solid iquid gas CHAPTER CHAPTE

- heat

+ heat

	Topic An		1 age 110.	
R	AMA .	Introduction	159	
Y	5.1	Gaseous State Typical Properties 	159	
	5.2	Laws Related to Gases Boyle's Law Charles's Law 	163	
	5.3	Liquid State Typical Properties Evaporation Vapour Pressure Boiling Point Freezing Point Diffusion Density 	170	
	5.4	Solid State Typical Properties 	176	
	5.5	Types of Solids	180	rac
	5.6	Allotropy Exercise Solution	182 CO	DUU
	*	 Multiple Choice Questions Short Question Answers Long Question Answers Numericals 	186	
T.	MAR	Additional Conceptual Questions	192	
A)	0.0 *	Terms to Know	193	1
	*	Self Test	194	1
				-

INTRODUCTION

MATTER

Q.1 Define matter.

Ans:

Q.2

Ans:

Definition:

"Anything that has mass and occupies space is called matter

Examples:

Air, wher, table, back etc. What are physical states of matter?

(**K**.**B**)

C(B)

<u>PIVSICAL STATES OF MATTER</u> Matter exist in three physical state i.e. gas, liquid and solid. The simplest form of mater is gueous state. Liquid are less common and most of the matter exist as solid. These states are classified by means of two properties.

- Shape
- Volume

5.1 GASEOUS STATE (TYPICAL PROPERTIES)

Q.1 Write down the general properties of gaseous state.

(SWL 2016, 17, MTN 2016, 17, DGK 2017)(U.B+K.B) GASES

Ans:

"The state of matter that has indefinite shape and indefinite volume is called gas".

Examples:

- Hydrogen (H₂)
- Oxygen (O₂)
- Carbon dioxide (CO₂)

TYPICAL PROPERTIES OF GASES

Gases have similar physical properties. A few typical properties are as follows:

DIFFUSION

"The spontaneous mixing up of molecules by random motion and collisions to form a homogeneous mixture is called diffusion".

Examples:

- Spreading of fragrance of flower
- Spreading of fragrance of perfume

Dependence:

Rate of diffusion depends upon the molecular mass of the gases. Lighter gases can use rapidly than heavier ones. e.g. H_2 diffuses four times faster than O_2 gas.

"It is escaping of gas molecules through a fing hole into a space with lesser pressure".

Example:

When a type gets punctured, air effuses out.

Depencence:

Effusion depends upon molecular masses of the gases. Lighter gases effuse faster than heaver gases.

PRESSURE

Gas molecules are always in continuous state of motion. Hence when molecules strike with the walls of the container or any other surface, they exert pressure.

"The force (F) exerted per unit surface area (A) is called pressure".

Formula:

 $P = \frac{F}{\Delta}$

SI Unit of Pressure:

The SI unit of force is Newton and that of area is $1n^2$. Hence pressure has SI unit of Nm⁻². It is also called **Pascal (Pa**).

One Pascal (Pa) = 1 Nm⁻² <u>Pressure Measuring Devices:</u>

Earometer is used to measure **atmospheric pressure**

Manumeter is used to measure pressure in the laboratory.

STANDARD ATMOSPHERIC PRESSURE

It is the pressure exerted by the atmosphere at the sea level.

Definition:

"It is defined as the pressure exerted by a mercury column of 760 mm height at sea level. It is sufficient pressure to support a column of mercury 760mm in height at sea level".

Different Units of Pressure:

1 atm =760 mm of Hg = 760 torr (1 mm of Hg = one torr) 101325 Nm⁻² = 101325 Pa

COMPRESSIBILITY

Gases are **highly compressible due to empty spaces** between their molecules. When the gases are compressed, the molecules come closer to one another and occupy less volume as compared to the volume in uncompressed state.

MOBILITY

"The ease of flow of molecules is called mobility".

- Gas molecules are always in state of **continuous motion**.
- They can move from one place to another because gas molecules possess very high kinetic energy.
- They move through **empty spaces** that are available for the molecules to move freely. **Significance:**

The mobility or random motion results in mixing" up of gas molecules to produce a **homogeneous mixture**.

DENSITY OF GASES

"The mass per unit volume of a substance is called density"

Units of Measurement:

Gas density is expressed in grams per din³ whereas, liquid and solid densities are expressed in grams per cm³ i.e. liquids and solids are 1000 times denser than gases. Effect of Temperature:

Gases have low density than liquids and solids. It is due to light mass and more volume occupied by the gas molecules.

The density of gases increases by cooling because their volume decreases.

Example:

At normal atmospheric pressure, the density of **oxygen gas** is **1.4gdm**⁻³ at **20°C** and **1.5gdm**⁻³ at **0°C**.

