

INTRODUCTION

Q. 1 Define solution.

Ans:
Definition:
"Solutions are homogenenves mixures of wo armore compon. ni " Examples:

- Saltin water in ancrample of solution
(MTN 2017)(K.B)
Q. 2 What are the ohysicen itat of selution?

PHYSCAL STATES OF SOLUTION
Gerarally olu ion are found in three physical states depending upon the physical state of soivert.
Exanples:
Solid: Alloy is a solid solution
Liquid: Sea water is a liquid solution
Gas: Air is a gaseous solution
Q. 3 What are the types of solutions?

Ans:
TYPES OF SOLUTION
There are nine types of solution ranging from e.g. gas-gas, air we breathe, to solid-solid solution e.g. dental amalgam for filling of tooth.

MULTIPLE CHOICE QUESTIONS

1. Which one is a gaseous solution?
(A) Air
(B) Water
(C) Matter
(D) Soil
2. How many types of solutions are:
(A) 9
(B) 8
(C) 11
(D) 10

6.1 SOLUTION

Q. 1 Explain the term solution with the help of examples.
(K. $\boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$

Ans:
"A homogeneous mixture of two or $\begin{aligned} & \text { SOLUTION } \\ & \text { Solute }+ \text { Solvent }=\text { Solution }\end{aligned}$
Examples:

- Sugar solution
- Sodium chloride solution
- Copper sulphate solution
- Air
- Brass
- Sea water

Physical states of solutions:
The physical states of solutions are a follo vs
(i) Solid: e.g. alloy
(ii) Liquid: e.g. sea water
(iii) Gra. g. air

Properias of Solutions:
The properties of thol tions ane follows:
(i) A solution nas on'y one phase.
(i) I sidus the properties of its components.
(iii) it has a uniform composition.

Homogeneous Mixture:
"A mixture having uniform composition throughout is called homogeneous mixture."
Boundaries of a solution:
The boundaries of the components can't be distinguished i.e. a solution exist as one phase.

Examples:

- The air we breathe is a solution of several gases.
- Brass is a solid solution of $\mathbf{Z n}$ and $\mathbf{C u}$.
- Sugar dissolved in water.

Distinction between Solution \& Pue I whic:
The simplest way to distin rulsh ugh we el sulution and a pure ququid s evaporation.
The ligig phich evaporate completely, ledviion no residue, is a pure compound, while arquid whin le penind residue on evaporation is solution.
Alloy a a solntion.
An a loy like hrass or bronze is also a homogeneous mixture. Although it cannot be pparated oy physical means.

- It shows the properties of its components and
- It has a variable composition.
Q. 2 Define the terms.
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B})$
(i) Aqueous solution
(GRW 2017 G-II, FSD 2017 G-I)
(ii) Universal solvent
(iii) Solute
(iv) Solvent

Ans:

(I) AQUEOUS SOLUTION

Definition:

"The solution which is formed by dissolving a substance in water is called an aqueous solution."
In aqueous solutions water is always present in greater amount and termed as solvent Water is called a universal solvent because it dissolves majority of compounds present in Earth's crust.
Examples:

- Sugar in water.
- Table salt in water.

(II) UNIVERSAL SOLVENT

Definition:

"Water is called a universal solvent because it dissolves majority of compounds present in earth's crust."
Water can dissolve ionic as well as covalent compounds in water e.g. $\mathbf{N a C l}, \mathbf{C l}_{2}, \mathbf{H C l}$

(III) SOLUTE

Definition:

"The component of solution which is present in smaller quantity is called solute
Examples:
A solute is dissolved in a solvent to make a soletion in sigar. In sugar soriution, sugar is solute and in sodium chloritie solution, sanum chipr de is solute. Number of solutes present in soution.
In a selution if more that two sulb st aces are present, one substance acts as solvent and others behaveas olutes.
Exampie:
Ir an t di ind, water is solvent while other substances like sugar, salts and $\mathbf{C O}_{2}$ are solutes. (IV) SOLVENT

Definition:

"The component of a solution which is present in larger quantity is called solvent."
Example:
In soft drinks, water is solvent while other substances like sugar, salts and $\mathbf{C O}_{2}$ are solutes.

6.1 SOLUTION
 SHORT QUESTIONS

Q. 1 Write a note on properties of a solution.

Ans: Answer given on pg \# 196
Q. 2 Define Homogeneous mix turerag viexanples.
(K.B+A.B)

Ans: Answe given on rgt 190
Q. 3 What i an actecu sintipn? Asv give example.
(K.B+A.B)

Ans: insuluereiveneones \# 197
1.4 - can you distinguish between solution and pure liquid?

Ans: Answer given on pg \# 197
Q. 5 Explain how water is a universal solvent?
(U.B)

Ans: Answer given on pg \# 197
Q. 6 Define solute and give an example.
(K.B+A.B)

Ans: Answer given on pg \# 197
Q. 7 Define solvent and give an example. (K.B+A.B)

Ans: Answer given on pg \# 197

6.1 SOLUTION
 MULTIPLE CHOICE QUESTIONS

1. A solution has only \qquad phase.
(A) One
(B) Three
(C) Two
(D) Four
2. Brass is solid solution of $\mathbf{Z n}$ and:
(K.B)
(A) Cu
(B) Mg
(C) Ca
(D) Na
3. The simplest way to distinguish between a solution and a pure liquid is:
(U.B)
(A) Freezing
(B) Melting
(C) Condensation
(D) Evaporation
4. Which one is called universal solvent?
(SGD 2017 G-I, FSD 2017 G-II)(K.B)
(A) Alcohol
(B) Water
(C) Benzene
(D) Ether
5. Brass is an example of:
(A) Homogenous mixture
(B) Heterogeneon nix ure
(C) Pure compound (P) Booh A ard C
6. In salt solution which on is solut t. ?
(A) Salt
(iD) Water
C) Alcomol
(D) Benzene
7. The ligud which vapor tes completely leaving no residue is pure compound while liquid which leaves behind residue on evaporation is:
(ANSoly ion
(B) Pure compound
(C) Both A and B
(D) None of these
T.a an aqueous solution the solvent is:
(K.B)
(A) Acid
(B) Base
(C) Alcohol
(D) Water
8. Minimum components of a solution are:
(K.B)
(A) 2
(B) 4
(C) 5
(D) 3

6.2 SATURATED SOLUTION

Q. 1 Explain saturated solution with the help of examples.

Ans:

Definition:

"A solution containing num rimv noun of colu at atven temperature is called saturated solution.

> Example:

Ares aturated solumion of sodium thiosulphate $\left(\mathbf{N a}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ in water at $20^{\circ} \mathrm{C}$ has $\mathbf{2 0 . 9} \mathbf{g}$ of s. lipe $100 \mathrm{~cm}^{3}$ of water.
Solute +Solvent disole disolve Solution

Preparation:

When a small amount of solute is added in a solvent, solute dissolves very easily in solvent. If the addition of solute is kept on, a stage is reached when solvent cannot dissolve more solute. At this stage, further added solute remains un-dissolved and it settles down at the bottom of the container.

Dynamic Equilibrium in Saturated Solution:

On the particle level, a saturated solution is the one, in which un-dissolved solute is in equilibrium with dissolved solute.
Solute (crystallized) 日回 Solute (dissolved)

At this stage dynamic equilibrium is established. Although dissolution and crystallization continues at a given temperature, but the net amount of dissolved solute remains constant.
Q. 2 What are supersaturated solution? How can we prepare supersaturated solution?
(GRW 2016, 17)(U.B+A.B)
Ans:

SUPERSATURATED SOLUTION

Definition:

"The solution that is more concentrated than a saturated solution is known as supersaturated solution".
Example:
A saturated solution of sodium thiosulphate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ in water at $20^{\circ} \mathrm{C}$ has 20.9 g of salt per $100 \mathrm{~cm}^{3}$ of water. Less than 20.9 g of salt per $100 \mathrm{~cm}^{3}$ of water at $20^{\circ} \mathrm{C}$ wis) (ए) an unsaturated solution. A solution having more amount tham 20.9 \& of salt per (in cm^{3} of water at $20^{\circ} \mathrm{C}$ will be a supersaturared solptor

Properties:

(i) When saturated solotions are heata, the cevelon former capacity to dissolve more solute
(ii) Such solutions on tain geenter amount of solute than is required to form a saturated 7 olv tion and the wecome more concentrated.
(in) Silite saturated solutions are not stable.
Preparation of Supersaturated Solution:
Super saturated solutions are not stable. Therefore, an easy way to get a supersaturated solution is to prepare a saturated solution at high temperature. It is then cooled to a temperature where excess solute crystallizes out and leaves behind a saturated solution.
Q. 3 Define unsaturated solution with example.

