed in grams is called gram
reaction and may or may not exist	atomic mass or gram atom.
independently is called an atom.	
Exa	mple
\bullet One atom of $H = 1$ amu	• One gram atom of $H = 1g$
C. Molecular mass and molar mass	
DIFFERENTL	ATION
The differences between molecular mass and	
Molecular Mass	Molar Mass
• The sum of atomic masses of all the	• The molar mass is a physical property
atoms present in one molecule of a	defined as the mass of a given
molecule substance, is its molecular	substance (chemical element or
mass.	chemical compound) divided by the
	no. of moles of substance.
Exan	
• Molecular mass $H_2O = 18amu$	• Molar mass of $H_2 = 2g$
	• Molar mass of NaCl = $58.5g$
D. Chemical formula and gram formula	
D. Chemical formula and grain formula DIFFERENTL	ATION
The differences between chemical formula an	nd gram formula are as follows:
Chemical Formula	Gram Formula
• The representation of an element or a	• The formula mass of an ionic compound
compound in terms of symbols is	expressed in grams is called gram
called chemical formula.	formula mass or gram formula.
Exan	
Chemical formula of chlorine = Cl ₂	Gram formula of NaCk=58.5g
• Chemical formula of water $=$ H ₂ O	
	HAR W
Πρησι	
WWWW. JUJUU	
MM DO	
0~	

 $= 0.4 \times 6.02 \times 10^{6}$

EXERCISE SOLVED NUMERICALS

1. Sulphuric acid is the king of chemicals. If you need 5 moles of sulphuric acid for a reaction, how many grams of it will you weigh? (U.B+x.B)NUMERICAL

Solution:

Given Data: Number of moles of $H_2SC_4 = 5$ moles Molecomass of $H_2SC_4 = 2(1)+1(32)+4(16)$ = 2 + 32 + 64= 98 g/mol

To Find:

Mass of $H_2SO_4 = ?$

Calculations:

Number of moles of $H_2SO_4 = \frac{Mass \text{ of } H_2SO_4}{Molar \text{ mass of } H_2SO_4}$ Mass of $H_2SO_4 = \text{Number of moles} \times \text{ molar mass}$ $= 5 \times 98$ = 490 g

Result:

5 moles of sulphuric acid will have mass **490 g**.

2. Calcium carbonate is insoluble in water. If you have 40 g of it; how many Ca^{2+} and CO_3^{2-} ions are present in it? (U.B+A.B)

NUMERICAL

Solution:

Given Data: Given Mass of CaCO₃ = 40g Molar mass of CaCO₃ = $(40 \times 1) + (12 \times 1) + (16 \times 3)$ = 40 + 12 + 48= 100 g/mol

<u>To Find:</u>

Number of Ca^{2+} ions = ? Number of CO_3^{2-} ions = ?

Calculations:

Number of moles of $CaCO_3 = \frac{Given Mass}{Molar mass}$

$$=\frac{2!0}{100}=0.4$$
 mol

Balanced equation for dissociation of calcium carbonate is as follows: $CaCO_3 \longrightarrow Ca^{2+} + CO_3^{2-}$

Number of moles of $CaCO_3 = 0.4$ mole Number of moles of Ca^{2+} ions in one mole of $CaCO_3 = 6.02 \times 10^{23}$ We move that: $=2.408 \times 10^{23}$ ions

No. of Ca^{2+} ions in 0.4 mol of $CaC_{3} = No.$ of moles $\times M_{A}$

Number of Ca^{2+} ions = Number of CO_3^{2-} ions

Number of $CO_3^{2-} = 2.40 \times 10^{23}$ ions

Result:

2.408×10²³ ions of Ca⁺² and **2.408**×10²³ ions of CO_3^{2-} are present in 40g of calcium carbonate.

3. If you have 6.02×10^{23} ions of aluminium; how many sulphate ions will be required to prepare Al₂ (SO₄)₃? (U.B+A.B)

NUMERICAL

Solution:

Given Data:

Number of ions of $Al^{3+} = 6.02 \times 10^{23}$ ions

<u>To Find:</u>

Number of sulphate ions in Al_2 (SO₄)₃ =?