							Co () \	i.
	i.	Why the rate of	diffusion of	f gases is rapid than t	that of liquids?	1	(1.8)	1
	Ans:			RATE OF DIFFUSIO	\underline{N}	121	GOND	
		The rate of diffu	usion of gase	es is rapid than that o	f hen ids because,	gas molecu	les nave	
		insignificant attr	active force	s, low molecular ina	sses, more kinetio	energy ar	nd more	
	empty spaces are present Let were their molecules, as compare to Equids.							
	11. ;;;	What co you mean by Pascal? How many Pascals are equal to 1 atm? (DGK 2017, GRW 2016)(K B)						
	Ans:			PASCAL	(/	
N	NN	"Pasce! is equal	to a force og	f one Newton that acts	upon an area of o	ne metre sq	uare".	
$\langle \rangle$	90	It is unit for pre	ssure.		2			
0			latm :	= 101325 Pa = 101325	5Nm ⁻²		~	
	IV.	Whether the de	nsity of a ga	as decrease on cooling	g? (Ll	HR 2015, 16 (G-II)(<i>U.B</i>)	
	Ans:	No the density	<u>DENS</u> of a gas does	s not decrease on cool	<u>OOLING</u> ing It increases on	cooling be	cause on	
		cooling their vol	ume decreas	es and density is inver	se to volume			
		cooling then vol	unie deereus	m	be to volume.			
		As		$d = \frac{1}{v}$				
		Example:						
		At normal atmo	spheric pres	ssure the density of o	xygen gas is 1.4g	dm ⁻³ at 2	D°C and	
		1.5gdm ⁻⁵ at 0°C					-30	
	v.	1.5gdm ⁻⁵ at 0°C Why is the densi	ty of gas mea	nsured in g dm ⁻³ while t	that of a liquid is ex	pressed in g	(cm^{-3})	
	v. Ans:	1.5gdm ⁻⁵ at 0°C Why is the densi MEA	ty of gas mea	nsured in g dm ⁻³ while t T OF DENSITY OF G	that of a liquid is ex (SGD 2 ASES AND LIOUI	pressed in g 2016, 17, FSD 2 D	; cm ⁻³ ? 2017)(<i>U.B</i>)	
	v. Ans:	1.5gdm ⁻⁵ at 0°C Why is the densi <u>ME</u> Gases have low	ty of gas mea <u>ASUREMEN</u> densities d	nsured in g dm⁻³ while t <u>T OF DENSITY OF G</u> lue to small mass an	t hat of a liquid is ex (SGD 2) <u>ASES AND LIQUI</u> d more volume o	pressed in g 2016, 17, FSD 2 <u>D</u> ccupied by	c cm⁻³? 2017)(U.B) the gas	
	v. Ans:	1.5gdm ⁻⁵ at 0°C Why is the densi <u>ME</u> Gases have low molecules. There	ty of gas mea <u>ASUREMEN</u> ⁷ densities d efore gas der	EXAMPLE 1 IN THE SECOND SECONDO SECOND SECOND SECOND SECOND SECONDO SECOND SECOND SECONDO SECONDO SECONDO SECONDO SECONDO SECONDO SECONDO SECOND SECONDO SECONDO SECOND SECONDO SECOND SECOND SECOND SECOND	that of a liquid is ex (SGD2 <u>ASES AND LIQUI</u> d more volume o rams per dm ³ , whe	pressed in g 2016, 17, FSD 2 D ccupied by reas liquid a	g cm⁻³? 2017)(<i>U.B</i>) the gas and solid	
	v. Ans:	1.5gdm ⁻⁵ at 0°C Why is the densi <u>ME</u> Gases have low molecules. There densities are exp	ty of gas mea <u>ASUREMEN</u> densities d efore gas der ressed in gra	EXAMPLE 1 IN CONT OF 1 IN CONT OF DENSITY OF G TOF DENSITY OF G lue to small mass an nsity is expressed in gr am per cm ³ because li	that of a liquid is ex (SGD 2) ASES AND LIQUI d more volume o rams per dm ³ , whe quids and solids ar	pressed in g 2016, 17, FSD 2 D ccupied by reas liquid a re 1000 time	$g \text{ cm}^{-3}$? 2017)(U.B) the gas and solid es denser	
	v. Ans:	1.5gdm ³ at 0°C Why is the densi ME4 Gases have low molecules. There densities are exp than gases.	ty of gas mea <u>ASUREMEN</u> ⁷ densities d efore gas der pressed in gra	EXAMPLE 1 asured in g dm⁻³ while a T OF DENSITY OF G due to small mass an nsity is expressed in gr am per cm ³ because li	that of a liquid is ex (SGD2 ASES AND LIQUI d more volume o rams per dm ³ , whe quids and solids ar	pressed in g 2016, 17, FSD 2 D ccupied by reas liquid a re 1000 time	(cm^{-3}) 2017)(U.B) the gas and solid es denser	
	v. Ans: vi.	1.5gdm ⁻⁵ at 0°C Why is the densi MEA Gases have low molecules. There densities are exp than gases. Convert the foll	ty of gas mea <u>ASUREMEN</u> densities de fore gas der pressed in gra- lowings	EXAMPLE 1 In g dm ⁻³ while the small mass an insity is expressed in gram per cm ³ because li	that of a liquid is ex (SGD2) <u>ASES AND LIQUI</u> d more volume o rams per dm ³ , whe quids and solids ar	pressed in g 2016, 17, FSD 2 <u>D</u> ccupied by reas liquid a re 1000 time	$g \text{ cm}^{-3}$? 2017)(U.B) the gas and solid es denser (U.B)	
	v. Ans: vi.	1.5gdm ³ at 0°C Why is the densi <u>ME4</u> Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to Solution:	ty of gas mea <u>ASUREMEN</u> densities d efore gas der bressed in gra lowings atm	EXAMPLE 1 asured in g dm⁻³ while f T OF DENSITY OF G lue to small mass an nsity is expressed in gr am per cm ³ because li (b) 3.5 atm to torr	that of a liquid is ex (SGD2 <u>ASES AND LIQUI</u> d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 D ccupied by reas liquid a re 1000 time tm to Pa	$(cm^{-3}?)$ 2017)(U.B) the gas and solid es denser (U.B)	
	v. Ans: vi. (a)	1.5gdm ³ at 0°C Why is the densi ME/ Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to Solution: 70 cm Hg to atr	ty of gas mea <u>ASUREMEN</u> densities de fore gas den pressed in gra lowings atm n:	EXAMPLE 1 a g dm⁻³ while f T OF DENSITY OF G hue to small mass an nsity is expressed in gr am per cm ³ because li (b) 3.5 atm to torr	that of a liquid is ex (SGD 2 <u>ASES AND LIQUI</u> d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 Coupied by reas liquid a re 1000 time tm to Pa	(U.B) (U.B) the gas and solid es denser (U.B)	
	v. Ans: vi. (a)	1.5gdm ³ at 0°C Why is the densi ME4 Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to Solution: 70 cm Hg to atr We know that:	ty of gas mea <u>ASUREMEN</u> densities d efore gas den bressed in gra lowings atm n:	EXAMPLE 1 asured in g dm⁻³ while f T OF DENSITY OF G lue to small mass an nsity is expressed in gr am per cm ³ because li (b) 3.5 atm to torr	that of a liquid is ex (SGD2 <u>ASES AND LIQUI</u> d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 Coupied by reas liquid a re 1000 time tm to Pa	(cm ⁻³ ? 2017)(U.B) the gas and solid es denser (U.B)	1
	v. Ans: vi. (a)	ME / Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to Solution: 70 cm Hg to atr We know that: 760 cm Hg =	ty of gas mea <u>ASUREMEN</u> densities de fore gas den pressed in gra- lowings atm n: 1 atm	EXAMPLE 1 IDENTITY OF G T OF DENSITY OF G lue to small mass an nsity is expressed in gr am per cm ³ because li (b) 3.5 atm to torr (As 760mmHg=76cm	that of a liquid is ex (SGD 2 <u>ASES AND LIQUI</u> d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 Coupied by reas liquid a re 1000 time tm to Pa	cm ⁻³ ? 2017)(U.B) the gas and solid es denser (U.B)	7
	v. Ans: vi. (a)	1.5gdm ³ at 0 °C Why is the densi $\underline{ME4}$ Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to Solution: 70 cm Hg to atr We know that: 760 cm Hg = 1 cm Hg =	ty of gas mea <u>ASUREMEN</u> densities d efore gas den bressed in gra- lowings atm 1 atm <u>1</u>	EXAMPLE 1 ISOURCE IN CONTINUES AND IT OF DENSITY OF G lue to small mass an nsity is expressed in gram per cm ³ because li (b) 3.5 atm to torr (As 760mmHg=76cm	that of a liquid is ex (SGD 2 <u>ASES AND LIQUI</u> d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 Coupied by reas liquid a re 1000 time tm to Pa	(U.B)	7
	v. Ans: vi. (a)	ME / Why is the densi \underline{ME} / Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to Solution: 70 cm Hg to atr We know that: 760 cm Hg = 1 cm Hg =	ty of gas mea <u>ASUREMEN</u> densities denores gas denores sed in gra- lowings atm 1 atm $\frac{1}{760}$	EXAMPLE 1 INTEGRAL SET UP: TOF DENSITY OF G lue to small mass an nsity is expressed in gr am per cm ³ because li (b) 3.5 atm to torr (As 760mmHg=76cm	that of a liquid is ex (SGD2 <u>ASES AND LIQUI</u> d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 ccupied by reas liquid a re 1000 time tm to Pa	cm ⁻³ ? 2017)(U.B) the gas and solid es denser (U.B)	7
	v. Ans: vi. (a)	1.5gdm ³ at 0 °C Why is the densi $\underline{ME4}$ Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to atr We know that: 760 cm Hg = 1 cm Hg = 7	ty of gas mea <u>ASUREMEN</u> densities d fore gas den bressed in gra- lowings atm 1 atm $\frac{1}{760}$ 0 cm Hg	EXAMPLE A surved in g dm ⁻³ while the second se	that of a liquid is ex (SGD 2 ASES AND LIQUI d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 Coupied by reas liquid a re 1000 time tm to Pa	(U.B)	
	v. Ans: vi. (a)	ME /Why is the densitive of the densities are expected on the de	ty of gas mea $\underline{ASUREMEN}$ densities densities densi	EXAMPLE A surved in g dm ⁻³ while for the small mass and the formula is expressed in gradient of the survey of the state of the survey of	that of a liquid is ex (SGD 2 <u>ASES AND LIQUI</u> d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 ccupied by reas liquid a re 1000 time tm to Pa	cm ⁻³ ? 2017)(U.B) the gas and solid es denser (U.B)	
	v. Ans: vi. (a)	1.5gdm ³ at 0 °C Why is the densi $\underline{ME4}$ Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to atr We know that: 760 cm Hg = 1 cm Hg = 77 3 5 atm to torce	ty of gas mea <u>ASUREMEN</u> densities d fore gas den bressed in gra- lowings atm 1 atm $\frac{1}{760}$ 0 cm Hg 0 cm Hg	EXAMPLE A surved in g dm ⁻³ while the second se	that of a liquid is ex (SGD 2) ASES AND LIQUI d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 ccupied by reas liquid a re 1000 time tm to Pa	cm ⁻³ ? 2017)(U.B) the gas and solid es denser (U.B)	7
	 v. Ans: vi. (a) 	ME / Why is the densi \underline{ME} / Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to Solution: 70 cm Hg to atr We know that: 760 cm Hg = 1 cm Hg = 7 3.5 atm to tor: We know that	ty of gas mea <u>ASUREMEN</u> densities denores de nores de	EXAMPLE A surved in g dm ⁻³ while the second se	that of a liquid is ex (SGD2 ASES AND LIQUI d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 ccupied by reas liquid a re 1000 time tm to Pa	(U.B)	
	v. Ans: vi. (a)	1.5gdm ⁵ at 0 °C Why is the densi \underline{ME}_{4} Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to atr We know that: 760 cm Hg = 1 cm Hg = 7 3.5 atm to torr: We know that: 1 atm -	ty of gas mea <u>ASUREMEN</u> densities d efore gas den ressed in gra- lowings atm 1 atm $\frac{1}{760}$ 0 cm Hg 0 cm Hg 760 torr	EXAMPLE A surved in g dm ⁻³ while the second se	that of a liquid is ex (SGD 2 ASES AND LIQUI d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 ccupied by reas liquid a re 1000 time tm to Pa	cm ⁻³ ? 2017)(U.B) the gas and solid es denser (U.B)	
N	v. Ans: vi. (a)	1.5gdm⁵ at 0 °C Why is the densi $\underline{ME4}$ Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to atr We know that: 760 cm Hg = 1 cm Hg = 7 3.5 atm to torr: We know that: 1 atm = 3 5 atm =	ty of gas mea ASUREMEN densities d efore gas den bressed in gra- lowings atm 1 atm $\frac{1}{760}$ 0 cm Hg 0 cm Hg 0 cm Hg 760 torr 760 torr 760 x 3 5	EXAMPLE A surved in g dm ⁻³ while the second se	that of a liquid is ex (SGD2 ASES AND LIQUI d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 ccupied by reas liquid a re 1000 time tm to Pa	(U.B)	7
R	v. Ans: vi. (a)	1.5gdm ⁵ at 0 °C Why is the densi $\frac{ME}{2}$ Gases have low molecules. There densities are exp than gases. Convert the foll (a) 70 cm Hg to atr We know that: 760 cm Hg = 1 cm Hg = 7 3.5 atm to torr: We know that: 1 atm = 3.5 atm =	ty of gas mea ASUREMEN densities d fore gas den bressed in gra- lowings atm 1 atm $\frac{1}{760}$ 0 cm Hg 0 cm Hg 0 cm Hg 760 torr 760 x 3.5 2660	EXAMPLE A surved in g dm ⁻³ while the second se	that of a liquid is ex (SGD 2) ASES AND LIQUI d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at nHg)	pressed in g 2016, 17, FSD 2 ccupied by reas liquid a re 1000 time tm to Pa	(U.B)	
N	v. Ans: vi. (a)	ME /Why is the densitive of the densities are experimental to the densit	ty of gas mea ASUREMEN densities densities densite densities densities densities densities densities densities de	EXAMPLE A survey of the second sec	that of a liquid is ex (SGD2 ASES AND LIQUI d more volume o rams per dm ³ , whe quids and solids ar (c) 1.5 at	pressed in g 2016, 17, FSD 2 ccupied by reas liquid a re 1000 time tm to Pa	(U.B)	7