Definition:

"A solution which contains lesser amoun of solute wan what which is yefored wo saturate it at a given temperature (is) called uis at urven sclu iop?
Such solutions have the capacity to uissolva nore solute to become a saturated solution. Example: Less thay 20 of of souin thiosulyhate in water per $100 \mathrm{~cm}^{3}$ of water at $20^{\circ} \mathrm{C}$.
Q. 4 Differentate betveen dilut and concentrated solution with a common example.
(LHR 2015,16)(U.B)

DIFFERENTIATION

1) he-diiterences between dilute and concentrated solution is given below:

Dilute Solution	Concentrated Solution
Definition	
- Dilute solutions are those which contain relatively small amount of dissolved solute in the solution.	- Concentrated solutions are those which contain relatively large amount of dissolved solute in the solution.
Examples	
- Less than 20.9 g of sodium thiosulphate in water per $100 \mathrm{~cm}^{3}$ of water at $20^{\circ} \mathrm{C}$.	- More than 20.9 g of sodium thiosulphate in water per $100 \mathrm{~cm}^{3}$ of water at $20^{\circ} \mathrm{C}$.
Type of Solution	
- Unsaturated solution	- Supersaturated solution

6.2 SATURATED SOLUTION
 MULTIPLE CHOICE QUESTIONS

1. Air is an example of solution:
(LHR 2016)(A.B)
(A) Solid in solid
(B) Solid in gas
(C) Gas in gas
(D) Liquid in gas
2. The concentrated solution of $\mathbf{N a C l}$ is called:
(A) Fluid
(B) Brass
(C) Brine
(D) Plasma
3. Addition of more \qquad will dilute the solution.
(A) Solution
(B) Solvent
(C) Solute
(D) Solid
4. The solutions are classified as dilute and concentated the basi, fonemive amount of \qquad present in them.
(A) Solute
(C) Solution
(E, Solvent
(D) Allof these
5. A soluion containg maxinum amoun of strite at given temperature is called:
(U.B)
(A) Sat rirated solution
(B) Unsaturated solution
(C) Super saturated solition
(D) Aqueous solution
6. As. utic n having 20.9 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ per $100 \mathrm{~cm}^{3}$ of water at $20^{\circ} \mathrm{C}$ is called: (K.B+A.B)
(1) \subseteq aturated solution
(B) Unsaturated solution
(C) Supersaturated solution
(D) Normal solution
7. Which one of the solutions is not stable?
(A) Normal solutions
(B) Supersaturated solutions
(C) Saturated solutions
(D) Unsaturated solutions

6.3 TYPES OF SOLUTIONS

Q. 1 Explain different types of solutions with examples.

Ans:

Definition:

"A homogeneous mixture of two ©enore sub ancer i. ailed. so uion Examples:

- Susar olation.
- Air

Eash solutivi consists of two components, solute and solvent. The solute as well as solvent ir ay exist as gas, liquid or solid. There are nine types of solutions depending upon the physical state of solute and solvent.

Table: Different Types of Solutions with Examples

Sr. No	Solute	Solvent	Example of Solutions

6.3 TYPES OF SOLUTIONS

SHORT QUESTIONS

Q. $1 \quad$ What is solid-solid solution?

Ans: SOLID-SOLID SOLUTION

"The solution in which both solute and solvent are in solid state is called solid-solid solution".
Examples:
Metal alloys are solid-solid solutions such as

- Brass $(\mathrm{Cu}+\mathrm{Zn})$
- Bronze (Cu + Sn)
- Opals
Q. 2 What is oras-gas solition?
"Tle soutian i, whizn both solute and solvent are in gaseous state is called gas-gas quation
Examples:
- Air
- Mixture of H_{2} and He in weather balloons
- Mixture of N_{2} and O_{2} in cylinders for respiration

6.3 TYPES OF SOLUTIONS MULTIPLE CHOICE QUESTIONS

1. Metal alloy in an example of:
(A) Liquid in gas
(B) Gas in l\%quid

2. Example of liquid in liquid solutim is?
(A) Alcohst in water
(R) Buter r
(D) Selid'in solid
(GRW 2014)(A.B)
(LIB: 2 2c4, 15 (A.B)
3. Fog is an exarore of solution:
(A) Ga ir iquid
(B) 1 iquid is zas
(C) Solid in gas
(D) Solid in solid
4. Sms'ze in an exan ple of solution:
(A) Solic in sas
(B) Gas in liquid
(C) Liquid in solid
Sigar in water is an example of:
(D) Liquid in gas
(A) Solid in solid
(B) Solid in liquid
(C) Liquid in solid
(D) Gas in solid
(FSD 2017 G-I)(A.B) Which one of the following is a liquid in solid solution:
(GRW 2016 G-I)(A.B)
(A) Sugar in water
(B) Butter
(C) Salt in water
(D) Smoke
(LHR 2016 G-I)(A.B)
(A) Solid in solid
(B) Solid in liquid
(C) Gas in gas
(D) Liquid in gas

6.1 TEST YOURSELF

i. Why is a solution considered mixture?
(U.B)

Ans: \quad SOLUTION CONSIDERED A MIXTURE
Solution is considered as mixture because the components of solution retain their properties. The can be mixed in any ratio and can be separated by physical means.
ii. Distinguish between the following pairs as compound or solution:
(A) Water and salt solution
(B) vinegar and benzene
(C) Carbonated drinks and acetone

Ans: DISTINCTION BETWEEN COMPOUND OR SOLUTION
(a) Water is a compound and salt solution is a solution.
(b) Vinegar is solution and benzene is a compound.
(c) Carbonated drink is solution and acetone is a compound.
iii. What is the major difference between a solution and a mixture?
(LHR, GRW, 15, 14, 16)(U.B)
Ans:

DIFFERENTIATION

The differences between a solution and a mixture are as follows:

iv. Why all the alloys are considf red sodtion?
(U.B)

Ans:
AI LOYSACSODETION
Alloys re cor sidered outions becmuse they are homogenous mixture of two or more than two netals or no 1-rnetals wich retain their properties. They have variable composition.
Deac sed ise rich with salts that it forms crystals when temperature lowers in the wieter. Can you comment why is it named as "Dead Sea"?
(U.B)

Its water is so salty that no animal or plant can survive in it because high concentration of salts in water causes dehydration of animals and plants and they die. Hence it is called "Dead Sea" means "without life".

6.4 CONCENTRATION UNITS
 6.4.1 PERCENTAGE

Q. 1 Write down the types and properties of concentration anits for sol tion.
"Thepropricnota selu.e in a selvtion is caned concentration".
OR
It is rlsc a ratio of the mount of solute to the amount of solution or ratio of amount of
savale to the wimount of the solvent is called concentration of solution.

$$
\text { Concentration of solution }=\frac{\text { Amount of solute }}{\text { Amount of solution or amount of solvent }}
$$

Independence of Concentration:
Concentration does not depend upon the total volume or total amount of the solution.

Example:

A sample taken from the bulk solution will have the same concentration.

CONCENTRATION UNITS

There are various types of units used to express concentration of solutions.
(A) Percentage
"Percentage unit of concentration refers to the percentage of solute present in a solution".
The percentage of solute can be expressed by mass or by volume. It can be expressed in terms of percentage composition by four different ways.
(i) Percentage-mass $/$ mass ($\% \mathrm{~m} / \mathrm{m}$):
"It is the number of grams of solute in 100 grams of solution."
Example:
$10 \% \mathrm{~m} / \mathrm{m}$ sugar solution means that 10 g of sugar is dissolved in 90 g of water to make 100 g of solution.

Formula:

$$
\begin{aligned}
& \% \mathrm{~m} / \mathrm{m}= \frac{\text { Mass of solute }(\mathrm{g})}{\text { Mass of solute }(\mathrm{g})+\text { Mass of solvent }(\mathrm{g})} \times 100 \\
& \% \mathrm{~m} / \mathrm{m}=\frac{\text { Mass of solute }(\mathrm{g})}{\text { Mass of soimion }(\mathrm{g})} \times 100
\end{aligned}
$$

(ii) Percentage -mass/volurie (\% m/v):
"It is the number of grams af ompte diss llea in rod cm dfthe solution".
Exampit:
$\mathbf{1 0 \%}$ rer sugar solutien con ains og or sugar in $\mathbf{1 0 0} \mathrm{cm}^{\mathbf{3}}$ of the solution. The exact volume of soplent is ngt inencioned or it is not known.
Fornule:

$$
\% \mathrm{~m} / \mathrm{v}=\frac{\text { Mass of solute }(\mathrm{g})}{\text { Volume of solution }\left(\mathrm{cm}^{3}\right)} \times 100
$$

(iii) Percentage -volume/mass (\% v/m)
"It is the volume in cm^{3} of a solute dissolved in 100 g of the solution".

Example:

$10 \% \mathrm{v} / \mathrm{m}$ alcohol solution in water means $10 \mathrm{~cm}^{3}$ of alcohol is dissolved in (unknoyn) volume of water so that the total mass of the solution is 100 g In sict solitions hemass of solution is under consideration, total volume of the solution is not 0 ors dered.

Formula:

(iv) Per centage-volume/volume (\% v/v)

7 is the valleme in cm^{3} of a solute dissolved per $100 \mathrm{~cm}^{3}$ of the solution".
xample:
$\mathbf{3 0 \%} \mathbf{v} / \mathrm{v}$ alcohol solution means $30 \mathrm{~cm}^{3}$ of alcohol dissolved in sufficient amount of water, so that the total volume of the solution becomes $\mathbf{1 0 0} \mathbf{~ c m}^{3}$.
Formula:

$$
(\% \mathrm{v} / \mathrm{v})=\frac{\text { Volume of solute }\left(\mathrm{cm}^{3}\right)}{\text { Volume of solution }\left(\mathrm{cm}^{3}\right)} \times 100
$$

Q. 2 What is molarity and give its formula to prepare molar solution?
(Ex-Q.4) (SWL 2016, MTN, FSD 2017)(U.B+K.B)
Ans:
MOLARITY
"Number of moles of solute dissolved in one dm of solution is called molarity".

