Tonig	1thiter Title	Page No.
$\sqrt{*}$	Introduction	2
1.1	Branches of Chemistry	2
1.2	Basic Definitions - Elements, Compounds and Mixtures - Atomic Number and Mass Number - Relative Atomic Mass and Atomic Mass Unit - How to Write Chemical Formula? - Empirical Formula - Molecular Formula - Molecular Mass and Formula Mass	5
1.3	Chemical Species - Ions (Cations and Anions), Molecular Ions and Free Radicals - Type of Molecules	26
1.4	Gram Atomic Mass, Gram Molecular Mass and Gram Formula Mass	31
1.5	Avogadro's Number and Mole	33
1.6	Chemical Calculations	36
*	Exercise Solution - Multipe Choic? ?uestions - Short Questror Ans vers - Lomr Question Answers - lvunericale	42
*	Adcitional Conceptual Questions	54
	Terms to know	56
*	Self Test	57

INTRODUCTION

Q. 1 What is science?

Ans:
SCIENCE
Science (Latin Scientia meaning knowledge).
"The knowledge that providesunderstandivg of in is vorla ana huw it works is called science". DI:
"The s.orgratic studv of nature saved pn bser. ation, inference, prediction and experimentation is callea s.i.nce
Q. 2 Define hrinist al so expaiz its advantages and disadvantages. (GRW 2017 G-I)(K.B) Ans: CHEMISTRY

Dedinor.
The branch of science that deals with the composition, structure, properties and reactions of matter is called chemistry".
It deals with every aspect of life.
ADVANTAGES OF CHEMISTRY
Following are advantages of chemistry:

- Petrochemical products
- Medicines and drugs
- Soap and detergents
- Paper and plastics
- Paints and pigments
- Insecticides and pesticides
- It improves our health and environment
- It helps to explore and conserve the natural resources.

DISADVANTAGES OF CHEMISTRY

Following are some major disadvantages of chemistry:

- Generation of toxic waste materials
- Contaminated water
- Polluted air and contaminated food
- Dangerous war weapons

1.1 BRANCHES OF CHEMISTRY

Q. 1 Describe the various branches of chemistry.
(DGK 2017, FSD 2016,17, SWL, MTN 2016, LHR 2017 G-I)
Ans:

BRANCHES OF CHEMISTRY

Chemistry is divided into following main branches:
(i) Physical Chemistry:
"The branch of chemistry that deals witn the relytion ship beivee in he compo sition suma physical properties of matter along with the chrous es in thel as allec (hyy sical che m stry."
Scope:
Structi(re of atpras or formation of nollecules, behavior of gases, liquids and solids and the stucy it the et Fepts of ternperatmic or radiations on matter.
(ii) Orgenic Chenstiv
rave branchor chemistry that deals with the study of covalent compounds of carbon and hidargen (hydrocarbons) and their derivatives is called organic chemistry."

Scope:

Organic chemists determine the structure and properties of these naturally occurring as well as synthesized compounds. Scope of this branch covers petroleum, petrochemicals and pharmaceutical industries.
(iii) Inorganic Chemistry:
"The branch of chemistry that deals with the study of all elements and thoir compourd except those of compounds of carbon and hydrogen (hydrocarbons) and titiv derivat ves is called inorganic chemistry."

Applications/ Scope:

It has applications in every a pect cethe crem cal indut ty suth as It iss, cement, eramics and metallurgy (extraction of metals ficm or s s)
(iv) Bioch metr
"The bran h of Cher iistry that dats with the study of structure, composition, and chemical reaciion ef susiances found in living organisms is called biochemistry."
sopa:
it covens all chemical processes taking place in living organisms such as synthesis and metabolism of biomolecules like carbohydrates, proteins, fats etc.

Emergence of Biochemistry as a Separate Discipline:

Biochemistry emerged as a separate discipline when scientists began to study:

- How living things obtain energy from food?
- How the fundamental biological changes occur during a disease?

Applications:

Applications of biochemistry are in the fields of medicine, food science and agriculture.
(v) Industrial Chemistry:
"The branch of chemistry that deals with the manufacturing of chemical compounds on commercial scale, is called industrial chemistry."
Applications/scope:

- It deals with the manufacturing of basic chemicals such as oxygen, chlorine, ammonia, caustic soda, nitric acid and sulphuric acid.
- Use of these chemicals to provide the raw materials for many other industries such as fertilizers, soap, textiles, agricultural products, paints and paper etc.
(vi) Nuclear Chemistry:
"The branch of chemistry that deals with the radioactivity, nuclear processes and properties is called nuclear chemistry."

Main concern:

The main concern of this branch is with the atomic energy and its uses in daily life. The chemical effects resulting from the absorption of radiation within living animals, plants, and other materials are also studied in this branch.

Applications/Scope:

It has vast applications in medical treatment (radiotherapy), preservion of foud d generation of electrical power through nuclear reactors.
(vii) Environmental Chemistry:
"The branch of chemistry trat deals ith the stu ty apout components of the environment and the effects of human activities on a e envirovme.t is calaed enviconmental chemistry." Applieatins/Scope:

- Envirembin themist if relates to other branches like biology, geology, ecology, soil and water.
Ihe inguledge of chemical processes taking place in environment is necessary for its 1 nfiovement and protection against pollution.

Analytical Chemistry:

"The branch of chemistry that deals with separation and analysis of a sample to identify its components is called analytical chemistry. The separation is carried out prior to qualitative and quantitative analysis."

Qualitative Analysis:
"It provides the identity of a substance (composition of chemical species)".
Quantitative Analysis:
"It determines the amount of each component presm in the scmple"
Application/Scope:

- In this hranch different tee haiques and instrunentsed for analy sis are studied.
- The scupe prim hand covers ioda, water, environmental and clinical analyses.

SHORT QUESTIONS

D.). Detine analytical chemistry and discuss qualitative and quantitative analysis.
(K.B)

Ans: Answer given on pg \# 03
Q. 2 What is the scope of industrial chemistry?

Ans: Answer given on pg \# 03
Q. 3 Write the application of inorganic chemistry.

Ans: Answer given on pg \# 03
Q. 4 Define industrial chemistry.
(K.B)
(SGD 2017, D.G.K 2016, BWP 2016, SWL 2017, RWP 2017 G-I)
Ans: Answer given on pg \# 03
Q. 5 Define nuclear chemistry.
(LHR 2016 G-I, MTN 2017)(K.B)
Ans: Answer given on pg \# 03
Q. 6 Define biochemistry. (DGK 2016, GRW 2016 G-I, LHR 2016 G-I)(K.B)

Ans: Answer given on pg \# 03
Q. 7 Define environmental chemistry.

Ans: Answer given on pg \# 03
Q. 8 Define physical chemistry. (K.B)

Ans: Answer given on pg \# 02

1.1 BRANCHES OF CHEMISTRY
 MULTIPLE CHOICE QUESTIONS

1. The branch of science which deals with the composition firce ure, properies ond reactions of matter:
(A) Physics
(C) Physicainchemistry
(b) Analytical chernistry
(D) Chemintry
(K.B)
2. The beond of pizeristry which deals with the study of all elements and their comnoun's except commona of carbon and hydrogen and their derivatives: (K.B)
(A) Organic themistry
(B) Physical chemistry
(d) Inorganic chemistry
(D) Biochemistry
3. Which one of the following provides the identity of a substances?
(A) Qualitative analysis
(B) Clinical analysis
(C) Quantitative analysis
(D) Chemical analysis
4. Which one of the following is applicable in chemical industry like metallurgy, ceramics and glass?
(A) Organic chemistry
(B) Inorganic chemistry
(C) Industrial chemistry
(D) Nuelear chem stry

5. Industrial chemistry deals with the manfacing of compound:
(K.B)
(A) In laboratory
(B) Ob micruscaie
(C) Orcornmerciarscale
(D) On economic scale
6. Metabolisu d binnoe eues is staned in:
$(\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$
(A) Environnen al chemistry
(B) Biochemistry
(c) Ihysical chemistry
(D) Analytical chemistry

1.1 TEST YOURSELF

i. In which branch of chemistry behavior of gases and liquids is studied?

Ans: Physical chemistry deals with the physical behavior and properties of gases and liquids.
ii. Which branch of chemistry deals with preparation of paints and papers? (DGK 2016)(A.B)

Ans: The preparation of paints and papers is studied in industrial chemistry.
iii. In which branch of chemistry are the metabolic processes of carbohydrates and proteins studied?
Ans: The metabolic processes of carbohydrate and proteins are studied in biochemistry.
iv. Which branch of chemistry deals with energy of atoms and its uses in daily life? (A.B)

Ans: Nuclear chemistry is the branch of chemistry which deals with the atomic energy and its use in daily life.
v. Which branch of chemistry deals with the structure and properties of naturally occurring molecules?
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B}$)
Ans: Organic chemistry is the branch of chemistry which deals with the structure and properties of naturally occurring molecules.

1.2 BASIC DEFINITIONS

Q. 1 Define the following terms.
(A) Matter
(B) Substance
(C) Mixture

Ans:

Definition:

"Anything that has mass and occupies spade is callefd.natier".
Examples:
Our bodie as well as atm chings (sir, witer, alair ete.) around us are examples of matter.
Physicender Metter.
Mattars can exist in eny of three physical states:
(i) visclels
(ii) Liquids
(iii) Gas

CUBSTANCE
Definition:
"A piece of matter in pure form is called substance".
Every substance has a fixed composition and specific properties or characteristics.

Types of Substance:

Types of substances are as follows:

Elements:

Iron, gold, silver etc.
Compounds:
Water, carbon dioxide, sulp hurie acid
MIXTUE

Definitom:

"A piece of miter in inpue jorm is called mixture".
Randes:
(i) Suil
(ii) Ice
(iii) Cream
(iv) Milk

Types of Mixture:

There are two types of mixture:

- Homogeneous mixture
- Heterogeneous mixture

Q. 2 Write a note on physical and chemical properties.

Definition:

"The properties that are associated with the physical state of a matur are cghet physical properties".

Explanation:

When ice is heated, it mets to form water. When water is further he ated, it boils to give steam. In this entire process minly the \mathbf{p} by sical state ef water changes where as its chemi al ornosition remains the same.
Exampiee:
Colsir, smell, tistr, ardiuss, shape of crystal, solubility, melting or boiling point.

CHEMICAL PROPERTIES

Demition:

"The properties that depend upon the composition of the substance are called chemical properties".

Explanation:

When a substance undergoes a chemical change, its composition changes and a new substance is formed.
Examples:

- Rusting of iron
- Decommosition of water is a chey ca hang as it poduces inydrogen and oxygen gases.
OnKTETBEGBEFINTIONS
SHORT QUESTIONS
2 1 Define atti and give examples.
Ans: Answer given on pg \# 05
Q. 2 Define substance.
Ans: Answer given on pg \# 05
Q. 3 Define mixture and give examples.
Ans: Answer given on pg \# 06
Q. 4 Write a short note on physical property. Give examples.
(K. $\boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$
Ans: Answer given on pg \# 06
Q. 5 Write a short note on chemical properties.
Ans: Answer given on pg \# 06

1.2.1 ELEMENTS, COMPOUNDS AND MIXTURES

Q. 1 Define an element and classify the elements with examples.
(Ex-Q.1)(K.B)
Ans:

ELEMENT

Number of Elements in Early Ages:

In the early ages, only nine elements (carbon, gold, silver, tin, mercury, lead, copper, iron and sulphur) were known.

Old Definition of Element:

"The substance that could not be broken down into simpler units by ordinary chemical processes."

Number of Elements Till the End of $19{ }^{\text {th }}$ Century:

Until the end of $19^{\text {th }}$ century 63 elements had been discovered.
Present Number of Elements:
Now 118 elements have ofen dispored out of which 92 are naturally occurring elements.
Moderngefintion of Plen er ${ }^{\text {a }}$
"The sybstonce mave uk of same type of atoms, having same atomic number and it
arnot bedeconipused into simple substances by ordinary chemical means."
Dot: Each element is made up of unique atoms that have very specific properties.

Occurrence of Elements:

Elements occur in nature in free or combined form. All the naturally occurring elements found in the world have different percentages in the Earth's crust, oceans and atmosphere.

Physical St ates ot Elernons.

Element n avo
(i) Svliu
(ii) Liquid
(iii) Gas

Solids:

Majority of elements exist as solids (sodium, copper, zinc and gold).

Liquids:

There are very few elements which occur in liquid state (mercury and bromine).
Gases:
A few elements exist as gases (nitrogen, oxygen, chlorine and hydrogen).
Classification of Elements:
On the basis of their properties elements are divided into metals, non-metals and metalloids. About $\mathbf{8 0 \%}$ of the elements are metals.
Q. 2 Define the symbol. How symbols can be assigned?
(U.B+K.B)

Ans:
SYMBOL

Definition:

"An abbreviation for the name of element is called symbol."
Examples:
Symbols for hydrogen, nitrogen and sodium are H, N and Na , respectively.
Derivation of Symbol:
A symbol is taken from the name of that element in English, Latin, Greek or German.
Methods to Write Down Symbols:
In case of one-letter symbol first capital letter is taken as symbol e.g. H for Hydrogen, \mathbf{N} for Nitrogen, and \mathbf{C} for Carbon only.
In case of two letters symbol, only first letter is capital e.g. Ca for Calcium, Na fou Sodium and $\mathbf{C l}$ for Chlorine.

Significance of Symbol:

- It represents the name of the element.
- It indicates one atom of the rierment
Q. 3 Define valancy. Write auctailed nate or coneant of watence. (DGK 2016, MTN 2017)(U.B+K.B)

Explain the valen y ofernats is simple covalent and ionic compounds.(SGD 2017 G-II)

An VALENCY

Das inique property of an element is valency.
Definition:
"The combining capacity of an element with other elements is called valency."
Dependence:
It depends upon the number of electrons in the outermost shell.
(i) Valency of Elements in Covalent Compounds:

In simple covalent compounds it can be defined as:
"It is the number of hydrogen atoms which will combine with par a form hat el anent t"
"The number of bonds formed by one atm the t leven called valency." Examples:
Different Numbers atoms of hydrogen combine with one atom of these elements to form compounds ike.
$\mathrm{H}-\mathrm{Cl}$
$\mathrm{H}-\mathrm{O}-\mathrm{H}$

The valency of $\mathbf{C l}, \mathbf{O}, \mathbf{N}$ and \mathbf{C} is $\mathbf{1 , 2 , 3}$ and $\mathbf{4}$ respectively.
(ii) Valency of Elements in Ionic Compounds:

In simple ionic compounds valency is defined as: "The number of electrons gained or lost by an atom of an element to complete its octet."

Elements Having Less Than Four Electrons in Valence Shell:

Elements having less than four electrons in the valence shell prefer to lose the electrons to complete their octet.
Examples:
$\mathbf{N a}, \mathbf{M g}$ and Al have valance electrons 1, 2 and 3, respectively and they lose 1, 2 and 3 electrons to have valency of $\mathbf{1 , 2}$ and $\mathbf{3}$, respectively.
Elements Having More Than Four Electrons in Valence Shell:
Elements having four or more than four electrons in their valence shell, gain electrons to complete their octet.
Examples:
Nitrogen, oxygen and chorine have 5, 6 and 7 electrons in their valence shells respectively. They gain 3, 2 and 1 electrons respectively to complete their octet. Hence they show valency of $\mathbf{3}, \mathbf{2}$ and $\mathbf{1}$, respectively.

Radical:

"A radical is a group of atoms that has some charge."

Example:

- Hydroxide: OH^{-}
- Sulphate: SO_{4}^{2-}

"Somedements shan more than one types of vacancy. The valency of such elements is called vaidebie valence,
Examples
PeSO the valency of iron is 2 .
$\mathbf{F e}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ the valency of iron is $\mathbf{3}$.

Note:

Generally, the Latin or Greek name for the element (e.g. Ferrum) is modified to end in 'ous' for the low valency (e.g. Ferrous) and to end in 'ic' for the higher valency (e.g. Ferric).