(c)	1.5 atm to Pa	r=0
	We know that	TO ROMU
	1 atm = 101325 Pa	1216000
	$1.5 \text{ atm} = 101325 \times 1.5$	1(0,10)
	= 151987.5	
	1.5 atm 1s = 151987.5 Pa	1
	OIL 5.2 TAWS RELATED TO GASES	
	TILL O LAD BOYLE'S LAW	
01	Frag Dayle's Law (Two the experimental verification of Devic's	Low
V.I	Start Boyle S Law. Give the experimental verification of Boyle S	Law. WP 2017) <i>(U R+K R+4 R</i>)
NNI	OR	(0.0+R.0+A.0)
00	Define Boyle's Law and verify it with an example (Ex –Q.1)) (LHR 2016 G-I, 17 G-I)
Ans:	BOYLE'S LAW	
	Introduction:	
	In 1662 Robert Boyle studied the relationship between the	
	volume and pressure of a gas at constant temperature. Robert	
	Boyle (1627-1691) was natural philosopher, chemist, physicist	
	and inventor. He is famous for Boyle's Law of gases.	
	Statement 1:	
	"The volume of a given mass of a gas is inversely proportional	
	to its pressure provided the temperature remains constant".	Robert Boyle (1627-
	Mathematical Representation: According to this law the values (V) of a given mass of a gas	1691) was natural
	According to this law the volume (v) of a given mass of a gas	philosopher, chemist, physicist and inventor
	decreases with the increase of pressure (P) and vice versa.	He is famous for
	It call be written as.	Boyle's law of gases".
	Volume $\propto -\frac{1}{1}$	
	Pressure	
	N 1	
	$v \propto -$	
	- k	
	$V = \frac{K}{R}$	
	P DV la senstant	
	PV = K = constant Where k is proportionality constant. The value of k is some for the	
	vincie, k is proportionality constant. The value of k is same of u	ne same amount of a
	Statement 2.	1 Child
	Boyle's Law can also be stated as	
	"The product of pressure and volume of a fixed mass of a gas is c	constant at a constant
	temperature '	onstant at a constant
	When $P_1V_1 = k$ Then $P_2V_2 = k$	
	Where P_1 = Initial pressure P_2 = Final pressure	2
	V_1 = Initial volume V_2 = Final volume	
UNV.	As both equations have same constant, therefore their variables a	re also equal to each
0	other.	-
	$P_1V_1=P_2V_2$	
	This equation establishes the relationship between pressure and volu	me of the gas.

EXPERIMENTAL VERIFICATION OF BOYLE'S LAW

The relationship between volume and pressure can be verified experimentally by the following series of experiments. Let us take some mass of a gas in a cylinder having a movable piston and observe the effect of increase of pressure on its volume

- The phenomenon is represented when the pressure of 2 atm is applied, the volume of • the gas reads as 1 dm³
- When pressure is increased equivalent to 4 atm, the volume of the gas reduces to 0.5 dm^3 .
- When pressure is increased three times i.e. 6 atm, the volume reduces to 0.33 dm³.
- Similarly, when pressure is increased up to 8 atm on the piston, volume of the gas decreases to 0.25 don

Where 'k' is proportionality constant. The value of k is same for the same amount of a g ven gas.

Calculations:

When we calculate the product of volume and pressure for this experiment, the product of all these experiments is constant i.e 2 atm dm³.1t proves the Boyle's law

P_1V_1	$= 2 \operatorname{atm} \times 1 \operatorname{dm}^3$	$= 2 \text{ atm } \text{dm}^3$
P_2V_2	$=4 \text{ atm} \times 0.5 \text{ dm}^3$	$= 2 \operatorname{atm} \operatorname{dm}^{3}$
P_3V_3	$= 6 \text{ atm} \times 0.33 \text{ dm}^3$	$= 2 \text{ atm } \text{dm}^3$
P ₄ V ₄	$= 8 \text{ atm} \times 0.25 \text{ dm}^3$	$= 2 \operatorname{atm} \operatorname{dm}^3$

Conclusion:

Hence, product of pressure and volume of fixed amount of gas is constant at constant temperature.

- 0.2 Explain the absolute temperature scale with example. (U.B+K.B)
- Ans:

ABSOLUTE TEMPERATURE SCALE

Introduction:

Lord Kelvin introduced absolute temperature scale or Kelvin scale. This scale of temperature starts from 0 K or -273.15°C, which is given the name of absolute zero. **Absolute Zero:**

"It is the temperature at which an ideal gas would have zero volume

Absolute Temperature Scale or Kelvin scale: "A scale of temperature that starts from zero Kelvin or -273.15°C is colled absolute temperature scale or Kelvin scale' As both scales have equal dog a range, therefore, when 0 K is b C -273K equal to -273°C then 273 K is equal to 0°C. Conversion of sius scale Kelvin scale Kelvin temperature to Cels us temperature and vice versa -100°C -173K can be carried out as follows: $I(K) = T(^{\circ}C) + 273$ -200°C 73K Cel $T(^{\circ}C) = T(K) - 273$ **Remember:** -273°C -0 KAlways convert temperature scale from °C to K scale while solving problems. $K = 273 + {}^{\circ}C$

		nyelear etatee er matter
	5.2 LAWS RELATED TO GAS	=\$
	5 2 1 BOVI E'S I AW	~ 20
. .	SHORT QUESTIONS	NY CLO
Q.1	State Boyle law. MTN 2016 SGD 2016 RWP 20.6, LHR	2015 GRW 2017 G-I, II)(K.B)
Ans:	Answer given on pg # 103	$(\mathbf{D}_{\mathbf{D}}_{\mathbf{D}_{\mathbf{D}_{\mathbf{D}}}}}}}}}}$
Q.2 Ans:	MUASURE AFN'E OF PLOOD PRESSURE	(Do you know Pg. # 79)(A.B)
Alls.	Instrument:	
6	Blool pressure is measured using a pressure gauge it may	be a
	merculy manometer or some other device.	
M.A.	Representation:	
	Blood pressure is reported by two values such as 120/80 which	ch is
	a normal blood pressure.	
	Systolic Pressure: The first measurement shows the maximum pressure when	the beart is numping it is
	called systolic pressure	the heart is pumping it is
	Diastolic Pressure:	
	When the heart is in resting position pressure decreases and it is the s	second value called diastolic.
Q.3	In which unit blood pressure is measured?	(Do you know Pg. # 79)(<i>K.B</i>)
Ans:	UNIT OF BLOOD PRESSURE	
0 4	Systolic and diastolic both of these pressure are measured in to	orr unit.
Q.4	What is hypertension?	(Do you know Pg. # 79)(<i>K.B</i>)
Ans:	<u>HYPERTENSION</u>	
	Hypertension is because of high blood pressure due to tension	and worries in daily life
	Criteria:	
	The usual criteria of hypertension is a blood pressure greater th	nan 140/90.
	Disadvantage:	
	Hypertension raise the level of stress on the heart and on the	e blood vessels. This stress
	increase the susceptibility of heart attacks and strokes.	
	5.2 LAWS RELATED TO GAS	ES
	5.2.1 BOYLE'S LAW	
1.	Blood pressure of a healthy person is:	(GRV 2)1+)(K.B)
	(A) $\frac{120}{mmHg}$ (B) $\frac{140}{mmHg}$ (C) $\frac{110}{mmHg}$	$(\Gamma) \frac{150}{mmHg}$
	(11) 80 mills (2) 90 mills (0) 100 mills	70 70
2.	When volume of a gas is increased two times its pressure be	ecomes: (U.B)
_	(A) Double (E) Four times (C) Half	(D) Zero
3.	Which quantity is kept constant in Boyle's law?	(K.B)
NA	(A) Temperature (B) Pressure (C) Volume	(D) Amount of gas
NNI.	(A) When volume increases are statements is true for Boyle's law?	(U.B)
00	(A) when volume increases pressure increases (B) when volume (C) When volume decreases pressure increases (D) Both D and C	increases pressure decreases
5	(C) when volume decrease pressure increases (D) both B and C The value of absolute zero is:	(CDW 2017 C IVE D)
J.		(GKW 201/G-1)(A.B)
	$(\Delta) = 27/3 + 5^{\circ}C$ (R) $27/3 + 5^{\circ}C$ (C) $10^{\circ}C$	

$$V = k T$$

$$V = k T$$

$$V = k$$

Where k is proportionality constant.

Another Form of Charles's Law:

If temperature of the gas is increased its volume also increases. When temperature is changed from T_1 to T_2 , the volume will change from V_I to V_2 . The mathematical form of Charles' Law will be:

$$\frac{V_1}{T_1} = k, \frac{V_2}{T_2} = k$$

As both equations have same value of constant, therefore their variables are also equal to each other. So

According to Charles's Law:

Putting the values in equation:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{70}{25 + 273} = \frac{62.5}{100 + 275}$$

$$\frac{30}{298} = \frac{62.5}{373}$$

$$0.167 = 0.167$$

Conclusion:

Hence, volume of fixed amount of gas increased with increase in temperature at constant pressure.

Q.2In which units body temperatures is measured?(Do you know Pg. # 83)(K.B)Ans:MEASURING UNIT OF BODY TEMPERATURE

Body temperature is measured in **Fahrenheit scale**. Normal body temperature is **98.6°F**, it is equivalent to **37°C**. This temperature is close to average normal atmospheric temperature.

Q.3 Explain the physical states of matter and role of intermolecular forces. (U.B) OR

Describe relationship between physical states of matter and intermolecular forces.*(U.B)* **Ans:** PHYSICAL STATES OF MATTER AND ROLE OF INTERMOLECULAR FORCES

Matter exists in three physical states:

- Gas
- Liquid
- Solid.

(i) Gaseous State of Matter:

In the gaseous state, the molecules are far apart from each other. Therefore, **intermolecular forces** are **very weak** in them.

(ii) Liquid State of Matter:

In the liquid state molecules are much closer to each other as compared to gases. As a result liquid molecules develop **stronger intermolecular forces**, which affect their physical properties like diffusion, evaporation, vapour pressure and boiling point. Compounds having **stronger intermolecular forces** have **higher boil ng points**.