Representation:

It is represented by \mathbf{M}.

Significance:

Molarity is the unit mostly used in chemistry and allied sciences. It is a concentration unit.

Formula:

The formula used for preparation of molar solution is as follows:

$$
\begin{gathered}
\text { Molarity }=\frac{\frac{\text { Mass of solute }(\mathrm{g})}{\text { Molar mass of solute }\left(\mathrm{gmol}^{-1}\right)}}{\text { Volume of solution }\left(\mathrm{dm}^{3}\right)}=\frac{\text { Number of moles of solute }}{\text { Volume of solution }\left(\mathrm{dm}^{3}\right)} \\
\text { Molarity }(\mathrm{M})=\frac{\text { Mass of solute }(\mathrm{g})}{\left(\text { Molar mass of solute }\left(\mathrm{gmol}^{-1}\right)\right) \times\left(\text { Volnme of solution }\left(\mathrm{dg}^{3}\right)\right)}
\end{gathered}
$$

Units of Molarity:

$$
\mathrm{M}=\text { moldm }^{-3}
$$

nelationship between Molarity and Solute:

Molarity \propto solute

As amount of solute is increased, its concentration or molarity also increases. $\mathbf{2 M}$ solution is more concentrated than $\mathbf{1 M}$ solution.
Q. 3 Define molar solution. Describe preparation of molar solution.
(GRW 2016 G-II, LHR 2016 G-I, FSD 2017 G-II)(U.R+A.R)
Ans:

MOLAR SOLUTION

"A solution which contains 1 mole of solute discoiva per din os. olvious culled molar solution".

PREPERIOUOMOLE RSLUNON

One nolar solation is pepared by clissolyins 1 mole (molar mass) of the solute in sufficient ancunt of vater to mane the total volume of the solution up to $\mathbf{1 d m}^{\mathbf{3}}$ in a measuring flask.
IEangies.
iM solution of $\mathbf{N a O H}$ is prepared by dissolving 40 g of NaOH in sufficient amount of water to make the total volume of solution $\mathbf{1 d m}^{3}$.

Q. 4 Explain how dilutes solution are prepared from concentrated. Explain dilution of solution in detail.
(Ex-Q.3) (LHR 2016 G-I)(U.B+A.B)
Ans:

DILUTION OF SOLUTION

"The process of decreasing concentration of solution by adding more solvent in it is called dilution of solution".

Example:

We do have $\mathbf{2 M}$ solution of $\mathbf{N a C l}$. If we add more solvent (water) to it, the concentration of solution decreases. This process is called dilution of solution.

PREPARATION OF DILUTE SOLUTION
Dilute molar solution is prepared from a consentrated solution of knp n n marity

Example:

Suppose we want to prep.ar, 100.cm of 9.01 M out on rem given 0.1 M solution of potassien permanganate (KDM. O.).
Metho -
It involy es follp wing ty olsteps:
(i) Deter mination of Volume of Concentrated Solution:

Ersi 0.1 M solution is prepared by dissolving 15.8 g of potassium permanganate in 1 $\mathbf{d m}^{3}$ of solution. Then $\mathbf{0 . 0 1} \mathbf{M}$ solution is prepared by the dilution according to following calculations:
By using formula:

Concentrated solution = Dilute solution

$$
\mathbf{M}_{1} \mathbf{V}_{1}=\mathbf{M}_{2} \mathbf{V}_{2}
$$

By putting values:

conentrated solution of KMnO_{4} has dense purple colour.
(ii) Preparation of Solution:

We take $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}}$ of this solution with the help of a graduated pipette and put in a measuring flask of $\mathbf{1 0 0} \mathbf{~ c m}^{\mathbf{3}}$. Add water upto the mark, present at the neck of the flask. Now it is 0.01 molar solution of KMnO_{4}.

6.4 CONCENTRATION UNITS
 6.4.1 PERCENTAGE

SHORT QUESTIONS

Q. $1 \quad$ Write a note on mass/mass \%?

Ans: Answer given on pg \# 203
Q. 2 What do you mean by volumy mass?
(SGD ~016, GRW 2016,17)(K.B)
Ans: Answeŕㅇㄱ en orn \# 203
Q. 3 Define concentration
(DGK 2016, FSD 2016, LHR 2015,16, GRW 2016)(K.B) A asvergiven on pg \# 203
Q. 4 Define molarity.
(SWL 2016, MTN 2017, FSD 2016, SGD 2016, LHR 2016, GRW 2015, 2016, 17 G-I, II)(K.B)
Ans: Answer given on pg \# 204

NUMERICAL EXAMPLE

NUMERICAL EXAMPLE 6.3
 NUMERICAL EXAMPLE 6.4

How much NaOH is required to prepare its
$10 \mathrm{~cm}^{3}$ of 0.01 molar $K \mathrm{MO}_{4}$ solution has
$500 \mathrm{~cm}^{3}$ of 0.4 M solution?
Leen cilutad $100 \mathrm{~cm}^{3}$. Finu out the molarity of this solution.
(U.B+A.B)

Solution:

Gin Pet:
Volume of solution $=\mathrm{V}=500 \mathrm{~cm}^{3}$
Molarity $\quad=\mathrm{M}=0.4 \mathrm{M}$

To Find:

Mass of solute $=$?

Calculations:

Conversion of mass of solute into moles
Molar mass of $\mathrm{NaOH}=40 \mathrm{~g} \mathrm{~mol}^{-1}$
Conversation of volume in $\mathrm{dm}^{3}=500 \mathrm{~cm}^{3}$

$$
=\frac{500}{1000} \mathrm{dm}^{-3}=0.5 \mathrm{dm}^{3}
$$

Putting the values in formula:
$\mathrm{M}=\frac{\text { Mass of solute }(\mathrm{g})}{\operatorname{Molar} \text { mass }\left(\mathrm{g} \mathrm{mol}^{-1}\right) \times \text { volume of solution }\left(\mathrm{dm}^{3}\right)}$
Mass of solute $=$ Molarity \times molar \times mass \times vcłume

Resit

3g sodium hydroxide is required to prepare

0.4 M solution.

NUMERICAL

Solution:

Given Data:

Molarity of concentrated solution of $\mathrm{KMnO}_{4}=\mathrm{M}_{1}=0.01$
Volume of concentrated solution of $\mathrm{KMnO}_{4}=\mathrm{V}_{1}=10 \mathrm{~cm}^{3}$
Volume of dilute solution of $\mathrm{KMnO}_{4}=\mathrm{V}_{2}=100 \mathrm{~cm}^{3}$

To Find:

Molarity of dilute solution of $\mathrm{KMnO}_{4}=\mathrm{M}_{2}=$?

Calculations:

Using following formula, molarity required can be calculated as:

Concentrated solution $=$ Dilute solution

$$
\begin{aligned}
\mathrm{M}_{1} \mathrm{~V}_{1} & =\mathrm{M}_{2} \mathrm{~V}_{2} \\
\mathrm{M}_{2} & =\frac{\mathrm{M}_{1} \mathrm{~V}_{1}}{\mathrm{~V}_{2}}
\end{aligned}
$$

$$
\Delta_{2}=\frac{0.01>}{100}
$$

$$
\mathrm{M}_{2}=0.001 \mathrm{M}
$$

Result:

The molarity of dilute (new) solution of KMnO_{4} is 0.001 M .

6.4 CONGENTRATION UNITS
 6.4.1 PERCENTAGE

MULTIPLE CHOHGE NUEETINB

1. Concentration is ratio of
(A) Solvent oo solute (R) solve to so (ticn (C) Solvent to solution (D) Both (A) and (B)
2. If the solve solvite forcesire strong enc ush tian those of solute-solvent forces. The solute: (U.B)
(A) Dis olve readily
(B) Does not dissolve
(C) I issolvel sidwly
(D) Dissolves and precipitates

