(heat

INTRODUCTION

Q. 1 Define matter.

Ans:
Definition:
"Anything that has mass c.mal occupios space is falle d ratter ".
Examples:
Air, wer, table book etc.
Q. 2 What ant phenstate mater
(K.B)

Ans: PUESICAL STATES OF MATTER
$17.01 t$ e exs in thee physical state i.e. gas, liquid and solid. The simplest form of mater is gise.jus state. Liquid are less common and most of the matter exist as solid. These states are classified by means of two properties.

- Shape
- Volume

5.1 GASEOUS STATE (TYPICAL PROPERTIES)

Q. 1 Write down the general properties of gaseous state.
(SWL 2016, 17, MTN 2016, 17, DGK 2017)(U.B+K.B)
Ans:
GASES
"The state of matter that has indefinite shape and indefinite volume is called gas".
Examples:

- Hydrogen $\left(\mathrm{H}_{2}\right)$
- Oxygen $\left(\mathrm{O}_{2}\right)$
- Carbon dioxide $\left(\mathrm{CO}_{2}\right)$

TYPICAL PROPERTIES OF GASES

Gases have similar physical properties. A few typical properties are as follows:

DIFFUSION

"The spontaneous mixing up of molecules by random motion and collisions to form a homogeneous mixture is called diffusion".
Examples:

- Spreading of fragrance of flower
- Spreading of fragrance of perfume

Dependence:

Rate of diffusion depends upon the molecular mass of the gases. Inglen ges ditise rapidly than heavier ones. e.g. $\mathrm{H}_{\mathbf{2}}$ diffuse ${ }^{\text {jo }}$ our times ficster than O gas.
"It is escaping of gas molcules ta Example:
When aty, eqets puncturel, ainefferses out.
Dependerce:
Fifinion dqpendev pon molecular masses of the gases. Lighter gases effuse faster than heav eOgases.

PRESSURE

Gas molecules are always in continuous state of motion. Hence when molecules strike with the walls of the container or any other surface, they exert pressure.
"The force (\boldsymbol{F}) exerted per unit surface area (\boldsymbol{A}) is called pressure".

Formula:

$$
P=\frac{F}{A}
$$

SI Unit of Pressure:

The SI unit of force is Neritun and that of area is in Hence pre sure has SI unit of $\mathbf{N m}^{\mathbf{- 2}}$. It is also called Pascal (Pa).

$$
\text { One Pasca Pa (Pa) } \mathrm{Nm}^{-2}
$$

Pressure de suring vices:

- Darometel s sed o measure atmospheric pressure

I(1)umeter is used to measure pressure in the laboratory.

STANDARD ATMOSPHERIC PRESSURE

It is the pressure exerted by the atmosphere at the sea level.

Definition:

"It is defined as the pressure exerted by a mercury column of 760 mm height at sea level. It is sufficient pressure to support a column of mercury 760 mm in height at sea level".
Different Units of Pressure:
$1 \mathrm{~atm} \quad=760 \mathrm{~mm}$ of $\mathrm{Hg}=760$ torr \quad (1 mm of $\mathrm{Hg}=$ one torr)
$101325 \mathrm{Nm}^{-2}=101325 \mathrm{~Pa}$

COMPRESSIBILITY

Gases are highly compressible due to empty spaces between their molecules. When the gases are compressed, the molecules come closer to one another and occupy less volume as compared to the volume in uncompressed state.

MOBILITY

"The ease of flow of molecules is called mobility".

- Gas molecules are always in state of continuous motion.
- They can move from one place to another because gas molecules possess very high kinetic energy.
- They move through empty spaces that are available for the molecules to move freely.

Significance:

The mobility or random motion results in mixing" up of gas molecules to produce a homogeneous mixture.

DENSITY OF GASES

"The mass per unit volume of a substance is ralled iet n vity"

Units of Measurement:

Gas density is expressed in grans per din whereas, hquid and solid densities are expresed n yrans per cin i. e liquid and colids are $\mathbf{1 0 0 0}$ times denser than gases.

Effect of Denerature:

Fase; have low deusity than liquids and solids. It is due to light mass and more vilanedecupied by the gas molecules.
Ine density of gases increases by cooling because their volume decreases.
Example:
 $1.5 \mathrm{gdm}^{-3}$ at $0^{\circ} \mathrm{C}$.

5.1 GASEOUS STATE (TYPICAL PROPERTIES)

SHORT QUESTIONS

Q. 1 Define diffusion. Give example.

What is meant by diffusion of gaq-s? (K.B)
Ans: Answer given on pg \# 159
Q. 2 What is clfusion? M 2016, BVP 2e16, 17, 1SD 2017, GRW 2017 G-II, RWP 2017 G-II)(K.B)

Ans: Answer siva on g \# 159
Q. 3 Define pressure. V it ite Sí units.
(K.B)

Ans- insuer civele onns \# 159
8.4 H/ hat sstandard atmospheric pressure?
(SGD 2016, 17, RWP 2017, LHR 2016)(K.B)
Ans: Answer given on pg \# 160
Q.5 Write a short note on the density of gases.
(BWP 2017)(K.B)
Ans: Answer given on pg \# 160
Q. 6 What are pressure measuring devices?

Ans:
PRESSURE MEASURING DEVICES
The pressure measuring devices are as follows:

- Barometer is used to measure atmospheric pressure
- Manometer is used to measure pressure in the Laboratory.

5.1 GASEOUS STATE (TYPICAL PROPERTIES)
 MULTIPLE CHOICE QUESTIONS

1. The liquid state has intermolecular forces:
(A) Strong
(B) Weak
(C) Very weak
(D) None of these
2. Solids are \qquad and denser than liquid and gases.
(K.B)
(A) Rigid
(B) Soft
(C) Hard
(D) Both A and C
3. Simplest state of matter is:
(LHR 2014)(K.B)
(A) Solid state
(B) Liquid state
(C) Gaseous state
(D) Plasma state
4. How many times Liquid are denser than gases?
(K.B)
(A) 100 times
(B) 1000 times
(C) 10,000 times
(D) 100,000 times
5. Gases are the lightest form of matter and their densities are expressed in terms of: (K.B)
(A) $\mathrm{mg} \mathrm{cm}^{-3}$
(B) $\mathrm{g} \mathrm{cm}^{-3}$
(C) $\mathrm{g} \mathrm{dm}^{-3}$
(D) $\mathrm{Kg} \mathrm{dm}^{-3}$
6. Density of a gas increases when its:
(A) Temperature is increased
(B) Pressure is increased
(C) Volume is kept constant
(D) None of these
7. One atmospheric pressure is equal to how many pascals?
(A) 101325
(B) 10325
(C) 106075
(D) $\frac{\operatorname{ssn} 2}{10523}$
8. $\quad 760 \mathrm{mmHg}$ is equal to:
(A) 266 torr
(B) 2060 tor?
(c) 626 to 1
(D) 1 atm
(K.B)
9. The gas with maximum rate or diifus on is:
(A) Непй
(B) Flucrite
(C) chiorine
(D) Hydrogen
10. Rate of siffu of gases depends inon:
(A) Chemical fornula (B) Number of electrons(C) Molecular mass
(D) Pressure
11. Kрロ ma ny ines hyatogen diffuses faster than O_{2} ?
Yan? va times
(B) Three times
(C) Four times
(D) One time

Darometer is used to measure:
(B) Boiling point
(A) Melting point
(C) Atmospheric pressure
(D) Pressure in laboratory
13. Which instrument is used to measure atmospheric pressure?(GRW 2016 G-I, SGD 2017 G-I)(K.B)
(A) Barometer
(B) Manometer
(C) Thermometer
(D) None of these

5.1 TEST YOURSELF

i. Why the rate of diffusion of gases is rapid than that of liquids?

Ans:
RATE OF DIFFUSION
The rate of diffusion of gases is ranid than that of itimid because, anolectles nave insignificant attractive forcep, low molecuiar nsses, no re kinetic energy and more empty spaces are present let vfer their molecules, sompare to lquids.
ii. Why thegases areconne sible? (BWP (017, NTN 20I, SWL 2017, SGD 2016, GRW 2016 G-II)(U.B)
iii. What coy ru rea b. Pa cal Ho many Pascals are equal to $1 \mathbf{~ a t m}$?
(DGK 2017, GRW 2016)(K.B)
Ans: N PASCAL
-(w) cols equal to a force of one Newton that acts upon an area of one metre square".
It is unit for pressure.

$$
1 \mathrm{~atm}=101325 \mathrm{~Pa}=101325 \mathrm{Nm}^{-2}
$$

iv. Whether the density of a gas decrease on cooling?
(LHR 2015, 16 G-II)(U.B)
Ans: DENSITY OF GASES ON COOLING
No, the density of a gas does not decrease on cooling. It increases on cooling because on cooling their volume decreases and density is inverse to volume.

As

$$
d=\frac{\mathrm{m}}{\mathrm{v}}
$$

Example:
At normal atmospheric pressure the density of oxygen gas is $\mathbf{1 . 4 g \mathrm { dm } ^ { - 3 }}$ at $20^{\circ} \mathrm{C}$ and $1.5 \mathrm{gdm}^{-3}$ at $0^{\circ} \mathrm{C}$.
v. Why is the density of gas measured in $\mathrm{g} \mathrm{dm}^{-3}$ while that of a liquid is expressed in $\mathrm{g} \mathrm{cm}^{-3}$?
(SGD 2016, 17, FSD 2017)(U.B)
Ans:
MEASUREMENT OF DENSITY OF GASES AND LIQUID
Gases have low densities due to small mass and more volume occupied by the gas molecules. Therefore gas density is expressed in grams per dm^{3}, whereas liquid and solid densities are expressed in gram per cm^{3} because liquids and solids are 1000 times denser than gases.
vi. Convert the followings
(U.B)
(a) 70 cm Hg to atm
(b) 3.5 atm to torr
(c) 1.5 atm to Pa
(a) 70 cm Hg to atm:

We know that:

760 cm Hg	$=1 \mathrm{~atm}$
1 cm Hg	$=\frac{1}{760}$

(b) $\quad 3.5 \mathrm{stm}$ to tor

3.5 stm to tor . Me neythat.	
1 atm	$=760$ torr
3.5 atm	$=760 \times 3$.
	$=2660$
3.5 atm	$=2660$ torr

(c) 1.5 atm to Pa

We know that
$1 \mathrm{~atm} \quad=101325 \mathrm{~Pa}$
$1.5 \mathrm{~atm} \quad=101325 \times 1.5$
$\begin{aligned} & =151987.5 \\ 1.5 \mathrm{~atm} \text { is } & =151987.5 \mathrm{P}\end{aligned}$
1.5 atm is $\quad=151987.5 \mathrm{~Pa}$

$52 ? 1-10 Y$ 포 LAW
Q. 1 Ftaf Boyles s. Give the experimental verification of Boyle's Law.
(1GRN 2015,17 G-II LHR 2015, BWP 2016, SGD 2016, FSD 2017, RWP 2017)(U.B+K.B+A.B) OR
Define Boyle's Law and verify it with an example (Ex-Q.1) (LHR 2016 G-I, 17 G-I)
Ans:
BOYLE'S LAW

Introduction:

In 1662 Robert Boyle studied the relationship between the volume and pressure of a gas at constant temperature. Robert Boyle (1627-1691) was natural philosopher, chemist, physicist and inventor. He is famous for Boyle's Law of gases.