Element / Radical	Symbol	Valency	Element / Radical	Symbol	Valency
Sodium	Na	1	Hydrogen	H	- 1
Potassium	K	1	Calcrine	C	0 $\sqrt{11}$
Silver	Ag	I	bromine	B	1
Magnesium	Mg	$\sqrt{2}$	Indine	P	1
Calcium	Ca	2	ewygen	O	2
Bariym	Ba.	2	Sulphur	S	2
湫 0	Zn	2	Nitrogen	N	3
Copper	Cu	1,2	Phosphorus	P	3,5
Mercury	Hg	1,2	Boron	B	3
Iron	Fe	2,3	Arsenic	As	3
Aluminium	Al	3	Carbon	C	4
Chromium	Cr	3	Carbonate	CO_{3}^{2-}	2
Ammonium	NH_{4}^{+}	1	Sulphate	SO_{4}^{2-}	2
Hydronium	$\mathrm{H}_{3} \mathrm{O}^{+}$	1	Sulphite	SO_{3}^{2-}	2
Hydroxide	OH^{-}	1	Thiosulphate	$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$	2
Cyanide	CN^{-}	1	Nitride	N^{3-}	3
Bisulphate	HSO_{4}^{-}	1	Phosphate	PO_{4}^{3-}	3
Bicarbonate	HCO_{3}^{-}	1	Bisulphite	HSO_{3}^{1-}	1
Table: Some Elements and Radicals with their Symbols and Common Valencies					

Q. 4 Describe the compound. Write its properties.
(U.B+K.B)

Ans:
COMPOUND

Definition:

"Substance made up of two or more elements chemically combined togother in a fiver ratio by mass is called compound."

Examples:

- Carbon dioxide is a compourdformel ly a chera cal cor abinat on hetween carbon (C) and oxygen (O) in a lixed raip of 12:32 or 38
- Water it a componen fornf by a chemical combination between hydrogen and ox gen in arixea ratio of $1: 8 \mathrm{by}$ mess

roPDERTIES

The ${ }_{\text {pip }}$ roperties of corgnounds are as follows:
(i) In compcunds, elements lose their own properties and produce new substances (compounds) that have entirely different properties.
(ii) Compounds can't be broken down into its constituent elements by simple physical methods.
(iii) Elements chemically combine together in a fixed ratio by mass and form compound.
(iv) All compounds are represented by a simple chemical formula.

Classification of Compounds:
Compounds can be classified as:
(i) Ionic compounds
(ii) Covalent compounds
(i) Ionic Compounds:
"Compounds that contain oppositoly charged inns nid tosetare dy ionichow. are called ionic compound. ."
Properties:
The proneties of ioniecompounds re as iol ovs
(i) Ioric compound danot xist in in dependent molecular form.
(i) They idm thee-din ensional crystal lattice, in which each ion is surrounded by oppositely charged ons.
(i; I hey hare mgh melting and boiling points due to strong attraction between ©ppositely charged ions.
(iii)These compounds are represented by formula units.

Examples:

- Sodium chloride (NaCl)
- Potassium bromide (KBr)
- Copper sulphate $\left(\mathrm{CuSO}_{4}\right)$
- Ferrous sulphate $\left(\mathrm{FeSO}_{4}\right)$
(iii) Covalent Compounds:
"Compounds formed by the sharing of electrons between different atoms are called covalent compounds."
Properties:
The properties of covalent compounds are as follows:
(i) The covalent compounds mostly exist in molecular form.
(ii) A molecule is a true representative of the covalent compounds.
(iii) They are represented by molecular formulae.

Examples:
Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, Hydrochloric acid (HCl), Sulphuric $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, Methane $\left(\mathrm{CH}_{4}\right)$

Q. $5 \quad$ What is a mixture? Explain its types. (SGD 2016,17, BWP, SWL 2017, MTN 2016)(U.B+K.B) Ans: MIXTURE
Definition:
"A mixture is made up of two or more ele.nents or compousds isulstanses, mixet up physically without any fixed ratio
Properties:

- The somponent subotence re tain the ir own chemical identities and properties.
- The mixture an be separated into parent components by physical methods such as dist llation, filtration evaporation, crystallization or magnetization.

Tyens at Mizture:
viixture can be classified as:
(i) Homogeneous mixture
(ii) Heterogeneous mixture
(i) Homogeneous Mixture:
"Mixture that has uniform composition throughout is called homogenous mixture".

Examples:

Air, Gasoline, Ice cream
(ii) Heterogeneous Mixture:
"Mixture that does not have uniform composition throughout is called heterogeneous mixture".

Examples:

Soil, Rock, Wood
Q. 6 What is the difference between compound and mixture? (MTN 2016, SWL 2017)(U.B)

OR
List five characteristics by which compounds can be distinguished from mixtures. (GRW 2017 G-I, LHR 2016 G-II, RWP 2017 G-II, FSD 2017 G-II, BWP 2017 G-I)(Ex-Q.2)(U.B)
Ans:

DIFFERENTIATION

The differences between compound and mixture are as follows:
Compound

 Separation of Components

1.2.1 ELEMENTS, COMPOUNDS AND MIXTURES

SHORT QUESTIONS

Q. 1 Define an element.

(LHR 2016 G-I, BWP 2016 G-I)(K.B)
Ans: Answer given on pg \# 07
Q. 2 Name two elements (a metal and a non -metal) which exist in liquid state.

Ans: Mercury (a metal), Bromine (a non- metal)
Q. 3 Major part of body mass is made up of which element? (Do you know Text Book Page. \# 6)(K.B)

Ans: Major part of the body mass is made up of water i.e. 65% to 80% by mass.
Q. 4 Mention the elements which constitute about 99% of our body mass.
(Do you know Text Book Page. \# 6)(K.B)
Ans: Six elements constitute about 99% of our body mass, namely:
(i) Oxygen 65\%
(ii) Carbon 18%
(iii) Hydrogen 10\%
(iv) Nitrogen 3\%
(v) Calcium 1.5%
(v) Phosphorpu
Q. 5 Define the symbol.

Ans: Answer given on pg \# 08
Q. 6 Definf variable vaiency gi e example.

Ans: Answergiven on 18 \# 0s
Q. $7 \quad$ What is the moderr definition of element?
(BWP 2017)(K.B)
Ans. Aanuersiveronpg \# 07
$\checkmark /$ ied down the names of elements which are present in:
(K.B)
A. Air
(B) Milk
(C) Soil
(D) Brass
(Do you know Text Book Page. \# 9)
Ans: Air:
Air is a mixture of nitrogen, oxygen, carbon dioxide, noble gases and water vapours.

Soil:

Soil is a mixture of sand, clay, mineral salts, water and air.
Milk:
Milk is a mixture of water, sugar, fat, prote ins, minea
Brass: Brass is a mixture ff copper and .imic netals.
Q. 9 Define valency in ionic compouids vith ant exanple.

LHR 2016 G-II)(K.B+U.B)
Ans: Answergiler grog go
Q. 10 Define ralical.

Ans: Ansiner given on p 对 + ng

NNN 2 PPELEMENTS, COMPOUNDS AND MIXTURES
 MULTIPLE CHOICE QUESTIONS

1. Anything that has mass and occupies space is called:
(K.B)
(A) Substance
(B) Matter
(C) Element
(D) Atomic mass
2. Piece of matter in pure form is called:
(K.B)
(A) Mixture
(B) Matter
(C) Substance
(D) Compound
3. Which one of the following can be separated by physical mean?
(U.B)
(A) Mixture
(B) Element
(C) Compound
(D) Radical
4. Impure matter is called:
(A) Atom
(B) Compound
(C) Substance
(D) Mixture
5. Which one of the following is chemical property?
(K.B)
(A) Color
(B) Smell
(C) Taste
(D) Composition
6. The number of elements known in early ages is:
(K.B)
(A) 118
(B) 109
(C) 63
(D) 9
7. Until the end of $19^{\text {th }}$ century how many elements were discovered?
(A) 9
(B) 63
(C) 92
(D) 118
8. Which one of the following element is liquid at room temperature?
(K.B)
(A) Bromine
(B) Mercury
(C) Nitrogen
(D) Both A and B
9. The quantity of potassium, magnesium, sulphur and sodium in human body is: (K.B)
(A) 0.2%
(B) 0.6%
(C) 0.8%
(D) 0.4%
10. A substance whose atoms have the same atomic number is called:
(K.B)
(A) Element
(B) Substance
(C) Mixture
(D) Compound
11. How many elements occur naturally?
(A) 92
(B) 96
(C) 98
12. Total number of elements which have been discoverd ti:n novare:
(A) 110
(B) 115
(C) 118
(D) 162
13. Which one of the following elerien is io ind mos abundantiy in the Earth's crust? (K.B)
(A) $\mathrm{Ox}_{\bar{y} z} \underline{n}$
(B) Aluaiviun
(C) silicon
(D) Iron
14. Humar ody hascarben uptio. $\%$.
(A) 18
(B) 19
(C) 20
(D) 21
15. The nost al undont element occurring in the oceans is:
(GRW 2016)(Ex-3)(K.B)
(A) O.9gen
(B) Hydrogen
(C) Nitrogen
(D) Silicon
16. Which of the following shows variable valency?
(A) Ca
(B) Fe
(C) B
(D) I
17. $\quad \mathrm{HSO}_{4}^{-}$is the symbol of which one of the following?
(A) Ammonium ion
(B) Cyanide
(C) Bisulphate
(D) Bicarbonate
18. The symbol of nitride radical is:
(A) CO_{3}^{2}
(B) N^{3-}
(C) PO_{4}^{3-}
(D) $\mathrm{S}_{2} \mathrm{~S}_{3}^{2-}$
19. After gaining one electron chlorine atom becomes:
(A) Cation
(B) Anion
(C) Mcier Tar cation
(D) Mo12cula anon
20. The mixture which has uaiform conposition th oughout is called
(A) Simple mixture
(B) Horiogeneous mi tare
(C) Heter geneous mixture
(D) Cumpound, mixture
21. Which of the follpving has starp and fixed melting point?
(A) Corppound
(B) Mixture
(C) Both
(D) None of these
22. Maich i. heterozeneous mixture?
(A) $1:$
(B) Gasoline
(C) Sugar solution
(D) Salt solution
23. A good example of homogenous mixture is:
(A) Rock
(B) Wood
(C) Soil
(D) Ice cream
24. The most abundant element occurring in the ocean is
(A) Nitrogen
(B)Silicon
(C) Hydrogen
(D) Oxygen

1.2 TEST YOURSELF

i. Can you identify mixture, element or compound out of the followings? Coca cola, petroleum, sugar, table salt, blood, gun powder, urine, aluminium, silicon, tin, lime and ice cream.
Ans: Identification of mixture, element or compound is as follows:

Element	Compound	Mixture
Aluminium	Sugar	Petroleum
Silicon	Table salt	Blood
Tin	Lime	Gun powder
		Urine
	Ice cream	
	Coca cola	

ii. How can you justify that air is a homogeneous mixture? Identify substances present in it.
(U.B+K.B)

Ans:

AIR IS A HOMOGENEOUS MIXTURE

Justification:

Air is a homogeneous mixture because it has uniform composition throughout. A玄 consists of different gases having a uniform composition i.e. 78% initrc ger, $2, \%$ oxygen, 0.9% argon, 0.037% carbon dioxive along with othet nople gases wea waer vapours. These gases have their identity and canbe er a ated
iii. Name the elements represented the friloving sybols:
$\mathrm{Hg}, \mathrm{Au}, \mathrm{F}, \mathrm{Ni}, \mathrm{Co}, \mathrm{W}, \mathrm{Sn}, \mathrm{Na} / \mathrm{Ba}, \mathrm{Br}, \mathrm{Bi}$
Ans:

Sympol	Symbol	Name	
	Mercury	Sn	Tin
Fe	Gold	Na	Sodium
Ni	Iron	Ba	Barium
Co	Nickel	Br	Bromine
W	Cobalt	Bi	Bismuth

iv. Name a solid, a liquid and a gaseous element that exits at the room temperature.(K.B)

Ans: Names of elements in solid, liquid and gaseous state, at room temperature:

- Solid
: Iron, gold, silver etc.
- Liquid : Mercury, bromine etc.
- Gas : Hydrogen, ox yger, airogen ett.
v. What elements do the olowine mpronc's contan? Susar, ommon salt, lime water and chalk.
(K.B)

Ans:

Companda	Formula	
Common Salt	Sodium (Na), Chlorine (Cl)	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Lime water	Calcium (Ca), Oxygen (O), Hydrogen (H)	$\mathrm{Ca}(\mathrm{OH})_{2}$
Chalk	Calcium (Ca), Carbon(C), Oxygen (O)	CaCO_{3}

1.2.2 ATOMIC NUMBER AND MASS NUMBER

Q. 1 Define atomic number and mass number. Explain with the help of examples. (U.B+K.B) Ans:

Definition:

"The number of protons present in the nucleus of an atom of the element is called atomic number."
Representation:
It is represented by symbol ' Z ':
Explanation:
As all atoms of an element have the same number of protons in their nuclei, they have the same atomic number. Hence each element has a specific atomic number termed as its identification number.

Examples:

All hydrogen atoms have 1 proton, their atomic number, $\quad \mathbf{Z}=\mathbf{1}$.
All carbon atoms have 6 protons, their atomic number, $\quad \mathbf{Z}=\mathbf{6}$.
All oxygen atoms have 8 protons, their atomic number, $\quad \mathbf{Z}=\mathbf{8}$.
All sulphur atoms have 16 protons, their atomic number, $\quad \mathbf{Z}=\mathbf{1 6}$.
In a neutral atom: Atomic number $=$ Number of protons $=$ Number of eicctrons MASS NUMBER
Definition:
"The sum of number of protons ald now trow preskit in the hucleu" of an atom is called mass number."
Representaion:
It is rearesenterio symbo
\mathbf{A}^{\prime}
Explanation:
Masf number = Nuinber of protons + number of neutrons
Itind calculated as: $\mathbf{A}=\mathbf{Z}+\mathbf{n}$ where n is the number of neutrons. Each proton and neutron hisone unit of mass.
Examples:
Hydrogen atom has one proton and zero number of neutron in its nucleus, therefore mass number of hydrogen is: $\mathbf{A}=\mathbf{1}+\mathbf{0}=\mathbf{1}$
Carbon atom has 6 protons and 6 neutrons, hence its mass number is $\mathbf{A}=\mathbf{1 2}$.

Representation:
By convention, the mass number is written at the top left corner of the symbol of tho atom and atomic number is written at the bottom left corner. ${ }_{Z}^{A} \mathbf{X}$
Examples:
${ }_{6}^{12} \mathrm{C},{ }_{11}^{23} \mathrm{Na}$ etc.

Q. 2 Explain the relative atomic mass and atomic mass unit.
(DGK 2016)(U.B+K.B)
Ans: Relative Atomic Mass (Ar):
"The average mass of atoms of an element as compared to $1 / 12^{\text {th }}$ (one-twelfth) the mass of one atom of carbon-12 isotope is called relative atomic mass".
Examples:

- A_{r} of carbon $=12 \mathrm{amu}$
- A_{r} of oxygen $=16 \mathrm{amu}$

Isotope: "Atoms of an element having different mass number but same atomic number".
Representation of atomic mass as relative atomic mass:
The mass of an atom is too small to be determined practically. However, certain instruments enable us to determine the ratio of the atomic masses of various elements to that of carbon-12 atoms. This ratio is known as the relative atomic mass of the elements. The standard of relative atomic mass is based on carbon-12 standard; the mass of an atom of carbon is 12 and $1 / 12$ th of it comes to be one. When we crivian atomic masses of other elements with carbon-12 atoms they are expressed as relatye atomic masses of those elements

Unit of \mathbf{A}_{r} (Relative Atonic Masis:

"The unit or relative atomic roass il called domic máss unit."

Atomic Mass Unc.

"One aipmierncss unit is 12 the mass of one atom of carbon 12. The atomic mass "minds ak br olvinted as amu."
On atomic mass scale, the atomic mass of carbon-12 is taken as $\mathbf{1 2 . 0 0} \mathbf{~ a m u}$.

$$
\begin{gathered}
1 \mathrm{amu}=\frac{1}{12} \times \text { mass of carbon }-12 \text { atom } \\
1 \mathrm{amu}=\mathbf{1 . 6 6} \mathbf{~ x ~ 1 0} \mathbf{1 0}^{-\mathbf{2 4}} \mathbf{g}
\end{gathered}
$$

Atomic Masses of Subatomic Particles:

- Mass of a proton $=1.0073 \mathrm{amu}$
- Mass of a neutron $=$
1.0087 amu
- \quad Mass of an electron $=$

Prosi itestows
Q. 1 What in.here ative ato mic nass. Tow it is related to gram?
(U.B+K.B)

Ans:
RELATIVE ATOMIC MASS
Definition
 - one atom of carbon-12 isotope is called relative atomic mass."