(iii) Solid State of Matter:

The intermolecular forces become so don in an in solid state that the molecules look motionless. They arrange in a regular pattern therefore they are donser than molecules of liquids.

Figure: Three States of Matter Showing Intermolecular Forces

	5.2.2 CHA	RLES LAW		_			
	SHORT Q	UESTIONS	1516	2((
Q.1	State Charles's Law. (BWP 201	7, F5D 2016, GRW 2015, 16,	LUR 2015, 16, 17 (5)	! ∕(X.B)			
Ans:	Answer given on pg # 167 🔘		VI Case				
	5.2.2 DHA		IJ				
	MULTIFLE CHOICE QUESTIONS						
1.	Normal body temperature of human l	beings is:	(GRW 2014)(<i>K</i> . <i>B</i>			
o n	(A) $(.7^{\circ}C)$ (B) $38^{\circ}C$	(C) 39° <i>C</i>	(D) $40^{\circ}C$				
JNE	In Cholles's Law 'k' is equal to:		(LHR 2015	5)(<i>K</i> . <i>B</i>			
90	$(A) \frac{T}{-} \qquad (B) TV$	(C) $\frac{V}{-}$	(D) $\frac{V}{-}$				
	V V	Ť	P P				
3.	$\frac{\mathbf{V}}{\mathbf{U}} = \mathbf{k}$ is the mathematical form of:			(K . B			
	T T			(11)2			
	(A) Boyle's Law (B) Charles's Law	v (C) Avogadro's Law	(D) Dalton Law				
4.	Mathematical representation of Char	les's Law is:		(K.B			
	(A) $V \propto \frac{1}{2}$ (B) $V \propto \frac{1}{2}$	(C) $V \propto T$	(D) $V \propto P$				
	P T		× /				
	5.3 TEST	YOURSELF					
i.	Which variables are kept constant in	Charles's Law?		(K.B			
Ans:	CONSTANT VARIABLI	ES OF CHARLES'S LAW					
	Mass and pressure are kept constant in	Charle's Law while volu	me and temperatur	re are			
	variable parameters. $\frac{V}{-}$ = Constant						
••		C O		/T T D			
ll. Ans:	why volume of a gas decreases with in DECREASE IN V	ncrease of pressure?	DF	(U.B			
Alls.	Volume of gas decreases with increase	of pressure because acc	<u>ne</u> ording to Boyle's	Lav			
	volume and pressure both are inversely	proportional to each othe	er. So when we inc	creas			
	pressure, the gas molecules inter into t	he intermolecular spaces	and come closer t	o on			
	another and volume of a gas decreases.	Ĩ					
iii.	What is absolute zero?	(SWL 2016,17, FSD	2016, 17, GRW 2015	5)(K.B			
Ans:	<u>ABSOLU</u>	<u>JTE ZERO</u>	$a \ominus a$	200			
	Absolute zero is the temperature at whi	ich an ideal gas would ha	ve zero volume	Seive			
iv	Scale starts from absolute zero, represente Doos Kolvin scale show a pogative tar	u as U K (Zers Neivin). It	s equarto -273 (0				
Ans.	NEGATIVE TEMPET	ATURE OF KELVIN		(A .D			
1115.	The Kelvin scale does not show regative	$\frac{1}{2}$ value, a: $0 \text{ K} = -273.15$	5°C				
v.	When a gas is answed to expand, what	t will be its effect on its	temperature?	(U.B			
Ans:	FEELCT OF EXP	ANSION ON TEMPERA	TURE	,			
	When a gas is allowed to expand, its tem	perature decreases because	e gas molecules cor	nsum			
M	energy for expansion by the gas molecule	s on its own. This decrease	s their temperature.				
UN	Caryou cool a gas by increasing its ve	olume?		(U.B			
Ans:	<u>COOLING OF GAS</u>	BY INCREASING VOLUN	<u>ME</u> vaion of high angen				
	i es, when a highly compressed gas is a	nowed to expand into a re	egion of high press	ure to $n + h$			
	decreases their temperature	e expansion by the gas m	orecures on its ow	ii uiis			

Chapter-5

Liquids have a definite volume but their shape is not definite. A **liquid attains shape of the container** in which it is put.

Q.2 Write a detailed note on evaporation. Which factors affect the evaporation?

(LHR 2014, 16 G-I, MTN 2016, BWP 2017, FSD 2017)(U.5.)

Ans:

EVAPORATION

Definition:

"The process of changing of a liquia into a gas phase is called evaporation".

The molecules having more than average kinetic energy overcome the attractive forces among the molecules and escape from the surface is called as evaporation. Properties

(i) It is reverse to condensation in which a gas changes into liquid.

(ii) Evaporation is an endothermic process (heat is absorbed).

Example:

When one mole of water in liquid state is converted into vapour form, it requires 40.7 kJ of energy.

 $H_2O_{(1)} \longrightarrow H_2O_{(g)} \Delta H_{vap}^o = 40.7 \text{ KJ/mol}$

Mechanism of Evaporation:

In the liquid state, molecules are in a continuous state of motion. They possess kinetic energy but all the molecules do not have same kinetic energy. Majority of the molecules have average kinetic energy and a few have more than average kinetic energy. The molecules having more than average kinetic energy, overcome the attractive forces among the molecules and escape from the surface. It is called as evaporation.

Evaporation and Temperature:

Evaporation is a **continuous process** taking place at **all temperatures**. The rate of evaporation is directly proportional to temperature. It increases with the increase in temperature because of increase in kinetic energy of the molecules.

Evaporation is a Cooling Process:

When the high kinetic energy molecules vaporize the temperature of remaining molecules falls down. To compensate this deficiency of energy, the molecules of liquid absorb energy from the surroundings. As a result the temperature of surroundings decreases and we feel cooling.

Example:

When we put a drop of alcohol on palm, the alcohol evaporates and we feel cooling effect.

FACTORS AFFECTING EVAPORATION

Evaporation depends upon following factors:

(i) Surface area

(ii) Temperature

(iii) Intermolecular forces

(i) Surface Area:

Evaporation is a surface phenomenon. Greater is surface area, greater is evaporation and vice versa.

Example:

Sometimes a saucer is used if tea is to be cooled quickly. This is because evaporation from the larger surface area of saucer is more than that iro, n the smaller surface area of a tea cup. (ii) **Temperature:**

At high temperature, rate of evaporation is high because at high temperature kinetic energy of the noise destincted es so high that they over- come the intermolecular forces and evaporate rapidly

Example:

Hot water will evaporate faster than the cold water in containers of same capacity.

(iii) <u>Intermolecular Forces:</u>

The stronger the intermolecular attractive forces, the lower is the evaporation. Example:

Water has stronger intermolecular forces than alcohol, therefore, alcohol evaporates faster than water.

Q.3 What is vapour pressure and how it is affected by inter molecular forces? (Ex-Q.3) (SWL 2016, BWP 2016, 17, MTN 2017, RWP 2017 G-II)(*U.B+K.B*)

Ans:

<u>VAPOUR PRESSURE</u>

Definition:

The pressure exerted by the vapours of a liquid at equilibrium with the liquid at a particular temperature is called vapour pressure of a liquid.

State of Equilibrium:

"The equilibrium is a state when rate of vaporization and rate of condensation is equal to each other but in opposite directions".

Formula:

Dynamic Equilibrium:

"The state at which two opposing processes take places in the opposite direction simultaneously at equal rates is called dynamic equilibrium".

The **number of molecules evaporating** will be **equal to** the **number of molecules** coming back (**condensing**) to liquid. This state is called dynamic equilibrium.

Explanation:

From the open surface of a liquid, molecules evaporate and mix up with the air but when we close a system, evaporated molecules start gathering over the liquid surface. Initiality the vapours condense slowly to return to liquid. After some time condensation process increases and a stage reaches when the rate of evaporation becomes equal to rate of condensation. At this stage the number of molecules evaporating will be equal to the number of molecules coming back (condensing) to liquid. This is called dynamic equilibrium state.

FACTOR AFFECTING VAPOUR PRESSURE

Vapour pressure of a liquid depends upon the following factors:

(i) Nature of liquid

(ii) Size of molecule

(iii)Temperature

(i) Nature of Liquid:

Vapours pressure depends upon the nature of liquid.

Polar liquids have low vapour pressure than non-polar liquids at the same temperature. This is because of strong intermolecular forces between the polar molecules of liquids.

<u>Exar ıple:</u>

Water has less vapour pressure than that of alcohol at same temperature.

(ii) <u>Size of Molecules:</u>

Small size molecules can easily evaporate than big size molecules. Hence small size molecular liquids exert more vapour pressure.

Examples:

Hexane (C_6H_{14}) is a small sized molecule as compared to decane ($C_{10}H_{22}$).

 C_6H_{14} evaporates rapidly and exerts more pressure than $C_{10}H_{22}$).

(iii) <u>Temperature:</u>

At **high temperature, vapour pressure is higher than at low temperature**. At elevated temperature, the kinetic energy of the molecules increases enough to enable them to vaporize and exert pressure.

Example:

Vapour pressure of water at 0°C is 4.58 mmHg and at 100°C it is 760 mmHg.

Temp	Vapour Pressure	Temp	Vapour Pressure	
°C	mmHg	°C	mmHg	
0	4.58	60	149.4	
20	17.5	80	355.1	
40	55.3	100	760.0	
Table: Relationship of Vapour Pressure of Water With Temperature				

Q.4 Define boiling point and also explain how it is affected by different factors?