Calculations:

$$2 \operatorname{Al}^{3+} + 3\operatorname{SO}_{4}^{2-} \longrightarrow \operatorname{Al}_{2}(\operatorname{SO}_{4})_{3}$$

According to balanced chemical equation:

Number of moles of SO_4^{2-} ion required for 2

moles of Al^{3+} ions = 3 Number of moles of SO_4^{2-} ons for 1 mole of $A^{13+} = 3/2 = 1.5$ moles

Thus, number of SO_4^{2-} ions = Number of moles $\times N_A$

$$= 1.5 \times 6.02 \times 10^{23}$$
$$= 9.03 \times 10^{23} \text{ ions}$$

<u>Results:</u> 9.03×10^{23} ions are required to prepare $Al_2(SO_4)_3$.

ADDITIONAL CONCEPTUAL QUESTIONS

Q.1 Why melting of ice is physical property while decomposition of water is a chemical property?

Melting of ice is physical property because in this process only the physical state of water Ans: changing whereas its chemical composition remains same. The decomposition of a water is chemical change as it produces hydrogen and oxygen gases and its chemical composition changes.

OR

Why are ionic compounds not called molecules?

(U.B)

(U.B)

(U.B)

(U.B)

Why is NaCl not a molecule?

Ionic compounds do not exist as independent molecular form, they exist in three-Ans: dimensional network form. Each ion is surrounded by the oppositely charged ion to form crystal lattice so therefore they are not molecules and are called formula units.

Q.3 Why do ionic compounds have only empirical formulas?

Ans: Ionic compounds do not exist in molecular form and are not molecules so they are not represented by molecular formulas. They exist in three-dimensional network arrangement and have only empirical formulas.

Is mass number and relative atomic mass are same? If no then Justify why? **Q.4** (U.B)

No, mass number and relative atomic mass are not same. Ans:

Justification:

- Mass number is sum of protons and neutrons present in nucleus of an atom of an element. Whereas, relative atomic is average mass of atoms of an element as compared to $\frac{1}{12}$ th (one-twelfth) the mass of an atom of carbon-12 isotope
- Relative atomic mass of an element is calculated by comparison with carbon-12 • isotope whereas, mass number can be calculated by following formula A = Z+n.
- Q.5 Why free radical does is extremely reactive specie? (U.B) Free racical is extremely reactive specie as it has tendency to complete its octet due to Ans: presence of unpaired electron in valence shell.

What is meant homolytic (equal) breakage?

Ans: If breaking of a bond between two atoms takes place such that each atom takes its electron is called homolytic breakage.

(U.B)

(U.B)

Q.7 Which chemical specie is stable specie and why?

Ans: Molecule is stable chemical specie as molecule always exist independently.

Reason:

Because molecules contain stable covalen: hnkages which are formed by atoms to follow octet and duplet rules.

Q.8Among for and free radical, which one is more reactive specie and why?(U.B)Ans:Eree radical is more reactive specie than ion.

Reason:

Because free radical contains unpaired electron in valence shell and it has not follow octet or duplet rule whereas, usually ion is formed when an atom lose or gain electron to complete its octet or duplet rule.

- Q.9 Why do noble gases (He, Ne, Ar, Kr, Xe, Rn) are called monoatomic molecules, although they exist in atomic form? (U.B)
- **Ans:** Nobel gases exist in atomic form because they are stable and exist independently just like molecules. Due to their independent existence they are called monoatomic molecules.

Q.10 Write down type of CH₄ molecule. Also give reasons. (U.B+A.B)

Ans: CH₄ is both polyatomic and heteroatomicg molecule.

Reasons:

- It is polyatomic because it contains more than 4 atoms.
- It is hetero-atomic molecule because it contains different type of atoms.
- Q.11 Why one mole of a substance contains equal no of particles but different masses. Explain with an example. (U.B)

Ans: one mole of any substance contains 6.02×10^{23} equal no of particles but different masses as one dozen of egg and orange contains equal no of eggs and oranges which are twelve but different masses.