Unit of Relative Atomic Mass: Its unit is atomic mass unit, with symbol amu.
Atomic Mass Unit: "One atomic mass unit is $1 / 12^{\text {th }}$ the mass of one atom of carbon-12 ${ }^{\text {th }}$." Representation in Grams: When this atomic mass unit is expressed in grams it is.

$$
1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g}
$$

Q. 2 Define atomic mass unit. Why is it needed?
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$
Ans: Definition:
"The mass equal to one twelfth $\left(1 / 12^{\text {th }}\right)$ of the mass of a carbon -12 atom is called atomic mass unit."
The atomic mass unit is abbreviated as amu.
$1 \mathrm{amu}=1 / 12 \times$ mass of C-12 atom
The mass of one atom of carbon -12 is 12 amu .
Need of amu:
It is the unit used for the relative atomic mass. It is used to compare masses of atoms.
Q. 3 How many neutrons are present in $\mathrm{C}-12$ and $\mathrm{C}-13$?
(BWP 2017 G-II)(U.B)
Ans:

NUMBER OF NEUTRONS IN C-12

$$
\text { Number of neutrons }=\text { Mass number }- \text { atomic number }
$$

$$
=12-6=6 \text { neutrons }
$$

NUMBER OF NEUTRONS IN C-13
Number of neutrons $=$ Mass number - atomic number

$$
=13-6=7 \text { neutrons }
$$

Q. 4 Give mass of proton and neutron in amu and grams.

Ans: Answer given on pg \# 18

1.2.2 ATOMIC NUMBER AND MASS NUMBER

MULTIPLE CHOICE QUESTIONS

1. $\quad 1 \mathrm{amu}$ (atomic mass unit) is equivalent to:
(A) $1.66 \times 10^{-24} \mathrm{mg}$
(B) $1.66 \times 10^{-24} \mathrm{~g}$

(D) $.65 \times 10^{2(2)} \mathrm{g}$
2. The mass of one molecule of water is:
(c) 18 mg
(D) 18 kg
(A) 18 amu
(B) 8
(K.B)
(A) 5 ed 10^{-1}
(f) $9.10 \overline{5} \times 10$

4 (C) $1.67 \times 10^{-24} \mathrm{~g}$
(D) $1.677 \times 10^{-24} \mathrm{~g}$
4. Mass of proter is equivalent to:
$\begin{array}{ll}\text { (C) } 1.672 \times 10^{24} \mathrm{~g} & \text { (D) } 1.672 \times 10^{-24} \mathrm{~g}\end{array}$
(K.B)
(A) $1.6^{7} / 2 \times 10^{-14}$ anu (B) $16.72 \times 10^{-24} \mathrm{~g}$
(LHR 2014)(U.B+K.B)
(1) $\leqslant 2 \mathrm{amu}$
(B) $53.12 \times 10^{-24} \mathrm{amu}$
(C) $1.92 \times 10^{-25} \mathrm{amu}$

Atomic number is represented by:
(D) $192.64 \times 10^{-24} \mathrm{amu}$
(A) Z
(B) Y
(C) A
(D) a (FSD 2017 G-II)(K.B)
7. Element with least atomic number is:
(A) Carbon
(B) Sodium
(C) Hydrogen
(D) Helium

NUMERICAL EXAMPLE 1.1

How many number of protons and neutrons are there in an atom having $A=2088$ and $Z=92$.

NUMERICAL

Solution:

Given Data:

Atomic mass
Atomic number

To Fin:

> Nun bar of nuircns

$$
\begin{aligned}
\text { Number of protons } & = \\
& \mathrm{Z} \\
\text { Number of Neutrons } & =\mathrm{A}-\mathrm{Z} \\
& =238-92 \\
& =146
\end{aligned}
$$

Result:
The number of neutrons and protons is 146 and 92 respectively.

1.3 TEST YOURSELF

i. How many amu 1 g of a substance has?

Ans: As

$$
\begin{align*}
& 1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g} \\
& 1.66 \times 10^{-24} \mathrm{~g}=1 \mathrm{amu} \\
& 1 \mathrm{~g} \quad=\frac{1}{1.66 \times 10^{-24}} \mathrm{amu} \tag{K.B}\\
& 1 \mathrm{~g}=6.02 \times 10^{23} \mathrm{amu}
\end{align*}
$$

ii. Is atomic mass unit a SI unit of an atomic mass?

Ans: SI unit for the mass of a substance is kilogram. As an atom is too small to weigh in kg therefore, atomic mass is stated in very small unit ie. atomic mass unit.

$$
1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g}
$$

iii. What is the relationship between atomic number and atomic mass?

$$
\mathrm{A}=\mathrm{Z}+\mathrm{n}
$$

iv. Define relative atomic mass.

Ans:

RELATIVE ATOMIC MASS

"The average mass of atoms of an element as compared to $1 / 12$ th (one-twelfth) the mass of one atom of carbon-12 isotope is called relative atomic mass".
Examples:
A_{r} of carbon

1.2.4 HOW TO WRITE CHEMICAL FQNM 1.2 .5 MOLECULARMASEMMDRTMM A NOES

Q. 1 Define the chemical forms la Wide nr the steps to yr it chemical formula.

Ans:

- Chemical formula of aluminium sulphate:
- Chemical formula of calcium phosphate:
- Chemical formula of chlorine:
- Chemical formula of water:
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Cl_{2}
$\mathrm{H}_{2} \mathrm{O}$

Steps to Write Down Chemical Formula:

(i) Side-by-side: Symbols of two elements are written side-by-side, in the order of positive ion first and negative ion later.
(ii) Valency of ions: The valency of each ion is written on the risht topeorece of its symbol, e.g. $\mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cr}^{3+}$ an $(1)^{2-}$.
(iii) Cross-exchange methad: This, aren y oneach ion is brought to the lower right corner of otheni in py crose-excinar gel method eg $\mathrm{aa}^{+} \mathrm{Ia}^{-}, \mathrm{Na}^{+} \mathrm{Cl}^{-}, \mathrm{NaCl} \mathrm{Ca}^{+2} \mathrm{Cl}^{-}, \mathrm{Ca}^{2+} \mathrm{O}^{2-}$ $\mathrm{NaN}^{1+} \mathrm{Cl}^{1-}$

(iv) Offset: If the valencies are same, they are offset and are not written in the chemical formula. But if they are different, they are indicated as such at the same position Example:

- In case of sodium chloride both the valencies are offset and formula is written as $\mathbf{N a C l}$,
- Calcium chloride is represented by formula $\mathbf{C a C l}_{2}$.
(v) Radical: If an ion is a combination of two or more atoms which is called radical, bearing net charge on it. e.g. $\mathrm{SO}_{4}{ }^{2-}$ (sulphate ion) and $\mathrm{PO}_{4}{ }^{3-}$ (phosphate ion) then the net charge represent the valency of the radical writing the negative radical within the parenthesis.
Examples:
- Chemical formula of aluminum sulphate is written as $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
- Calcium phosphate as $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Q. 2 What is the significance of chemical formula?
(SGD 2017G-I)(U.B+K.B)
Ans: SIGNIFICANCE OF CHEMICAL FORMULA
The significance of chemical formula is as follows:
- It represents the name of the substance e.g., $\mathrm{H}_{2} \mathrm{O}$ (water)
- It tells the name of the elements as present in the compound.
- It indicates the mass of an element or a compound in amu or grams.
- It also represents one mole of the molecule or formula unit in the balanced chenical equation.
- It is in fact one molecule or formula unit of the substance.
Q. 3 Define empirical formula. Describe thempirical Iormula of ior ic Cand (1) vatent compounds.
(1SDP 2016.S NL, 216, 17. DGN 2017) (U.B+K.B)
Ans:
Definition:
"A formbia trat indicates the simplest whole number ratio of atoms of different elemenis present in a convoc.ind is called an empirical formula."

Dete mination of Empirical Formula:

Fine notical formula of a compound is determined by knowing the percentage composition of a compound.
(i) Empirical Formula of Covalent Compounds:
"It is simplest whole number ratio of atoms of each element present in a compound"

Examples:

- The covalent compound silica (sand) has simplest ratio of $\mathbf{1 : 2}$ of silicon and $\mathbf{n y y}$ respectively. Therefore, its empirical formula is $\mathbf{S i O}_{2}$. Silica or sand (silicon dioxide)

Thus empirical formula of sjïit:

- Glvare has simnest ratio $1: 2: 1$ of carion hytiogen and oxygen respectively. Hence its empicical fomual $\mathrm{CH}_{2} \mathrm{O}$

जlucose

$$
\begin{aligned}
& =\quad \mathrm{C}: \mathrm{H}: \mathrm{O} \\
& 6: 12: 6 \\
& =\quad 1: 2: 1
\end{aligned}
$$

Thus empirical formula of glucose $=\mathbf{\mathbf { C H } _ { 2 } \mathbf { O }}$
(ii) Empirical Formula of Ionic Compounds:

The ionic compounds exist in three dimensional network forms. Each ion is surrounded by oppositely charged ion in such a way to form electrically neutral compound. Therefore, the simplest unit taken as a representative of an ionic compound is called formula unit.
Formula Unit:
"The simplest whole number ratio of ions, as present in an ionic compound is called formula unit."
In other words, ionic compounds have only empirical formulae.
Examples:

- Formula unit of common salt consists of one Na^{+}and one Cl^{-}ion and its empirical formula is $\mathbf{N a C l}$.
- Formula unit of potassium bromide is $\mathbf{K B r}$ which is also its empirical formula.
Q. 4 What is molecular formula? Write down the relationship between molecular and empirical formula.
(MTN 2016)(U.B+K.B)
Ans:

MOLECULAR FORMULA

Definition:

"A formula that indicates actual number of atoms of each element present in a molecule of that compound is called molecular formula."
Examples:
Molecular formula of water, benzene, chlorine and sulphur are $\mathbf{H}_{\mathbf{2}} \mathbf{O}, \mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{6}}, \mathbf{C l}_{\mathbf{2}}$ and $\mathbf{S}_{\mathbf{8}}$ respectively.
Derivation of Molecular Formula:
(Relationship between molecular formula andenniticit $\%$ rmala)
Molecular formula is derived from enpirical firm al by the follow ns, relationship:
Molecula f ormala $=\mathbf{n}$ (e (Er pitical ermula)
Where

nolecular formulamass
empirical formula mass
Wind: (O1) ar iormula of a compound is determined experimentally. The value of ' n ' may ve $1,2,3,4,5,6$ and so on.
Examples:
Molecular formula of benzene is $\mathbf{C}_{6} \mathbf{H}_{6}$ which is derived from the empirical formula $\mathbf{C H}$ where the value of \mathbf{n} is $\mathbf{6}$.

Explanation:

- The molecular formula of a compound may be same or a multiple of the Empirical fationa.
- A few compounds having different empirical and molectia forniuae.
- Some compounds may have sane ompirical ard motecular iormula e.g water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, hydrochloric acic (ros) it:-
Ta Co mpoands ith their empircal and nolecular formulae:

Hydrogen peroxide	HO	Empirical Formula
Molecular Formula		
Benzene	CH	$\mathrm{H}_{2} \mathrm{O}_{2}$
Glucose	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{C}_{6} \mathrm{H}_{6}$

Q. 5 Describe molecular mass and formula mass in detail.
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B})$
Ans:

MOLECULAR MASS

Definition:

"The sum of atomic masses of all the atoms present in one molecule of a molecular substance is its molecular mass."

Examples:

- $\mathbf{H}_{2} \mathbf{O}=2(1 \mathrm{amu})+1(16 \mathrm{amu})$

$$
=2 \times 1+16
$$

$$
=2+16
$$

$$
=18 \mathrm{amu}
$$

- Molecular mass of carbon oxide $\left(\mathbf{C O}_{2}\right)$ is $\mathbf{4 4} \mathbf{~ a m u}$.
- Molecular mass of chlorine $\left(\mathbf{C l}_{\mathbf{2}}\right)$ is 71 anpu.

> FORMULAMSS

Definition:

"The sun of atonic mas st of all th, atoms present in one formula unit of an ionic compor no is tolled formula mus
Fpra: ionic conponds that form three-dimensional solid crystal, are represented by their iorru(a) louts. Formula mass in such cases is the sum of atomic mass.

Examples:

- Formula mass of sodium chloride is $\mathbf{5 8 . 5} \mathbf{~ a m u}$.
- Formula mass of calcium carbonate is $\mathbf{1 0 0} \mathbf{a m u}$.

1.2.4 HOW TO WRITE CHEMICAL FORMULA? 1.2.5 MOLECULAR MASS AND FORMULANISS

SHORI QUEYIOMS

Q. $1 \quad$ Write down empirical formula of side and gltcose.
(I)RW 2017 G-II)(U.B+K.B)

Ans: Answer given on pg \# 20
Q. 2 What is inolecular mess? (Give onc ex ample
(GRW 2016 G-I)(K.B+A.B)
Ans: Answer milpn purg \#, 2
Q. 3 Define for nula unit.
(K.B)

Ans. Ansuersiveren pg \# 21

1.2.4 HOW TO WRITE CHEMICAL FORMULA?
 1.2.5 MOLECULAR MASS AND FORMULA MASS

MULTIPLE CHOICE QUESTIONS

1. $\quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is the formula of:
(A) Aluminium sulphate
(B) Aluminium phosphate
(C) Calcium sulphate
(D) Calcium phosphate
2. The valency of ion is written on:
(A) Top left corner
(B) Top right corner
(C) Bottom right corner
(D) Bottom left corner
3. CaO is the chemical formula of:
(K.B)
(A) Lime stone
(B) Lime water
(C) Caustic soda
(D) Quick lime
4. Which one of the following shows the simplest whole number ratio of atoms in a substance?
(U.B+K.B)
(A) Molecular formula
(B) Empirical formula
(C) Chemical formula
(D) Covalent formula
5. Chemical formula of washing soda is:
(K.B)
(A) $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
6. The empirical formula of glucose is:
(LHR 2015)(K.B)
(A) CH
(B) $\mathrm{CH}_{2} \mathrm{O}$
(C) OH
(D) $\mathrm{H}_{2} \mathrm{O}_{2}$
7. Which one of the following is empirical formula of benzene?
(LHR 2016, (LHR 2016G-II, FSD 2017G-II)(K R)
(A) $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$
(B) $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$
(C) $\mathrm{C}_{6} \mathrm{H}_{6}$
8. Silica is also known as:
(A) Silicate
(B) Clay

- $\sqrt{\text { (Tisard }}$

9. In silica the ratio of silicon and 9\%yge atoms is.
(K.B)
(D) $2: 3$
(A) $2: 2$
(D) 1:2
(C) $2: 1$
10. Molar mass is usmally expressed in grams which one of the following is molar mass of O_{2} in an:
(Ex-10)(U.B)

(A) 32 ant ($\times 11.1 .82 \times 1.)^{-25}$ amu

(B) $53.2 \times 10^{-24} \mathrm{amu}$

1. The molar mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is:
$\begin{array}{ll}\text { (A) } 58.5 \mathrm{~g} & \text { (B) } 98 \mathrm{~g}\end{array}$
(D) $192.64 \times 10^{-25} \mathrm{amu}$
(C) 40 g
(D) 98 amu
2. The molar mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is:
$\begin{array}{ll}\text { (A) } 58.5 \mathrm{~g} & \text { (B) } 98 \mathrm{~g}\end{array}$
3. The molar mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is:
$\begin{array}{ll}\text { (A) } 58.5 \mathrm{~g} & \text { (B) } 98 \mathrm{~g}\end{array}$
(GRW 2017G-II)($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B})$
4. The formula mass of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is:
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B}$)
(A) 174amu
(B) 174 g
(C) 170amu
(D) 170 g
5. The sum of atomic mass of all the atoms in one formula unit of a substance called:(K.B)
(A) Atomic mass
(B) Mass number
(C) Formula mass
(D) A而ic masiontio
6. The formula mass of an ionic compound expressed in gran is called:
(A) Gram formula mass
(C) Mole
(3) Cram moecular

NUMLRCEMLXAMDMFT2
NUMERICAL EXAMPLE 1.3
Cal adate he molecinas mass of nitric acid, MNO.
(FSD 2016)(U.B+A.B)

NUMERICAL

Solution:

Given Data:

Atomic mass of $\mathrm{H}=1 \mathrm{amu}$
Atomic mass of $\mathrm{N}=14 \mathrm{amu}$
Atomic mass of $\mathrm{O}=16 \mathrm{amu}$

To Find:

Molecular mass of $\mathrm{HNO}_{3}=$?