Statement 1:

"The volume of a given mass of a gas is inversely proportional to its pressure provided the temperature remains constant".

Mathematical Representation:

According to this law the volume (V) of a given mass of a gas decreases with the increase of pressure (P) and vice versa.
It can be written as:

$$
\begin{aligned}
\text { Volume } & \propto \frac{1}{\text { Pressure }} \\
\mathrm{V} & \propto \frac{1}{\mathrm{P}} \\
\mathrm{~V} & =\frac{\mathrm{k}}{\mathrm{P}} \\
\mathrm{PV} & =\mathrm{k}=\text { constant }
\end{aligned}
$$

Where, \mathbf{k} is proportionality constant. The value of \mathbf{k} is same for the same amont 12 given gas.

Statement 2:

Boyle's Law can also be stated 155°
"The pravilt of prosoure and veluine of ca-jixed miss of a gas is constant at a constant temperature?
When
$\mathrm{P}_{1} \mathrm{~V}_{1}=1=$ Then $\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{k}$
Phe $\begin{array}{llll}\text { P Initial pressure } & \mathrm{P}_{2}=\text { Final pressure } \\ \mathrm{V}_{1} & =\text { Initial volume } & \mathrm{V}_{2}=\text { Final volume }\end{array}$
As both equations have same constant, therefore their variables are also equal to each other.

$$
\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{2} \mathbf{V}_{2}
$$

This equation establishes the relationship between pressure and volume of the gas.

EXPERIMENTAL VERIFICATION OF BOYLE'S LAW

The relationship between volume and pressure can be verified experimentally by the following series of experiments. Let us take some mass of a gas ir a cyinder r anit g (a) movable piston and observe the effect of increase of pressye on its yo une.

- The phenomenon is representedyhen the pres re datn is apy lied. the volume of the gas reads as $\mathbf{1} \mathbf{d m}^{\mathbf{3}}$
- When nessure is increas ed equivalert to 4 atm, the yolume of the gas reduces to $0.5 \mathbf{~ d m}^{3}$.
- When prescuae is increa. ed three tilnes ic. 0 atm, the volume reduces to $0.33 \mathbf{~ d m}^{3}$.
- Similary, hon piessue is nereased up to $8 \mathbf{~ a t m}$ on the piston, volume of the gas decreases to 0.25 don 2
Whe e 'k' i. neportionality constant. The value of k is same for the same amount of a g) ver gas.

Figure: The Decrease of Volume With Increase of Pressure

Calculations:

When we calculate the product of volume and pressure for this experiment, the product of all these experiments is constant i.e $2 \mathrm{~atm} \mathrm{dm} \mathrm{dm}^{3}$. 1t proves the Boyle's law

$$
\begin{array}{ll}
\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=2 \mathrm{~atm} \times 1 \mathrm{dm}^{3} & =\mathbf{2} \mathbf{~ a t m} \mathbf{d m}^{\mathbf{3}} \\
\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}=4 \mathrm{~atm} \times 0.5 \mathrm{dm}^{3} & =\mathbf{2} \mathbf{~ a t m} \mathbf{d m}^{3} \\
\mathbf{P}_{\mathbf{3}} \mathbf{V}_{\mathbf{3}}=6 \mathrm{~atm} \times 0.33 \mathrm{dm}^{3} & =\mathbf{2} \mathbf{~ a t m} \mathbf{d m}^{3} \\
\mathbf{P}_{\mathbf{4}} \mathbf{V}_{\mathbf{4}}=8 \mathrm{~atm} \times 0.25 \mathrm{dm}^{3} & =\mathbf{2} \mathbf{~ a t m} \mathbf{d m}^{3}
\end{array}
$$

Conclusion:

Hence, product of pressure and volume of fixed amount of gas is constant at constant temperature.

Q. 2 Explain the absolute temperature scale with example.

($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B})$
Ans:

Introduction:

Lord Kelvin introduced absolute temperature scale or Kelvin scale. This scale of temperature starts from $\mathbf{0 ~ K}$ or $-\mathbf{2 7 3 . 1 5}{ }^{\circ} \mathrm{C}$, which is given the name of absolute zero.

Absolute Zero:

"It is the temperature at which an ideal gas would have zero volume Absolute Temperature Scale or Kelvin Scale:
 temperature scale or Kelv \sqrt{n}. cale, equal to $-273^{\circ} \mathrm{C}$ then 273 K is equal to bi Conversion of Kelvin ten per ture to Cels us temperature and vice versa can he carried o at as follews:

$$
\begin{aligned}
& T\left(\begin{array}{l}
k
\end{array}\right)=T\left({ }^{\circ} \mathbf{C}\right)+273 \\
& T\left({ }^{\circ} \mathbf{C}\right)=T(K)-273
\end{aligned}
$$

Remember:

Always convert temperature scale from ${ }^{\circ} \mathrm{C}$ to K scale while
 solving problems.
$\mathrm{K}=273+{ }^{\circ} \mathrm{C}$

5.2 LAWS RELATED TO GASES
 5.2.1 BOYLES LAW

SHORXQUETEACNS

Q. 1 State Boyle law. MTN 201. SGD 2016 RV 20 C, LHR2 215 GR 2017 G-I, II)(K.B)

Ans: Answer given on pg \# 163
Q. 2 How can ve messure hlopd pressure?
(Do you know Pg. \# 79)(K.B)
Ans: \quad II ASLEELENTORDOOD PRESSURE

Instruneit:

Bion 1 pespure is measured using a pressure gauge it may be a Ir ercues manometer or some other device.

Kepresentation:

Blood pressure is reported by two values such as $120 / 80$ which is a normal blood pressure.

Systolic Pressure:
The first measurement shows the maximum pressure when the heart is pumping it is called systolic pressure.

Diastolic Pressure:

When the heart is in resting position pressure decreases and it is the second value called diastolic.
Q. 3 In which unit blood pressure is measured?
(Do you know Pg. \# 79)(K.B)
Ans:
UNIT OF BLOOD PRESSURE
Systolic and diastolic both of these pressure are measured in torr unit.
Q. 4 What is hypertension? (Do you know Pg. \# 79)(K.B)

Ans:

HYPERTENSION

Cause:
Hypertension is because of high blood pressure due to tension and worries in daily life. Criteria:
The usual criteria of hypertension is a blood pressure greater than 140/90.
Disadvantage:
Hypertension raise the level of stress on the heart and on the blood vessels. This stress increase the susceptibility of heart attacks and strokes.

5.2 LAWS RELATED TO GASES 5.2.1 BOYLES LAW

MULTIPLE CHOICE QUESTIONS

1. Blood pressure of a healthy person is:
(A) $\frac{120}{80} m m H g$
(B)
$\frac{14}{90}$ mm左
(C) $\frac{1}{10} \frac{1}{2} m j, H g \quad$ (5) $\frac{150}{70} \mathrm{mmHg}$
(U.B)
2. When voime of agas is in creased tvo timos its pressure becomes:
(D) Zero
3. Which quantity is ept cosstant in Boyle's law?
(K.B)
(A) 7 emper atwe
(B) Pressure
(C) Volume
(D) Amount of gas

Vhich of the following statements is true for Boyle's law?
(A) When volume increases pressure increases
(B) When volume increases pressure decreases
(C) When volume decrease pressure increases
(D) Both B and C
5. The value of absolute zero is:
(GRW 2017 G-I)(K.B)
(A) $-273.15^{\circ} \mathrm{C}$
(B) $273.15^{\circ} \mathrm{C}$
(C) $0^{\circ} \mathrm{C}$
(D) $100^{\circ} \mathrm{C}$

5.2 TEST YOURSELF

i. Is the Boyle's Law of gases applicable to liquids?

Ans:
BOYLE'S LAW FOR LIQUID
Boyle's Law is not applicable to liguids rather it only applicable to
ii. Is the Boyle's Law valid a veryhigh emperyture?
(U.B)

Ans:
$=\triangle$ LOIN OF = OYLE'S LAW
Yes, the $\mathrm{B} p \mathrm{ll}$ e l. W is valilion applicable at very high but constant temperature.
iii. What will aypen it the pressure on a sample of gas is raised three times and its is m\%erature is kept constant?
(SWL 2016)(U.B)

RAISE OF TEMPERATURE

If the pressure on a sample of gas is raised three times its temperature is kept constant then according to Boyle's Law the volume will also decrease three times of its original volume.

NUMERICAL EXAMPLE 5.1

NUMERICAL EXAMPLE 5.2
A gas with volume $350 \mathrm{~cm}^{3}$ has a pressure of 650 mm of $\mathbf{H g}$. If its pressure is reduced to 325 mm of $\mathbf{H g}$, calculate what will be its new volume?
(U.B+A.B)

NUMERICAL

Solution:

Given Data:

$$
\begin{aligned}
& V_{1}=350 \mathrm{~cm}^{-3} \\
& \mathrm{P}_{1}=650 \mathrm{~mm} \text { of } \mathrm{Hg} \\
& \mathrm{P}_{2}=325 \mathrm{~mm} \text { of } \mathrm{Hg}
\end{aligned}
$$

To Find:

$$
V_{2}=?
$$

Calculations:

By using the Boyle's equation:

$$
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}
$$

or

$$
V_{2}=\frac{P_{1} V_{1}}{P_{2}}
$$

By putting thery $1 u$ s.

Result:

Thus volume of the gas is doubled by reducing its pressure to half.
$785 \mathrm{~cm}^{3}$ of a gas was enclosed in a container under a pressure of 600 mm Hg . If volume is reduced to $350 \mathrm{~cm}^{3}$, what will be the pressure?
(U. $\boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$

NUMERICAL

Solution:

Given Data:

$$
\begin{aligned}
& \mathrm{V}_{1}=785 \mathrm{~cm}^{3} \\
& \mathrm{P}_{1}=600 \mathrm{~mm}^{3} \text { of } \mathrm{Hg} \\
& \mathrm{~V}_{2}=350 \mathrm{~cm}^{3}
\end{aligned}
$$

To Find:

$$
\mathrm{P}_{2}=?
$$

Calculations:

By using the Boyle's equation:

$$
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}
$$

$$
\mathrm{P}_{2}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\sqrt{V_{2}}}
$$

By putirgine value

$$
\begin{gathered}
\mathrm{P}_{2}=\frac{1345.7}{760}=1.77 \mathrm{~atm} \\
\mathrm{P}_{2}=1.77 \mathrm{~atm}
\end{gathered}
$$

Result:
If pressure is reduced to 350 mm Hg the volume of gas will be 1.77 atm.

5.2.2 CHARLES LAW

Q. 1 Define and explain Charles Law of gases.

Ans:

Introduction:

The relationship betwee 1 olume ard amperathre keping ihd pressure constant was also stuched by frehch scientist. J. Chaties (1746-18).3).
He was a F ee ch imertor, cientist trathematician and balloonist. He described in 1802 he wgases tend to expand when heated.
Statent.
 absolute temperature if the pressure is kept constant".
Mathematical Representation:
When pressure P is constant, the volume V of a given mass of a gas is proportional to absolute temperature T .

Mathematically:

It is represented as:

$$
\begin{aligned}
& \text { Volume } \propto \text { temperature } \\
& \mathrm{V} \propto \mathrm{~T} \\
& V=k T \\
& \text { Or } \quad \frac{V}{T}=k
\end{aligned}
$$

J. Charles in 1787. J. Charles (1746-1823) was a French inventor scientist, mathematician and balloonist. He described in 1802 how gases tend to expand when heated.