(Ex-Q.4)(LHR 2015, GRW 2016 G-II, SGD 2016, 17 G-II, RWP 2017 G-II)(U.B+K.B)

Ans:

Definition:

BOILING POINT

"The temperature at which the vapour pressure of a liquid becomes equatmospheric pressure or any external pressure is called boiling point".

Example:

- Boiling of water = 190°C.
- Boiling point of acenic acid = 113°C

<u>Mechanish of Boiling</u>

When a liquid is beared, its molecules gain energy and the number of molecules which have note than average kinetic energy increases. More and more molecules become energetic, enough to overcome the intermolecular forces. Due to this, rate of evaporation increases which results in increase of vapour pressure until a stage reaches where the vapour pressure of a liquid becomes equal to atmospheric pressure. At this stage the liquid starts boiling.

Relationship between Boiling Point and Vapour Pressure:

The increase of vapour pressure of diethyl ether, ethyl alcohol and water with the increase of temperature. At 0°C the vapour pressure of diethyl ether is 200 mm Hg of ethyl alcohol 25 mm Hg while that of water is about 5 mm Hg. When they are heated, vapour pressure of diethyl ether increases apilly and becomes equal to atmospheric pressure at 34.6°C, while vapour pressure of water increases slowly because intermolecular forces of water are stronger.

The vapour pressure increases very rapidly when the liquids are near to boiling point.

Figure: Boiling Point Curves of Ether Alcohol and Water Factors Affecting the Boiling Point:

The boiling point of the liquid depends upon the following factors.

- (i) Nature of liquid
- (ii) Intermolecular forces

(iii) External pressure

(i) Nature of Liquid:

The **polar liquids have high boiling points than that of non-polar liquids** because polar liquids have strong intermolecular forces.

Examples:

Boiling point of water (more polar) is 100°C while that of ethyl alcohol (less polar) is 78°C.

(ii) Intermolecular Forces:

The stronger the intermolecular forces, the higher is the boining point of liquid.

Intermolecular forces play a very important role on the boi ing point of liquids.

Substances having stronger intermeter la Torces have high beiling points, because such liquids attain a level of vapour pressure equal to external pressure at high temperature.

Example.

Boiling point of water (100°C) is greater than that of alcohol (78°C) due to stronger intermolecular forces of attraction.

(iii) External Pressure:

Boiling point of a liquid **depends upon external pressure**. Boiling point of a liquid is controlled by external pressure in such a way, that it can be increased by **increasing external pressure** and vice versa. This principle is used in the working of **'Pressure Cooker'**.

Q.5 What is meant by freezing point? (LHR 2016 G-I, DGK 2016, SGD 2016)(U.B+K.B) Ans: <u>FREEZING POINT</u>

"The temperature at which vapour pressure of a liquid state becomes equal to the vapour pressure of the solid state and liquid and solid coexist in dynamic equilibrium is called freezing point".

Explanation:

When liquids are cooled the vapour pressure of liquid decreases and when vapour pressure of a liquid state becomes equal to the vapour pressure of the solid state. At this temperature liquid and solid coexist in dynamic equilibrium with one another and this is called the freezing point of a liquid.

Exernples:

Fee ing point of water is 0°C and that of acetic acid is 16.6°C due to attractive forces respectively.

Sr. No	Liquid	Freezing Point °C	Boiling Point °C
1	Diethyl ether	-116	34.6
2	Ethyl alcohol	-115	78
3	Water	0.0	100
4	n-Octane	-57	126
5	Acetic acid	16.6	118

Q.6 Describe the phenomenon of diffusion in liquids along with factors which influence it. (Ex-Q.5)(SGD 2016, RWP 2016, FSD 2017)(U.B+K.B)

Ans:

<u>DIFFUSION</u> "The spontaneous mixing up of molecules by random motion and collisions to form homogeneous mixture is called diffusion".

Explanation:

The liquid molecules are always in a state of **continuous motion**. They move from **higher concentration to lower concentration**. They mix up with the molecules of other liquids, so that they form a **homogeneous mixture**.

Example:

When a few drops of ink are added in a beaker of water, ink molecules move around and after a while spread in whole of the beaker. Thus diffusion has taken place.

Liquids diffuse like gases but the rate of diffusion of liquids is very slow.

Factors Affecting Diffusion:

The diffusion of liquids depends upon the following factors:

- (i) Intermolecular forces
- (ii) Size of molecules
- (iii) Shapes of molecules
- (iv) Temperature

(i) Intermolecular Forces:

Liquids having weak intermolecular forces diffuse faster than those or liquids its right strong intermolecular forces.

Example:

Example:

Rate of diffusion of alcohol is greater han that of wa

(ii) Size of Molecules

Big sized molecules diffuse slowly.

Honey diffuses slowly in water than that of alcohol in water.

(iii) Shapes of Molecules:

Regular shaped molecules diffuse faster than irregular shaped molecules because they can easily slip over and move faster.

(iv) <u>Temperature:</u>

Diffusion increases by increasing temperature because at high temperature the intermolecular forces are weak.

Example:

Rate of diffusion of water is higher at 25°C than that of 0°C.

Q.7 Explain comparison between densities of gases and liquids. (LHR 2014)(U.B)

OR

Describe density of liquids in detail.

DENSITY

Definition:

Ans:

"The mass per unit volume of a substance is called density."

Dependence of Density of Liquids:

The density of liquids depends upon its mass and volume.

Comparison between Densities of Gases and Liquids:

Liquids are denser than gases because molecules of a liquid are closely packed and the spaces between their molecules are negligible. As the liquid molecules have strong intermolecular forces hence they cannot expand treely and have a fixed volume. Unlike gases, they cannot occupy all the available volume of the container that is the reason why densities of liquids are high

Examples:

Dersity of water is 1.0 g cm^{-3} while that of air is 0.001 g cm^{-3} that is the reason why deers of rain fall downward.

Variation in Densities of Liquids:

The densities of liquids also vary. You can observe **kerosene oil floats over water** while **honey settles down in the water**.

(U.B+K.B)

	5.3 LIQ	UID STATE (1	TYPICAL P	ROPERTIES)		rca)
	5.3.1 EVAP	ORATION. 5.	3.2 VAPOL	JR PRESSOR) <i>. (2</i> 0)[[]][]
SHOPT OUESTICHE)0
01	How evanoration ca	USes cooling?	SWI 2016	M'EN 2017 RWP 2016	P = P = P = P = P = P = P = P = P = P =	
Ans:	Answer given on pg	# 171			1'SD 2010)(<i>C.D</i>)	
Q.2	How surisce area a	ffects evaporation		(LHR 2016 G-I, FSI) 2016,17)(U.B)	
Ans:	Answer given on pg	# 172	\bigcirc			
Q.3	How size of molecu	nes affect the vapor	ar pressure?	(L	HR 2016)(U.B)	
Ans	Answer given on pg	# 173				
INW	Define boiling poin	t. # 172	(SWL 2016, M	TN 2016, SGD 2017, R	WP 2017)(<i>K.B</i>)	
0.5	Answer given on pg	# 1/3 we offects the bailing	noint?	(ESD 2014 SCD 2	$1 1 1 7 \mathbf{C} 1 1 \mathbf{U} \mathbf{D}$	
Q.S Ans:	Answer given on ng	# 174	pome:	(FSD 2010, SGD 20	ло, 17 G-1)(<i>О.В)</i>	
0.6	Define freezing poi	nt.		(GRW	2017 G-D(K.B)	
Ans:	Answer given on pg	# 175		(
Q.7	What is the freezin	g point of diethyl e	ther and ethyl a	lcohol?	(K . B)	
Ans:		<u>FREEZIN</u>	NG POINTS			
	Diethyl Ether:					
	Freezing point of di	ethyl ether is -116°C	2.			
	Ethyl Alcohol:		a			
	Freezing point of eth	hyl alcohol is -115°	С.			
	5.3 LIQ	UID STATE (1	TYPICAL P	ROPERTIES)		
	5.3.1 EVAP	ORATION. 5.	3.2 VAPOL	JR PRESSUR	E.	
1						
1.	At which temperat	ure rate of evapora	ition of water is	minimum?	(K.B)	
•	(A) 50°C	(B) 40°C	$(C) 90^{\circ}C$	(D) /0.5	<i>SC</i>	
2.	Evaporation is rev	erse to:			(U.B)	
	(A) Boiling	(B) Freezing	(C) Melting	g (D) Cond	lensation	
3.	Evaporation is	process.			(U.B)	660
	(A) Endothermic	(B) Cooling	(C) Continu	(D) A!! =	these	חחוות
4.	Heat of vapourizat	ion of water is:				100
_	(A) $40/kJ/mol$	(B) 40 kJ/mol	(C) 4.07 kJ/1	mot (D) 40.2	sJ/mol	
5.	Evaporation increa	ises with:	GULLI		(U.B)	
	(A) Intermolecular f	orce (E) Temperatu	re (C) Pressur	(D) All c	t these	
6.	On which factors e	vaporation depend			(U.B)	
	(A) Surface area		(B) Temper	ature		
- 6	(\mathbf{C}) intermolecular f	crees	(D) All of th	hese		
ANA	Alley Actions, bressn	re of a liquid increa	ases with:	C .	(Ex-11)(U.B)	
100	(A) Increase of pres	sure	(B) Increase	e of temperature		
,	(C) Increase of inter	molecular forces	(D) Increase	e of polarity of mole	cules	
8.	Which of the follow	ing has maximum	vapour pressure	e at given temperat	ıre? <i>(U.B+K.B)</i>	
	(A) $C_5 H_{12}$	(B) $C_6 H_{14}$	(C) $C_7 H_{10}$	(D) C ₈ H	18	