Calculations:

Molecular mass of $\mathrm{HNO}_{3}=1($ atomic mass of H$)+$
(atomic mass of N$)+3$ (atomic mass of O)

$$
\begin{aligned}
& =1+14+3(16) \\
& =63 \mathrm{amu}
\end{aligned}
$$

Result:

The molecular mass of nitric acid is $\mathbf{6 3} \mathbf{~ a m u}$.

Calculate the formula mass of potassium sulphate $\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)$
(U.B+A.B)

NUMERICAL

Solution:

Given Data:

Atomic mass of $\mathrm{K}=39 \mathrm{amu}$
Atomic mass of $\mathrm{S}=32 \mathrm{amu}$
Atomic mass of $\mathrm{O}=16 \mathrm{amu}$

To find:

Formula mass of $\mathrm{K}_{2} \mathrm{SO}_{4}=$?
Calculations:
Molecular mass $\mathrm{K}_{2} \mathrm{SO}_{4}=2$ (atomic mass of K) + 1 (atomic mass of S$)+4$ (atomic mass of O)

$$
\begin{aligned}
& =2(39)+1(32)+4(16) \\
& =78+32+64 \\
& =174 \mathrm{amu}
\end{aligned}
$$

Result:

Thus formula mass of potassium sulphate is 174 amu .

1.4 TEST YOURSELF

i. What is the relationship between empirical formula and molecular formula?

Ans: The molecular formula is derived from emir cal formuan the follovindela simp. Molecular formula $=\mathrm{n} \times$ (m pirica! \ddagger rmala $)$
Where n is $1,2,3$, and so on.
ii. Differentiate heweerrmpiri al forash formula unit?

Ans: The differel ces betveen enprirical formula and formula units are given below:

Formula Unit

Definition

- Empirical formula is the simplest whole number ratio of atoms of different elements present in a compound.
- The simplest whole number ratio of ions as present in the ionic compound is called formula unit.

Example	
- The empirical formula of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is $\mathrm{CH}_{2} \mathrm{O}$.	- The formula unit of sodium chlo is NaCl .
Type of onpound	
- Both covalent and ionic syipponn have gmpirical formena. $<$	- Cnly ini comp sunds have formula init.

iii. How con you cifferentiate hetween molecular formula and empirical formula? (U.B) Ans:

DIFFERENTIATION

The differ reaces between empirical formula and molecular formula are as follows:

Empirical Formula

Molecular Formula

- Empirical formula is the simplest - The formula that shows actual number whole number ratio of atoms of different elements present in a compound. of atoms of each element present in a molecule of that compound is called molecular formula.
- The Empirical formula of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is $\mathrm{CH}_{2} \mathrm{O}$.
- It is determined on the basis of percentage composition of a compound.
- It can be written both for ionic and molecular compounds.
- The molecular formula of glucose is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
- It is derived from empirical formula by the following relationship.
- Molecular formula $=\mathrm{n} \times$ empirical formula.
- It can only be written for molecular substances i.e. elements and compounds
iv. Identify the following formulae as formula unit or molecular formulae: (U.B)
$\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}, \mathrm{BaCO}_{3}, \mathrm{KBr}$
Ans:
IDENTIFICATION OF FORMULAS

Molecular Formula	Formula Unit	Empirical Formula
$\mathrm{H}_{2} \mathrm{O}_{2}$	BaCO_{3}	BaCO_{3}
CH_{4}	KBr	KBr
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$		CH_{4}
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$		

v. What is empirical formula of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$? Find out its molecular mass. (U.B+A.B) Ans: EMPIRICAL FORMULA
Acetic acid $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ has simplest whole number ratio $\mathrm{CH}_{2} \mathrm{O}$. Thus empirical formula of acetic acid is $\mathrm{CH}_{2} \mathrm{O}$.
Molecular mass of acetic acid:
$\left(\mathrm{CH}_{3} \mathbf{C O O H}\right)$

(U.B+A.B)

Ans:

$=$	FORMUM, MASSES $2(23)+1(32)+4(16)$ $46+32+64$
$=$	142 amu
$=$	$1(65)+1(32)+4(16)$
$=$	$65+32+64$
$=$	161 amu
$=$	$1(63.5)+1(12)+3(16)$
$=$	$63.5+12+48$
$=$	123.5 amu

1.3 CHEMICAL SPECIES
 1.3.1 IONS (CATIONS AND ANIONS), MOLECULAR IONS ANPEREBRAPIGA

Q. 1 Write a note on ions. Explain its types.

What is difference between cation and anion?
Ans:
"An atom or grout of atc mas hovers a charge on it is called ion. The charge may be positive or negative.

TYPES OF IONS

Ta ere ae two types of ions:

- Cations
- Anions

Cations:
"An atom or group of atoms having positive charge on it is called cation". egg. $\mathrm{H}^{+}, \mathrm{Na}^{+}, \mathrm{Ca}^{2+}$. Formation:
The cations are formed when an atom loses electrons from its outermost shell.
Examples:
The following equations show the formation of cations from atoms.

Atoms			
H			
Na	\longrightarrow		Cations
:---			
$\mathrm{H}^{+}+1 \mathrm{e}^{-}$			
Ca			
$\mathrm{Na}^{+}+1 \mathrm{e}^{-}$			
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$			

Anions:

"An atom or a group of atoms that has a negative charge on it, is called anion."e.g. $\mathrm{Cl}^{1-}, \mathrm{O}^{2-}, \mathrm{H}^{1-}$. Formation:
Anion is formed by the gain or addition of electrons by an atom.
Examples:
Following examples show the formation of an anion by addition of electrons to an atom.

Atoms		Anions
$\mathrm{H}+1 \mathrm{e}^{-}$		
$\mathrm{Cl}+1 \mathrm{e}^{-}$		
$\mathrm{O}+2 \mathrm{e}^{-}$	\longrightarrow	H^{-}
Cl^{-}		
O^{2-}		

Q. 2 What is the difference between atom and ion:

Ans:

DIFF PE STATION
The differemes between atom and ion are as fo lows

Ans:

MOLECULAR ION

Definition

1. notecular ion is a specie having positive or negative charge on it. When a molecule loses or gains an electron, it forms a molecular ion."

Types of Molecular Ions:

Molecular ions are of two types:
(i) Cationic molecular ion
(ii) Anionic molecular ion

Note: Cationic molecular ions are more abundant than anionic molecular ions.
(i) Cationic Molecular Ion:
"The molecular ions which carry positive charge are called cationic molecular ions". They are formed by losing of electron.

Examples:

$\mathrm{N}_{2}{ }^{+}, \mathrm{He}^{+}, \mathrm{CH}_{4}{ }^{+}$etc.
(ii) Anionic Molecular Ion:
"The molecular ions which carry negative charge are called anionic molecular ions." They are formed by gaining of electron.
Examples:
$\mathrm{N}_{2}^{-}, \mathrm{O}_{2}^{-2}$ etc.

Generation or Formation of Molecular Ions:

When gases are bombarded with high-energy electrons in a discharge tube, they ionize to give molecular ions.
Q. 4 Differentiate between molecule and molecule ion. (FSD 2016, GRW 2016 G-II)(U.B) DIFFERENTIATION
The differences between molecule and molecular ion are as follows:

Molecule

Definition

- It is the smallest particle of substace It is fo med by gatn or loss of electrons by which can exist independently a/id shox a morecule. all the pioperties of that substance (element ricompuid).

Charge
9. it any aucunal.

- It can have negative or positive charge.

Formation

- It is formed by the combination of atoms. - It is formed by the ionization of a molecule.

Stability

- It is a stable unit. \quad - It is a reactive specie.
Q. 5 Explain free radical in detail.

FREE RADICALS

Definition:
"Atoms or group of atoms possessing odd mumber of (unraina") elections gre called ive radicals."

Representation:

It is represented by putting a do oprere yrob ocan dlemert.
Exampies:
$\mathrm{Cl}^{\circ}, \mathrm{H}, \mathrm{C}$,
Formation
Fref rad cal at gerated by the homolytic (equal) breakage of the bond between two fitoms enther tiey absorb heat or light energy.

Molecules Free radicals

$$
\begin{aligned}
\mathrm{Cl}_{2} & \longrightarrow \mathrm{Cl}^{\circ} \\
\mathrm{CH}_{4} & \longrightarrow \mathrm{H}_{3} \mathrm{C}^{\cdot}+\mathrm{H}^{\cdot}
\end{aligned}
$$

Reactivity:

A free radical is extremely reactive specie as it has the tendency to complete its octet.

$$
\xrightarrow{\mathrm{Cl}_{2}} \xrightarrow{\xrightarrow[\text { sunlight }]{\text { sunlight }}} \mathrm{CH}_{4} \begin{gathered}
2 \mathrm{Cl}^{\circ} \\
\mathrm{CH}_{3}+\mathrm{H}^{+}
\end{gathered}
$$

Q. 6 Difference between ion and free radical.
(SGD 2016,17)(U.B)
Ans:
DIFFERENTIATION
The differences between ion and free radical are as follows:

Ions	Free Radicals
Definition	
- These are the atoms which bear some charge.	- These are the atoms that have odd number of electrons.
Existence	
- They exist in solution or in crystal lattice.	- They can exist in solutions as well in air.
Effect of Light on Formation	
- Their formation is not affected by the presence of light.	- They may form in the presence of light.
Example	
- $\mathrm{Al}^{3+}, \mathrm{O}^{2-}$	- $\mathrm{Cl}^{\circ}, \mathrm{CH}_{3}{ }^{\circ}$

Q. 1 Define molech an and hov arctirey generated?
(U.B+K.B)

Ans: Ansmer aiven on prs,$t_{2} 7$
22 Vichy fithe universe exists in which form of matter?(Do you know Text Book Page. \# 16)(K.B) Detine free radical how are they generated?
(LHR 2017 G-II)(U.B+K.B)
Ans: Answer given on pg \# 28
Q. 4 Difference between atom and ion.

Ans: Answer given on pg \# 26

1.3 CHEMICAL SPECIES

1.3.1 IONS (CATIONS AND ANIONS), MOLECULAR IONS ANPESEBRAgITAT

MULTIPLE CHOIGL QUESTRIS

1. An atom or group of atoms havin positive charge on it is called:
(A) Cation
(B) An on
(C) Mulecila (D) Atom
2. The symbl of mirideratical is:
(A) CC_{3}^{2-}
(B)
(C) PO_{4}^{3-}
(D) $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$

Whichone de the following is a reactive specie?
(U.B)
(A) Molecule
(B) Molecular ion
(C) Compound
(D) Formula unit
4. An atom or group of atoms having odd number of electrons is called:
(A) Radical
(B) Ion
(C) Free radical
(D) Molecular ion
5. The removal of electron from an atom gives:
(A) Cation
(B) Anion
(C) Molecular
(D) Molecular anion
6. $\quad \mathrm{CH}_{4}^{+}$is an example of:
(A) Free radical
(B) Molecular ion
(C) Cation
(D) Anion
7. Which of the following specie is generated by heat or light?
(A) Ion
(B) Molecular ion
(C) Free radical
(D) Molecule
8. Free radicals are generated by \qquad breakage.
(U.B)
(A) Homolytic
(B) Heterolytic
(C) Unequal
(D) All of these
9. It is a stable unit:
(A) Ion
(B) Molecular ion
(C) Molecule
(D) Free radical
10. Which molecular ion is more abundant?
(A) Cationic
(B) Anionic
(C) Both A \& B
(D) None
(A)

1.3.2 TYPES OF MOLECULES

Q. 1 Define and explain molecule and its types.
(BWP 2016, 17, MTN 2017, FSD 2017 G-I, BWP 2017 G-II)(U.B+K P)
Ans:

MOLECULE

Definition:

"It is the smallest particle of a suspran er wich cum exilinder en lent and shows all the properties of that substurce (elemert or a conpound".
Forma :
A maleculs is icm el by cnemical combinations of atoms.

TYPES OF MOLECULES

Cn the Basis of Number of Atoms:
On the basis of number of atoms types of molecules are as follows:
(i) Monoatomic Molecule:
"A molecule consisting of only one atom is called monoatomic molecule"

Examples:
The inert gases helium, neon and argon all exist independently in atomic form.
(ii) Diatomic Molecule:
"A molecule consisting of two atomis is caliea dinion ric no erule
Examples:
Hydrogen $\left(\mathrm{H}_{2}\right)$, oxygen $\left(\mathrm{O}_{2}\right)$, chl rir e $\left(\mathrm{Cl}_{2}\right)$ and hydogen chloride (HCl).
(iii)Trintenic Mecule:
$\because 2$ role ${ }^{2}$. consisting of three atoms is called triatomic molecule."
Ex:-npies:
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$, etc.
(iv) Polyatomic Molecule:
"A molecule consisting of many atoms is called polyatomic molecule."

Examples:

Methane $\left(\mathrm{CH}_{4}\right)$, sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$.
On the Basis of Types of Atoms:
On the basis of types of atoms types of molecules are as follows:
(i) Homoatomic Molecule:
"A molecule of same types of atoms is called homoatomic molecule.
Examples: consisting
Hydrogen $\left(\mathrm{H}_{2}\right)$, ozone $\left(\mathrm{O}_{3}\right)$, sulphur $\left(\mathrm{S}_{8}\right)$ and phosphorus $\left(\mathrm{P}_{4}\right)$.
(ii) Heteroatomic Molecule:
"A molecule consisting of different kinds of atoms is called heteroatomic molecule."
Examples:
$\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and NH_{3}.

1.3.2 TYPES OF MOLECULES

SHORT QUESTIONS

Q. 1 Differentiate between homoatomic and heteroatomic molecitits. Ans: DIFFERENI IATION

The differences between homoatorni ana neter ator aic molecules are as follows:

Detivition	
- A mpiechie contiding same type of Thtorns is called henoatomic molecule.	- A molecule consists of different kinds of atoms is called a heteroatomic molecule.
Examples	
- Hydrogen $\left(\mathrm{H}_{2}\right)$, Oxygen $\left(\mathrm{O}_{3}\right)$ and sulphur $\left(\mathrm{S}_{8}\right)$ - These are molecules of elements.	- $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and NH_{3} - These are molecules of covalent compounds.

1.3.2 TYPES OF MOLECULES
 MULTIPLE CHOICE QUESTIONS

1. Which one of the following is triatomic rolecule?
(A) $\mathrm{H}_{2} \mathrm{SO}_{4}$
($\mathrm{B}^{(1) T} \mathrm{~T}_{2}$
(C) CO_{2}
(I) HC
2. Which one of the following is a liatcinic nolecuie? GRW 2G15, RWP 2017 G-II)(U.B)
(A) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) $\mathrm{C}_{6} \mathrm{H}_{6}$
(C) $\mathrm{H}_{2} \mathrm{C}$
(D) CO
3. Which one of the folldwing is not triatomic molecule?
(GRW 2016, LHR 2017 G-I, GRW 2016 G-II, RWP 2017 G-II)(U.B)
(A) $\mathrm{I}_{2} \mathrm{O}$
(B) O_{3}
(c) $\mathrm{H}_{2} \mathrm{O}$
(D) CO_{2}
P_{4} is an example of:
(A) Diatomic molecule
(B) Homoatomic molecule
(C) Heteroatomic molecule
(D) Monoatomic molecule
4. If molecule consist of two atoms is called:
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B})$
(A) Diatomic
(B) Monoatomic
(C) Polyatomic
(D) Triatomic

1.5 TEST YOURSELF

i. Identify among the following as diatomic, triatomic or polyatomic molecules: (U.B+A.B) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{HCl}, \mathrm{CO}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{O}$
Ans:
IDENTIFICATION
Diatomic molecules: $\quad \overline{\mathrm{H}_{2}}, \mathrm{HCl}, \mathrm{CO}$
Triatomic molecules: $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$
Polyatomic molecules: $\quad \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{C}_{6} \mathrm{H}_{6}$
ii. Identify among the followings as cation, anion, free radical, molecular ion or molecule: (U.B+A.B)
$\mathbf{N a}^{+}, \mathrm{Br}^{\bullet}, \mathbf{N}^{+}{ }^{+}, \mathbf{N}_{2}, \mathrm{Cl}_{2}, \mathrm{CO}_{3}{ }^{2-}, \mathbf{H}^{-}, \mathrm{O}_{2}, \mathrm{O}^{2-}$
Ans:

IDENTIFICATION

Cation:
Na^{1+}
Anion:
$\mathrm{H}^{-}, \mathrm{O}^{2-}, \mathrm{CO}_{3}{ }^{2-}$
Free radical:
Br°
Molecular ion: N_{2}^{+}
Molecule:
$\mathrm{N}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{2}$

1.4 GRAM ATOMIC MASS, GRAM MOLECULAR MASS AND GRAM FORMULA MASS

Q. 1 Write a note on gram atomic mass, gran moleculai nass and gran fomul Onass.
"The corvic mase af an leavent revessed ingams is called gram atomic mass or gram 5inin. If is also called a mote:
rvunjer of Erann atoras of element $=\frac{\text { Mass of element }}{\text { Atomic mass of element }}$
Examples:

- 1 gram atom of hydrogen $=1.008 \mathrm{~g}=1 \mathrm{~mol}$ of hydrogen atom
- 1 gram atom of carbon $=12.0 \mathrm{~g}=1 \mathrm{~mol}$ of carbon atom

It means that $\mathbf{1}$ gram atom of different elements has different masses.