Where k is proportionality constant.
Another Form of Charles's Law:
If temperature of the gas is increased its volume also increases. When temperature is changed from $\mathbf{T}_{\mathbf{1}}$ to $\mathbf{T}_{\mathbf{2}}$, the volume will change from $\mathbf{V}_{\mathbf{I}}$ to $\mathbf{V}_{\mathbf{2}}$. The mathematical form of Charles' Law will be:

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\mathrm{k}, \frac{\mathrm{~V}_{2}}{\mathrm{~T}_{2}}=\mathrm{k}
$$

As both equations have same value of constant, therefore their variables are also equal to each other. So

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

EXPERIMENTAL VERIFICATION OF CHARLES'S 1 W
Let us take a certain amount of gas enclosed in a cylinder haring a no vabte p. ston. Is he
 cylinder up to $\mathbf{1 0 0}{ }^{\circ} \mathbf{C}$ (T_{2}) its not ylume \mathbf{V}_{2} is about $\mathbf{5 2 . 5} \mathbf{~} \mathbf{m}^{3}$. The increase in temperature increases the virne that can be dbsurye. as elabor.t.d.

Figure: Representation of Increase of Volume With The

According to Charles's Law:

Putting the values in equation:

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

5.2.2 CHARLES LAW SHORT QUESTIONS

Q. 1 State Charles's Law.

Ans: Answer given on pg \# 167

1. Norma body tempreture human beings is:
(A) $17^{\circ} \mathrm{C}$
(B) $38^{\circ} \mathrm{C}$
(C) $39^{\circ} \mathrm{C}$
(D) $40^{\circ} \mathrm{C}$

In Choles s Law ' k ' is equal to:
(GRW 2014)(K.B)
(A) $\frac{T}{V}$
(B) TV
(C) $\frac{\mathrm{V}}{\mathrm{T}}$
(D) $\frac{\mathrm{V}}{\mathrm{P}}$
(LHR 2015)(K.B)
3. $\quad \frac{V}{T}=k$ is the mathematical form of:
(K.B)
(A) Boyle's Law
(B) Charles's Law
(C) Avogadro's Law
(D) Dalton Law
4. Mathematical representation of Charles's Law is:
(A) $\mathrm{V} \propto \frac{1}{\mathrm{P}}$
(B) $\mathrm{V} \propto \frac{1}{\mathrm{~T}}$
(C) $\mathrm{V} \propto \mathrm{T}$
(D) $\mathrm{V} \propto \mathrm{P}$

5.3 TEST YOURSELF

i. Which variables are kept constant in Charles's Law?

Ans: CONSTANT VARIABLES OF CHARLES'S LAW
Mass and pressure are kept constant in Charle's Law while volume and temperature are variable parameters. $\frac{V}{T}=$ Constant
ii. Why volume of a gas decreases with increase of pressure?

Volume of gas decreases with increase of pressure because according to Boyle's Law volume and pressure both are inversely proportional to each other. So when we increase pressure, the gas molecules inter into the intermolecular spaces and come closer to one another and volume of a gas decreases.
iii. What is absolute zero?
(SWL 2016,17, FSD 2016, 17, GRW 2015)(K.B)
Ans:

ABSOLUTE ZERO

"Absolute zero is the temperature at which an ideal gas would tave zero yolune" Kevin scale starts from absolute zero, represented a 0 K (Zero Kelvin). (tis equal toG27.e.
iv. Does Kelvin scale show a negative tempedature?

Ans:

The Kelvi ts sale doesiot show regative val ae, as $\quad 0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$
v. When 2ges is alioved o exand, hat withe its effect on its temperature? (U.B)

Ans:

FEERCD OF EXPANSION ON TEMPERATURE

wheir a sas s lloved to expand, its temperature decreases because gas molecules consume Fieng yfocexpansion by the gas molecules on its own. This decreases their temperature.
Can you cool a gas by increasing its volume?
(U.B)

COOLING OF GAS BY INCREASING VOLUME

Yes, when a highly compressed gas is allowed to expand into a region of high pressure to low pressure, it consumes energy for the expansion by the gas molecules on its own this decreases their temperature.

NUMERICAL EXAMPLE 5.3

NUMERICAL EXAMPLE 5.4

A sample of oxygen gas has a volume of 250 cm^{3} at $-\mathbf{3 0}{ }^{\circ} \mathrm{C}$. If gas is allowed to expand up to $700 \mathrm{~cm}^{3}$ at constant pressure, find out its final temperature.

A sample of hydrogen gas occupies a volurae $160 \mathrm{~cm}^{3}$ at $30^{\circ} \mathrm{C}$. If its tomberaure is aised To $100^{\circ} \mathrm{C}_{\text {, arculete what will is itsotme }}$ ir the pressure e na ins constant. (U.B+A.B)

Solution: Given Data:

10 Fina:

$$
\mathrm{T}_{2}=\text { ? }
$$

Calculations:
By using the equation:

$$
\begin{array}{ll}
& \frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
\text { or } & \mathrm{T}_{2}=\frac{\mathrm{V}_{2} \mathrm{~T}}{\mathrm{~V}}
\end{array}
$$

By the values in equation:

$$
\begin{gathered}
\mathrm{T}_{2}=\frac{700 \times 243}{250}=680.4 \mathrm{~K} \\
\mathrm{~T}_{2}=680.4-273 \\
\mathrm{~T}_{2}=407.4^{\circ} \mathrm{C}
\end{gathered}
$$

Result:

The final temperature of oxygen gas is $407.4^{\circ} \mathrm{C}$.

NUMLRICAL
Solution.

Given Data:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{I}}=160 \mathrm{~cm}^{3} \\
& \mathrm{~T}_{\mathrm{I}}=30+273=303 \mathrm{~K}\left(\text { as } 0^{\circ} \mathrm{C}=273 \mathrm{~K}\right) \\
& \mathrm{T}_{2}=100+273=373 \mathrm{~K}
\end{aligned}
$$

To Find:

$$
V_{2}=?
$$

Calculations:
By using the equation of Charles's Law:

$$
\text { Or } \quad \begin{aligned}
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& V_{2}=\frac{V_{1} T_{2}}{T_{1}}
\end{aligned}
$$

By Putting the values in equation:

$$
\begin{gathered}
\mathrm{V}_{2}=\frac{160 \times 373}{303}=196.9 \mathrm{~cm}^{3} \\
\mathrm{~V}_{2}=196.9 \mathrm{~cm}^{3}
\end{gathered}
$$

Result

The final volume of gas is $196.9 \mathrm{~cm}^{3}$ if the pressure remains constant.

5.3 LIQUID STATE (TYPICAL PROPERTIES) 5.3.1 EVAPORATION, 5.3.2 VAPOUR PRESSURE,

Q. 1 What are liquids? Name some important properties of liquids.
(DGK 2017, FSD 2016)(K.B)
Ans:
LIQUID STATE
"The state of matter that has indefinite shape but definite yolume is chllealiquid" TYPICAL PPOPERT EESOM ITO
Typical properties of liqui is are as

- Evano ation
- Vapiti piessure
- Boiling pont
- Fregzinspoint

D Diffusion

- Density

Liquids have a definite volume but their shape is not definite. A liquid attains shape of the container in which it is put.

Q. 2 Write a detailed note on evaporation. Which factors affect the evaporation?

(LHR 2014, 16 G-I, MTN 2016, BWP 2017 FSD 2017)(U.B)
Ans:

EVAPORATION

Definition:

"The process of changing of a liq.iai intr gavase i. called enaparaizon".
The molecules having more that verage inctic enery vercorne the attractive forces among the mplecules ano e cape from the surface io called as evaporation.

Proper ios

(i) It is rver to condensation in which a gas changes into liquid.
(ii) Eva, ola ion ic an endothermic process (heat is absorbed).

Exan@e:
When one mole of water in liquid state is converted into vapour form, it requires $\mathbf{4 0 . 7} \mathbf{~ k J}$ of energy.

$$
\mathrm{H}_{2} \mathrm{O}_{(1)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}_{\text {vap }}^{\circ}=40.7 \mathrm{KJ} / \mathrm{mol}
$$

Mechanism of Evaporation:

In the liquid state, molecules are in a continuous state of motion. They possess kinetic energy but all the molecules do not have same kinetic energy. Majority of the molecules have average kinetic energy and a few have more than average kinetic energy. The molecules having more than average kinetic energy, overcome the attractive forces among the molecules and escape from the surface. It is called as evaporation.

(a)
(b)
(c)

Figure: A State of Dynamic Equilibrium Between Liquid and Its Vapours

Evaporation and Temperature:

Evaporation is a continuous process taking place at all temperatures. The rate of evaporation is directly proportional to temperature. It increases ith the inctease in temperature because of increase in kinetic ensrgy of the mbitcores.

Evaporation is a Cooling Proces

When the high kinetic energy mive cules vaporze the temperature of remaining molecules falls down. To domensate hi. deficiencyof energy, the molecules of liquid absorb eaergy inom aje surrpundihg. As a result the temperature of surroundings decreases and we feel cooplip.
Exatiple:
Wher ene a drop of alcohol on palm, the alcohol evaporates and we feel cooling effect.

EACTORS AFFECTING EVAPORATION

Evaporation depends upon following factors:
(i) Surface area
(ii) Temperature
(iii) Intermolecular forces
(i) Surface Area:

Evaporation is a surface phenomenon. Greater is surface area, greater is evaporation and vice versa.

Example:

Sometimes a saucer is used if tea isto be colold quickly. This is becau se evapuration from the larger surface area of sacer is mpt tharat ro the m. ller ur age area of a tea cup.
(ii) Temp iture:

At high demprature, ate of evaporation is high because at high temperature kinetic energy of the nolecules increas so high that they over- come the intermolecular forces and cvaporate apidly
12ance
Eol water will evaporate faster than the cold water in containers of same capacity.
(iii) Intermolecular Forces:

The stronger the intermolecular attractive forces, the lower is the evaporation.
Example:
Water has stronger intermolecular forces than alcohol, therefore, alcohol evaporates faster than water.
Q. 3 What is vapour pressure and how it is affected by inter molecular forces? (Ex-Q.3)
(SWL 2016, BWP 2016, 17, MTN 2017, RWP 2017 G-II)(U.B+K.B)
Ans:

VAPOUR PRESSURE

Definition:

The pressure exerted by the vapours of a liquid at equilibrium with the liquid at a particular temperature is called vapour pressure of a liquid.

State of Equilibrium:

"The equilibrium is a state when rate of vaporization and rate of condensation is equal to each other but in opposite directions".

Formula:

Dynamic Equilibrium:

"The state at which two opposing processes take places in the opposite direction simultaneously at equal rates is called dynamic equilibrium".
The number of molecules evaporating will be equal to the number of molecules coming back (condensing) to liquid. This state is called dynamic equilibrium.
Explanation:
From the open surface of a liquid, molecules evaporate and mix un witine air ut ween (ve) close a system, evaporated molecules start gathering oyer the liquid suraeg. In alivy the vapours condense slowly to return O iquid. Ait or one i ne cundensation nrocess increases and a stage reaches when the rate greparion becomes ecualto rate of condensation. At this stage the number of moleçles evarolating vill be equal to the number of molecules comins back (contensing) ip liceid. This is calied dynamic equilibrium state.