3 V/hich one of the following solution has less water?
(GRW 2014)(U.B)
(A) 0.25 M
(B) 0.50 M
(C) 0.60 M
(D) 2.0 M
4. Concentration is most often expressed as the ratio of the amount of \qquad to the amount of solution.
(U.B)
(A) Solute
(B) Solvent
(C) Brine
(D) Salt
5. 10 g of sugar is dissolved in 90 g of water to make 100 g of solution. This is an example of solution:
(A) $\% \mathrm{~m} / \mathrm{m}$
(B) $\% \mathrm{~m} / \mathrm{v}$
(C) $\% \mathrm{v} / \mathrm{v}$
(D) $\% \mathrm{v} / \mathrm{m}$
6. If we add $10 \mathrm{~cm}^{3}$ of acetone in water to prepare $90 \mathrm{~cm}^{3}$ of aqueous solution. What will be the concentration (\mathbf{v} / v) of this solution?
(U.B+A.B)
(A) 5.5
(B) 11.1
(C) 1.11
(D) 5.6
7. Number of moles of solute dissolved in $1 \mathrm{dm}^{\mathbf{3}}$ of solution is called:
(K.B)
(A) Molarity
(B) Molality
(C) Solvent
(D) Solute
8. $\mathbf{1 M}$ solution of $\mathbf{N a O H}$ is prepared by dissolving \qquad g of NaOH in sufficient water.
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B}$)
(A) 40
(B) 30
(C) 10
(D) 20
9. 2 M solution is more concentrated than \qquad solution.
(A) 1 M
(B) 2 M
(C) 3 M
(D) 5 M
10. Molarity is the number of moles of solute dissolved in:
(A) 1 kg of solution
(B) 100 g of solvent
(C) $1 \mathrm{dm}^{3}$ of solvent
(D) 1^{3} d sc 1 lt
Itid. 1
(K.
11. Which one of the following solution cont inits morepater?
(A) 2 M
(B) in
(C) 0.51 M
D) 0.25 M
12. 0.1 M solution is diluted to to times is nev ndaris will be:
(A) 0.61 M
(B) 0.9 Mi
(C) 0.2 M
(D) 0.1 M
13. $\quad 20 \mathrm{~g}$ of $\mathrm{Na} H$ has b er (issined in $0.5 \mathrm{dm}^{3}$ of the solution, its molarity is: (U.B+A.B)
(A) 1 M
(B) 1.0 M
(C) 0.5 M
(D) 1.5 M
14. V/hat mass of $\mathbf{N a O H}$ is required to prepare $1 \mathrm{M}, 500 \mathrm{~cm}^{3}$ of the solution:
(U.B+A.B)
(A) 10 g
(B) 20 g
(C) 30 g
(D) 40 g
15. What volume of 2 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required to prepare $500 \mathrm{~cm}^{\mathbf{3}}, 0.1 \mathrm{M}$ solution:(U.B+A.B)
(A) $10 \mathrm{~cm}^{3}$
(B) $15 \mathrm{~cm}^{3}$
(C) $20 \mathrm{~cm}^{3}$
(D) $25 \mathrm{~cm}^{3}$

6.2 TEST YOURSELF

i. Does the percentage calculations require the chemical formula of the sotete?

Ans:
FORMULA FOR \%AGE CALCULATION
Percentage calculations do not require the chemicitioman the oute belause only the mass of solution is corisicered aram morr mass is not eecured.
ii. Why is the formula of colute ecesse ry ior calct lationst the molarity of the solution? (U.B) Ans:

NLEE LTY OF EORMOA OF SOLUTE
The forrnula of sclue is reces ary for calculation of the molarity of the solution because we have to alclate nclia reacs of solute. Molar mass of solute can be calculated from its chemical formula. 1 OU are asked to prepare 15 percent (m / m) solution of common salt. How much amount of water will be required to prepare this solution?
(U.B+A.B)

Ans:

WATER FOR $15 \%(\mathrm{~m} / \mathrm{m})$ SOLUTION

$15 \% \mathrm{~m} / \mathrm{m}$ common salt solution means that 15.0 g of common salt is dissolved in 85 g of water to make 100 g of solution.
iv. How much water should be mixed with $18 \mathrm{~cm}^{3}$ of alcohol so as to obtain $18 \%(\mathrm{v} / \mathrm{v})$ alcohol solution?
($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$
Ans:

WATER FOR $18 \%(\mathrm{v} / \mathrm{v})$ SOLUTION

$18 \% \mathrm{v} / \mathrm{v}$ alcohol solution in water means that $18 \mathrm{~cm}^{3}$ of alcohol is dissolved in sufficient amount of water so that total volume of the solution becomes $100 \mathrm{~cm}^{3}$.
v . Calculate the concentration $\%(\mathrm{~m} / \mathrm{m})$ of a solution which contains 2.5 g of salt dissolved in 50 g of water.
(U.B+A.B)

Ans:

NUMERICAL

Solution:

Give data:

Mass of salt (solute) $\quad=2.5 \mathrm{~g}$
Mass of water (solvent) $\quad=50 \mathrm{~g}$

To Find:

Concentration $\% \mathrm{~m} / \mathrm{m}$ of solution $\quad=$?

Calculations:

$$
\text { Concentration }(0 / \mathrm{m} / \mathrm{m})-
$$

Yhat cone or the following solutions is more concentrated?
One molar or three molar:

CONCENTRATION OF SOLUTION

Concentration depends upon amount of solute. Three molar solutions is more concentrated than one molar solution because it consists of three times the amount of solute.

6.5 SOLUBILITY

6.5.1 SOLUBILITY AND SOLUTE-SOLVENT INTEAKCTIRT

What is general principl 0 solufity?
(Ex-Q.6)(U.B+K.B)
Ans:
(RWP 2017, MTN 2016 , HGK 2016, SGD 2016, 17, DWP 2016,17, FSD 2017)

Definit on:

"Tho number af gains of fine solute dissolved in 100 g of solvent to prepare a saturated shation at a paricular temperature".

1) heconcentration of a saturated solution is referred to as solubility of the solute in a given solvent.
Example:
Solubility of sodium thiosulphate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ in water at $20^{\circ} \mathrm{C}$ is 20.9 g of salt per 100 g of water. Factor Affecting the Solubility:
Following are the factors which affect the solubility of solutes:
(i) Nature of solute and solvent (like dissolves like)
(ii) Solute-solvent interactions
(iii)Temperature

LIKE DISSOLVES LIKE (NATURE OF SOLUTE AND SOLVENT)

The general principle of solubility is, like dissolves like.
(i) The polar substances are soluble in polar solvents. Ionic solids and polar covalent compounds are soluble in water.
Examples:
$\mathrm{KCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CuSO}_{4}$, sugar and alcohol are all soluble in water.
(i) Non-polar substances are not soluble in polar solvents.

Examples:
Ether, benzene and petrol are insoluble in water.
(i) Non-polar covalent substances are soluble in non-polar solvents (mostly organic solvents).

Examples:
Grease, paints, naphthalene are soluble in ether or carbon tetrachloride etc.
Q. 2 Write a detailed note on solubility and solute-solvent interaction.

Ans:

SOLUBILITY AND SOLUTE SOLVENT INTERACTION

"The solute-solvent interaction can be explained in terms of creation of atra tive for co between the particles of solute and those ofsplvent Steps to Dissolve Solute in Solvent.
To dissolve one substance (s.lyap in ano her ubstance uslvent) olowing three events must ozcyif
(i) Solwe paricles nut eparateren each other
(ii) Solvent particles must separate to provide space for solute particles.
(iii) Sole te and solvent particles must attract and mix up.

Deprnence of Solution Formation:
Solution formation depends upon the relative strength of attractive forces between solute-solute, solvent-solvent and solute-solvent.
Physical States of Solute:
Generally solutes are solids.

Interactions Between Particles:
Ionic solids are arranged in such a regular pattern that the inter-ionic farces are ata maximum. If the new forces between solute and solvent particles onerceme the for wesolute attractive forces, then solute dissolves and makes aroluten.
If forces between solute particles are strong muph than olnte-so vent forces, solute remains insoluble and so ution is ast formed The solven nolectles first pull apart the solute ions and then surround therh. In this way soluted ssouves and solution forms.
Examed Dissolation of Sodium Chloride).
When $\overline{\text { a a }} 1$ is added in water it assolves readily because the attractive interaction between the icrs of Ne Cland polar molecules of water are strong enough to overcome the a atractive forees between Na^{+}and Cl^{-}ions in solid NaCl crystal. In this process the positvend of the water dipole is oriented towards the Cl^{-}ions and the negative end of water dipole is oriented towards the Na^{+}ions. These ion-dipole attractions between Na^{+} ions and water molecules, Cl^{-}ions and water molecules are so strong that they pull these ions from their positions in the crystal and thus NaCl dissolves.

Figure: Inter-action of Solute and Solvent to Form Solution
Q. 3 Discuss the effect of temperature on solubility?
(Ex-Q.7)
(GRW 2016 G-II, LHR 2016 G-II, RWP 2017 G-II)(U.B)
Ans:
EFFECT OF TEMPERATURE ON SOLUBILITY
Temperature has major effect on the solubility of most of the substances. Generally it seems that solubility increases with the increase of temperature, but it is not always true. Possibilities:
When a solution is formed by adding a salt in solvent there are three possibilities with reference to effect of temperature on solubility. These possibilities are as follows:
(i) Heat is absorbed
(ii) Heat is given out
(iii) No change in heat
(i) Heat is Absorbed (Endothermic Process)

Solubility usually increases with the increase in temperature for such solutes. When salts like $\mathrm{KNO}_{3}, \mathbf{N a N O}_{3}$ and $\mathbf{K C l}$ are added in water, the test tube becomes cold. It means during dissolution of these salts heat is absorbed. Such dissolving process is called "enue therm:
solvent + solute + heat \longrightarrow solution
Significance of Heat Absorbed:
It means that heat is required to beak the at ractive dees betweer the ions of solute. This requirement is fulfilled py the shroming molectles. As. resylt, their temperature falls down and test tube her orles eold.
Exames

(ii) Heat is given out (Exothermic Process)

In such cases, the solubility of salt decreases with the increase of temperature When salts like $\mathrm{Li}_{2} \mathbf{S O}_{4}$ and $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are dissolved in water the lest tube becones warm. i.e. heat is released during this dissolition.