GRAM MOLECULAR MASS

"The molecular mass of an element or a compound expressed in grams is salled orght molecular mass. or gram molecule. It is also called a mole."
Examples:

- 1 gram molecule of water
- 1 gran nolecule ofrraso $\quad=9: 0 \mathrm{~g}=1$ mol of sulphuric acid
- Nurob ro or aram molechies of a substance $=\frac{\text { Mass of substance }}{\text { Molecular mass of substance }}$

GRAM FORMULA MASS (GRAM FORMULA OR MOLE)
"rhe formula mass of an ionic compound expressed in grams is called gram formula mass or gram formula. This is also called a mole."

Examples:

- 1 gram formula of $\mathrm{NaCl}=58.5 \mathrm{~g}=1 \mathrm{~mol}$ of sodium chloride
- 1 gram formula of $\mathrm{CaCO}_{3}=100 \mathrm{~g}=1 \mathrm{~mol}$ of calcium carbonate

1.4 GRAM ATOMIC MASS, GRAM MOLECULAR MASS AND GRAM FORMULA MASS

 SHORT QUESTIONSQ. 1 Define gram atomic mass and give example.
(K.B+A.B)

Ans: Answer given on pg \# 31
Q. 2 Define gram molecular mass and give example.
(K.B+A.B)

Ans: Answer given on pg \# 32
Q. 3 Define gram formula mass and give example.
(K.B+A.B)

Ans: Answer given on pg \# 32

1.4 GRAM ATOMIC MASS, GRAM MOLECULAR MASS AND
 GRAM FORMULA MASS
 MULTIPLE CHOICE QUESTIONS

1. The molar mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
(GRW 2016) (LHR 2015)(K.B+U.B)
(A) 98 g
(B) 48 amu
(C) 4.8 g
D) 98 amu
2. The mass of one molecule of H_{2} (1is:
(A) 18 amu
(C) 18®
(B) 18 m
(D) 18 kg
3. 36 g of waterid equal to:
(A) 1 mole
(B) 2 mole
(c.) $:$ mole
(D) 1.5 mole

1 mole of CaCO_{3} is equal to:
(A) 58.5 g
(B) 100 g
(C) 99 g
(D) 50 g

1.5 AVOGADRO'S NUMBER AND MOLE

Q. 1 Explain the Avogadro's number.

Ans:
AVOGADRO'C \mathbf{Y} UMBER

Introduction:

 Avagadro. Definition
"The nume et pa ticle in ore note of a substance is called Avogadro's raverber.'
Reverntation and Numerical Value:
Avogadro's number is represented by symbol ' $\mathbf{N}_{\mathbf{A}}$ '. Its numerical value is 6.02×10^{23}.

Explanation:

In simple words $6.02 \times \mathbf{1 0}^{\mathbf{2 3}}$ particles are equal to one mole as twelve eggs are equal to one dozen. To understand the relationship between the Avogadro's number and the mole of a substance.

Relationship Between Avogadro's Number and Mole:

- Gram atomic mass of $\mathrm{C}=12 \mathrm{~g}=1$ mole of $\mathrm{C}=6.02 \times 10^{23}$ atoms of C
- Gram molecular mass of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}=1$ mole of $\mathrm{H}_{2} \mathrm{O}=6.02 \times$ 10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}$
- Gram formula mass of $\mathrm{NaCl}=58.5 \mathrm{~g}=1$ mole of $\mathrm{NaCl}=6.02 \times$
W. 2016$)(F \cdot(B+,(B)$

Amaedo Avogadro
(1776-1856) was an Italian scholar. He is famous for molecular theory commonly known as Avogadro's law. In tribute to him, the number of particles (atoms, molecules, ions) in mole of a substance 6.02×10^{23} is known as the Avogadro's constant. 10^{23} formula units of NaCl .

Importance of Avogadro's Number:

In chemistry we deal with substances which are composed of atoms, molecules or formula units. The counting of these particles is not possible for the chemists. The concept of Avogadro's number facilitated the counting of particles contained in the given mass of a substance. Avogadro's number is a collection of 6.02×10^{23} particles.

Explanation:

For further explanation about number of atoms in molecular compounds or number of ions in ionic compounds.

Examples:

- One molecule of water is made up of 2 atoms of hydrogen and 1 atom of oxygen, hencs 6.02×10^{23} atoms of hydrogen and 6.02×10^{23} atoms of ox 5 gen 5 onstitue pne role (ef) water. One formula unit of sodium chlorid consists fit ne sedi un ion ard ene crioricie ion. So there are 6.02×10^{23} mamber of Na^{+}ions and $\mathrm{C} .02 \times 10^{-3}$ (1 ion iv one mole of sodium

Q. 2 Definemole and what is the elatienship wetveenmole and substance? (U.B+K.B)

Mole is S_{1} unt for he amose of a substance. Define it with examples. (Ex-Q.2)
"The atomic mass, molecular mass, formula mass or ionic mass of a substance expressed in grams is called a mole".

Symbol:

It is abbreviated as "mol" when it is used as a unit.
Explanation:
Mass of a substance is either one of the following: atomic mas, nolecular nass ar formula mass. These masses are eypresser in atonic rasounts (amu. Butwen these masses are expressed in srams, they aud chled nular nasses or molar mass of a substance.

Examplas:

- Atumic mass of carbon expressec ii grans

$$
\begin{array}{ll}
=12 \mathrm{~g} & =1 \mathrm{~mol} \text { of carbon } \\
=18 \mathrm{~g} & =1 \mathrm{~mol} \text { of water } \\
=98 \mathrm{~g} & =1 \mathrm{~mol} \text { of } \mathrm{H}_{2} \mathrm{SO}_{4} \\
=58.5 \mathrm{~g} & =1 \mathrm{~mol} \text { of } \mathrm{NaCl}
\end{array}
$$

- Molrct 1 re nas of $£ \mathrm{H}_{2} \mathrm{SO}_{4}$ expressed in grams
- Fo nivl mass of NaCl expressed in grams Reiationship Between Mole and Mass:
Number of moles $=\frac{\text { Known mass of substance }}{\text { Molar mass of substance }}$
Mass of substance $(\mathrm{g})=$ Number of moles \times molar mass
Relation between mole and particles:
Number of moles $=\frac{\text { Number of Particles of substance }}{\text { Avogadro's Number }}$
Number of Particles $=$ Number of Mole \times Avogadro's Number

Figure: Summary Sboving a Relatiguhi, Betwee Subs an ce Mole

SHORICUESTIONS
Q. 1 What is the relation sh ip between mole and mass?

Ans. Ansuler eiven onn. $\# 34$
V/ rife auantitative definition of mole.
(LHR 2016 G-II)(U.B+K.B)
OR
What is mole? And give examples.
(LHR 2016 G-I) (U.B+K.B)
Ans: Answer given on pg \# 33
Q. 3 Define Avogadro's number and give examples.
(LHR 2016 G-I) $($ K. $B+A . B)$
Ans: Answer given on pg \# 33

1.5 AVOGADRO'S NUMBER AND MOLE
 MULTIPLE CHOICE QUESTIONS

1. The number of particles in one mole of a stbstance incalled:
(A) Atomic number
(B) Particle (Iu) nber 1 C
s.
(U.B)
2. Total number of ions in ont mat Na is.

6n4 $\times 10^{23}$ ions (D) 61.04×10^{23} ions
3. The symbol of Ayagad o ntmben is:
(GRW 2017 G-I)(K.B)
(A) N_{A}
B)
(C) N_{x}
(D) N_{y}

Which term is used to represent the mass of 1 mole of molecules of a substance? (U.B)
Gram molecular mass or gram molecule is used to represent the mass of 1 mole of molecules of a substance.
Example:
Mass of 1 mole of molecule of water is gram molecular mass i.e. 18 g .
ii. How many atoms are present in one gram atomic mass of a substance?

Ans:
NUMBER OF ATOMS
One gram atomic mass of a substance is expressed in grams. It is equivalent to 1 mole of an element. Thus it consists of Avogadro's number $\left(6.02 \times 10^{23}\right)$ of atoms.
iii. Explain the relationship between mass and mole of a substance.

Ans: RELATIONSHIP BETWEEN MASS AND MOLE OF A SUBSTANCE
Number of moles $=\frac{\text { Given mass of a substance }}{\text { Molar mass of a substance }}$
Mass of a substance $=$ Number of moles x Molar mass of a substance
iv. Find out the mass of $\mathbf{3}$ moles of oxygen atoms:
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$
Ans:
NUMERICAL

Solution:

Given data:

$$
\text { Number of moles of } \mathrm{O} \text {-atoms }=3 \mathrm{~mol}
$$

To Find:

$$
\text { Mass of } 3 \text { moles of } \mathrm{O} \text {-atoms }=?
$$

Calculations:

$$
\text { Mass of oxygen }=\text { Number bf noles } \ldots \text { ip plarmass on onge }
$$

Result:-

$=$ mole \approx - 6 mal
hem mole of oxygen is 48 g .
v. Kovany uclecules of water will be present in half mole of water?

NUMERICAL

olution:
Given Data:

$$
\text { Number of moles of water }=\frac{1}{2} \text { mole }
$$

To Find:

$$
\text { Number of water molecules }=\text { ? }
$$

Calculations:
Number of water molecules $=N$ of mole: $\cdot N_{A}$

$$
=\frac{1}{2} m o n e 6.02 \times 10^{2.5}
$$

$=3.01 \times 10^{23}$ molecules
3.01×10^{23} molecules are present in half mole of water.

1.6 CHEMICAL CALCULATIONS
 1.6.1 MOLE-MASS CALCULATIONS1.6.2 MOLE PARTICLE
 CALCULATIONS

Q. 1 How to calculate the number of moles and number of particles from known mass of a substance.

Ans: We can calculate the number of moles from given mass by using equation.

$$
\text { Number of moles }=\frac{\text { Known mass of a substance }}{\text { Molar mass of a substance }}
$$

MOLE-PARTICLE CALCULATIONS

In these calculations we can calculates the number of moles of a substance from the given number of particles. (These particles are the atoms, molecules or formula unit).

Number of moles $=\frac{\text { Given number of particles }}{\text { Avogadro's Number }}=\frac{\text { Given number of particles }}{6.02 \times 10^{23}}$
On rearranging the above equation we get,
Number of particles $=$ Number of moles $\propto 6.02 \times 10^{23}$

(Remember pg. \# 21)(U.B)
Ans:
N 11 ERE OF RATTICLES FROM MASS
Never calculate the unter particles from mass of the substance or vice versa. Always inalfe caicu'ation t rough moles.
How ©calculate number of atoms in molecular compounds and number of ions in ionic compounds.
(Remember pg. \# 21)(U.B)

CALCULATION OF NUMBER OF ATOMS AND IONS

For calculation of the number of atoms in molecular compounds and the number of ions in ionic compounds first calculate the number of molecules or formula units and then calculate the number of atoms or ions.

NUMERICAL EXAMPLES

NUMERICAL EXAMPLE 1.4

NUMERICAL EXAMPLE 1.5
Calculate the gram molecule (number of moles) in 40 g of $\mathrm{H}_{3} \mathrm{PO}_{4}$. (U.B+A.B)

NUMERICAL

Solution:

Given Data:

Given mass of $\mathrm{H}_{3} \mathrm{PO}_{4} \quad=40 \mathrm{~g}$
Molecular mass of $\mathrm{H}_{3} \mathrm{PO}_{4} \quad=98 \mathrm{gmol}^{-1}$
To Find:
Number of moles (gram molecules) = ?
Calculations:
Number of gram molecules $=\frac{\text { Mass of substance }}{\text { Molar mass of substance }}$

$$
\begin{aligned}
& =\frac{40}{98} \\
& =0.408 \mathrm{~mol}
\end{aligned}
$$

Result:
Therefore, 40 g of $\mathrm{H}_{3} \mathrm{PO}_{4}$ will contain $\mathbf{0 . 4 0 8}$ gram molecule of $\mathrm{H}_{3} \mathrm{PO}_{4}$.

NUMERICAL EXAMPLE 1.6

You have a piece of coal (carbon) weighing
9.0 gram. Calculate the number of mol of coal in the given mass.
(U.B+A.B)

NUMERICAL
Solution:

Given Data:

Mass of coal (carbon) $=9 \mathrm{~g}$
To Find:
No of moles of coal = ?
Calculations:

$$
\begin{aligned}
\text { Number of moles } & =\frac{\text { Known mass of substance }}{\text { Molar mass of substance }} \\
& =\frac{9}{12} \\
& =0.75 \mathrm{~mol}
\end{aligned}
$$

Result:

Thus, 9 g of coed is ecuive lent 6.9 .75 mol .
Calculate the number of mole, numb 1 of molecules and number of atnms p rsent in ${ }^{6}$ grams of watel) (U.B+A.B)

```
Solution:
Given D̄at::
The rand riascof water \(=6 \mathrm{~g}\)
M0 ar mass of Water \(\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g}\)
```

To Find:
Number of moles of water =?
Number of molecules of water $=$?
Number of atoms of water =?

There are 3.01 a 10^{2} molecules of CO_{2} present in. container. Calculate the number of moles and its mass. (U.B+A.B)

NUMERICAL

Solution:

Given Data:

Number of molecules of $\mathrm{CO}_{2}=3.01 \times 10^{23}$ molecules
To Find:
Number of moles of $\mathrm{CO}_{2} \quad=$?
Mass of $\mathrm{CO}_{2}=$?

Calculations:
Number of moles of water $=$ Known mass of substance
Molar mass of substance
$=6 / 18$
$=0.33 \mathrm{~mol}$
Number of molecules of water = Number of mol $\triangle \mathrm{S}_{\mathrm{x}} \mathrm{N}_{\mathrm{A}}$

$$
\begin{aligned}
& =0.33 \times 602 \times 10^{23} \\
& =1.98 \times 10^{23} \mathrm{~m} \text { ectues }
\end{aligned}
$$

Thus, the number of mbiecules centained in 6 grams of water is $.98 \times 10^{3}$. As we k.low 1 molecule of vater corsists of 3 atoms, therefore:
NuAb i Pf achs of water $=3 \times 1.98 \times 10^{23}$

$$
=5.94 \times 10^{23} \text { atoms }
$$

Result:
Number of moles, number of molecules and number of atoms is $\mathbf{0 . 3 3 m o l}, \mathbf{1 . 9 8} \times \mathbf{1 0}^{\mathbf{2 3}}$ and 5.94×10^{23}, respectively, present in 6 g of water.