Figure: A State of Dynamic Equilibrium Between Liquid and Its Vapours

FACTOR AFFECTING VAPOUR PRESSURE

Vapour pressure of a liquid depends upon the following factors:
(i) Nature of liquid
(ii) Size of molecule
(iii) Temperature
(i) Nature of Liquid:

Vapoures, pessure denends opon the nature et licuid.
Polar hequids lavelov rappurpresene uian non-polar liquids at the same temperature. This is becalise of thor intenolecular forces between the polar molecules of liquids. Exelpl
y/til ias less vapour pressure than that of alcohol at same temperature.
(ii) Size of Molecules:

Small size molecules can easily evaporate than big size molecules. Hence small size molecular liquids exert more vapour pressure.

Examples:

Hexane $\left(\mathrm{C}_{6} \mathrm{H}_{54}\right)$ is a small sized molecule as compared to decane $\left(\mathrm{C}_{10} \mathrm{H}_{22}\right)$.
$\mathrm{C}_{6} \mathrm{H}_{14}$ evaporates rapidly and exerts more pressure than $\mathrm{C}_{10} \mathrm{H}_{22}$).
(iii) Temperature:

At high temperature, vapour pressure is higher than at low temperature. At elevated temperature, the kinetic energy of the molecules increases enough to enable them to vaporize and exert pressure.

Example:

Vapour pressure of water at $0^{\circ} \mathrm{C}$ is $4.58 \mathbf{~ m m H g}$ and at $100^{\circ} \mathrm{C}$ it is $\mathbf{7 6 0} \mathbf{~ m m H g}$.

Temp	Vapour Pressure	Temp	Vapour Pressure
${ }^{\circ} \mathrm{C}$	mmHg	${ }^{\circ} \mathrm{C}$	mmHg
0	4.58	60	149.4
20	17.5	80	355.1
40	55.3	100	760.0
Table: Relationship of Vapour Pressure of Water With Temperature			

Q. 4 Define boiling point and also explain how it is affected by different factors? (Ex-Q.4)(LHR 2015, GRW 2016 G-II, SGD 2016, 17 G-II, RWP 2017 G-II)(U.B+K.B)

Definition:

"The temperature at which the vapour pressure of ailquid bycomes equg' to the atmospheric pressure or any external pres

Example:

- Boiling of water $\rightleftharpoons 10 c^{\circ} \mathrm{C}$

Mechanis o o Boilng
The: a licquid i. heated, its molecules gain energy and the number of molecules which hate @ore than average kinetic energy increases. More and more molecules become energetic, enough to overcome the intermolecular forces. Due to this, rate of evaporation increases which results in increase of vapour pressure until a stage reaches where the vapour pressure of a liquid becomes equal to atmospheric pressure. At this stage the liquid starts boiling.

Relationship between Boiling Point and Vapour Pressure:

The increase of vapour pressure of diethyl ether, ethyl alcohol and water with fiee increase of temperature. At $0^{\circ} \mathrm{C}$ the vapour pressure of diethyl eth er can mm $\mathbf{H g}$ of ethyl alcohol 25 mm Hg while that of water is abont 5 nim 1 g . Wher they dreheated, vapour pressure of diethyl etherincreases inily and be oome eryal to atmospheric pressure at $34.6^{\circ} \mathrm{C}$, while vapar presic of water increases slowly because intermolecular forces of w ater art stronge:
The vapous p essure increases rery rap dyy when the liquids are near to boiling point.

Figure: Boiling Point Curves of Ether Alcohol and Water

Factors Affecting the Boiling Point:

The boiling point of the liquid depends upon the following factors.
(i) Nature of liquid
(ii) Intermolecular forces
(iii) External pressure
(i) Nature of Liquid:

The polar liquids have high boiling points than that of non-polar liquids because polar liquids have strong intermolecular forces.

Examples:

Boiling point of water (more polar) is $100^{\circ} \mathbf{C}$ while that of ethyl alcohol (less polar) is $78^{\circ} \mathrm{C}$.

(ii) Intermolecular Forces:

The stronger the intermolecular forces, the higher is the boiing pont of liquid. Intermolecular forces play a very inportant rcle on the boi ing boint of lininias.
 liquids attim a level of vapui pressure equa to extenal pressure at high temperature.

Examp

Boiing poirt wi wer ($\mathbf{1 0 0 ^ { \circ }} \mathbf{C}$) is greater than that of alcohol $\left(78^{\circ} \mathbf{C}\right)$ due to stronger inper neldculai iorces of attraction.
(iii) External Pressure:

Boiling point of a liquid depends upon external pressure. Boiling point of a liquid is controlled by external pressure in such a way, that it can be increased by increasing external pressure and vice versa. This principle is used in the working of 'Pressure Cooker'.
Q. 5 What is meant by freezing point?
"The temperature at which vapour pressure of a liquid state bane equa the vapour pressure of the solid state and liquia and solid neaxise in din micequibitrion is called freezing point".

Explanation:

When liquids are cooled the vapou pres ure or liqua decreases and when vapour pressuep a ligidatote tecomes equat to the vapour pressure of the solid state. At this temperfur liquidand solid coexicitin dynamic equilibrium with one another and this is called the freezing psintst a liquid.
Lataplos:
19.eer point of water is $0^{\circ} \mathrm{C}$ and that of acetic acid is $16.6^{\circ} \mathrm{C}$ due to attractive forces respectively.

Sr. No	Liquid	Freezing Point ${ }^{\mathbf{0}} \mathbf{C}$	Boiling Point ${ }^{\mathbf{0}} \mathbf{C}$
1	Diethyl ether	-116	34.6
2	Ethyl alcohol	-115	78
3	Water	0.0	100
4	n-Octane	-57	126
5	Acetic acid	16.6	118

Q. 6 Describe the phenomenon of diffusion in liquids along with factors which influence it. (Ex-Q.5)(SGD 2016, RWP 2016, FSD 2017)(U.B+K.B)
Ans:

DIFFUSION

"The spontaneous mixing up of molecules by random motion and collisions to form homogeneous mixture is called diffusion".

Explanation:

The liquid molecules are always in a state of continuous motion. They move from higher concentration to lower concentration. They mix up with the molecules of other liquids, so that they form a homogeneous mixture.
Example:
When a few drops of ink are added in a beaker of water, ink molecules move around and after a while spread in whole of the beaker. Thus diffusion has taken place.

Comparind Faef dusion netiquids and Gases:
Liquids diffuse ike tases but the rate of diffusion of liquids is very slow.
Petors At fecting Diffusion:
5) lifusion of liquids depends upon the following factors:
(i) Intermolecular forces
(ii) Size of molecules
(iii) Shapes of molecules
(iv) Temperature
(i) Intermolecular Forces:

Liquids having weak intermolecular forces diffuse faster than thoce of hiquids 11 g strong intermolecular forces.

Example:

Rate of diffusion of alcoho is great er 1 an that pf unaer.
(ii) Size of Moecyles

Big sized molecules diff ise siowly.
19amele:
Honey diffuses slowly in water than that of alcohol in water.
(iii) Shapes of Molecules:

Regular shaped molecules diffuse faster than irregular shaped molecules because they can easily slip over and move faster.
(iv) Temperature:

Diffusion increases by increasing temperature because at high temperature the intermolecular forces are weak.

Example:

Rate of diffusion of water is higher at $\mathbf{2 5}^{\circ} \mathrm{C}$ than that of $\mathbf{0}^{\circ} \mathrm{C}$.
Q. 7 Explain comparison between densities of gases and liquids.
(LHR 2014)(U.B)
OR
Describe density of liquids in detail.
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B})$
Ans:

DENSITY

Definition:

"The mass per unit volume of a substance is called density."

Dependence of Density of Liquids:

The density of liquids depends upon its mass and volume.

Comparison between Densities of Gases and Liquids:

Liquids are denser than gases because molecules of a liquid are clos packed and the spaces between their molecules are neg.ighle. Astie liquic moleculec hationg stong intermolecular forces hence they ©arnot canpandirely and lave a fiked volume. Unlike gases, they cannot occupy all the drailaol Oplyneor tr el container that is the reason why densities of quids ax high

Examp es:

Dersity of wate is $1.0 \mathbf{g ~ c m}^{-3}$ while that of air is $0.001 \mathrm{~g} \mathrm{~cm}^{-3}$ that is the reason why drens of rain fall downward.

Variation in Densities of Liquids:

The densities of liquids also vary. You can observe kerosene oil floats over water while honey settles down in the water.

5.3 LIQUID STATE (TYPICAL PROPERTIES) 5.3.1 EVAPORATION, 5.3.2 VAPOUR PREPEOTE,

SHOREQUETEONS

Q. 1 How evaporation causes coiling?

Ans: Answer given on pg \# 171
Q. 2 How surd ce area affects evanorat on?
(LUR 2016 G-I, ESD 2016,17)(U.B)
Ans: Answergip n ply g \# \&
Q. 3 How size of molecules affect the vapour pressure?
(LHR 2016)($\boldsymbol{U} . \boldsymbol{B}$)
Ans: Aranersivgrenpg \# 173
Define boiling point.
(SWL 2016, MTN 2016, SGD 2017, RWP 2017)(K.B)
Ans: Answer given on pg \# 173
Q. 5 How external pressure affects the boiling point?
(FSD 2016, SGD 2016, 17 G-I)(U.B)
Ans: Answer given on pg \# 174
Q. 6 Define freezing point.
(GRW 2017 G-I)(K.B)
Ans: Answer given on pg \# 175
Q. 7 What is the freezing point of diethyl ether and ethyl alcohol?
(K.B)

Ans: FREEZING POINTS
Diethyl Ether:
Freezing point of diethyl ether is $-116^{\circ} \mathrm{C}$.
Ethyl Alcohol:
Freezing point of ethyl alcohol is $-115^{\circ} \mathrm{C}$.

5.3 LIQUID STATE (TYPICAL PROPERTIES) 5.3.1 EVAPORATION, 5.3-2 VAPOUR PRESSURE,

MULTIPLE CHOICE QUESTIONS

1. At which temperature rate of evaporation of water is minimum?
(K.B)
(A) $50^{\circ} \mathrm{C}$
(B) $40^{\circ} \mathrm{C}$
(C) $90^{\circ} \mathrm{C}$
(D) $70.5^{\circ} \mathrm{C}$
2. Evaporation is reverse to:
(A) Boiling
(B) Freezing
(C) Melting
(D) Condensation
3. Evaporation is \qquad process.
(A) Endothermic
(B) Cooling
(C) Continuous
(D) All of these
4. Heat of vaporization of water is:
(A) $407 \mathrm{~kJ} / \mathrm{mol}$
(B) $40 \mathrm{~kJ} / \mathrm{mol}$

(D) $0.92 \mathrm{~J} /$
5. Evaporation increases with:
(A) Intermolecular force
(b)
remora
re C
 (D) All of these
6. On which factors evaporation depends?
(B) Temperature
(A) Sur ace ale
(C) İitermplec 1 ar forces
(D) All of these

The veipue pressure of a liquid increases with:
(A) Increase of pressure
(B) Increase of temperature
(C) Increase of intermolecular forces
(D) Increase of polarity of molecules
8. Which of the following has maximum vapour pressure at given temperature? (U.B+K.B)
(A) $\mathrm{C}_{5} \mathrm{H}_{12}$
(B) $\mathrm{C}_{6} \mathrm{H}_{14}$
(C) $\mathrm{C}_{7} \mathrm{H}_{10}$
(D) $\mathrm{C}_{8} \mathrm{H}_{18}$
9. At which temperature vapour pressure of water is 760 mmHg ?