Chapter-5

Physical States of Matter

	9.	At which temperature vapour pressure of	f water is 760mmHg?	•	(K . B)
		(A) 20° C (B) 50° C	(C) 100°C	(D) 14º 4°C	- mini
	10.	Boiling point of alcohol is:		CRW 2016	(K.3)
		(A) $68^{\circ}C$ (B) $78^{\circ}C$	(C) 88°C	(D) 98°O	
	11.	Boiling point of water is:		() Chi	(K . B)
		(A) 32° C (B) 78 °C	(C)100°C	(L) 20°C	
	12.	Boiling point of liquid depends upon:	JUL		(U . B)
		(A) Nature of I quid	(B) Intermolecular fo	orces	
		(C) Externa' pressure	(D) All of these		
	13.	Which of the to lowing has highest boiling	g point?		(K . B)
6	NA	(A) Wher (B) Ether	(C) Alcohol	(D) Benzene	
ANN	UAN.	Freezing point of acetic acid is:			(K . B)
UU	0-	(A) $16.5^{\circ}C$ (B) $16.6^{\circ}C$	(C) 16.3°C	(D) 16.2°C	
<i>\</i>	15.	Diffusion is faster in:			(U . B)
		(A) Liquids (B) Solids	(C) Gases	(D) None of these	e
	16.	Spreading of ink in water is due to:			(U . B)
		(A) Effusion (B) Diffusion	(C) Evaporation	(D) Freezing	
	17.	Which shaped molecules diffuse faster?	-	_	
		(A) Irregular (B) Regular	(C) Uneven	(D) Non-uniform	
	18.	Diffusion increases by increasing:			(U . B)
		(A) Temperature	(B) Intermolecular fo	orces	
		(C) Size of molecule	(D) All of these		
	19.	The density of water is:			(K . B)
		(A) 1.0gcm^{-3} (B) 1.3 gcm^{-3}	(C) 1.4 gcm^{-3}	(D) 1.2 gcm^{-3}	
	20.	Vapour pressure of water at 100°C is:		(GRW 2017 G-II)(K . B)
		(A) 140 mmHg (B) 300 mmHg	(C) 580 mmHg	(D) 760 mmHg	
	21.	Freezing point of water is:	(GRW 2017	G-II, LHR 2016 G-I)(K . B)
		(A) 0° C (B) 100° C	(C) 34–4°C	(D) 4°C	
		5.4 TEST YO	DURSELF		
	i.	Why does evanoration increase with the i	increase of temperatu	re? (GRW 2017 G-I	(UB)
	Ans	INCREASE IN EVAPORATI	ION WITH TEMPERA	TURE	((()))
	1115.	Evanoration increases with increase of	temperature because	kinetic energy o	f the
		molecules increases to such an extent that	they overcome the int	termolecular force	
		molecules increases to such an extent that			°("(()) U U
	••	rapidly evaporate.	1 700	VIGIO	
	11.	What do you mean by condensation?)(K . B)
	Ans:	<u>CONFINSAT</u>]]	
		"The process of changing of gos or vap	our into liquia is cal	lea condensation.	It is
		reverse of everyoration			
			vapours (gas)		
		Condense			
~ ~		Wey is variour pressure higher at high te	mperature?		(U.B)
NN	AUS	TEMPERATURE AND V	<u>APOUR PRESSURE</u>		
00	-	The vapour pressure is higher at high tem	perature than at low	temperature becau	ise at
		elevated temperature, the kinetic energy of	of the molecules incre	eases enough to e	nable
		them to vapourize and exert more pressure.			
		CHEMISTI	RY-9		178

iv.	Why is the boiling point of water higher than that of alcohol?	\sim
Δns·	BOILING POINT OF WATER AND ALCOHOL	7111
1115.	Boiling point of water is higher than that of alcohol because water is a polar liquid and	100
	has high intermolecular forces than alcohol	
v.	What do you mean by dynamic equilibrium? (3GD, LHR, CRW, 1SD, KWP 16,17)(K.B)	
Ans:	DYNAMSC EQUILIBRIUM	
	"The state at which the rate of evaporation becomes equal to the rate of condensation is	
	called dynamic equilibrium".	
	Liquid $\exists \overset{monife}{=}$ Vapours.	
vi.	Why are the rates of diffusion in liquids slower than that of gases? (U,B)	
AM	RATE OF DIFFUSION	
NNI.	The rate of diffusion in liquids is slower than that of gases because liquids have stronger	
00	intermolecular forces than gases and very less empty spaces and kinetic energies.	
vii.	Why does rate of diffusion increase with increase of temperature?(U.B)	
Ans:	RATE OF DIFFUSION	
	The rate of diffusion increases with increase in temperature because at high temperature	
	the kinetic energy of molecules increases and intermolecular forces decrease. As a result	
	gas molecules can move freely and fastly. Why are the liquids mobile?	
VIII. Ans:	Why are the inquits mobile: (Lfik, Gkw 2014,15)(U.B) MOBILITY	
Alls.	<i>"The ease of flow of a liquid is called mobility"</i> The mobility of liquids depends upon	
	the intermolecular forces and K.E of molecules. Liquids are mobile because liquid	
	molecules possess high kinetic energy and weak intermolecular forces.	
	5.4 SOLID STATE (TYPICAL PROPERTIES)	
01	Explain typical properties of solid state $(U B + K B)$	
Ans:	SOLID STATE	
11100	"The state of matter which has definite shape and definite volume is called solid".	
	Examples:	
	• Sugar	
	Common salt	
	• Iron	
	• Gold	
	In solid state the molecules are very close to one another and they are closely packed.	
	the intermolecular forces are so strong that particles become almost motionless. Hence	
	TYPICAL PROPERTIES OF SOLIDS	201
	Some typical properties of solids are as follows:	UU,
	(i) Melting point	,
	(ii) Rigidity	
	(iii)Density	
	(1) <u>Melting Point:</u> "The terms set which the solid starts matters and accurate in dynamic equilibrium	
	with linua state 's called milting point'	
	Examples:	
	Melting point of sodium chloride is 801°C.	
0.00	Explanation:	
NNP	The solid particles possess only vibrational kinetic energy. When solids are heated,	
UU	meir vibrational energies increase and particles vibrate at their mean position with a	
	higher speed. If the heat is supplied continuously, a stage reaches at which the particles	
	leave then fixed positions and then become mobile. At this temperature solid meits.	
	solid 🗄 🖽 🖞 liquid	

	Melting Points of Ionic and Covalent Solids:						
	The ionic and covalent solids make network structure to form macromolecules so all such						
	solids have very high melting points.						
	(ii) Rigidity:						
	The particles of solids are not mobile.	The particles of solids are not mobile T^{L} evolve fixed position. Therefore solids are					
	rigid in their structure						
	(iii) Density	U Care E					
	(iii) \underline{D} (ii)	called density"					
	Comparing a lating of a subsurver is a	Junea density .					
	Comparison between newsities of solids,	Inquids and gases:					
ann	Sourds are censer man liquids and gases be	scause solid particles are closely packed and do					
NN	not have empty spaces between their partic	cles. Therefore, they have the highest densities					
0.5	among the three states of matter.						
	Examples:	2					
	Density of aluminum is 2.70 g cm⁻³ , iron	is 7.86 g cm ⁻³ and gold is 19.3 g cm ⁻³ .					
	5.4 SOLID STATE (TY	PICAL PROPERTIES)					
	SHORT QU	ESTIONS					
Q.1	What is solid state of matter?	(MTN 2017)(<i>K.B</i>)					
Ans:	Answer given on pg # 179						
Q.2	Define melting point. Give an example.	(RWP 2016)(<i>K.B</i>)					
Ans:	Answer given on pg # 179						
Q.3	What is meant by rigidity?	(FSD 2017 G-I)(<i>U.B+K.B</i>)					
	01	8					
	Why solids are rigid in structure?	(U.B)					
Ans:	Answer given on pg # 180						
Q.4	What is density?	(K.B)					
Ans:	Answer given on pg # 180						
	5.4 SOLID STATE (TY	PICAL PROPERTIES)					
	MULTIPLE CHOI	CE QUESTIONS					
1	The density of gold is:	(K B)					
1.	(A) 2 70 g cm ⁻³ (B) 7 86 g cm ⁻	(C) 19.3 g cm ⁻³ (D) 1.4 g cm ⁻³					
2	The density of iron is:						
2.	(A) 2.70 g cm ⁻³ (B) 7.86 g cm ⁻³	(C) 19.3 g cm ⁻³ D) 12 g cm ⁻¹					
	00						
Q.1	Differentiate between crystalline and ar	iorphous solids. (GRW 2017 G-I)(U.B)					
	Explain the types of solids in detail?	(U.B+K.B)					
Ans:	TYPES OF S	<u>SOLIDS</u>					
0.00	According to their general appearance soli	ds can be classified into two types:					
AN	Ano phous solids:						
90	(ii) Crystalline solids:						
	(1) <u>Amorphous Solids:</u> (Greek word amor	rpnous means without shape or shapeless)					
	Solids in which the particles are not	arranged in a regular repeating pattern are					
	called amorphous solids".						

J.COJ

Properties:

- They do not have sharp melting points.
- They do not form crystals.

Examples:

- Plastic rubber
- Glass
- Coal tar etc.
- (ii) Crystal'ine Soli ls.

"Solids in which particles are arranged in a definite three-dimensional pattern are cutted costalline solids".

Properties:

- They have definite surfaces or faces.
- Each face has definite angle with the other.
- They have **sharp melting points**.

Examples:

- Diamond
- Sodium chloride
- Sugar
- Ammonium chloride etc.

5.5 TYPES OF SOLIDS

SHORT QUESTIONS

Q.1 What is the meaning of word amorphous. Give its properties. (MTN 2016, SWL 2017, FSD)(*K.B*)

- **Ans:** Answer given on pg # 180
- Q.2 Differentiate between crystalline and amorphous solids.