Calculations:

We can calculate the number of molecules of
CO_{2} by putting the values in eqיation:
Number of moles of $\mathrm{CO}_{2}=$ K uow molecules
Nurner of n le $\mathrm{df} \mathrm{EO}_{2}=\frac{3.01 \times 10^{23}}{6.02 \times 10^{23}}$
Nymber of moles of $\mathrm{CO}_{2}=0.5 \mathrm{~mol}$
Then by putting this value in this equation we get:
Mass of substance $=$ number of moles x molar mass

$$
\begin{aligned}
& \text { Mass of } \mathrm{CO}_{2}=0.5 \times 44 \\
& \text { Mass of } \mathrm{CO}_{2}=22 \mathrm{~g}
\end{aligned}
$$

Result:

Number of moles of carbon dioxide is $\mathbf{0 . 5}$ mol and its mass is $\mathbf{2 2 g}$.

1.6 CHEMICAL CALCULATIONS
 1.6.1 MOLE-MASS CALCULATIONS1.6.2 MOLE PARTICLE CALCULATIONS

MULTIPLE CHOICE QUESTIONS

1. The mass of $\mathbf{1 . 2}$ moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
(A) 98 g
(B) 196 g
(C) 117.6 g
(D) 125 g
2. Which one of the following pairs has the same mass?
(A) 1 mole of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(B) 1 mole of CO and 1 mole of CO_{2}
(C) 1 mole of O_{2} and 1 mole of N_{2}
(D) 1 mole of O_{2} and 1 mole if CO_{2}
(U.B)

There are 3.01×10^{23} molecules of CO_{2} present in a container. What is the number of moles in it?
(A) 22 mol
(B) 0.5 mol
(C) 1.7 mol
(D) 2.2 mol
4. $\quad 9 \mathrm{~g}$ of carbon has number of moles:
(U.B)
(C) 0.5 mol
(A) 0.75 mol
(B) 9 mol
(D) 3 mol
i. How many atoms of sodium are present in 3 moles of sodium and what is the mass of it?

NUMERICAL

Solution:

Given Data:

Number of moles of sodiu II
To Find:
(i) Numbr datoms of secium in 3 moles
(ii) Mars. 3 rholes of sodium

Calculations:

(i) D umber alorls present in 1 mole of sodium $=6.02 \times 10^{23}$ atoms

1 vimler of atoms present in 3 moles of sodium $=3 \times 6.02 \times 10^{23}$ atoms
$=18.06 \times 10^{23}$ atoms
$=1.806 \times 10^{24}$ atoms
(ii) Mass of substance $=$ Number of moles of $\mathrm{Na} \times$ molar mass of Na

$$
\begin{aligned}
& =3 \mathrm{~mol} \times 23 \mathrm{gmol}^{-1} \\
& =69 \mathrm{~g}
\end{aligned}
$$

Result:

1.806×10^{24} atoms are present in three moles of sodium and its mass is 69 g .
ii. How many atoms are in 1 amu and 1 g of hydrogen (H)?

Solution:

Given Data:

Atomic m\% of hydrogan
Molar mass of hyarogen
To Fin
Number or atons in 1 a nualu 1 g of hydrogen $=$?
Calcilaion:
Achionass of hydrogen
Number of atoms in 1 g of hydrogen

Number of atoms in 1 amu of hydrogen

$$
\begin{aligned}
& =\text { Molar mass of hydrogen } \\
& =\frac{\text { Given mass }}{\text { Molar mass }} \times \mathrm{N}_{\mathrm{A}} \\
& =\frac{1 \mathrm{~g}}{1 \mathrm{~g}} \times 6.02 \times 10^{23} \\
& =6.02 \times 10^{23} \text { atoms } \\
& =6.02 \times 10^{23} \text { atoms }
\end{aligned}
$$

Result:

6.02×10^{23} atoms are present in 1 amu and 1 g of hydrogen.

iii. How many atoms are present in 16 g of O and gg of S ?

NUMERICAL

Solution:

Given Data:

Mass of Oxygen atom	$\mathrm{O}=$	16 g
Molar mass of Oxygen	$\mathrm{O}=$	16 g
Given mass of sulphur	$\mathrm{S}=$	8 g
Molar mass of sulphur	$\mathrm{S}=$	32 g
Number of atoms in 16 g of O	$=$	$?$
Number of atoms in 8 g of sulphur $\mathrm{S}=$	$?$	

Calculations:

Number of atoms of Oxygen $=\frac{\text { Given mass }}{\text { Molar mass }} \times N_{A}$

Calculations:

Result:
6.02×10^{23} atoms are present in 16 g of oxygen and 1.505×10^{23} atoms are
present in 8 g of sulphur.
iv. Is the mass of 1 mole of O and 1 mole of S same?

Ans: As Mass of 1 mole of $\mathrm{O}=16 \mathrm{~g}$
Mass of 1 mole of $S=32 \mathrm{~g}$
Hence, the mass of 1 mole of O and 1 mole $s f$ is not the
v. What do you mean by 1 atom of Cand 1 granation of \mathbb{C} ?

Ans:
ONTE TOM NO ONE ORMANOMOFC
1 atom of carbon means sirgle malest parti le of carbon with mass 12 amu .
On the Other hand, grat atom means 12 g or 1 mole of carbon having 6.02×10^{23} carbon tuer s.
vi. If 16 g of dygen ront ines 1 mole of oxygen atoms calculate the mass of one atom of oxygen in srats.
(U.B+A.B)

Solution:
Given Data:
16 g of oxygen $=1$ mole of oxygen atoms
To Find:
Mass of 1 atom of oxygen in grams = ?

Calculations:

16 g of oxygen $=1$ mole of oxygen $=6.02 \times 10^{23}$ atoms
Therefore, mass of 6.02×10^{23} atoms of oxygen $=16 \mathrm{~g}$

$$
\begin{aligned}
\text { Mass of } 1 \text { atom of oxygen } & =\frac{16}{6.02 \times 10^{23}} \\
& =2.65 \times 10^{-23} \mathrm{~g}
\end{aligned}
$$

vii. How many times is $\mathbf{1}$ mole of oxygen atoms heavier than $\mathbf{1}$ mole of hydrogen atoms? (U.B) Ans:

OXYGEN AND HYDROGEN

| Mass of 1 mole of oxygen atoms | $=$ | 16 |
| :--- | :--- | :--- | :--- |
| g | | |
| Mass of 1 mole of hydrogen atoms | $=$ | 1 g |

Therefore, 1 mole of oxygen atoms is 16 times heavier than that of 1 mole of hydrogen atoms.
viii. Why does 10 g nitrogen gas contain the same number of molecules as $\mathbf{1 0} \mathbf{g}$ of carbon monoxide?
(U.B+A.B)

Ans: Number of moles of nitrogen gas

$$
=\quad \frac{\text { Given mass of substance }}{\text { Molar mass of substance }}
$$

$$
=\quad \frac{10}{28}
$$

$=\quad 0.35 \mathrm{~mol}$
Number of molecules of nitrogen gas $\left(\mathrm{N}_{2}\right)=$

Number of moles of carbon morde

Numberiof nulecules of CO
number of mole

$$
10
$$

olar mass ot substance

$$
=28
$$

$$
=\quad 0.35 \mathrm{~mol}
$$

$$
=\quad \text { number of mole } \times \mathrm{N}_{\mathrm{A}}
$$

$$
=\quad 0.35 \times 6.02 \times 10^{23}
$$

$$
=\quad 2.107 \times 10^{23} \text { molecules }
$$

Hence it is proved that 10 g nitrogen gas contains the same number of molecules as 10 g of carbon monoxide because both gases have same molar mass that is i.e. $\mathbf{2 8 g}$.

ANSWER KEYS

1.1 BRANCHES OF CHEMISIRY

1.2.2 ATOMIC NUMBER AND MASS NUMBER

1.2.4 HOW TO WRITE CHEMICAL FORMULA
1.2.5 MOLECULAR MASS AND FORMULA MASS

1	A	2	A	3	D	4	B	5	B	6	B	7	D
8	C	9	B	10	A	11	B	12	A	13	C	14	A

1.3 CHEMICAL SPECIES

1	A	2	B	3	B	4	C	5	B	6	B	7	C	8	A	9	C	10	A

1.3.2 TYPES OF MOLECULE

| 1 | C | 2 | D | 3 | A | 4 | B | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | A

1.4 GRAM ATOMIC MASS, GRAM MOLECULAR MASS, GRAM FORMULA MASS

1	A	2	A	3	B	4

1.5 AVAGAPRCS NMITR XPDMOL:

WICLIEAK
RG PHERHOL CALCULATIONS

1	C	2	A	3	B	4	A

EXERCISE SOLUTION

MULTIPLE CHOICE QUESTIONS

1. Industrial chemistry deals with the manit: cturing ρ compounds:

(A) In the laboratory
(C) On conmercial scañ
(B) On micro ccale
2. Which on of ne following can be reparoted by physical means?
(BWP 2016, 17 G-II, SGD 2016 G-I)(U.B)
(A) Mix ure
(B) Element
(C) Compound
(D) Radical

Tha mest abandant element occurring in the oceans is:
(K.B)
(I) WV: 2017 G-II, MTN 2016, 17 G-I, SGD 2017 G-II, SWL 2017 G-II, RWP 2016, 17 G-II, GRW 2016 G-II, FSD 2016 G-I)
(A) Oxygen
(B) Hydrogen
(C) Nitrogen
(D) Silicon
4. Which one of the following element is found in most abundance in the Earth's crust?
(MTN 2016 G-II)(K.B)
(A) Oxygen
(B) Aluminum
(C) Silicon
(D) Iron
5. The third abundant gas found in the atmosphere is:
(DGK 2017 G-II)(K.B)
(A) Carbon monoxide
(B) Oxygen
(C) Nitrogen
(D) Argon
6. One amu (atomic mass unit) is equivalent to:
(RWP 2017 G-I)(K.B)
(A) $1.66 \times 10^{-24} \mathrm{mg}$
(B) $1.66 \times 10^{-24} \mathrm{~g}$
(C). $1.66 \times 10^{-21} \mathrm{~g}$
(D) $1.66 \times 10^{-23} \mathrm{~g}$
7. All of the following are triatomic molecule except: (GRW 2016 G-II, RWP 2017 G-I, SGD 2017 G-II, BWP 2016 G-II, FSD 2016 G-I)(U.B)
(A) H_{2}
(B) O_{3}
(C) $\mathrm{H}_{2} \mathrm{O}$
(D) CO_{2}
8. The mass of one molecule of water is:(LHR 2016, 17 G-I,II, DGK 2016 G-I, FSD 2016, G-II)(K.B)
(A) 18 amu
(B) 18 g
(C) 18 mg
(D) 18 kg
9. The molar mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is: (LHR 2017 G-I, GRW 2016 G-I, MTN 2016 G-I)(U.B+K.B)
(A) 98 g
(B) 48 amu
(C) 4.8 g
(D) 98 amu
10. Molar mass is usually expressed in grams, which one of the following is molar mass of $\mathrm{O}_{\mathbf{2}}$ in amu?
($\boldsymbol{U} . \boldsymbol{B}$)
(A) 32 amu
(B) $53.2 \times 10^{-24} \mathrm{amu}$
(C) $1.92 \times 10^{-25} \mathrm{amu}$
(D) $192.64 \times 10^{-25} \mathrm{amu}$
11. How many numbers of moles are equivalent to 8 grams of CO_{2} ?
(BWP 2017 G-I, DGK 2016 G-I)(U.B)
(A) 0.15
(B) 0.18
(C) 0.21
(D) 0.24
12. Which one of the following pairs has the same number of ions?
(A) 1 mole of NaCl and 1 mole of MgCl_{2}
(B) $1 / 2$ mole of NaCl and $1 / 2$ mole $\mathrm{Of} \mathrm{MgCl}_{2}$
(C) $1 / 2$ mole of NaCl and $1 / 2$ mole $\mathrm{NA} \mathrm{MCl}_{2}$
(D) $1 / 3$ mole of NaCl and $1 / 2 \mathrm{n} 101 / \mathrm{e}$ of $\mathrm{Mg} \mathrm{Cl}_{2}$
13. Whicl ont of the follosving pairs has the shme mass?
(SWL 2017 G-I)(U.B)
(A) 1 mol of C O and 1 nole of N_{2}
(B) 1 mole of CO and 1 mole of CO_{2}
(C) 1 mole of O and 1 mole of N_{2}
(D) 1 mole of O_{2} and 1 mole of CO_{2}

ANSWER KEY

1	c	3	a	5	d	7	a	9	a	11	b	13	a
2	a	4	a	6	b	8	a	10	a	12	c		

EXERCISE SHORT QUESTIONS

1. Define industrial chemistry and analytical chemistry.

Ans: Answer given on pg \# 03
2. How can you differentiate between organ: and inorganic chenist y?

Ans: Answer given on $p g \# 02$ \&-93
3. Give the scope of biocher istry.
(BWi 2917 G-II, DGK 2017 G-II)(A.B)
Ans:
It covers all chanical proasses tak in place in living organisms such as synthesis and metabo ist of biormo ecules like carbonydrates, proteins, fats etc.
Applications:
Artil cat ors oi vinchemistry are in the fields of medicine, food science and agriculture.
Hew coes homogeneous mixture differ from heterogeneous mixture?
(BWP 2017, FSD 2017 G-I)(U.B)

DIFFERENTIATION

The differences between homogeneous and heterogeneous mixture are as follows:

Homogeneous Mixture	Heterogeneous Mixture
Definition	
- Mixtures that have uniform composition throughout are called homogeneous mixtures. It is called solution.	- Those mixtures in which composition is not uniform throughout are called heterogeneous mixtures.
Examples	
- Air	- Soil
- Gasoline	- Rock
- Ice cream	- Wood

5. What is the relative atomic mass? How it is related to gram?
(U. $\boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B})$

Ans: Definition:
"The average mass of atoms of an element as compared to $1 / 122^{\text {th }}$ (one-twelfth) the mass of one atom of carbon-12 isotope is called relative atomic mass. "
Unit of Relative Atomic Mass:
Its unit is atomic mass unit, with symbol amu.
Atomic mass unit:
"One atomic mass unit is $1 / 12^{\text {th }}$ the mass of one atom of carbon- $12^{\text {th }}$."

RELATION BETWEEN RELATIVE ATOMIC MASS AND GRAM

When this atomic mass unit is expressed in grams it is:
$1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g}$
6. Define empirical formula with example.
Ans: A formula that indicates the simplest whole number ratio of atoms of different elements present in a compound is called an empirical formula."
Example:
Glucose has simplest ratio 1:2:1 of carbon hydrogen and oxygen les peatyely. Hener ito empirical formula is $\mathbf{C H}_{2} \mathbf{O}$.

Thesemprica formela of clucose

 $\mathrm{CH}_{2} \mathrm{O}$
7. State thrte reasons wh do you thith air is a mixture and water is a compound? (U.B) Ans:

Red sons:

IV:(t) is a compound because it is formed by chemical combination of hydrogen and oxygen whereas air is formed by simple mixing of different gases.

- Water has fixed ratio between masses of hydrogen and oxygen, whereas in air ratio between masses of component gases is not fixed.
- Water has definite melting and boiling points whereas air does not have any fixed melting and boiling point.

8. Explain why are hydrogen and oxygen considered elements whereas water as a compound.(U.B)

Ans:

H AND O AS ELEMENTS AND H H_{2} A COMPOU NU

Elements:

Hydrogen and oxygen are elements because they ve are type of atums, having same atomic number and it cannot be derumpoe in o inile sub: ta nces by cremical means.

Compern

Water i. comsitre as ro my cund beaduse it is a substance made up of two or more elements cherricaly corllined together in a fixed ratio by mass. As a result of this combination of yeranu hydrogen lose their own properties and produce new substance $\left(\mathrm{H}_{2} \mathrm{O}\right)$.
4. What is the significance of the symbol of an element?

Ans:
SIGNIFICANCE OF SYMBOL
Symbols are used for elements instead of writing of their complete names. So, it takes less time/saves time and element can be recognized by that symbol in all over the world.
(i) Symbol represents the name of an element.
(ii) It represents one atom of the element
(iii)It helps to write and understand chemical equation for different chemical reactions.
(iv)Periodic table is based on symbols of different elements.