(K.B)

(A) $20^{\circ} \mathrm{C}$
(B) $50^{\circ} \mathrm{C}$
(C) $100^{\circ} \mathrm{C}$
(D) $140.4^{\circ} \mathrm{C}$
10. Boiling point of alcohol is:
(A) $68^{\circ} \mathrm{C}$
(B) $78^{\circ} \mathrm{C}$
11. Boiling point of water is:

(A) $32^{\circ} \mathrm{C}$
(B) 8 C

(D) $98^{\circ} 0$
(B) C
(C) $88^{\circ} \mathrm{G}$
(c) $100^{\circ} \mathrm{C}$
(L.) $20^{\circ} \mathrm{C}$
12. Boiling neint of liguiá uqperds upon;
(A) Natare of lquid
(B) Intermolecular forces
(C) Ext-rra a' perssure
(D) All of these
13. Whith of the to lowng has highest boiling point?
(K.B)
(A) YV(1)er
(B) Ether
(C) Alcohol
(D) Benzene

1. Ir .
(A) $16.5^{\circ} \mathrm{C}$
(B) $16.6^{\circ} \mathrm{C}$
(C) $16.3^{\circ} \mathrm{C}$
(D) $16.2^{\circ} \mathrm{C}$
2. Diffusion is faster in:
(A) Liquids
(B) Solids
(C) Gases
(D) None of these
3. Spreading of ink in water is due to:
(C) Evaporation
(D) Freezing
4. $\begin{array}{ll}\text { (A) Effusion } & \text { (B) Diffusion } \\ \begin{array}{ll}\text { (A) Irregular } & \text { (B) Regular }\end{array}\end{array}{ }_{l}^{\text {(A) }} \begin{aligned} & \text { (B) }\end{aligned}$
5. $\begin{array}{ll}\text { (A) Effusion } & \text { (B) Diffusion } \\ \begin{array}{ll}\text { (A) Irregular } & \text { (B) Regular }\end{array}\end{array}{ }_{l}^{\text {(A) }} \begin{aligned} & \text { (B) }\end{aligned}$
6. $\begin{array}{ll}\text { (A) Effusion } & \text { (B) Diffusion } \\ \begin{array}{ll}\text { (A) Irregular } & \text { (B) Regular }\end{array}\end{array}{ }_{l}^{\text {(A) }} \begin{aligned} & \text { (B) }\end{aligned}$
(C) Uneven
(D) Non-uniform
(C) Uneva
7. $\begin{array}{ll}\text { (A) Effusion } & \text { (B) Diffusion } \\ \begin{array}{ll}\text { (A) Irregular } & \text { (B) Regular }\end{array}\end{array}$.
8. $\begin{array}{ll}\text { (A) Effusion } & \text { (B) Diffusion } \\ \begin{array}{ll}\text { (A) Irregular } & \text { (B) Regular }\end{array}\end{array}$.
9. Diffusion increases by increasing:
(A) Temperature
(B) Intermolecular forces
(C) Size of molecule
(D) All of these
10. The density of water is:
(K.B)
(A) $1.0 \mathrm{gcm}^{-3}$
(B) $1.3 \mathrm{gcm}^{-3}$
(C) $1.4 \mathrm{gcm}^{-3}$
(D) $1.2 \mathrm{gcm}^{-3}$
11. Vapour pressure of water at $100^{\circ} \mathrm{C}$ is:
(GRW 2017 G-II)(K.B)
(A) 140 mmHg
(B) 300 mmHg
(C) 580 mmHg
(D) 760 mmHg
12. Freezing point of water is:
(GRW 2017 G-II, LHR 2016 G-I)(K.B)
(A) $0^{\circ} \mathrm{C}$
(B) $100^{\circ} \mathrm{C}$
(C) $34-4^{\circ} \mathrm{C}$
(D) $4^{\circ} \mathrm{C}$

5.4 TEST YOURSELF

i. Why does evaporation increase with the increase of temperature? (GRW 2017 G-I)(U.B) Ans:

INCREASE IN EVAPORATION WITH TEMPERATURE

Evaporation increases with increase of temperature because kinetic energy of the molecules increases to such an extent that they overcome the intermolecuit forces ant rapidly evaporate.
ii. What do you mean by condensation?

Ans:
"The process of changing of ges or varoor into liqua is callea condensation. It is reverse fevcuoration

Vhe:y is lar our pressure higher at high temperature?

TEMPERATURE AND VAPOUR PRESSURE

The vapour pressure is higher at high temperature than at low temperature because at elevated temperature, the kinetic energy of the molecules increases enough to enable them to vapourize and exert more pressure.
iv. Why is the boiling point of water higher than that of alcohol?
(SGD 2016, SWL 2016, RWP 2016, 17)(U P)
Ans:

BOILING POINT OF WATER AND ALCOHOL

Boiling point of water is higher than that of alcohol because vater is a pula licuid nod has high intermolecular forces than alcoho
v. What do you mean by dynamic quilibrizm? (GGD, LHh, (GRV, RSD, KWP 16,17)(K.B)

Ans:
DYNAMELOULBYU
"The state u which the xai of evaporatidn beddnesequal to the rate of condensation is called dvomic equilibriuna'".

Why are the rates or diffusion in liquids slower than that of gases?

RATE OF DIFFUSION

The rate of diffusion in liquids is slower than that of gases because liquids have stronger intermolecular forces than gases and very less empty spaces and kinetic energies.
vii. Why does rate of diffusion increase with increase of temperature?

Ans:

RATE OF DIFFUSION

The rate of diffusion increases with increase in temperature because at high temperature the kinetic energy of molecules increases and intermolecular forces decrease. As a result gas molecules can move freely and fastly.
viii. Why are the liquids mobile?
(LHR, GRW 2014,15)(U.B)
Ans:
MOBILITY
"The ease of flow of a liquid is called mobility". The mobility of liquids depends upon the intermolecular forces and K.E of molecules. Liquids are mobile because liquid molecules possess high kinetic energy and weak intermolecular forces.

5.4 SOLID STATE (TYPIGAL PROPERTIES)

Q. 1 Explain typical properties of solid state.
(U.B+K.B)

Ans:

SOLID STATE

"The state of matter which has definite shape and definite volume is called solid". Examples:

- Sugar
- Common salt
- Iron
- Gold

In solid state the molecules are very close to one another and they are closely packed. The intermolecular forces are so strong that particles become almost motionless. Hence they cannot diffuse. Solid particles possess only vibrational motion.

TYPICAL PROPERTIES OF SOLIDS

Some typical properties of solids are as follows:
(i) Melting point
(ii) Rigidity
(iii)Density
(i) Melting Point:
"The temper ature at wrich the solid stert veltino arra coexists in dynamic equilibrium with liauld sidie is calted meltieg point'. Examples:
Melting point oi sod un enloride is $\mathbf{8 0 1}{ }^{\circ} \mathrm{C}$.
Envanaticn:
Fin sina particles possess only vibrational kinetic energy. When solids are heated, neir vibrational energies increase and particles vibrate at their mean position with a higher speed. If the heat is supplied continuously, a stage reaches at which the particles leave their fixed positions and then become mobile. At this temperature solid melts.
solid日倩 liquid

Melting Points of Ionic and Covalent Solids:

The ionic and covalent solids make network structure to form macromolewnes so all sach solids have very high melting points.
(ii) Rigidity:

The particles of solids are not moble. They ha fixd position theretore solids are rigid in their structure.
(iii) Densiv
"Mass per unit velt me of a substande is called density".
Compa is on tetwen densities of solids, liquids and gases:
Soilds are denser than liquids and gases because solid particles are closely packed and do n) t have empty spaces between their particles. Therefore, they have the highest densities among the three states of matter.
Examples:
Density of aluminum is $2.70 \mathrm{~g} \mathrm{~cm}^{-3}$, iron is $7.86 \mathrm{~g} \mathrm{~cm}^{-3}$ and gold is $19.3 \mathrm{~g} \mathrm{~cm}^{-3}$.

5.4 SOLID STATE (TYPICAL PROPERTIES)
 SHORT QUESTIONS

Q. $1 \quad$ What is solid state of matter?
(MTN 2017)(K.B)
Ans: Answer given on pg \# 179
Q. 2 Define melting point. Give an example.
(RWP 2016)(K.B)
Ans: Answer given on pg \# 179
Q. 3 What is meant by rigidity?
(FSD 2017 G-I)(U.B+K.B)
Why solids are rigid in structure?
Ans: Answer given on pg \# 180
Q. 4 What is density?

Ans: Answer given on pg \# 180

5.4 SOLID STATE (TYPICAL PROPERTIES)
 MULTIPLE CHOICE QUESTIONS

1. The density of gold is:
(A) $2.70 \mathrm{~g} \mathrm{~cm}^{-3}$
(B) $7.86 \mathrm{~g} \mathrm{~cm}^{-}$
(C) $19.3 \mathrm{~g} \mathrm{~cm}^{-3}$
(D) $1.4 \mathrm{~g} \mathrm{~cm}^{-3}$
2. The density of iron is:
(A) $2.70 \mathrm{~g} \mathrm{~cm}^{-3}$
(B) $7.86 \mathrm{~g} \mathrm{~cm}^{-3}$
(C) $19.3 \mathrm{~g} \mathrm{~cm}^{-3}$
5.5 TY
Q. 1 Differentiate between cry stillian mn ar 10 rph ous olds.

Ans:
facording et tle eir general appearance solids can be classified into two types:
(i) $n @$ phous solids:
(ii) Crystalline solids:
(i) Amorphous Solids: (Greek word amorphous means without shape or shapeless)
"Solids in which the particles are not arranged in a regular repeating pattern are called amorphous solids".

Properties:

- They do not have sharp melting points.
- They do not form crystals.

Examples:

- Plastic rubber
- Glass
- Coal zar etc.
(ii) Cryst line Solids.
wolds in hich particles are arranged in a definite three-dimensional pattern are chicte d.ystalline solids".

Properties:

- They have definite surfaces or faces.
- Each face has definite angle with the other.
- They have sharp melting points.

Examples:

- Diamond
- Sodium chloride
- Sugar
- Ammonium chloride etc.

5.5 TYPES OF SOLIDS
 SHORT QUESTIONS

Q. 1 What is the meaning of word amorphous. Give its properties. (MTN 2016, SWL 2017, FSD)(K.B)

Ans: Answer given on pg \# 180
Q. 2 Differentiate between crystalline and amorphous solids.