Ans:

DIFFERENTIATION

(U.B)

The differences between crystalline and amorphous solids are as follows:

	Amorphous Solids	Crystalline Solids	
	Defin	ition	
	 Solids in which the particles are not regularly arranged or their regular shapes are destroyed, are called amorphous solids. Meltin: They do not have sharp melting point. 	 Solids in which particles are arranged in a definite three dimensional pattern are called crystalline solids. Front They have sharp melting point. 	COUN
- 010	Exam	nples	
NNI	Plastic	Diamond	
100	• Rubber	Sodium chloride	
	• Glass	• Sugar	
	Coal tar	Ammonium chloride	

	5.5	TYPES O	F SOLIDS	5			
	MULTIP	LE CHOIC	E QUESTION				
1.	Which one of the following	is not amorph	ous?	(LER 2016 C-II (Ex-5)(K.B)			
	(A) Rubber (B) Pia	stic	(C) Glass	(D) Glucose			
2.	The solid in which particles a	The solid in which particles are arranged in definite three dimensional pattern are: (K.B)					
	(A) Solida (E) Crystalline solids (C) Amorphous solids (D) Both B and C						
3.	Plastic, glass, rubber etc. ar	re the example	s of:	(K . B)			
matt	(A) Crystalline solids (B) Su	per cooled liqu	id(C) Amorphous so	olids(D) Ionic solids			
NN	Diamond is an example of:						
0 -	(A) Amorphous solids		(B) Ionic bond				
	(C) Crystalline solids		(D) Both B and C				
5.	Which one of the following	is amorphous	solid?	(RWP 2017 G-II)(K.B)			
	(A) Glucose (B) So	dium chloride	(C) Glass	(D) Diamond			
	() I I I I I I I I I I I I I I I I I I	6 ALLO	TROPY				
01	Define Allotrony Explain it	ts conditions a	nd properties	(U B + K B)			
Ans:	Define Milotropy. Explain i	ALLOTR	OPY	$(\mathbf{C}.\mathbf{D}+\mathbf{K}.\mathbf{D})$			
1 110 1	"The existence of an element in	n more than one	<u></u> form. in same physica	l state is called allotropy".			
	Reasons.		,,				
	<u>Keasons.</u> (i) Different Number of Atoms in a Molecule:						
	(1) <u>Different Number of Atoms in a Molecules</u> . The existence of two or more kinds of molecules of an element each having different						
	number of atoms such as allotropes of oxygen are oxygen (O_2) and ozone (O_2)						
	(ii) Different Arrangement of Atoms in a Molecule:						
	Different arrangement of two or more atoms or molecules in a crystal of the element						
	Examples:						
	• Sulphur shows allotropy due to different arrangement of molecules (S_{\circ}) in the						
	crystals.						
	• Due to different arranger	ment of carbon	n (C) atoms in the o	crystals carbon has three			
	allotropes. Diamond, Graphite, Bucky balls						
	• Due to different arrangement of P_4 nolecules in the crystals, photocour exists in						
	the three allotropes i.e. White Red Black						
	Properties of allotropes:						
	They a ways show different physical properties but may have same chemical properties.						
	Effect of temporature:						
	Allctropes of solids have diff	ferent arrangem	ent of atoms in spac	e at a given temperature.			
min	The arrangement of atoms also changes with the change of temperature and new			of temperature and new			
11/11/1	allotropic form is produced.						
0 5	"The form of the 1 th	<u>FRANSITION 7</u>	<u>TEMPERATURE</u>				
	The temperature at which	n one allotrope	e changes into ano	otner is called transition			
	temperature .						
		CHEMISTR	RY-9	182			

Examples:

• Transition temperature of **sulphur** is **96**°C, below this temperature mombic form is stable. If rhombic form is heated up to 96°C, its molecules rearrange themselves to give monoclinic form.

$$S_8$$
 (nonclinic) \mathbb{R}^{66} (noncclinic)

• Transition temperature for allotropic forms of tin is 13.2°C.

$$Sn_{(Grey)} \square Sn_{(White}$$

Transition temperature for allotropic forms of **phosphorous** is **250°C**.

$$P_{4(White)} \overset{\mathbf{250^{\circ}C}}{\Box} P_{4(\operatorname{Re}d)}$$

White Phosphorous:

Is a very reactive, poisonous and waxy, soft solids. It exists as tetra-atomic molecules.

Red Phosphorous:

Is less reactive, non-poisonous and brittle powder.

ALLOTROPY 5.6 SHORT QUESTIONS 0.1 Define and give example of transition temperature. (K.B)Ans: Answer given on pg # 182 **Q.2** Define the term allotropy with examples. (K.B)Ans: Answer given on pg # 182 0.3 What are properties of white phosphorous and red phosphorous? (K.B)**PROPERTIES OF WHITE AND RED PHOSPHOROUS** Ans: White Phosphorous: Is a very reactive, poisonous, soft and waxy solid. It exists as tetra-atomic molecules. **Red Phosphorous:** Is less reactive, poisonous and brittle powder. ALLOTROP 5.6 MULTIPLE CHOIGE QUESTION 1. The crystal structure of white tin is: (**K**.**B**) (A) Cubic (B) Tetragonal (C) Morloclinic (Γ) None of these 250° C is the transition temperature of which element? 2. (K.B)(E) Carbon (C) Phosphorus (D) Sulphur (A) Tin 3. The existence of solid in different physical forms is called: (**K**.**B**) (A) Crystal (B) Allotropy (C) Evaporation (D) Transition **Red phosphorus is:** (**K**.**B**) (A) Less reactive (C) Brittle (B) Non-poisonous (D) All of above 5. Allotropes of oxygen are: (**K**.**B**) (A) 2 (B) 3 (C) 4 (D) 5

EXERCISE SHORT QUESTIONS

1. What is diffusion? Explain with an example?

(LHR 2017 G-I, PWF 2017 G-I)(K. B-L. B)

Ans:

<u>DIFFUSICN</u>

NR)

"The spontaneous mixing of particles of a substance by random motion and collisions, to form a homogeneous mixture is called ciffusion".

"Movement of molecules of a subsance from the region of higher concentration to the region of lowes: concentration is called diffusion". Example:

When a few drops of ink are added in beaker of water, ink molecules move around and after a while spread in whole of the beaker. Thus diffusion has taken place.

2. Define standard atmospheric pressure. What are its units? How it is related to Pascal?

(GRW 2017 G-I, SGD 2016 RWP 2017, LHR 2016 G-I, II)(U.B+K.B)

Ans:

STANDARD ATMOSPHERIC PRESSURE

Definition:

It is the pressure exerted by the atmosphere at the sea level. "It is defined as the pressure exerted by a mercury column of 760mm height at sea level". It is sufficient pressure to support a column of mercury 760mm in height at sea level.

<u>Units:</u>

- Atmosphere
- Pascal
- mmHg
- Torr
- Nm⁻²

 $1atm = 760mmHg = 760torr = 101325Nm^{-2} = 101325Pa$

Relation with Pascal:

 $1 \text{ atm} = 101325 \text{ Pa} = 101325 \text{ Nm}^{-2}$

3. Why are the densities of gases lower than that of liquids?

Ans:

ins:

LOWER DENSITIES OF GASES

Gases have lower densities than densities of liquids. It is due to the light mass and more volume occupied by the gases. Another reason for lower densities of gases is negligible intermolecular forces among the gases molecules. On the other hand liquid molecules are closely spaced and have strong intermolecular forces.

4. What do you mean by evaporation, how it is affected by surface area? (U.B)

EVAPORATION

"The process of changing of a liquid into a gas phase is called evaporation."

Effect of Surface Area on Evaporation:

Evaporation is a surface phenomenon. Greater is surface area, greater is evaporation and vice versa.

(RWP 2017 G-I)(U.5

Sulphur exists in monoclinic form at 100°C

7. What is the relationship between evaporation and boiling point of a liquid? (U.B)

Ans:

RELATIONSHIP BETWEEN EVAPORATION AND B.P

If the boiling point of a liquid is high, its evaporation is slow because intermolecular forces are high in the liquid which have high boiling points. If boiling point is low then evaporation is high.

EXERCISE LONG QUESTIONS

- 1. Define Boyle's Law and verify it with an example.
- **Ans:** Answer given on pg # 163 (Topic 5.2; 5.2.1)
- 2. Define and explain Charles's Law of gases.
- **Ans:** *Answer given on pg #* 167 (Topic 5.2; 5.2.2)
- 3. What is vapour pressure and how it is affected by intermolecular forces?

Ans: *Answer given on pg #* 172 (Topic 5.3; 5.3.2)

4. Define boiling point and also explain, how it is affected by different factors?

- **Ans:** Answer given on pg # 173 (Topic 3, 5.3.2)
- 5. Describe the phenomenon of diffusion in liquids along with factors which influence it.