Examples:

- Oxygen (O)
- Sulphur (S)
- Nitrogen (N)

10. State the reasons, soft drink is a mixture and water is a compound.

DIFFERENTIATION

The reasons for soft drink is a mixture and water is a compound are as follows:

Soft Drink (Mixture)	Water (Compound)
Combination	
- Soft drink is made up of simple mixing up of substances without any fixed ratio.	
- So d didik his s heterogeneous A.onpos stion.	- Water has homogeneous composition.
Separation of Components	
- Its components can be separated by physical means.	- Its components can't be separated by physical means

11. Classify the following into element, compound and mixture:

- He and H_{2}
- CO and CO_{2}
- Water and milk
- Gold and brass
- Ircitand steel

Ans:
(i) $\mathrm{He}_{\boxed{-1}} \mathrm{H}_{2}$:

He arofiz are elements.
(ii) CO and CO_{2} :

CO is a compound and CO_{2} is an element.
(iii) Water and Milk:

Water is a compound and milk is a mixture.
(iv) Gold and Brass:

Gold is an element and brass is a mixture.
(v) Iron and Steel:

Iron is an element and steel is a mixture.
12. Define atomic mass unit. Why is it needed?

ATOMIC MASS UNIT

Definition:

"It is one twelfth of the mass of a carbon -12 atom is called atomic mass unit."
The atomic mass unit is abbreviated as amu.
$1 \mathrm{amu}=1 / 12 \times$ mass of $\mathrm{C}-12$ atom

NEED OF ATOMIC MASS UNIT

The mass of an atom is too small to be determined practically. However relative atomic mass (ratio of atomic mass of certain element to that of $\mathrm{C}-12$ atom). The unit of relative atomic mass is amu.
13. State the nature and name of the substance formed by combining the fnllowing: (t)
i. Zinc + Copper ii. Water + Sugar iii. Aluminium + Sulphi
iv. Iron + Chromium + Nickel

Ans:

(i) Zinc \approx Copper:

I(is a mixture or a loy
The nan ne or alloy is brass.
(ii) $\underline{\text { Watar}}+\underline{\mathbf{u}} \mathbf{a}$:

It i a daixtere. The name of mixture or solution is syrup.
(iii) Aiuminium + Sulphur:

It forms compound. The name of compound is aluminium sulphide.
(iv) Iron + Chromium + Nickel:

It is a mixture or alloy. The name of alloy is nichrome.
14. Differentiate between molecular mass and formula mass, which of the following will be molecular formula? $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}, \mathrm{KI}, \mathrm{H}_{2} \mathrm{SO}_{4}$
Ans:

DIFFERENTIATION

The differences between molecular mass and formula mass are as fo. lo ws.

Fhe term molecular mass is used for \bullet The term formula mass is used for compounds that exist as molecules. compounds that exist as formula units i.e. the compounds consist of ions.

Example			
\bulletMolecular mass of water is 18 amu and that of carbon dioxide is 44 amu.	\bulletFormula mass of sodium chloride is 58.5 amu and that of CaCO_{3} is 100. amu.		

Molecular Formulas:

$\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are the molecular formulas.
15. Which has more atoms: 10 g of Al or 10 g of Fe ?
(U.B+A.B)

Ans:

NUMERICAL

Given Data:

Given mass of Al $\quad=10 \mathrm{~g}$
Given mass of $\mathrm{Fe} \quad=10 \mathrm{~g}$
To Find:
Which one $(\mathrm{Al}$ or Fe$)$ has more atoms $=$?
Calculations:
10 g of Al has more atoms than 10 g of Fe .
(i) Given mass of Al
$=10 \mathrm{~g}$
Molar mass of Al
$=27 \mathrm{~g} \mathrm{~mol}^{-1}$

Number of atoms in 10 g of $\mathrm{Al}=$ Number of moles $\times \mathrm{N}_{\mathrm{A}}$
Number of atoms of Al $=\frac{\text { Mass of subtance }}{\text { Molar Mass of substance }} \times N_{A}$
$=\frac{10}{23} \times 6.02 \times 10^{23}$
(ii) Given mass of Fe

Molar mass of Fe
Numbe fothros oi F ?
16. Which one has more molecules: 9 g of water or 9 g of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$?

Given Data:

Given mass of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ Given mass of sugar
To Find:
Which one has more molecules
Calculation:

(i) Given runs sf ore $\left(\mathrm{H}_{2} \mathrm{O}\right)$

$$
\begin{aligned}
& =9 \\
& =18 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

Molar rial: of va te: $\left(\mathrm{H}_{2} \mathrm{O}\right)$
Nourifer of inplectiles in 9 g of water

$$
\begin{aligned}
& =\frac{\text { Mass of substance }}{\text { Molar Mass of substance }} \times \mathrm{N}_{\mathrm{A}} \\
& =\frac{9}{18} \times 6.02 \times 10^{23} \text { molecules } \\
& =3.01 \times 10^{23} \quad \text { molecules }
\end{aligned}
$$

(ii) Given mass of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)=9 \mathrm{~g}$

Molar mass of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)=342 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of molecules in 9 g of sugar $=\frac{\text { Mass of substance }}{\text { Molar Mass of substance }} \times \mathrm{N}_{\mathrm{A}}$
$=\frac{9}{342} \times 6.02 \times 10^{23}$

$$
=1.584 \times 10^{22} \text { molecules }
$$

Result:

9 g of $\mathrm{H}_{2} \mathrm{O}$ has more molecules than 9 g of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ -
17. Which one has more formula units: 1 g of NaCl or 1 g of KCl ?
(U.B+A.B)

NUMERICAL

Given Data:

Given mass of $\mathrm{NaCl} \quad=1 \mathrm{~g}$
Given mass of KCl

$$
=1 \mathrm{~g}
$$

To Find:
Which one has more formula units
$=$?
Calculations:
(i) Given mass of NaCl
$=1 \mathrm{~g}$
Formula mass of $\mathrm{NaCl}=58.5 \mathrm{~g} \mathrm{~mol}^{-1}$
Formula units in 1 g of NaCl
$=\frac{\text { Mass of substance }}{\text { Formula mass of substance }}-\times N_{A}$
(ii) Gi er mas of KCl

Formularise of Kl
$=74.5 \mathrm{~g} \mathrm{~mol}^{-1}$
$=\frac{\text { Mass of subtance }}{\text { Formula mass of substance }} \times \mathrm{N}_{\mathrm{A}}$
$=\frac{1}{74.5} \times 6.02 \times 10^{23}$
$=8.080 \times 10^{21}$ formula units

Result:

18. Differentiate between homoatomic and heteroatomic molecules with examples. (U.B)

Ans:

DIFFERENTIATION

The differences between homoatomic molecules and heteroatomic mol ches are as f Tove

- A molecule containin ranal ype of A molecule cansis ing of different kinds atanes 15 called homoato nid molecu e of atoms is called heteroatomic molecule.

19. In which one of the following, the number of hydrogen atoms is more? 2 moles of HCl or 1 mole of NH_{3} (Hint: 1 mole of a substance contains as much number of moles of atoms as are in 1 molecule of a substance).
Ans:

NUMBER OF HYDROGEN ATOMS

Number of moles of hydrogen in 1 mole of $\mathrm{HCl} \quad=1$ mole
Number of moles of hydrogen in 2 moles of $\mathrm{HCl} \quad=2$ moles
Whereas number of moles of hydrogen in 1 mole of $\mathrm{NH}_{3}=3$ moles
Hence 1 mole of NH_{3} contains 3 moles of hydrogen and will have more hydrogen atoms than 2 moles of hydrogen present in 2 moles of HCl .

EXERCISE LONG QUESTIONS

1. Define element and classify the elements with examples.
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B})$
Ans: Answer given on pg \# 07
2. Mole is SI unit for the amount of a substance. Define it with examples?
(K.B)

Ans: Answer given on pg \# 33
3. List five characteristics by which compounds can be distinguished from mixtures.(U.B)

Ans: Answer given on pg \# 12
4. Differentiate between the following with examples:
(A) Molecule and gram molecule
(B) Atom and gram atom
(C) Molecular mass and molar mass
(D) Chemical formula and gram formula

Ans:
A. Molecule and gram molecule:

DIE ERENTIAICN

The differences between nol crien nc remp edule are forls:

B. Atom and gram atom

DIFFERENTIATION

The differences between atom and gram atom are as follows:

- The smallest particle of as ererent which can take pa \quad in cherrical reaction ma may ot may not exist incerpendentry is called an atom.	The atolnic miss of an element expiessed in grams is called gram atomic mass or gram atom.
- Exam	mple

C. Molecular mass and molar mass

DIFFERENTIATION

The differences between molecular mass and molar mass are as follows:

Molecular Mass	Molar Mass
- The sum of atomic masses of all the atoms present in one molecule of a molecule substance, is its molecular mass.	- The molar mass is a physical property defined as the mass of a given substance (chemical element or chemical compound) divided by the no. of moles of substance.
Examples	
- Molecular mass $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{amu}$	- Molar mass of $\mathrm{H}_{2}=2 \mathrm{~g}$ - Molar mass of $\mathrm{NaCl}=58.5 \mathrm{~g}$

D. Chemical formula and gram formula

DIFFERENTIATION

The differences between chemical formula and gram formula are as follows:

Chemical Formula	Gram Formula
- The representation of an element or a compound in terms of symbols is called chemical formula.	- The formula mass of an ionic compound expressed in grams is called gram formula mass or gram formula.
Examples	
- Chemical formula of chlorine $=\mathrm{Cl}_{2}$ - Chemical formula of water $=\mathrm{H}_{2} \mathrm{O}$	Gram formula of NGO

EXERCISE SOLVED NUMERICALS

1. Sulphuric acid is the king of chemicals. If you need 5 moles of sulphuric acid for a reaction, how many grams of it will you weigh?

NUMERICAL

Solution:

Given Data:

Number of moles $0_{2} \mathrm{H}_{2} \mathrm{SC}_{4}=5$ rickes
Molanmas of $\mathrm{H} \mathrm{S}_{2} \mathrm{C}(1)=2(1)+1(32)+4(16)$

$$
\begin{aligned}
& =2+32+64 \\
& =98 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

To Find:

Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=$?
Calculations:
Number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{\text { Mass of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { Molar mass of } \mathrm{H}_{2} \mathrm{SO}_{4}}$
Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ Number of moles \times molar mass

$$
\begin{aligned}
& =5 \times 98 \\
& =490 \mathrm{~g}
\end{aligned}
$$

Result:

5 moles of sulphuric acid will have mass 490 g .
2. Calcium carbonate is insoluble in water.

If you have 40 g of it; how many Ca^{2+} and
CO_{3}^{2-} ions are present in it?
(U.B+A.B)

Solution:

Given Data:

Given Mass of $\mathrm{CaCO}_{3}=40 \mathrm{~g}$
Molar mass of $\mathrm{CaCO}_{3}=(40 \times 1)+(12 \times 1)+(16 \times 3)$

$$
\begin{aligned}
& =40+12+48 \\
& =100 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

To Find:

Number of Ca^{2+} ions $=$?
Number of CO_{3}^{2-} ions = ?

Calculations:

Number of moles of $\mathrm{CaCO}_{3}=\frac{\text { Giver }}{\text { Mipiar }}$ Mass

$$
=\frac{Q}{1} \frac{0}{n}=0 \sqrt{4 \mathrm{~mol}}
$$

Balaried equation for hissociation of calcium
cilporat: is asiollows:

$$
\mathrm{CaCO}_{3} \longrightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{3}^{2-}
$$

Number of moles of $\mathrm{CaCO}_{3}=0.4$ mole
Number of moles of Ca^{2+} ions in one mole of $\mathrm{CaCO}_{3}=6.02 \times 10^{23}$

No. of Ca^{2+} ions in 0.4 mol of $\mathrm{C} 2 \mathrm{FP} / 3=$ No. of moss 1 I

Namber of Ca^{2+} ions $=$ Number of CO_{3}^{2-} ions
Number of $\mathrm{CO}_{3}^{2-}=2.40 \times 10^{23}$ ions

Result:

2.408×10^{23} ions of Ca^{+2} and $\mathbf{2 . 4 0 8} \times \mathbf{1 0}^{\mathbf{2 3}}$ ions of CO_{3}^{2-} are present in 40 g of calcium carbonate.
3. If you have 6.02×10^{23} ions of aluminium; how many sulphate ions will be required to prepare $A l_{2}\left(\mathbf{S O}_{4}\right)_{3}$?
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$

NUMERICAL

Solution:

Given Data:

Number of ions of $\mathrm{Al}{ }^{3+}=6.02 \times 10^{23}$ ions

To Find:

Number of sulphate ions in $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=$?

Calculations:

$$
2 \mathrm{Al}^{3+}+3 \mathrm{SO}_{4}^{2-} \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

According to balanced chemical equation:
Number of moles of SO_{4}^{2-} ion required for

mples of Al^{3+} ionio -3

Nunbe of raples of SO_{2}^{2-} ons ior 1 mole of $\left(A^{\prime 3+}=-312=1.5\right.$ moles
Thus, number of SO_{4}^{2-} ions $=$ Number of moles $\times \mathrm{N}_{\mathrm{A}}$

$$
\begin{aligned}
& =1.5 \times 6.02 \times 10^{23} \\
& =9.03 \times 10^{23} \mathrm{ions}
\end{aligned}
$$

Results:

9.03×10^{23} ions are required to prepare $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
4. Calculate the number of molecules of the following compounds:
(U.B+A.B)
a. $16 \mathrm{~g} \mathrm{of}_{2} \mathrm{CO}_{3}$
b. 20 g of HNO_{3}
c. 30 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

NUMERICAL

Solution:
Given Data:
Given mass oi $\mathrm{H}, \mathrm{CO}_{3}=16 \mathrm{~g}$
Given mass of $-\mathrm{Hr}^{2} \mathrm{O}_{3}=21 \mathrm{~g}$
Given mass of C $\mathrm{C}_{6} \mathrm{H}_{1}=\mathrm{O}_{5}-30 \mathrm{~g}$
Io Iind
Number of molecules of $\mathrm{H}_{2} \mathrm{CO}_{3}=$?
Number of molecules of 20 g of $\mathrm{HNO}_{3}=$?
Number of molecules of 30 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=$?
Calculations:
(a) 16 g of $\mathrm{H}_{2} \mathrm{CO}_{3}$:

Guven mass of $\mathrm{H}_{2} \mathrm{CO}_{3}=16 \mathrm{~g}$
Molar mass of $\mathrm{H}_{2} \mathrm{CO}_{3}=2(1)+1(12)+3(16)$

$$
\begin{aligned}
& =2+12+48 \\
& =62 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Number of molecules $=\frac{\text { Given mass of } \mathrm{H}_{2} \mathrm{CO}_{3}}{\text { Molar mass of } \mathrm{H}_{2} \mathrm{CO}_{3}} \times \mathrm{N}_{\mathrm{A}}$

$$
\begin{aligned}
& =\frac{16}{62} \times 6.02 \times 10^{23} \\
& =1.55 \times 10^{23} \text { molecules }
\end{aligned}
$$

Result:

16 g of $\mathrm{H}_{3} \mathrm{CO}_{3}$ has $\mathbf{1 . 5 5} \times 1 \mathbf{0}^{\mathbf{2 3}}$ molecules.

(b) 20 g of $\mathrm{HNO}_{3}:$

Given mass of $\mathrm{HNO}_{3}=20 \mathrm{~g}$
Molar mass of $\mathrm{HNO}_{3}=1(1)+1(14)+3(16)$

$$
=1+14+48=63 \mathrm{~g} / \mathrm{mol}
$$

Number of molecules of $\mathrm{HNO}_{3}=$?
Number of molecules of $\mathrm{HNO}_{3}=\frac{\text { Given mass of } \mathrm{HNO}_{3}}{\text { Molar mass of } \mathrm{HNO}_{3}} \times \mathrm{N}_{A}$

$$
\begin{aligned}
& =\frac{20}{63} \times 6.0 \text { ex } \times 10^{23} \\
& =1.91 \times 10^{23}
\end{aligned}
$$

Result:
20 g of HNO_{3} ans 1.91×10^{23} nolcales.

diven nass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=30 \mathrm{~g}$.
Molar mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6(12)+12(1)+6(16)$

$$
\begin{aligned}
& =72+12+96 \\
& =180 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Number of moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=\frac{\text { Given mass of } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{\text { Molar masc of } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times N_{A}$
$=-\frac{3}{80} \times 5.02 \times 10=$
Result:
$=1 \times 10^{23}$ molecules

$30 \mathrm{~g}^{\circ} \mathrm{C}_{6} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ has $\mathbf{1 \times 1 0} \mathbf{1 0}^{\mathbf{2 3}}$ molecules.