Ans: DIFFERENTIATION
The differences between crystalline and amorphous solids are as follows:

Amorphous Solids	Crystalline Solids
Definition	
- Solids in which the particles are not regularly arranged or their regular shapes are destroyed, are called amorphous solids.	- Solids in which particles are arranged in a defirite. thee limensionn pattirn are called c. ystalline ool d.
- The do ro have silarp metting pont	CThey have sharp melting point.
- Examples	
1. Plastic - Rubber - Glass - Coal tar	- Diamond - Sodium chloride - Sugar - Ammonium chloride

5.5 TYPES OF SOLIDS
 MULTIPLE CHOICE QUESTIONS

(A) Rubber
(B) Reastic
(C) Class
(L) Glucose
2. The solid in which partiole age arranged in definite ince dimensional pattern are: (K.B)
(A) Soin
(B) Crystalline soliàs
(C) Amorphous solids
(D) Both B and C
3. Plastic, glass, Cibber otcare the examples of:

A N (rystaline solids (B) Super cooled liquid(C) Amorphous solids(D) Ionic solids
4. Diamond is an example of:
(A) Amorphous solids
(B) Ionic bond
(C) Crystalline solids
(D) Both B and C
5. Which one of the following is amorphous solid?
(RWP 2017 G-II)(K.B)
(A) Glucose
(B) Sodium chloride
(C) Glass
(D) Diamond

5.6 ALLOTROPY

Q. 1 Define Allotropy. Explain its conditions and properties.
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B})$
Ans: \quad ALLOTROPY
"The existence of an element in more than one form, in same physical state is called allotropy".
Reasons:
(i) Different Number of Atoms in a Molecule:

The existence of two or more kinds of molecules of an element each having different number of atoms such as allotropes of oxygen are oxygen $\left(\mathrm{O}_{2}\right)$ and ozone $\left(\mathrm{O}_{3}\right)$.
(ii) Different Arrangement of Atoms in a Molecule:

Different arrangement of two or more atoms or molecules in a crystal of the element
Examples:

- Sulphur shows allotropy due to different arrangement of molecules $\left(\mathbf{S}_{\mathbf{8}}\right)$ in the crystals.
- Due to different arrangement of carbon (C) atoms in the crystals carhon has three allotropes. Diamond, Graphite, Bucky balls
- Due to different arrangement of \mathbf{P}_{4} nolecules in me crys.als, oho poronvexists in the three allotropes i.e. Whit, Led mack

Properties of allotropes:

They awy s howifferent physical poperties but may have same chemical properties.
Effect ormorere:
Allotiones of sp id have uifferent arrangement of atoms in space at a given temperature.
Fha amangent of atoms also changes with the change of temperature and new alotropic form is produced.

TRANSITION TEMPERATURE
"The temperature at which one allotrope changes into another is called transition temperature".

Examples:

- Transition temperature of sulphur is $\mathbf{9 6}{ }^{\circ} \mathbf{C}$, below this temperature inubic far stable. If rhombic form is heated up to $96^{\circ} \mathrm{C}$, its moleceles ier rrange themseven in give monoclinic form.

- Trensition tempe atore ior alietrepic forme of tin is $13.2^{\circ} \mathrm{C}$.

$$
S n_{\text {(Grey) }} \stackrel{132^{\circ} C}{ } S n_{\text {(White) }}
$$

- Tr ras $\frac{1+i t i o n ~ t e m p e r a t u r e ~ f o r ~ a l l o t r o p i c ~ f o r m s ~ o f ~ p h o s p h o r o u s ~ i s ~}{250}{ }^{\circ} \mathbf{C}$.

$$
P_{4(\text { White })}{ }^{250^{\circ} \mathrm{C}} P_{4(\text { Red } d)}
$$

White Phosphorous:
Is a very reactive, poisonous and waxy, soft solids. It exists as tetra-atomic molecules.
Red Phosphorous:
Is less reactive, non-poisonous and brittle powder.

5.6 ALLOTROPY
 SHORT QUESTIONS

Q. 1 Define and give example of transition temperature.
(K.B)

Ans: Answer given on pg \# 182
Q. 2 Define the term allotropy with examples.
(K.B)

Ans: Answer given on pg \# 182
Q. 3 What are properties of white phosphorous and red phosphorous?

Ans: PROPERTIES OF WHITE AND RED PHOSPHOROUS White Phosphorous:
Is a very reactive, poisonous, soft and waxy solid. It exists as tetra-atomic molecules.
Red Phosphorous:
Is less reactive, poisonous and brittle powder.

5.6 ALLOTROPY
 MULTIPLE CHOIG QUESJOLS

1. The crystal structure of white tivis:
(A) Cubic
(B) Fe.ragon 1
(C) Moroclinid
(D) None of these
2. 250° C is the transition temperatu e of wivch eitment?
(A) Tin
(B) Carbon
(C) Phosphorus
(D) Sulphur
3. Therex tence of sol d in uifferent physical forms is called:
AN(ras al
(B) Allotropy
(C) Evaporation
(D) Transition
ned phosphorus is:
(K.B)
(A) Less reactive
(B) Non-poisonous
(C) Brittle
(D) All of above
4. Allotropes of oxygen are:
(A) 2
(B) 3
(C) 4
(D) 5

5.5 TEST YOURSELF

i. Which form of sulphur exists at room temperature?

Ans: \quad FORM OF SULPHUR AT ROOM TEMPERATERI
Rhombic form of sulphur exists at room tel pperature.
ii. Why is white tin available trooztemprature?
(SG1 2010, GDW 017, LLㄹ 2014, RWP 2015)(U.B)
Ans: \quad A ILARHINXOF WHITE TIN
White tin is avalable at ocn tennerature because it is stable above $13.2^{\circ} \mathrm{C}$, which is transition temperature of grey and white tin.

$$
\begin{aligned}
& S(\text { grey }) \\
& \text { Cubic } \\
& \text { Tetragonal }
\end{aligned}
$$

iii. Why is the melting point of a solid considered its identification characteristic? (U.B)

Ans:

IDENTIFICATION BY MELTING POINT

The solid particles possess only vibrational kinetic energy. Melting point is the temperature at which the solid starts melting and co-exists in dynamic equilibrium with liquid state. Therefore, melting point of a solid is considered its identification characteristic.

Example:

- Melting point of NaCl is $801^{\circ} \mathrm{C}$.
iv. Why amorphous solids do not have sharp melting points while crystalline solids do have?(U.B) Ans: SHARP MELTING POINT
Amorphous solids do not have sharp melting points because in these solids particles are not held in a regular three dimensional arrangement. On the other hand crystalline solids have sharp melting points because in these solids particles are held in a regular three dimensional arrangement.
v. Which is lighter one, aluminum or gold?

LIGHT WEIGHT METAL

Aluminium is lighter than gold because the density of aluminium $\left(2.70 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ is less than gold ($19.3 \mathrm{gcm}^{-3}$).
vi. Write the molecular formula of a sulphur molecule?

Ans.

MOLECULAR FORMULA OF SULPHUR

Molecular formula of sulphur molecule is S_{8}.
vii. Which allotropic form of carbon is stable at room temperatore $\left(25^{\circ} \mathrm{C}\right)^{\circ}$

Ans: \quad STABILITY OF ALIOTROPEPFAEBR
There are three allotropic for ns of fabbing dian ond, eraphite and bucky balls, which are stable troom temnerat ure. A nong hese allotrons forms graphte is energetically slightly ne re saole than damend.
viii. State whethel albt ony is shewn by elements or compounds or both?

Ans: AELOTROPY OF ELEMENT OR COMPOUND
Ato r(1) y is shown by elements only. It is the existence of an element in more than one iorms in same physical state.
Examples:

- Allotropic forms of carbon are diamond, graphite and bucky balls.
- Allotropes of oxygen are O_{2} and O_{3}.

ANSWER KEYS

5.1 GASEOUS STATE (TYPICAL PRQREAIES)

5.2.2 CHARLES LAW

5.3 LIQUID STATE (TYPICAL PROPERTIES) 5.3.1 EVAPORATION, 5.3.2 VAPOUR PRESSURE,

1	B	2	D	3	A	4	D	5	B	6	D	7	B	8	A	9	C	10	B	11
12	D	13	A	14	B	15	C	16	B	17	B	18	A	19	A	20	D	21	A	

5.4 SOLID STATE (TYPICAL PROPERTIES)

5.5 TYPES OF SOLIDS

EXERCISE SOLUTION

MULTIPLE CHOICE QUESTIONS

1. How many times liquids are denser thangeses?
(a) 100 times
(b) 1000 ir/ess
(c) 0,000 imes
(d) SWL 2016 G-II)
2. Gases are the ïntestiorn of matler and their densities are expressed in terms of: (RVI 2417 G-I MTV 2010 G-I, BWP 2017 G-II, SWL 2017 G-I, II, DGK 2016 G-I)(K.B)
(a) $\mathrm{rg} \mathrm{c.n}$
(b) $\mathrm{g} \mathrm{cm}^{-3}$
(c) $\mathrm{g} \mathrm{dm}^{-3}$
(d) $\mathrm{kg} \mathrm{dm}^{-3}$

At tieezing point which one of the following coexists in dynamic equilibrium?
(K.B)
(a) Gas and solid
(b) Liquid and gas
(c) Liquid and solid
(d) All of these.
4. Solid particles possess which one of the following motions?
(K.B)
(a) Rotational motions
(b) Vibrational motions
(c) Translational motions
(d) Both translational and vibrational motions
5. Which one of the following is not amorphous?
(LHR 2017 G-I, LHR 2016 G-II, DGK 2017 G-II, MTN 2017 G-I, II)(K.B)
(a) Rubber
(b) Plastic
(c) Glass
(d) Glucose
6. One atmospheric pressure is equal to how many Pascals?
(FSD 2017 G-I, SWL 2017 G-II, SWL 2016 G-1, RWP 2016 G-1, FSD 2016 G-1, BWP 2016 G-I,)(K.B)
(a) 101325
(b) 10325
(c) 106075
(d) 10523
7. In the evaporation process, liquid molecules which leave the surface of the liquid have: (U.B)
(a) Very low energy
(b) Moderate energy
(c) Very high energy
(d) None of these
8. Which one of the following gas diffuses faster?(LHR 2017 G-II, SGD 2016 G-I, FSD 2016 G-II)(U.B)
(a) Hydrogen
(b) Helium
(c) Fluorine
(d) Chlorine
9. Which one of the following does not affect the boiling point?
(a) Intermolecular forces
(b) External pressure
(c) Nature of liquid
(d) Initial temperature of liquid
10. Density of a gas increases, when its:
(a) Temperature is increased
(c) Volume is kept constart
(d) Inital tenperature or
(2.2$)$
(b) Dressur is 1acieased
(d) None of thest
 0
11. The vapeur pressume of aquid incrases with tie:
(a) Incrase or press ire
(b) Increase of temperature
(a) ricre ise of intermolecular forces
(d) Increase of polarity of molecules

ANSWER KEY

1 A
2 C
3
5 D
6
A
7 C

8	A	9	D

10 B
11 B

EXERCISE SHORT QUESTIONS

1. What is diffusion? Explain with an example?
(LHR 2017 G-I, PWV 2017 (r-I)(K.Bi (B)
Ans:
"The spontaneous mixing of parti(lee of a ubs an ce b, randon moti,n aiua collisions, to form a homogeneous mixture is cqlied ciffusior
"Moveme.a. of nglecules of a subsance from the region of higher concentration to the region of lovee. sooncen rution is called diffusion".