Ans: Answer siven on 18 # 175 (Topic 5.3: 5.3.5)

6. Differentiate between crystalline and amorphous solids.

Aus: Answer given on pg # 181 (Topic 5.5)

(0)

7. A balloon that contains 1.6 dm ³ of air at standard temperature and pressure is taken under water to a depth at which its pressure increases to 3.0 atm. Suppose that temperature remain unchanged, what would be the new volume of the balloon. Does it cortract or expand? NUMURICAL Solution: <u>Solution:</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURICAL</u> <u>NUMURI</u>	9. A gas occupies a volume of 35.0 dm ³ at 17°C. If the gas temperature rises to 34°C at constant pressure, would v(u) expect the volume to double? If you calculate the new volume. <u>NUMERICAL</u> Solution: <u>Given Data</u> : Initial temperature of gas = T ₁ = 17 °C = 273 + 17 = 290 K Initial volume of gas = V ₁ = 35 dm ³ Final temperature of gas = T ₂ = 34 °C = 273 + 34 = 307 K <u>To Find</u> : New volume of gas = V ₂ = ? <u>Calculations:</u> By using the equation of Charles's Law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ By putting the values: $\frac{35 \text{ dm}^3}{290 \text{ K}} = \frac{V_2}{307 \text{ K}}$ $V_2 = \frac{35 \text{ dm}^3 \times 307 \text{ K}}{290 \text{ K}}$ $V_2 = 37 \text{ dm}^3$ <u>Result:</u> • Volume will not be doubled because the absolute temperature is not doubled
• The gas will contract 8. A sample of neon gas occupies 75.0 cm ³ at very low pressure of 0.4 atm. Assuming temperature remain constant what would be the volume at 1.0 atm pressure? (U.B+A.B) <u>NUMERICAL</u> Solution: <u>Given Data</u> : Initial pressure of neon = P ₁ = 0.4 atm Initial volume of neon = V ₁ = 75.0 cm ³ Final pressure of neon = P ₂ = 1 atm <u>To Find</u> : Volume of neon at 1.0 atm. =V ₂ = ? <u>Calculations</u> : By using the equation of Boyle s Law: $F_1V_1 = P_2V_2$ By putting the values $0.4 : tm \times 75 cn^3 = 1.atm \times V_2$ $V_2 = \frac{0.4 atm \times 75 cm^3}{1 atm}$ $V_2 = 30 cm^3$ <u>Result:</u> Thus at 1 atm pressure the volume of neon is 30 cm ³ .	• New volume of gas is 37 dm ³ . 10. The largest moon of Saturn, is Titan. It has atmospheric pressure of 1.6x10 ⁵ Pa. What is the atmospheric pressure in atm? Is it higher than Earth's atmospheric pressure? (U.B+A.B) <u>NUMERICAL</u> Solution: <u>Given Data:</u> The atmospheric pressure of Titan = 1.6×10^5 Pa To Find: Armospheric pressure in atm = ? <u>Calcantions</u> We know that 1 atm = 101325 Pa Armospheric pressure of Titan in Pascal $= 1.6 \times 10^5$ Pa. Atmospheric pressure of Titan in atm. $= \frac{1.6 \times 10^5}{101325}$ = 1.58 atm <u>Result:</u> Thus the atmosphere pressure of Titan (1.58 atm) is greater than the atmospheric pressure of Earth (1.0atm).

Ans:

(U.B)

(U.B)

(U.B)

(U.B)

(GRW 2014)(U.B)

GRW 2016 G-II)(K.B)

ADDITIONAL CONCEPTUAL QUESTIONS

Q.1Why the densities of gases are lower than that of liquids?Ans:DENSITY OF GASE5 AND LIQUES

Gases have lower densities than densities of liquid. It is due to the light mass and more volume occupied by the gases. Another reason for lower densities of gases is negligible intermolecular forces among the gas molecules. On the other hand, liquid molecules are closely packed and have strong intermolecular forces.

Q.2 What is molar lest of evaporation

MOLAR HEAT OF EVAPORATION

"The amount of heat required to convert 1 mole of a liquid into gaseous state under standard conditions of temperature and pressure is called molar heat of evaporation".

Q.3 Why does tea get cool in saucer quickly then in a tea cup?

- **Ans:** Evaporation increases with increase of surface area. Since surface area of saucer is greater than the surface area of a tea cup, evaporation from a saucer is more than a tea cup and tea gets cool down quickly.
- Q.4 Why does hot water evaporate quickly than cold water?
- **Ans:** Evaporation increases with increase of temperature that is why hot water evaporates quickly than cold water.
- Q.5 Why hexane (C_6H_{14}) has more vapour pressure than decane $(C_{10}H_{22})$? (U.B)
- **Ans:** Hexane has small sized molecule as and has weak intermolecular forces as compared to decane. There hexane a evaporates quickly and exerts more pressure than decane.
- Q.6 Why drops of rain fall downward?
- Ans: Density of water is 1.0 g cm^{-3} while that of air is 0.001 g cm^{-3} that is the reason why drops of rain fall downward.
- Q.7 Why the densities of liquids are high?

Ans:

HIGH DENSITY OF LIQUID

The liquid molecules have strong intermolecular forces hence they cannot expand freely and have a fixed volume. Like gases, they cannot occupy all the available volume of the container that is the reason why densities of liquids are high.

Q.8 Write two properties of liquid state of water.

Ans:

PROPERTIES OF LIQUID STATE OF WATER

- The liquid state of matter has indefinite snape but definite volume
- The attractive forces between particles are stronger than that of gases but weaker than that of solices.

W/hy kerosene oil floats over water and honey settles down? (GRW 2017)*(U.B)* FLOATS OVER WATER AND HONEY SETTLES DOWN

The kerosene oil floats over water because its density is lower than that of water whereas honey settles down due to its higher density than water.

	TERMS TO KNOW
Terms	Definitions
Diffusion	"The spontaneous mixing up of melecules by random motion
	and collisions to form a homogeneous micture is called
	diffusion".
Effusion	"It is escaring of gas malecules through a tiny hole into a space
QLIM	with lesser pressure".
Pressure	The force (F) exerted per unit surface area (A) is called
MALIUU	pressure".
Strandard Atmospheric	"It is defined as the pressure exerted by a mercury column of 760 mm height at
Pressure	sea level. It is sufficient pressure to support a column of mercury 760mm in
Communerativititar	height at sea level".
Compressibility	Gases are nightly compressible due to empty spaces between
	their molecules. when the gases are compressed, the molecules
	come closer to one another and occupy less volume as compared
	to the volume in uncompressed state.
Boyle's law	The volume of a given mass of a gas is inversely proportional
	to its pressure provided the temperature remains constant".
Charle's law	"The volume of a given mass of a gas is directly proportional to
	the absolute temperature if the pressure is kept constant".
Evaporation	"The process of changing of a liquid into a gas phase is called
	evaporation".
Vapour Pressure	The pressure exerted by the vapours of a liquid at equilibrium
	with the liquid at a particular temperature is called vapour
	pressure of a liquid.
Boiling Point	"The temperature at which the vapour pressure of a liquid
	becomes equal to the atmospheric pressure or any external
	pressure is called boiling point".
Freezing point	"The temperature at which vapour pressure of a liquid state
	becomes equal to the vapour pressure of the solid state and
	liquid and solid coexist in dynamic equilibrium is called freezing
	point".
Melting point	"The temperature at which the solid starts melting and coexists
	in aynamic savil brigm with liquid state is called melting point".
Amorphous solids	Solids in which the particles are not regularly arranged or their
SILLE	regular snapes are destroyed, are called amorphous solids.
Crystalline solids	Solids in which particles are arranged in a definite three
MAN ILLU	dimensional pattern are called crystalline solids.
Allotropy	<i>"The existence of an element in more than one form, in same physical"</i>
JU -	state is called allotropy".
Transition Temperature	"The temperature at which one allotrope changes into another
*	is called transition temperature".
	<u>^</u>

-

Chap	oter-5		Physical States of Matter		
		SELF	TEST		
Time:	35 Minutes			Marks: 25	
Q.1	Four possible and	swers (A), (B), (C) a	and (D) to each ques	stion are given, mark the	
1.	Boiling point of alcohol is:				
	(A) 58°C	(E) 87°C	(C) 78°C	(D) 68°C	
2.	At some temperat	ture which of the follo	owing will have high	vapour pressure:	
5	(A) Deithy! Ether	(B) Alcohol	(C) Water	(D) Honey	
M	Wrich one of the	following gases will d	liffuse faster?		
00	(A) Oxygen	(B) Fluorine	(C) Nitrogen	(D) Chlorine	
4.	Transition tempe	rature of tin is:			
	(A) 12.3°C	(B) 13.2°C	(C) 96°C	(D) 250°C	
5.	Density of Iron is	:			
	(A) 2.70 g cm ⁻³	(B) 7.86gcm^{-3}	(C) 19.3 g cm ⁻³	(D) 8.76gcm^{-3}	
6.	When volume of a	a gas increased two ti	imes its pressure beco	omes:	
	(A) Double	(B) Four times	(C) Half	(D) Zero	
Q.2	Give short answe	rs to the following qu	lestions.	(5×2=10)	
(i)	Differentiate betwe	tiate between Diffusion and Effusion.			
(ii)	 Why gases are highly compressible? Can you cool a gas by increasing its volume. Define the term Allotropy with example. 				
(iii)					
(iv)					
(v)	Why does evapora	tion increase with incr	ease of temperature.	- 19	
(v)	Why does evapora	tion increase with incr	ease of temperature.	- 19 COM	
(v) 0.3	Why does evapora	tion increase with incr	rease of temperature.	V2.COM	
(v) Q.3 (i)	Why does evapora Answer the follow Define Boyle's lay	tion increase with incr ving questions in cleta	rease of temperature.	(5) (5)	
(v) Q.3 (i) (ii)	Why does evapora Answer the follow Define Boyle's law	tion increase with incr ving questions in deta v and verify with an (x	rease of temperature.	(5) (4)	
(v) Q.3 (i) (ii) Note:	Why does evapora Answer the follow Define Boyle's law Define Evaporation	tion increase with incr ving questions in deta v and vehify with an ex n Explain factor affec	rease of temperature.	(5) (4)	
(v) Q.3 (i) (ii) Note:	Why does evapora Answer the follow Define Boyle's law Define Evaporation	tion increase with incr ving questions in deta v and vehify with an ex n Explain factor affec	rease of temperature.	(5) (4)	
(v) Q.3 (i) (ii) Note:	Why does evapora Answer the follow Define Boyle's law Define Evaporation Purents or guardia of atudants	tion increase with incr ving questions in deta v and vehify with an ex n Explain factor affec ns can conduct this te	rease of temperature.	(5) (4) (5) (4)	