Why Heat Released?
In such cist attractive forges ancig the solnte particles are weaker and solutesolven is tracions are trop ger As a resut, there is release of energy.
Examp es:

- $\mathrm{Li}_{2} \mathrm{CP}_{3}$
- $\mathrm{Ca}(1)^{\left(\mathrm{H}_{2}\right.}$
- $\mathrm{Li}_{2} \mathrm{SO}_{4}$
- CaCrO_{4}
(iii) No Change in Heat

In some cases during a dissolution process neither the heat is absorbed nor released.

Example:

When salt like NaCI is added in water, the solution temperature remains almost the same. In such case temperature has a minimum effect on solubility.

6.5 SOLUBILITY
 6.5.1 SOLUBILITY AND SOLUTE-SOLVENT INTERACTION

SHORT QUESTIONS

Q. 1 What do you mean by "like dissolves like?" Explain with examples.
(U.B+A.B)

Ans: Answer given on pg \# 211
Q. 2 Define solubility.

Ans: Answer given on pg \# 211
Q. 3 Which factors affect the solubility?
(U.B)

Ans: Answer given on pg \# 212
Q. 4 Why test tube becomes warm when lithium sulphate is added in test tube containing water?
Ans: Answer given on pg \# 212

6.5 SOLUBILITY
 6.5.1 SOLUBILITY AND SOLUTE-SOLVENT INTALAOTIGN(MULTIPLE CHOICE RUESTTAS

1. Which one of the following wiul show higlighbe effet of tomperature on its solubility?
(LHR 2014)(U.B)
(A) KCl_{1}
(B) KNO
(C) NaCi
(D) NaNO_{3}
2. The ionia and potie mpounds ide NaCl and HCl are more soluble in water than non-poiar covalent co nonunus like:
(U.B)
(A) C Cl
(B) Benzene
(C) CS_{2}
(D) All of these
($/$ hi ilone is not soluble in water? (FSD 2017 G-I)(K.B)
(A) $\mathrm{C}_{6} \mathrm{H}_{6}$
(B) KCl
(C) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(D) CuSO_{4}
3. Naphthalene is soluble in:
(K.B)
(A) Water
(B) Ether
(C) Carbon tetrachloride
(D) Both B and C
4. Which one of the following salts gives out heat on dissolving in water? (U.B+A.B)
(A) NaCl
(B) $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(C) KNO_{3}
(D) KCl
5. Heat is absorbed on dissolving which one of the following salt?
(D) $1 / 12 \mathrm{SO}_{4}$
($\cdot B+B$
(A) NaCl
(B) $\mathrm{Ce}_{2}(\mathrm{SO} 4)_{3}$
(C) NaNO

GRw 2017 G-II)(K.B)
(A) Benzene
(B) Perol
(C) Eher
8. Generally solutes are-
(I) Alcohol
(D) Solvents
7. Which one is soluble in water?
\qquad (C) Solids

i. Nat will anpen if the solute-solute forces are stronger than those of solute-solvent inces?

STRONGER SOLUTE-SOLUTE FORCES

When solute-solute forces are stronger than those of solute-solvent forces, the solute will not dissolve and will not form solution.
ii. When solute-solute forces are weaker than those of solute-solvent forces. Will solution form?
(U.B)

Ans:

WEAKER SOLUTE-SOLUTE FORCES

It means when solute-solute forces are weaker than those of solute-solvent forces the solute solvent attractive forces will overcome the solute forces, then solute will dissolve and thus solution will form.
iii. Why is iodine soluble in CCl_{4} and not in water?

Ans: \quad SOLUBILITY OF IODINE IN CCl $]_{4}$ AND WATER
The principle of solubility is "like dissolves like."
Iodine is soluble in $\mathbf{C C l}_{\mathbf{4}}$ because both are non-polar. Water cannot dissolve iodine because water is polar solvent and iodine is non-polar.
iv. Why test tube becomes cold when KNO_{3} is dissolved in water? (SGD 2017 G-I)(U.B)

Ans: \quad SOLUBILITY OF KNO ${ }_{3}$
When KNO_{3} is added in water, the test tube becomes cold. It means during dissolution of these salts heat is absorbed from the surrounding to break the forces between ions of solute.

$$
\text { Solvent }+ \text { solute }+ \text { heat } \longrightarrow \text { solution }
$$

6.6 COMPARISON OF SOLUTION, SUSPENSION AND COLLOID

Q. 1 Give five characteristics of true solution.

Ans:
TRUE SOLUTION
"A homogeneous mixture of two or more than two componontsis allect fue solu(ior, Examples:

- Solution of NaCl in water.
- Drop of ink mixed in vater thinplest ex armpe of truesolution!
- Soution of sugar in water.

Proper ites.
(i) The partices e is in therr simplest form i.e. as molecules or ions. Their diameter $s 11^{-8} \cdot 10$
(ii) Paticles dissolve uniformly throughout and form a homogeneous mixture.
(iii) Particles are so small that they can't be seen with naked eye.
(iv) Solute particles can pass easily through a filter paper.
(v) Particles are so small that they cannot scatter the rays of light, thus do not show Tyndall effect.
Q. 2 Give the five characteristics of colloid solution.(Ex-Q.8)(GRW 2017 G-I, SGD 2017 G-II)(K.B) OR
Define colloids. Write down characteristics of colloids.
THEW 2016 (T) (R)
Ans:

COLLOIDS OR COLLOTMAL SOI NON:

"These are solutions in which the solute wat.chs arg laigur han those present in the true solutions but not large enoughto be se en by ake dey e. Examples:-

- Staich
- Albumin
- Soap sclutibue
- Eler
- Milk
- Ink
- Jelly
- Toothpaste

Tyndall Effect and Distinction between Colloid and Solution:

We can see the path of scattered light beam inside the colloidal solution. Tyndall effect is the main characteristic which distinguishes colloids from solutions. Hence these solutions are called false solutions or colloidal solutions.
Tyndall Effect:
"The particles of colloids are big enough to scatter the beam of light. It is called Tyndall effect."

Figure: Tyndall Effect by Colloids
Properties:
The properties of colloidal solution are as follows:

- The particles are large consisting of many atoms, ions or molecules.
- A colloid appears to be a homogeneous but actually it is a heterogeneous mixture. Hence, they are not true solution. Particles do not settle down for a long time therefore, colloids are quite stable.
- Particles are large but can't be seen with naked eyr.
- Although particles are his but hey can pa tr rough a iller paper.
- Particles scatter the paih of right ia is this emiting the beam of ight i.e. exhibit the Tyadall ffect.
Q. 3 What is.suspension? Write it characteristics. (Ex-Q.9) (LHR 2017 G-I, RWP 2017 G-I)(K.B) Ans:

SUSPENSION

A heter gene muxture of undissolved particles in a given medium that settles down after some time is called suspension."
Examples:

- Chalk in water (milky suspension)
- Paints
- Milk of magnesia (suspension of magnesium oxide in water)

Properties:

(i) The particles are of largest size. They are larger than $10^{-5} \mathbf{~} \mathbf{m}$ in diameter.
(ii) Particles remain undissolved and form a heterogeneers mixture. Particlessetres down after sometime
(iii) Particles are big enough to h? peen winh alad eye
(iv) Soure particles camnt pass throph fiter paper.
(v) Prticles are so big that lightis wiocked and difficult to pass.

Q. 4 Hpy yol can compaze solutions, colloid and suspension?

COMPARISON

Comparison of the characteristics of solution, colloid and suspension are as follows:

Solution	Colloid	Suspension
Size of Particles		
- The particles exist in theire simplest form i.e. as molecules or ions. Their diameter is $\mathbf{1 0}^{-8}$ cm.	The particles are large consisting of many atoms, ions or molecules.	The particles are of largest size. They are larger than $\mathbf{1 0}^{-5} \mathbf{c m}$ in diameter.
Solubility of Particles		
- Particles dissolve uniformly A colloid appears to be a throughout and form a homogeneous mixture. \quadhomogeneous but actually it is a heterogeneous mixture. Hence, they are not true solution.		Particles remain undissolved and Form heterogeneous mixture. Particles settle down after sometime
Observation With Naked Eye		
Passing Through Fitten Papa		
- Solute particles can pass easily through a fiter paper.	A/tholgh pert clen are bies but ther can ass theough a filter paper.	Sclue particles cannot pass through filter paper.
N-DUU	Tyndall Effect	

- Arrticles are so small that theycannot scatter the rays of light, thus do not show Tyndall effect.

Particles scatter the path of light- Particles are so big that rays thus emitting the beam of light i.e. exhibit the tyndall effect.
light is blocked and difficult to pass.