When a few drops of ink are added in beaker of water, ink molecules move around and after a while spread in whole of the beaker. Thus diffusion has taken place.
2. Define standard atmospheric pressure. What are its units? How it is related to Pascal?
(GRW 2017 G-I, SGD 2016 RWP 2017, LHR 2016 G-I, II)(U.B+K.B)
Ans:

STANDARD ATMOSPHERIC PRESSURE

Definition:

It is the pressure exerted by the atmosphere at the sea level. "It is defined as the pressure exerted by a mercury column of 760 mm height at sea level". It is sufficient pressure to support a column of mercury 760 mm in height at sea level.

Units:

- Atmosphere
- Pascal
- mmHg
- Torr
- Nm^{-2}

$$
1 \mathrm{~atm}=760 \mathrm{mmHg}=760 \mathrm{torr}=101325 \mathrm{Nm}^{-2} \quad=101325 \mathrm{~Pa}
$$

Relation with Pascal:

$$
1 \mathrm{~atm}=101325 \mathrm{~Pa}=101325 \mathrm{Nm}^{-2}
$$

3. Why are the densities of gases lower than that of liquids?
(RWD 2017 G-D)(U/市) Ans:

LOWER DENSITIES OF GASES

Gases have lower densities than densities of iinids. is tue to the 1 g git mass and more volume occupied by the gases. Another ieason for lower der silies of gases is negligible intermolecular forees among the gases/mblectles. On the other hand liquia molecules are closely spaced and have sirong intermo'ecularforo
4. What do you nean by e eaporation, how it is affected by surface area?
"The process of changing of a liquid into a gas phase is called evaporation."

Effect of Surface Area on Evaporation:

Evaporation is a surface phenomenon. Greater is surface area, greater is evaporation and vice versa.
5. Define the term allotropy with examples.

Ans:

ALLOTROPY

Definition:

"The existence of an elemen in more, tinn one forin ir sump ph slals ste is called allotropy."

Exampiss:

- Prygen has wherlotronic forms: Oxygen $\left(\mathrm{O}_{2}\right)$ and ozone $\left(\mathrm{O}_{3}\right)$.

Threc alletopic forms of carbon are: Diamond, graphite and bucky balls.
Wh which form sulphur exists at $100^{\circ} \mathrm{C}$?
(LHR 2017 G-I)(K.B)
Ans:

EXISTANCE OF SULPHUR

Sulphur exists in monoclinic form at $100^{\circ} \mathrm{C}$
7. What is the relationship between evaporation and boiling point of a liquid?
(U.B)

Ans:

RELATIONSHIP BETWEEN EVAPORATION AND B.P

If the boiling point of a liquid is high, its evaporation is slow because intermolecular forces are high in the liquid which have high boiling points. If boiling point is low then evaporation is high.

EXERCISE LONG QUESTIONS

1. Define Boyle's Law and verify it with an example.

Ans: Answer given on pg \# 163 (Topic 5.2; 5.2.1)
2. Define and explain Charles's Law of gases.

Ans: Answer given on pg \# 167 (Topic 5.2; 5.2.2)
3. What is vapour pressure and how it is affected by intermolecular forces?

Ans: Answer given on pg \# 172 (Topic 5.3; 5.3.2)
4. Define boiling point and also explain, howit is affected hoy different factor?

Ans: Answer given on pg \# 173 (Topic 3. 5.3.7),
5. Describe the phenomenon of diffusion in liguas angen with factors which influence it. Ans: Answer iven $0128 \# 125$ rop 12.3 .5 .3 .31
6. Difforen tiate hatweencrystalline and amorphous solids.

Ans: A ave ergiven on pg \# 181 (Topic 5.5)

EXERCISE SOLVED NUMERICALS

1. Convert the following units:(U.B+A.B)
(a) 850 mm Hg to atm
(b) 205000 Pa to atm
(c) 560 torr to $\mathbf{~ c m ~ H g}$
(d) 1.25 atm to Pa

Solution:
(a) 850 mmHg te tree

(b) $150^{\circ} \mathrm{C}$ to K :

$$
\begin{aligned}
\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) & =150^{\circ} \mathrm{C} \\
\Gamma(\mathrm{~K}) & =? \\
\mathrm{C}(\mathrm{~K}) & =\mathrm{T}\left({ }^{\circ} \mathrm{C}+273\right. \\
& =15 \mathrm{C}+273 \\
& =423 \mathrm{~K}
\end{aligned}
$$

(c) 100 K to ${ }^{\circ} \mathrm{C}$:

$$
\begin{aligned}
\mathrm{T}(\mathrm{~K}) & =100 \mathrm{~K} \\
\mathrm{~T}\left({ }^{\circ} \mathrm{C}\right) & =? \\
\mathrm{~T}\left({ }^{\circ} \mathrm{C}\right) & =\mathrm{T}(\mathrm{~K})-273.15 \\
& =100-273 \\
& =-173^{\circ} \mathrm{C}
\end{aligned}
$$

(d) $\underline{172 \mathrm{~K} \text { to }{ }^{\circ} \mathrm{C} \text { : }}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{~K}) & =172 \mathrm{~K} \\
\mathrm{~T}\left({ }^{\circ} \mathrm{C}\right) & =? \\
\mathrm{~T}\left({ }^{\circ} \mathrm{C}\right) & =\mathrm{T}(\mathrm{~K})-273 \\
& =172-273 \\
& =-101^{\circ} \mathrm{C}
\end{aligned}
$$

3. A gas at pressure 912 mm of $\mathbf{H g}$ has volume $450 \mathrm{~cm}^{3}$? What will be its volume at 0.4 atm ?
(U.B+A.B)

NUMERICAL

Solution:

Given Data:

Initial pressure $=P_{1}=912 \mathrm{~mm} \mathrm{Hg}=\frac{912 \mathrm{~mm} \mathrm{Hg}}{760 \mathrm{~mm} \mathrm{Hg}}$

$$
=1.2 \mathrm{~atm}
$$

Initial volume of gas $=V_{1}=450 \mathrm{~cm}^{3}$
Final pressure of gas $=\mathrm{P}_{2}=0.4 \mathrm{~atm}$

To Find:

Volume of gas at 0.4 atm . $-1 / 2=$.
Calculations:
IJs.ng the mentation of Boyle' Lay.
2. Convert the following units.
(a) $750^{\circ} \mathrm{C}$ to K
(b) $15 f^{\circ} \mathrm{C}$ to K
(c) 100 K to ${ }^{\circ}$
d) 172 F tu

Solution:
(a) 750 AK K

$$
\begin{aligned}
\left.\mathrm{T}^{\circ} \mathrm{C}\right) & =750{ }^{\circ} \mathrm{C} \\
\mathrm{~T}(\mathrm{~K}) & =? \\
\mathrm{~T}(\mathrm{~K}) & =\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273 \\
& =750+273 \\
& =1023 \mathrm{~K}
\end{aligned}
$$

$$
P V=P_{2} V_{2}
$$

Solution.
By putting the values:

$$
\begin{aligned}
1.2 \mathrm{~atm} \times 450 \mathrm{~cm}^{3} & =0.4 \mathrm{~atm} \times \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =\frac{1.2 \mathrm{~atm} \times 450 \mathrm{~cm} 3}{0.4 \mathrm{~atm}} \\
\mathrm{~V}_{2} & =3 \times 450 \mathrm{~cm}^{3} \\
\mathrm{~V}_{2} & =1350 \mathrm{~cm}^{3}
\end{aligned}
$$

Result:

The volume of gas at 0.4 atm is $1350 \mathrm{~cm}^{3}$.
4. A gas occupies a volume of $800 \mathrm{~cm}^{3}$ at 1 atm, when it is allowed to expand up to $1200 \mathrm{~cm}^{3}$ what will be its pressure in $\mathbf{m m}$ of $\mathbf{H g}$.

NUMERICAL

Solution:

Given Data:

Initial pressue of $a=P=1 \mathrm{am}$
Initial volume of gas $=V_{1}=800 \mathrm{~cm}$
Final varne of $s a y=V_{2}=1200 \mathrm{~cm}^{3}$

re. End:

Final pressure of gas $=\mathrm{P}_{2}=$?

Calculations:

Using the equation of Boyle's Law:

$$
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}
$$

By putting the values:

$$
1 \mathrm{~atm} \times 800 \mathrm{~cm}^{3}=\mathrm{P}_{2} \times 1200 \mathrm{~cm}^{3}
$$

$$
\mathrm{P}_{2}=\frac{1 \mathrm{~atm} \times 800 \mathrm{~cm}^{3}}{1200 \mathrm{~cm}^{3}}
$$

$$
\mathrm{P}_{2}=\frac{2}{3} \mathrm{~atm}
$$

$$
\mathrm{P}_{2}=0.667 \mathrm{~atm}
$$

As

$$
1 \mathrm{~atm}=760 \mathrm{mmHg}
$$

$$
\text { So } 0.66 \mathrm{~atm}=760 \times 0.66 \mathrm{mmHg}
$$

$$
=506.66 \mathrm{mmHg}
$$

Result:

The pressure of gas at $1200 \mathrm{~cm}^{3}$ volume is $506.66 \mathbf{~ m m ~ o f ~} \mathbf{~ H g}$.
5. It is desired to increase the volume of a fixed amount of gas from 87.5 to 118 cm^{3} while holding the pressure constant. What would be the final temperature if the "initial temperature is $23^{\circ} \mathrm{C}$. (U.B+A.B) NUMERICAL

Solution:

Given Data:

Initial volume of gas $=V_{1}=875 \mathrm{~cm}$ Final volume of gas $=V_{2}=118 \mathrm{~cm}$ Initial tempertury of gas $-T /=230^{\circ} \mathrm{C}$

To Find:

$$
=(23+2 / 3) B
$$

inal tenperature of gas $=\mathrm{T}_{2}=$?
-akulations:
By using the equation of Charles's Law:

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

$\mathrm{T}_{2} \mathrm{~V}_{1}=\mathrm{V}_{2} \times \mathrm{T}_{1}$
Or
wy att in the values

$$
N_{2}=\frac{1 \% \mathrm{~cm}^{3} \times 296 \mathrm{~K}}{87.5 \mathrm{~cm}^{3}}
$$

$$
\mathrm{T}_{2}=399 \mathrm{~K}
$$

T_{2} can be converted into Celsius scale as:

$$
\mathrm{T}_{2}=299-273=126^{\circ} \mathrm{C}
$$

Result:

Final temperature of gas is $126^{\circ} \mathrm{C}$.
6. A sample of gas is cooled at constant pressure from $30^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$. Comment: (U.B+A.B)
a. Will the volume of the gas decrease to one third of its original volume?
b. If not, then by what ratio will the volume decrease?

NUMERICAL

Solution:

Given Data:

a.

Initial temperature of gas $=\mathrm{T}_{1}=30^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =(30+273) \mathrm{K} \\
& =303 \mathrm{~K}
\end{aligned}
$$

Final temperature of gas $=\mathrm{T}_{2}=10^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =(10+273) \mathrm{K} \\
& =283 \mathrm{~K}
\end{aligned}
$$

$$
\text { Initial volume of gas }=V_{1}=1 \mathrm{dm}^{3}
$$

To Find:

Final volume of gas $=V_{2}=$?
Ratio of volume decreases $=$?
Calculations:
By using the equation of Charles's Law:
7. A balloon that contains $1.6 \mathrm{dm}^{3}$ of air at standard temperature and pressure is taken under water to a depth at which its pressure increases to 3.0 atm. Suppose that temperature remain unchanged, what would be the new volume of the balloon. Does it cort a a t or expand?