	TERMS TO KNOW		
Terms	Definitions		
Substance	"A piece of matter in pure form is called substance"		
Physical Properties	"The properties that are associated with the physical state of a		
	matter are called physical properties".		
Chemical Properties	"The properties that depend upon the composition of the substance		
<u>SHC</u>	are called chemical properties".		
Elements	"The substance made up of same type of atoms, having same		
and IIII	atomic number and it cannot be decomposed into simple		
NANDODE	substances by ordinary chemical means."		
Walency	"The combining capacity of an element with other elements is		
	called valency."		
Radical	"A radical is a group of atoms that has some charge."		
Compounds	"Substance made up of two or more elements chemically combined		
N / · /	together in a fixed ratio by mass is called compound."		
Mixtures	"A mixture is made up of two or more elements or compounds		
A.4. • NT	(substances) mixed up physically without any fixed ratio."		
Atomic No.	"The number of protons present in the nucleus of an atom of the element is called atomic number."		
Maan Nie			
Mass No.	"The sum of number of protons and neutrons present in the nucleus of an atom is called mass number."		
Emminical formula			
Empirical formula	"A formula that indicates the simplest whole number ratio of atoms of different elements present in a compound is called an empirical		
	of different elements present in a compound is called an empirical formula."		
Molecular formula.	"A formula that indicates actual number of atoms of each element		
Molecular Iormula.	present in a molecule of that compound is called molecular		
	formula."		
Atom	It is smallest particle of an element.		
Molecule	"It is the smallest particle of a substance which can exist		
Molecule	independent and shows all the properties of that substance (element		
	or a compound)".		
Ion	It is the smallest unit of an ionic compound.		
Molecular Ion	It is formed by gain or loss of electrons by a molecule		
Molecular Mass	"The sum of atomic masses of all the atoms present in one		
11101000101 111000	molecule of a molecular substance is its molecular mass."		
Formula Mass	"The sum of atomic n asses of all the atoms present in one		
	formula unit of an ionic compound is called formula mass."		
Free Radical "Atoms or group of atoms possessing odd number of			
	electrons are called free radicals."		
Avegadre's No.	"The number of particles in one mole of a substance is called		
MAAAA	Avogadro's number."		
Mole	"A mole is defined as the amount (mass) of a substance that		
	contains 6.02×10^{23} number of particles (atoms, molecules or		

×	Chapter-1			Fundamentals of Chemistry		
CUT HERE	Time: Q.1 1. 2.	correct answer.	inium in earth crust: (£) 18%	l (D) to each questio	Marks: 25 h ure given, mark the (0x1-6) (D) 0.9%	
	M	(A) 1 Formula of Quick li		(C) 3	(D) 4	
00	0	(A) CaO	(B) $CaCO_3$	(C) NaOH	(D) SiO_2	
i	4.		-	at room temperature		
I	-	(A) Mercury	(B) Bromine	(C) Both a and b	(D) Zinc	
I	5.	-	NaCl contains grams:		(\mathbf{D}) 40 \circ	
I	6	(A) 100g Brass is a mixture o	(B) 58.5g	(C) 32g	(D) 40g	
	6.	(A) Cu & Au	(B) Cu & Zn	(C) Cu & Ag	(D) Al & Fe	
I I	Q.2 Give short answers to the following questions. (5×2					
1	 (i) Define Biochemistry. (ii) How many amu 1g of a substance has? (iii) Differentiate between Homoatomic and Heteroatomic molecule. (iv) Define empirical formula with an example. (v) You have a piece of coal (Carbon) weighing 9.0g. Calculate the no of moles of Coal in 					
I						
1						
i						
the given mass.					VZJ.COUUU	
1	Q.3	Answer the following	ng questions in detail.		(5+4=9)	
I	(i)	Give five ciffe ences between a Compound and a Mixture.			(5)	
	(ii) What will be the mass of 2.05×10^{16} molecules of H ₂ SO ₄ . (4) Note:				(4)	
MM)	00	Parents or guardians can conduct this test in their supervision in order to check the skill				
of students.						