6.6 COMPARISON OF SOLUTION, SUSPENSION AND COLLOID

MULTIPLE CHOICE QUESTIONS

1. In true solution, the particles are of size:
(k.B)
(A) $10^{-5} \mathrm{~cm}$
(B) $10^{-2} \mathrm{~cm}$

(D) $12^{-2} \mathrm{~cm}$
2. Which one produces colloidal sotition?
(K.B)
(A) Blond
(C) Siver nitrate solution
(B) Conper sulphate solution
(D) None of these
3. Tyndal efect shown by:
(LHR 2016, RWP 2017 G-II, SGD 2017 G-II)(A.B)
(A) Bugaracluion
(B) Paint
(C) Jelly
(D) Chalk solution

Whi 1 OLe of the following is heterogeneous mixture?
(A) Milk
(B) Ink
(C) Milk of magnesia
(D) Sugar solution

Tyndall effect is due to:
(U.B)
(A) Blockage of beam of light
(B) Non-scattering of beam of light
(C) Scattering of beam of light
(D) Passing through beam of light
6. The diameter of particles in solution is:
(A) $10^{-6} \mathrm{~cm}$
(B) $10^{-4} \mathrm{~cm}$
(C) $10^{-8} \mathrm{~cm}$
(D) $10^{-5} \mathrm{~cm}$
7. Chalk in water is an example of:
$\begin{array}{ll}\text { (C) Solution } & \text { (D) Solute }\end{array}$
(A) Suspension
(B) Colloid
8. An example of colloidal solution is:
(B) Milk of magnesia
(A) Drop of ink in water
(D) Paint
(C) Blood
(A) Colloidal solution (B) Suspension
(C) Paint
(D) Water
(U.B)

6.4 TEST YOURSELF

i. What is difference between colloid and suspension?
(DGK, BWP 2017, FSD, RWP 2016, LHR 2016 G-I)(U.B)
Ans:

DIFFERENTIATION

The differences between colloidal solution and suspension are as follows:

Colloid	Suspension
Composition	
- The particles are large consisting of many atoms, ions or molecules.	- The particles are of largest size. They are larger than $10^{-5} \mathrm{~cm}$ in dial oetor.
Visibility	
- Particles are large but can't be seen with Part cles are big encush to be naked eye.	
\bigcirc Oassing Thrcu	Friter Paper
- Although particiep re bie but hey can nasstrough if file naper.	- Solute particles cannot pass through filter paper.
Tyndall Effect	
Particles scatter the path of light rays thus emitting the beam of light i.e. exhibit the Tyndall effect.	- Particles are so big that light is blocked and difficult to pass.

ii. Can colloids be separated by filtration, if not why?

Ans:

SEPARATION OF COLLOIDS

Colloids cannot be separated by filtration because the farrcles in collobisore not so big. They can pass through a fiter pape.
iii. Why are titit colloids yuitt sigble?

The roll pids are quite stable because particles do not settle down for a long time. Colloids a) e cquite stable.
iv. Why does the colloid show Tyndall effect?

Ans:

TYNDALL EFFECT OF COLLOID

Colloids show Tyndall effect because in colloids the particle size is suitable to scatter the path of light rays.
v. What is Tyndall effect and on what factors it depends?

Ans: TYNDALL EFFECT AND FACTORS AFFECTING IT
"The phenomenon of scattering of beam of light by particles of colloids is called Tyndall effect".

Dependence:

It depends upon the size of particles.
vi. Identify as colloids or suspensions from the following:
(U.B+A.B)

Milk, milk of magnesia, soap solution and paint.
Ans:

IDENTIFICATION AS COLLOID ARE SUSPENSION

Colloids: Milk, soap solution
Suspensions: Paints, milk of magnesia
vii. How can you justify that milk is a colloid.

Ans.

Justification:

Milk (cors st. Df Jig patic les Pecarbolyurates, fats, proteins etc.) is a colloid because it shoms Tyndhall effect

IVnk particles are big but they can pass through a filter paper. Milk particles are larger but cannot be seen with naked eye. Milk particles scatter the path of light rays thus scattering the beam of light i.e. exhibit the Tyndall effect.

ANSWER KEYS

INTRODUCTION

6.2 SATURATED SOLUTION

1	C	2	C	3	B	4	A	5	A	6	A	7

6.3 TYPES OF SOLUTIONS

6.4 CONCENTRATION UNITS
6.4.1 PERCENTAGE

1	B	2	B	3	D	4	A	5	A	6	B	7	A	8	A
9	A	10	D	11	D	12	A	13	A	14	B	15	D		

6.5 SOLUBILITY
6.5.1 SOLUBILITY AND SOLUTE-SOLVENT INTLGACIIGU

EXERCISE SOLUTION
 MULTIPLE CHOICE QUESITONS

(A) Liquid in gas
(B) Gas in lquid
$\int(f i$ Solid in gas
(D) Cos in solid
2. Which one of the following is ? "iquir insolid' sollition?
(RUP 2017 C-i, DGK 2017 G-II, SWL 2017 G-II)(A.B)
(A) Sugar in vater
(P) 3 ltg C
(C) Opal
(D) Fog
3. Concentration is atic $d f$:
(BWP 2017 G-II)(K.B)
(A)Solven oo conte (B) Solute to solution (C) Solvent to solution (D) Both a and b

Whith ine of the following solutions contains more water?(LHR 2017 G-I,II, RWP 2016 G-I)(U.B)
(A) 2 M
(B) 1 M
(C) 0.5 M
(D) 0.25 M
5. A 5 percent (\mathbf{w} / w) sugar solution means that:
(A) 5 g of sugar is dissolved in 90 g of water (B) 5 g of sugar is dissolved in 100 g of water
(C) 5 g of sugar is dissolved in 105 g of water
(D) 5 g of sugar is dissolved in 95 g of water
6. If the solute-solute forces are strong enough than those of solute-solvent forces. The solute:
(DGK 2017 G-II)(U.B)
(A) Dissolves readily
(B) Does not dissolve
(C) Dissolves slowly
(D) Dissolves and precipitates
7. Which one of the following will show negligible effect of temperature on its solubility?
(MTN 2016 G-II) (A.B)
(A) KCl
(B) NaNO_{3}
(C) KNO_{3}
(D) NaCl
8. Which one of the following is heterogeneous mixture?
(BWP 2017 G-I, SGD 2016 G-I, II, FSD 2016 G-I,II)(A.B)
(A) Milk
(B) Ink
(C) Milk of magnesia
(D) Sugar solution
9. Tyndall effect is shown by:
(DGK 2016 G-I, GRW 2017 G-I, LHR 2016 G-I, RWP 2017 G-II, SWL 2017 G-II, DGK 2016 G-II)(A.B)
(A) Sugar solution
(B) Jelly
(C) Paints
(D) Chalk solution
10. Tyndall effect is due to:
(BWP 2017 G-I, SWL 2017 G-I)(U.B)
(A) Blockage of beam of light
(B) Non-scattering of beam of light
(C) Scattering of beam of light
(D) Passing through beam of inght

(A) $\% \mathrm{w} / \mathrm{w}$
(B)
\bigcirc

(D) \%uly

(A) Super at urated scriution
(B) Saturated solution
(C) A conchenirgtef solution
(D) Unsaturated solution
13. Modrit is the uinlees or moles of solute dissolved in: (GRW 2017 G-II, BWP 2017 G-II) (K.B)
(A) 1 kgeds solution
(B) 100 g of solvent
(C) $1 \mathrm{dm}^{3}$ of solvent
(D) $1 \mathrm{dm}^{3}$ of solution

1	A	2	B	3	B	4	D	5	D	6	B	7	D
8	C	9	B	10	C	11	C	12	D	13	D		

EXERCISE SHORT QUESTIONS

1. Why suspensions and solutions do not show Tyndall effect, while colons do?

Ans:

SHOWING TYNDALL EFFECT

Suspensions and Solutions:

 that they \quad an ot scenter the ays of liph thas do not show Tyndall effect.
Colloio:-
Colloid car show 1 yndell difect because particles scatter the path of light rays.
2.

What is the rean for the difference between solutions, colloids and suspensions? (U.B) REASON FOR DIFFERENCE
The differentiation between solutions, colloids and suspensions is based upon the particle size. In colloidal solutions the particles size is intermediate between true solutions and suspensions.
3. Why does not the suspension form a homogeneous mixture?
(DGK 2016)(U.B)
Ans:

SUSPENSION NOT A HOMOGENEOUS MIXTURE

In suspension particles remain un-dissolved due to their big size. After sometime particles settle down under the action of gravity, therefore suspension does not form a homogeneous mixture.
4. How will you test whether given solution is a colloidal solution or not? (U.B+A.B) Ans:

TESTING OF SOLUTION AS COLLOID
We will pass light in the solution, if the given solution scattered the light then it is a colloidal solution. It solution does not scatter the light then it is not colloidal solution.
5. Classify the following into true solution and colloidal solution:
(U. $\boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B}$)

Blood, starch solution, glucose solution, tooth paste, copper sulphate solution, silver nitrate solution.
Ans:
CLASSIFICATION
The classification of true solution and colloidal solution are as follows:

	True Solutions	
-	Colloidal Solutions	
-	Copper solution	-
-	Blood	
-	Silver nitrate solution	-
-	Sooth paste	
-	Starch solution	

6. Why we stir paints thoroughly before using?

Ans: STIRRING OF PAINTS BEFORE USE
Paints are heterogeneous mixture of un-dissolved particles in a given mediun. rtives settle down after sometime. So we stir paints to mix thomoghly berice using.
 milk of magnesia.
Ans:
Sugar Solutiotio

SCLTRRNGOFIGHT

Sugar split or will not satter the veam light because the particles of sugar solution are so small that they caunst scatter light.
San Solutiom:
Soap solution will scatter light (Tyndall effect) because it is colloidal solution and its particles are large enough to scatter the light.