Solution:

Given Dat

NDMGEAL

ritia pesprefbanuon $=P_{1}=1 \mathrm{~atm}$
3 avoons contan air $\quad=\mathrm{V}_{1}=1.6 \mathrm{dm}^{3}$
Einal pressure of balloon $=P_{2}=3.0 \mathrm{~atm}$
To Find:
New volume of balloon $=\mathrm{V}_{2}=$?

Calculations:

By using the equation of Boyle's Law:

$$
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}
$$

By putting the values

$$
\begin{aligned}
1 \mathrm{~atm} \times 1.6 \mathrm{dm}^{3} & =3 \mathrm{~atm} \times \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =\frac{1 \mathrm{~atm} \times 1.6 \mathrm{dm}^{3}}{3 \mathrm{~atm}} \\
\mathrm{~V}_{2} & =0.53 \mathrm{dm}^{3}
\end{aligned}
$$

Result:

- The new volume of balloon is $0.53 \mathbf{~ d m}^{3}$.
- The gas will contract

8. A sample of neon gas occupies $75.0 \mathrm{~cm}^{3}$ at very low pressure of 0.4 atm. Assuming temperature remain constant what would be the volume at 1.0 atm pressure?
(U.B+A.B)

NUMERICAL

Solution:

Given Data:

Initial pressure of neon $=P_{1}=0.4 \mathrm{~atm}$
Initial volume of neon $=V_{1}=75.0 \mathrm{~cm}^{3}$
Final pressure of neon $=P_{2}=1 \mathrm{~atm}$
To Find:
Volume of neon at $1.0 \mathrm{~atm} .=\mathrm{V}_{2}=?$
Calculations:
By using the equation of Royers Lan.
By putting the alues

$24 \operatorname{tm} \times 7.5 \mathrm{~cm}^{3}=1 \mathrm{~atm} \times \mathrm{V}_{2}$

$$
\begin{aligned}
\mathrm{V}_{2} & =\frac{0.4 \mathrm{~atm} \times 75 \mathrm{~cm}^{3}}{1 \mathrm{~atm}} \\
\mathrm{~V}_{2} & =30 \mathrm{~cm}^{3}
\end{aligned}
$$

Result:
Thus at $1 \mathbf{~ a t m}$ pressure the volume of neon is $\mathbf{3 0} \mathrm{cm}^{3}$.
9. A gas occupies a volume of $35.0 \mathrm{dm}^{3}$ at $17^{\circ} \mathrm{C}$. If the gas temperature rises to $34^{\circ} \mathrm{C}$ at constant pressure, wowd expect the volme to double? f at calculate the ne volune. (a).iora.B)

Solution:

G ven Data:
IIItial tenperature of gas $=\mathrm{T}_{1}=17^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =273+17=290 \mathrm{~K} \\
& =\mathrm{V}_{1}=35 \mathrm{dm}^{3} \\
& =\mathrm{T}_{2}=34^{\circ} \mathrm{C} \\
& =273+34=307 \mathrm{~K}
\end{aligned}
$$

Initial volume of gas $\quad=V_{1}=35 \mathrm{dm}^{3}$
Final temperature of gas $=\mathrm{T}_{2}=34^{\circ} \mathrm{C}$

To Find:

$$
\text { New volume of gas }=V_{2}=\text { ? }
$$

Calculations:

By using the equation of Charles's Law:

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

By putting the values:

$$
\begin{aligned}
\frac{35 \mathrm{dm}^{3}}{290 \mathrm{~K}} & =\frac{\mathrm{V}_{2}}{307 \mathrm{~K}} \\
\mathrm{~V}_{2} & =\frac{35 \mathrm{dm}^{3} \times 307 \mathrm{~K}}{290 \mathrm{~K}} \\
\mathrm{~V}_{2} & =37 \mathrm{dm}^{3}
\end{aligned}
$$

Result:

- Volume will not be doubled because the absolute temperature is not doubled
- New volume of gas is $\mathbf{3 7} \mathbf{~ d m}^{3}$.

10. The largest moon of Saturn, is Titan. It has atmospheric pressure of $1.6 \times 10^{3} \mathrm{~Pa}$. What is the atmospheric pressure in atm? Is it higher than Earth's atmospheric pressure? (U.B+A.B)

NUMERICAL

Solution:

Given Data:

The atmospheric pressure of Titan $=1.6 \times 10^{5}$
Pa
To Find:
Anospheric pressure in atr $1=?$
Cacuithors
we know that
$1 \mathrm{am}=101325 \mathrm{~Pa}$
Qumspheric pressure of Titan in Pascal

$$
=1.6 \times 10^{5} \mathrm{~Pa}
$$

Atmospheric pressure of Titan in atm.

$$
\begin{aligned}
& =\frac{1.6 \times 10^{5}}{101325} \\
& =1.58 \mathrm{~atm}
\end{aligned}
$$

Result:

Thus the atmosphere pressure of Titan (1.58 atm) is greater than the atmospheric pressure of Earth (1.0atm).

ADDITIONAL CONCEPTUAL QUESTIONS

Q. $1 \quad$ Why the densities of gases are lower than that of liquids?
(.).B)

Ans:
DENSITY OF GASE ${ }^{\text {UND LIOUMS }}$
Gases have lower densities than densitiec- f licuid. It is due to the 1 ght mass and more volume occupied by the gases. Ahbthe r as or for wowel densitied of gases is negligible intermecyla. fores mone the sas nolecules. On the other hand, liquid molecules are closely packed and have strong intenimolecular forces.
Q. 2 What is m .ar he t of evaporation

MOLAR HEAT OF EVAPORATION

"The amount of heat required to convert 1 mole of a liquid into gaseous state under standard conditions of temperature and pressure is called molar heat of evaporation".
Q. 3 Why does tea get cool in saucer quickly then in a tea cup?

Ans: Evaporation increases with increase of surface area. Since surface area of saucer is greater than the surface area of a tea cup, evaporation from a saucer is more than a tea cup and tea gets cool down quickly.
Q. 4 Why does hot water evaporate quickly than cold water?
(U.B)

Ans: Evaporation increases with increase of temperature that is why hot water evaporates quickly than cold water.
Q. 5 Why hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ has more vapour pressure than decane $\left(\mathrm{C}_{10} \mathbf{H}_{22}\right)$?

Ans: Hexane has small sized molecule as and has weak intermolecular forces as compared to decane. There hexane a evaporates quickly and exerts more pressure than decane.
Q. 6 Why drops of rain fall downward?

Ans: Density of water is $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$ while that of air is $0.001 \mathrm{~g} \mathrm{~cm}^{-3}$ that is the reason why drops of rain fall downward.
Q. 7 Why the densities of liquids are high?
(GRW 2014)(U.B)
Ans:

HIGH DENSITY OF LIQUID

The liquid molecules have strong intermolecular forces hence they cannot expand freety and have a fixed volume. Like gases, they cannot occupy all the available vo un of the container that is the reason why densities of hquids me righ
Q. 8 Write two properties of luid stat. of water.

GRW 2016 G-II)(K.B)
Ans:

- The 1.quid fate of matie has indefilite shape but definite volume
- The aticactive oces belween particles are stronger than that of gases but weaker than that ef solids.
R.C $V / h y$ kerosene oil floats over water and honey settles down?
(GRW 2017)(U.B)

FLOATS OVER WATER AND HONEY SETTLES DOWN

The kerosene oil floats over water because its density is lower than that of water whereas honey settles down due to its higher density than water.

TERMS TO KNOW

Terms	Definitions
Diffusion	"The spontaneous mixing up of molorules b. rando m not:, and collisionas to form a honogeneo rs rii.tura is called diff 5 sipn".
Effusion	"It i e gaping of gas nulecules ihrough a any hole into a space "ith deserpessure".
Pressure	"T he fore (F) exerted per unit surface area (A) is called pressure".
$\begin{aligned} & \text { Srancind Atmospheric } \\ & \text { Pressure } \end{aligned}$	"It is defined as the pressure exerted by a mercury column of 760 mm height at sea level. It is sufficient pressure to support a column of mercury 760 mm in height at sea level".
Compressibility	Gases are highly compressible due to empty spaces between their molecules. When the gases are compressed, the molecules come closer to one another and occupy less volume as compared to the volume in uncompressed state.
Boyle's law	"The volume of a given mass of a gas is inversely proportional to its pressure provided the temperature remains constant".
Charle's law	"The volume of a given mass of a gas is directly proportional to the absolute temperature if the pressure is kept constant".
Evaporation	"The process of changing of a liquid into a gas phase is called evaporation".
Vapour Pressure	The pressure exerted by the vapours of a liquid at equilibrium with the liquid at a particular temperature is called vapour pressure of a liquid.
Boiling Point	'The temperature at which the vapour pressure of a liquid becomes equal to the atmospheric pressure or any external pressure is called boiling point".
Freezing point	"The temperature at which vapour pressure of a liquid state becomes equal to the vapour pressure of the solid state and liquid and solid coexist in dynamic equilibrium calied frep.in point".
Melting point	"The temperature a. w hicis he sold stc ris me ltive and coexists in aynamir fuil brian it igquid tate is alled melting point'
Amorphous solidus	Solic Wh wh he particles are not regularly arranged or their reguler shapes ale destroyed, are called amorphous solids.
Crystalline sclid's	Solics in which particles are arranged in a definite three dimensional pattern are called crystalline solids.
$\sqrt{\text { Nat o }}$	"The existence of an element in more than one form, in same physical state is called allotropy".
Transition Temperature	"The temperature at which one allotrope changes into another is called transition temperature".

SELF TEST

Time: 35 Minutes
Marks 25
Q. 1 Four possible answers (A), (B), (C) and (D) to each ques tor are given, make the correct answer.

1. Boiling point of alcohol is.
(A) $58^{\circ} \mathrm{C}$
(D) $87^{\circ} \mathrm{C}$

2. At somerem, nature which of the following will have high vapour pressure:
(A) I) Pithy Ether
(B) Alcohol
(C) Water
(D) Honey

3 ni ch one of the following gases will diffuse faster?
(A) Oxygen
(B) Fluorine
(C) Nitrogen
(D) Chlorine
4. Transition temperature of tin is:
(A) $12.3^{\circ} \mathrm{C}$
(B) $13.2^{\circ} \mathrm{C}$
(C) $96^{\circ} \mathrm{C}$
(D) $250^{\circ} \mathrm{C}$
5. Density of Iron is:
(A) $2.70 \mathrm{gcm}^{-3}$
(B) $7.86 \mathrm{gcm}^{-3}$
(C) $19.3 \mathrm{gcm}^{-3}$
(D) $8.76 \mathrm{gcm}^{-3}$
6. When volume of a gas increased two times its pressure becomes:
(A) Double
(B) Four times
(C) Half
(D) Zero

Q. 2 Give short answers to the following questions.

$(5 \times 2=10)$
(i) Differentiate between Diffusion and Effusion.
(ii) Why gases are highly compressible?
(iii) Can you cool a gas by increasing its volume.
(iv) Define the term Allotropy with example.
(v) Why does evaporation increase with increase of temperature.
Q. 3 Answer the following questions iodetail.
(5+4=9)
(i) Define Boyle's law and verify ry 1 an $x=$ mile

(ii) Define Evaporation Explain frotorafecting evaporation.

Note:
Parents or guardians can conduct this test in their supervision in order to check the skill of students.