5. Calculate the number of ions in the following compounds:
a. 10 g of AlCl_{3}
b. 30 g of BaCl_{2}
c. 58 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$

NUMERICAL

Solution:

Given Data:

Given mass of $\mathrm{AlCl}_{3}=10 \mathrm{~g}$
Given mass of $\mathrm{BaCl}_{2}=30 \mathrm{~g}$
Given mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=58 \mathrm{~g}$

To Find:

Number of ions in 10 g of $\mathrm{AlCl}_{3}=$?
Number of ions in 30 g of $\mathrm{BaCl}_{2}=$?
Number of ions in 58 g of $\mathrm{H}_{2} \mathrm{SO}_{4}=$?
Calculations:
(a) 10 g of AlCl_{3} :

Given mass of $\mathrm{AlCl}_{3}=10 \mathrm{~g}$
Molar mass of $\mathrm{AlCl}_{3}=1(27)+3(35.5)$

$$
=133.5 \mathrm{~g} / \mathrm{mol}
$$

Number of ions of $\mathrm{AlCl}_{3}=$?
Number of formula units $=\frac{\text { Given mass of } \mathrm{AlCl}_{3}}{\text { Molar mass of } \mathrm{AlCl}_{3}} \times \mathrm{N}_{\mathrm{A}}$ $=\frac{10}{133.5} \times 6.02 \times 10^{23}$
$=0.451 \times 10^{23}$ formula units
1 formula unit of AlCl_{3} collaian total nuirter pfions $=4$ ions
$4.51<10^{2} \mathrm{fpm} \mathrm{m} i \mathrm{i}$ units of AlCl , contain total caimber of ions $=4 \times 04511 \cdot 10^{23}$
$=1.80 \times 1 \bar{v}^{-4}$ ions

Result:

(b) 30 g of BaCl_{2} :

Given mass of $\mathrm{BaCl}_{2}=30 \mathrm{~g}$
Molar mass of $\mathrm{BaCl}_{2}=1(137)+2(35.5)$

$$
=137+71=208 \mathrm{~g} / \mathrm{mol}
$$

Number of ions of 30 g of $\mathrm{BaCl}_{2}=$?

Number of formula units $=\frac{\text { Givenmass of } \mathrm{BaCl}_{2}}{\text { Molar mass of } \mathrm{BaCl}_{2}} \times \mathrm{N}_{\mathrm{A}}$

$$
\begin{aligned}
& =\frac{30}{208} \times 6.02 \times 10^{23} \\
& =0.86 \times 10^{23} \text { formula }(\mathrm{mits}
\end{aligned}
$$

1 formula unit of BaCl_{2} contains total n. of ions $=3$
0.86×10^{23} formed units of BaCl_{2} vill contain total number of ion $=3 \times 10.86 \% 10^{2}$ leas

$$
=2.58 \times 10^{23} \text { ions }
$$

Redi:

$\mathbf{2 0 g}$ of BaCl_{2} has $\mathbf{2 . 5 8} \times \mathbf{1 0}^{\mathbf{2 3}}$ ions.

(c) 58 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$:

Given mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=58 \mathrm{~g}$
Molar mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=2(1)+1(32)+4(16)$

$$
\begin{aligned}
& =2+32+64 \\
& =98 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Number of ion of $\mathrm{H}_{2} \mathrm{SO}_{4}=$?
Number of formula units $=\frac{\text { Given mass of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { Molar mass of } \mathrm{H}_{2} \mathrm{SO}_{4}} \times \mathrm{N}_{\mathrm{A}}$

$$
\begin{aligned}
& =\frac{58}{98} \times 6.02 \times 10^{23} \\
& =3.56 \times 10^{23} \text { formula units }
\end{aligned}
$$

1 formula unit of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains total number of ions $=3$ ions
3.56×10^{23} formula units of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contain total number of ions $=3 \times 3.56 \times 10^{23}$

$$
=10.682 \times 10^{23} \mathrm{ions}
$$

Result:
$\mathbf{3 0 g}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ has $\mathbf{1 . 0 6 8} \times \mathbf{1 0}^{\mathbf{2 4}}$ ions
6. What will be the mass of 2.05×10^{16} molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(U.B+A.B)

$2.05 \times 10^{16}=\frac{\text { Mass of } \mathrm{H}_{2} \mathrm{SO}_{4}}{98} \times 6.02 \times 10^{23}$

Result:

Mass of sulphuric acid is $3.337 \times 10^{-6} \mathrm{~g}$.
7. How many total atoms are required to prepare 60 g of HNO_{3} ?
(U.B+A.B)

NUMERICAL

Solution:

Given data:

Given mass of $\mathrm{HNO}_{3}=60 \mathrm{~g}$
Molar mass of $\mathrm{HNO}_{3}=1(1)+1(14)+3(16)$

$$
\begin{aligned}
& =1+14+48 \\
& =63 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

To Find:

Number of atoms of $\mathrm{HNO}_{3}=$?

Calculations:

$$
\text { Number of molecules of } \begin{aligned}
\mathrm{HNO}_{3} & =\frac{\text { Given mass of } \mathrm{HNO}_{3}}{\text { Molar mass of } \mathrm{HNO}_{3}} \times \mathrm{N}_{\mathrm{A}} \\
& =\frac{60}{63} \times 6.02 \times 10^{23} \\
& =0.95 \times 6.02 \times 10^{23} \text { moles } \\
& =5.73 \times 10^{23} \text { molecules }
\end{aligned}
$$

As one molecule of HNO_{3} contain atoms $=5$ atoms Therefore, 5.73×10^{23} molecules contain
Number of atoms $=5 \times 5.73 \times 10^{23}$

$$
\begin{aligned}
& =28.5 \times 10^{23} \\
& =2.87 \times 10^{24} \text { atoms }
\end{aligned}
$$

Result:

2.87×10^{24} atoms are required or repase 0 g of ANO.
8. For nany mor of Na and Cl^{-2} will be Pre ent in 30 gof NaCl ? (U.B+A.B)

NUMEKICAL

Sotation:

Given Data:

Given mass of $\mathrm{NaCl}=30 \mathrm{~g}$
Molar mass of $\mathrm{NaCl}=1(23)+3(35.5)$

$$
\begin{aligned}
& =23+35.5 \\
& =58.5 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

To Find:

Number of Na^{+}ions $=$?
Number of Cl^{-}ions $=$?

Calculations:
Number of formula units of $\mathrm{NaCl}=\frac{\text { Given mass of } \mathrm{NaCl}}{\text { Molar mass of } \mathrm{NaCl}} \times \mathrm{N}_{\mathrm{A}}$

As,
1 formula pnit of NaCl centains number of San ${ }^{-1}$ ior $n=1$
$308<10^{33}$ formula units of NaCl contain number of Na^{+}ions $=3.08 \times 10^{23}$ ions

We knew that in NaCl :

Number of Na^{+}ions $=$Number of Cl^{-}ion
Thus number of Cl ions $=3.08 \times 10^{23}$

Result:

Total number of sodium ions $\left(\mathrm{Na}^{+}\right)$and chloride ions $\left(\mathrm{Cl}^{-}\right)=6.16 \times 10^{23}$ ions
9. How many molecules of HCI will be required to have 10 grams of it? (U.B+A.B)

NUMERICAL

Solution:

Given Data:

Given mass of $\mathrm{HCl}=10 \mathrm{~g}$
Molar mass of $\mathrm{HCl}=1(1)+1(35.5)$

$$
\begin{aligned}
& =1+35.5 \\
& =36.5 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

To Find:

Number of molecules of $\mathrm{HCl}=$?

Calculations:

Number of molect:er af $\mathrm{Al}=-\frac{\mathrm{Giv}}{\mathrm{Lo}} \frac{\mathrm{ma}}{\mathrm{ma}} \frac{\mathrm{s}}{\mathrm{mas}} \frac{\text { of }}{\text { of }} \frac{\mathrm{HCl}}{\mathrm{HCl}}$

$$
=\frac{10}{36.5} \times 6.02 \times 10^{23}
$$

$$
=1.64 \times 10^{23} \text { molecules }
$$

Result:

10 g of HCl will have $\mathbf{1 . 6 4} \times \mathbf{1 0}^{\mathbf{2 3}}$ molecules.
10. How many grams of Mg will have the same
number of atoms as 6 grams ar have? C at Solinion:

Glven data:

Given mass of carbon $=6 \mathrm{~g}$
Atomic mass of carbon $=12 \mathrm{~g} / \mathrm{mol}$

To Find:

Mass of $\mathrm{Mg}=$?

Calculations:

$$
\begin{aligned}
\text { Number of moles of carbon } & =\frac{\text { Given mass of carbon }}{\text { Molar mass of carbon }} \\
& =\frac{6}{12} \\
& =0.5 \mathrm{~mol}
\end{aligned}
$$

Number of carbon atoms $=$ Number of moles $\times \mathrm{N}_{\mathrm{A}}$ Number of carbon atoms in 0.5 moles of carbon $=0.5 \times 6.02 \times 10^{23}$ atoms

$$
=3.01 \times 10^{23} \text { atoms }
$$

As,
The number of atoms of mg and carbon are same, so their number of moles are also equal.

Thus,

Result:

$\mathbf{1 2 g}$ of Mg will have same no. of atoms as 6 g of carbon.

ADDITIONAL CONCEPTUAL QUESTIONS

Q. 1 Why melting of ice is physical property while decompositicin of water is a chem.cal property?
Ans: Melting of ice is physical propery peraserp this aroces. onlythe prysical state of water changi(g) hereas iss cheni ar composition ramains same.
The deron or io of whter is chemical change as it produces hydrogen and oxygen goser and its chenical composition changes.
Why are ionic compounds not called molecules?
OR

Why is $\mathbf{N a C l}$ not a molecule?

Ans: Ionic compounds do not exist as independent molecular form, they exist in threedimensional network form. Each ion is surrounded by the oppositely charged ion to form crystal lattice so therefore they are not molecules and are called formula units.
Q. 3 Why do ionic compounds have only empirical formulas?

Ans: Ionic compounds do not exist in molecular form and are not molecules so they are not represented by molecular formulas. They exist in three-dimensional network arrangement and have only empirical formulas.
Q. 4 Is mass number and relative atomic mass are same? If no then Justify why?
(U.B)

Ans: No, mass number and relative atomic mass are not same.

Justification:

- Mass number is sum of protons and neutrons present in nucleus of an atom of an element. Whereas, relative atomic is average mass of atoms of an element as compared to $\frac{1}{12}$ th (one-twelfth) the mass of an atom of carbon-1 scope.

- Relative atomic mass of an elenent carculated b. comparison with carbon-12 isotope whereas, mass nurner can ee ai cu atecu drowing formula $\mathrm{A}=\mathrm{Z}+\mathrm{n}$.
Q. 5 Why fret atical does scentrmen reactive specie?

Ans: Free radical is xtre nely eactive specie as it has tendency to complete its octet due to presncelat unpaired electron in valence shell.
Q.6 What is meant homolytic (equal) breakage?

Ans: If breaking of a bond between two atoms takes place such that each atom takes its electron is called homolytic breakage.
Q. 7 Which chemical specie is stable specie and why?
(U.B)

Ans: Molecule is stable chemical specie as molecule always exist independe.

Reason:

Because molecules contair starie cpvalen linkage which are rorned by atoms to follow octet and 1 per rites.
Q. 8 Anong on and fre radical, which one is more reactive specie and why?

Ahs: Eree radical is more reactive specie than ion.

Reason:

Because free radical contains unpaired electron in valence shell and it has not follow octet or duplet rule whereas, usually ion is formed when an atom lose or gain electron to complete its octet or duplet rule.
Q. 9 Why do noble gases (He, Ne, Ar, $\mathrm{Kr}, \mathrm{Xe}, \mathrm{Rn}$) are called monoatomic molecules, although they exist in atomic form?

Ans: Nobel gases exist in atomic form because they are stable and exist independently just like molecules. Due to their independent existence they are called monoatomic molecules.
Q. 10 Write down type of $\mathrm{CH}_{\mathbf{4}}$ molecule. Also give reasons.
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$
Ans: $\quad \mathrm{CH}_{4}$ is both polyatomic and heteroatomicg molecule.

Reasons:

- It is polyatomic because it contains more than 4 atoms.
- It is hetero-atomic molecule because it contains differene are of ams.
Q. 11 Why one mole of a subtance cancains equar no of partes but different masses. Explain yith an exanipie.
Ans: one mo a a. sul stance contans 6.02×10^{23} equal no of particles but different masses Fix ar dizenvi egg and orange contains equal no of eggs and oranges which are twelve but different masses.

TERMS TO KNOW

Terms	Definitions
Substance	"A piece of matter in pure form is called stosta ${ }^{\text {ac }}$
Physical Properties	"The properties that are assacitto vith he pr y ical slate of a matter are calle. . hy s1cal properies"
Chemical Properties	"The nroperies that depend upon the composition of the substance are calle "chemich 1 maneries".
Elements	"The substance made up of same type of atoms, having same atenic number and it cannot be decomposed into simple substances by ordinary chemical means."
$\sqrt{\text { Valeney }}$	"The combining capacity of an element with other elements is called valency."
Radical	"A radical is a group of atoms that has some charge."
Compounds	"Substance made up of two or more elements chemically combined together in a fixed ratio by mass is called compound."
Mixtures	"A mixture is made up of two or more elements or compounds (substances) mixed up physically without any fixed ratio."
Atomic No.	"The number of protons present in the nucleus of an atom of the element is called atomic number."
Mass No.	"The sum of number of protons and neutrons present in the nucleus of an atom is called mass number."
Empirical formula	"A formula that indicates the simplest whole number ratio of atoms of different elements present in a compound is called an empirical formula."
Molecular formula.	"A formula that indicates actual number of atoms of each element present in a molecule of that compound is called molecular formula."
Atom	It is smallest particle of an element.
Molecule	"It is the smallest particle of a substance which can exist independent and shows all the properties of that substance (element or a compound)".
Ion	It is the smallest unit of an ionic compound.
Molecular Ion	It is formed by gain or loss of electrons beramule c
Molecular Mass	"The sum of atomic misses of all the atoms, present in one molecute of a nodecuiar sulestance ib its inolec ilir mass."
Formula Mass	"The sum of atonic nasses of ali the at mins present in one formula unit of an onic eompound is called formula mass."
Free Radical	"Atpros dr group of atoms possessing odd number of (unpaired) electrons are called free radicals."
	"The number of particles in one mole of a substance is called Avogadro's number."
Mole	"A mole is defined as the amount (mass) of a substance that contains $6.02 \times \mathbf{1 0}^{\mathbf{2 3}}$ number of particles (atoms, molecules or formula units) is called a mole."

SELF TEST

Time: 35 Minutes
Marks 25
Q. 1 Four possible answers (A), (B), (C) and (D) to each ques too we pi ven, make correct answer.

1. Percentage of Aluminiuritic earth rust:
(A) 28%
(D) 18%
$\mathrm{Cl}=8 \mathrm{~m}$

(D)

(10) $\times-6$
2. Valencia Thosiphate is.
(A) 1
(B) 2
(C) 3
(D) 4

3 10 centra of Quick lime is:

(A) CaO
(B) CaCO_{3}
(C) NaOH
(D) SiO_{2}
4. The element which occurs in liquid state at room temperature:
(A) Mercury
(B) Bromine
(C) Both a and b
(D) Zinc
5. 1 gram formula of NaCl contains grams:
(A) 100 g
(B) 58.5 g
(C) 32 g
(D) 40 g
6. Brass is a mixture of:
(A) $\mathrm{Cu} \& \mathrm{Au}$
(B) $\mathrm{Cu} \& \mathrm{Zn}$
(C) $\mathrm{Cu} \& \mathrm{Ag}$
(D) $\mathrm{Al} \& \mathrm{Fe}$

Q. 2 Give short answers to the following questions.

(i) Define Biochemistry.
(ii) How many amu 1 g of a substance has?
(iii) Differentiate between Homoatomic and Heteroatomic molecule.
(iv) Define empirical formula with an example.
(v) You have a piece of coal (Carbon) weighing 9.0 g . Calculate the no of moles of Coal in the given mass.
Q. 3 Answer the following questionsirderai-

(i) Give five differences between macon pound ana a Mixture
(ii) What w. ll pr the mass of 2.05×10^{16} molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Fade: $\sqrt{\mathrm{N} O}$
Parents or guardians can conduct this test in their supervision in order to check the skill of students.