Milk of Magnesia:

Milk of magnesia cannot scatter the light because it is suspension and its particles are so big that light is blocked.
8. What do you mean by "like dissolves like?" Explain with examples. (MTN 2017, GRW 2015, 16)(U.B+A.B)

Ans:

LIKE DISSOLVE LIKE

"Like dissolves like" means that polar substances are dissolved in prlar solverts and now polar substances are soluble in non-polar sol er ts.

Examples:

- NaCl (nolar) dissolves in vater (palar solvent) and does not dissolve in benzene (nonporar).
- Simila ly benzene (ncn-polar) io soluble in petrol (non-polar) but it does not dissolve in Wate (p lat).
Hew ines nature of attractive forces of solute-solute and solvent-solvent affect the solubility?
(GRW 2016, LHR 2016, SGD 2016)(U.B)

EFFECT OF ATTRACTIVE FORCES ON SOLUBILITY

Solubility depends upon solute solvent attractions.

- If the attractive forces between solute and solvent are stronger than that of solutesolute forces then solubility will take place.
- If the attractive forces between solute particles are stronger than solute solvent forces, solute remains insoluble and solution is not formed.

10. How you can explain the solute-solvent interaction to prepare a $\mathbf{N a C l}$ solution?
(LHR, 2016)(U.B+A.B)
Ans:

PREPARATION OF NaCl SOLUTION

When NaCl is added in water it dissolves readily because the attractive forces between the ions of NaCl and polar molecules of water are strong enough to overcome the attractive forces between Na^{+}and Cl^{-}ions in solid NaCl crystal. In this process, positive end of the water dipole is oriented towards the Cl^{-}ions and the negative end of water dipole is oriented towards the Na^{+}ions. These ion-dipole attractions between Na^{+}ions and water molecules, Cl^{-}ions and water molecules are so strong that they pull these ions from their positions in the crystal and thus NaCl dissolves.

11. Justify with an example that o uluiity . i salt increases with the increase in temperature.(U.B+A.B)

Ans:
INCPE ASE NOLUBILITY WITH TEMPERATURE
$\$$ phapilit do some salts which are usually ionic in nature increases with the increase in temperature for such solutes. It means that heat is required to break the attractive forces between the ions of solute. This process is called endothermic.

Example:

Solubility of KNO_{3} and KCl can be enhanced by increasing temperature.
12. What do you mean by volume/volume $\%$?

Ans:
MEANING OF \% VOLUME/VOLUME
It is the volume in cm^{3} of a solute dissolved in 100 g of the solvtion. Example:
 so that the total volume of the solation teconhes $10 n$ ent.
$\% \mathrm{v} / \mathrm{C}=\frac{\text { Volu he of solute }\left(\mathrm{cm}^{3}\right)}{\text { Volume of solution }\left(\mathrm{cm}^{3}\right)} \times 100$

EXERCISE LONG QUESTIONS

1. What is saturated solution and how it is prepared?

Ans: Answer give on pg \# (Topic 6.2)
2. Differentiate between dilute and concentrated solutions with a common example.

Ans: DIFFERENTIATION
The differences between dilute and concentrated solutions are as follows:

Dilute Solution	Concentrated Solution
Definition	
- Dilute solutions are those which contain relatively small amount of dissolved solute in the solution.	- Concentrated solutions are those which contain relatively large amount of dissolved solute in the solution.
Examples	
- A solution containing 5 g of sodium chloride in 100 g water is a dilute solution.	- $0.1 \mathrm{M} \quad \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is dilute solution as compared to $5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.

3. Explain, how dilute solutions are prepared from concentrated solutions?

Ans: Answer give on pg \# 205 (Topic 6.4.2)
4. What is molarity and give its formula to prepare molar solution?

Ans: Answer give on pg \# 204 (Topic 6.4.2)
5. Explain the solute-solvent interaction for the preparation orsolution.

Ans: Answer give on pg \# 211 (Topic 6.5)
6. What is general principl 0 solnhmity?

Ans: Answer gipepn pg \#211 (Topic 6.5
7. Discuse ne effectof empe aure el solumility.

Ans: Answer give or pg \#212 (Topic 6.5)
8. Give the fir enaracteristics of colloid.

Ans: 1 nswer give on pg \# 216 (Topic 6.6)
9. Give at least five characteristics of suspension.

Ans: Answer give on pg \# 216 (Topic 6.6)

EXERCISE SOLVED NUMERICALS

1. A solution contains 50 g of sugar dissolved in 450 g of water. What is concentration of this solution? (U.B-A.B)

NUMERICAL

Solution:
Given Data:
Mase of sagir (solne) $=j 0 \mathrm{y}$
Mass dt vater (solvent) $=450 \mathrm{~g}$

10 Find:

Concentration of solution $(\% \mathrm{~m} / \mathrm{m})=$?

Calculations:

$\% \mathrm{~m} / \mathrm{m}=\frac{\text { Mass of solute }(\mathrm{g})}{\text { Mass of solute }(\mathrm{g})+\text { Mass of solvent }(\mathrm{g})} \times 100$

$$
\begin{aligned}
\% \mathrm{~m} / \mathrm{m} & =\frac{50 g}{50 g+45 g} \times 100 \\
& =\frac{50 g}{500 g} \times 100
\end{aligned}
$$

Thus,

$$
\% \mathrm{~m} / \mathrm{m}=10 \mathrm{~m} / \mathrm{m}
$$

Result:

The concentration of this solution is $\mathbf{1 0 \%}$ m/m.
2. If $60 \mathrm{~cm}^{\mathbf{3}}$ of alcohol is dissolved in 940 cm^{3} of water, what is concentration of this solution?
(U.B+A.B)

NUMERICAL

Solution:

Given Data:

Volume of alcob) (soiute $=\mathrm{m}=60 \mathrm{~cm}^{3}$
Volume of water spleent $)=v=940 \mathrm{~cm}^{3}$
To Fing:
CDerentration of solution $(\% \mathrm{v} / \mathrm{v})=$?

Calculations:

$\% \mathrm{~V} / \mathrm{V}=\frac{\text { Volume of solute }\left(\mathrm{cm}^{3}\right)}{\text { Volume of solute }\left(\mathrm{cm}^{3}\right)+\text { Volume of solvent }\left(\mathrm{cm}^{3}\right)} \times 100$
$\% \mathrm{v} / \mathrm{v}=\frac{60 \mathrm{~cm}^{3}}{60 \mathrm{~cm}^{3}+910 \mathrm{cn}}{ }^{3} \cdot 100$

$$
=\left[\frac{6}{10}-\left[\frac{2}{2}\right]^{3} \times 100\right.
$$

Thus \% $\% / \mathrm{v}=6 \% \mathrm{v} / \mathrm{v}$

Result:

Concentration of this solution $=6 \% \mathrm{v} / \mathrm{v}$
3. How much salt will be required to prepare following solutions (atomic mass: $K=39$;
$\mathrm{Na}=23 ; \mathrm{S}=32 ; \mathrm{O}=16$ and $\mathrm{H}=\mathrm{I}) \quad(U . B+A . B)$
(a) $250 \mathrm{~cm}^{3}$ of KOH solution of 0.5 M
(b) $600 \mathrm{~cm}^{3}$ of NaNO_{3} solution of 0.25 M
(c) $800 \mathrm{~cm}^{3}$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution of 1.0 M

Ans:
(a) $250 \mathrm{~cm}^{3}$ of KOH solution of $\mathbf{0 . 5 M}$

NUMERICAL

Solution:

Given Data:

Molarity of solution $=\mathrm{M}=0.5 \mathrm{M}$
Volume of solution $=\mathrm{V}=250 \mathrm{~cm}^{3}$

$$
=\frac{250}{1000} \mathrm{dm}^{3}=0.25 \mathrm{dm}^{3}
$$

Molar mass of $\mathrm{KOH}=39+16+1=56 \mathrm{gmol}^{-1}$

To Find:

Amount (mass) of $\mathrm{KOH}=$?

Calculations:

Mass of sol 1 te (g)
Vipla mass ar so ute $(\mathrm{gmol}) \times$ Volume of solution $\left(\mathrm{dm}^{3}\right)$
$0.5 \mathrm{~N}=\frac{\text { Mass of solute }(\mathrm{g})}{56 \mathrm{~g} \mathrm{~mol}^{-1} \times 0.25 \mathrm{dm}^{3}}$
Mass of solute $=0.5 \times 56 \times 0.25$

$$
=7 \mathrm{~g}
$$

Result:

7 g salt is required to prepare $250 \mathrm{~cm}^{3}$ solution of KOH. (0.5 M)
(b) $600 \mathrm{~cm}^{3}$ of NaNO_{3} solution of 0.25 M

NUMERICAL

Solution:

Given Data:

Molarity of NaNO_{3} solution $=\mathrm{M}=\mathrm{C}, 2.5 \mathrm{IV} / \mathrm{L}$
Volune folntion $=V=500 \mathrm{~cm}^{3}$

$$
=\frac{-\frac{60}{1000}}{10.6 \mathrm{dm}^{3}}
$$

Molarmass of $\mathrm{NaNO}_{3}=23+14+3(16)$

$$
=85 \mathrm{gmol}^{-1}
$$

To Find:

Amount (mass) of $\mathrm{NaNO}_{3}=\mathrm{m}=$?

Calculations:

Using the formula:

$$
\begin{gathered}
\mathrm{M}=\frac{\text { Mass of solute }(\mathrm{g})}{\text { Molar mass of solute }\left(\mathrm{gmol}^{-1}\right) \times \operatorname{Volume}^{2} \text { of solution }\left(\mathrm{dm}^{3}\right)} \\
\text { Molarity }=\frac{\operatorname{Mass} \text { of solute }(\mathrm{g})}{85 \mathrm{gmol}^{-1} \times 0.6 \mathrm{dm}^{3}}
\end{gathered}
$$

Mass of solute $=0.25 \times 85 \times 0.6$
Mass of solute $=12.75 \mathrm{~g}$

Result:

12.75 g salt is required to prepare $600 \mathrm{~cm}^{3}$ solution of NaNO_{3}. $(0.25 \mathrm{M})$
(c) $800 \mathrm{~cm}^{3}$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution of 1.0 M

NUMERICAL

Solution:

Given Data:

Molarity of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution $=\mathrm{M}=1 \mathrm{M}$
Volume of solution $=V=800 \mathrm{~cm}$

Molar mass $\mathrm{pf}_{\mathrm{N}}\left[\mathrm{a}_{2} \mathrm{SO}_{4}=22(23)+32+4(16)\right.$

$$
\begin{aligned}
& =46+32+64 \\
& =142 \mathrm{gmol}^{-1}
\end{aligned}
$$

To Find:

Amount (mass) of $\mathrm{Na}_{2} \mathrm{SO}_{4}=$?

Calculations:

Using the formula:

1. $\mathrm{O} \mathrm{M}=\frac{\text { Mas. of solute }}{142 \mathrm{gmol}^{-1} \times 0.8 \mathrm{dm}^{3}}$

Mass of solute $=1.0 \times 142 \times 0.8$

$$
=113.6 \mathrm{~g}
$$

Result:

113.6 g salt is required to prepare $800 \mathrm{~cm}^{3}$ solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. $\mathbf{(1 . 0 ~ M)}$

4. When we dissolve 20 g of NaCl in $400 \mathrm{~cm}^{3}$ of

 solution, what will be its molarity? (U.B+A.B)
NUMERICAL

Solution:

Given Data:

Mass of $\mathrm{NaCl}=20 \mathrm{~g}$
Molar mass of $\mathrm{NaCl}=23+35.5=58.5 \mathrm{gmol}^{-1}$
Volume of Solution $=400 \mathrm{~cm}^{3}$

$$
=\frac{400}{1000}=0.4 \mathrm{dm}^{3}
$$

To Find:

Molarity of solution $\quad \mathrm{M}=$?

Calculations:

Using the formyia:

$$
\begin{array}{r}
=\frac{20 \mathrm{~g}}{58.5 \mathrm{~mol} \times 0.4\left(\mathrm{dm}^{3}\right)} \\
=\frac{20}{23.4}=0.85 \mathrm{M}
\end{array}
$$

Result:

Molarity of solution will be 0.85 M .
5. We desire to prepare $100 \mathrm{~cm}^{3} 0.4 \mathrm{M}$ solution of $\mathbf{M g C l}_{\mathbf{2}}$, how much $\mathbf{M g C l}_{\mathbf{2}}$ is needed?
(U.B+A.B)

NUMERICAL

Solution:

Given Data:

Molarity of solatiph $=M=0.4 M$
Volmeor Solu io $=V=100 \mathrm{~cm}^{3}$

$$
=\frac{100}{1000} \mathrm{dm}^{3}=0.1 \mathrm{dm}^{3}
$$

Molar Mass of $\mathrm{MgCl}_{2}=24+2(35.5)$

$$
=24+71=95 \mathrm{gmol}^{-1}
$$

To Find:

Amount (mass) of $\mathrm{MgCl}_{2}=$?

Calculations:

Using the formula:
$\mathrm{M}=\frac{\text { Mass of solute }}{\text { Molar mass of solute }\left(\mathrm{gmol}^{-1}\right) \times \text { Volume of solutoin }\left(\mathrm{dm}^{3}\right)}$
$0.4 \mathrm{M}=\frac{\text { Mass of solute }(\mathrm{g})}{95 \mathrm{~g} \mathrm{~mol}^{-1} \times 0.1 \mathrm{dm}^{3}}$
Mass of solute $=0.4 \times 95 \times 0.1$

$$
=3.8 \mathrm{~g}
$$

Result:

3.8 g of MgCl_{2} is needed to prepare $100 \mathrm{~cm}^{3}$

$\mathbf{0 . 4} \mathbf{M}$ solution of $\mathbf{M g C l}_{2}$.
6. $12 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solutions is available in the laboratory. We need only $500 \mathrm{~cm}^{3}$ (f © .1 M solution, how it will be preded?

To Find:

Volume of concentrated $\mathrm{H}_{2} \mathrm{SO}$ somtion $=V=?$

Celculations:

The ol ation of rec, uifed concemination will be piepared Uy the method as follows:
(i) Vetermination of volume of concentrated solution:

Concentrated solution $=$ Dilute solution

$$
\begin{aligned}
\mathrm{M}_{1} \mathrm{~V}_{1} & =\mathrm{M}_{2} \mathrm{~V}_{2} \\
12 \times \mathrm{V}_{1} & =0.1 \times 500 \\
\mathrm{~V}_{1} & =\frac{0.1 \mathrm{M} \times 500 \mathrm{~cm}^{3}}{12 \mathrm{M}}
\end{aligned}
$$

Thus,
Volume of concentrated solution $=4.16 \mathrm{~cm}^{3}$
(ii) Preparation of Solution:

We take $4.16 \mathrm{~cm}^{3}$ of concentrated $12 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution with the help of graduated pipette and put in a measuring flask of $500 \mathrm{~cm}^{3}$. Add water upto the mark, present at the neck of flask. Now it is 0.1 molar solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
\qquad
\square

Solution:

givenvi2.
iviolarity of Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=\mathrm{M}_{1}=12 \mathrm{M}$
Molarity of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=\mathrm{M}_{2}=0.1 \mathrm{M}$
Volume of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=\mathrm{V}_{2}=500 \mathrm{~cm}^{3}$

ADDITIONAL CONCEPTUAL QUESTIONS

Q. 1 Differentiate between solute and solvent.

The differences between splote and solvemare as follows:

Example			
In sugar solution, sugar is solute.	In sugar solution, water is solvent		
Dissolution			
Solute always dissolve in solvent.	Solvent always dissolve solutes.		

Q. 2 What type of solution of fog and brass are?
(K.B+A.B)

Ans:

TYPE OF SOLUTION OF FOG AND BRASS

(i) Fog: It is an example of liquid in gas solution.
(ii) Brass: Metal alloy of $\mathrm{Cu} \& \mathrm{Zn}$.
Q. 3 How we can prepare solute crystals?
(U. $\boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$

Ans:

FORMATION OF SOLUTE CRYSTALS

Prepare super-saturated solution of particular solute by preparing saturated solution of that solute at high temperature. It is then cool to a temperature where excess solute crystallize out and leaves behind saturated solution.
Q. 4 How we can prepare 2 M solution of glucose?
(U. $\boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$

Ans: We can prepare 2 M of glucose solution by dissolving $(2 \times 180 \mathrm{~g}=360 \mathrm{~g})$ of glucose in $1 \mathrm{dm}^{3}$ of a solution.
Q. 5 Why concentration of bulk solution and its sample is same?

Ans: Because concentration does not depend unon the total yeture an thta amun ef he solution.
Q. 6 How the solubility of salt decreabs vitl the inciease demper atare?

EqIapl:

W/hen salts like $\mathrm{Li}_{2} \mathrm{SO}_{4}$ and $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are dissolved in water, the test tube become warm because heat is released during this dissolution.

$$
\text { Solvent }+ \text { solute } \rightarrow \text { solution }+ \text { heat }
$$

TERMS TO KNOW

Terms	Definitions
Solution	tive
Aqueous Solu	"The solltion wish/ic formed by lissol ing substance in water is calle tan acucos sclu ion."
Solute	The componen of solusion which is present in smaller quantity is cal e 1 solute
	The eomponent of a solution which is present in larger quantity is called solvent."
6.atu rated Solution	"A solution containing maximum amount of solute at a given temperature is called saturated solution"
Supersa Solution	"The solution that is more concentrated than a saturated solution is known as supersaturated solution".
Dilute Solution	Dilute solutions are those which contain relatively small amount of dissolved solute in the solution.
Concentrated Solution	Concentrated solutions are those which contain relatively large amount of dissolved solute in the solution.
Concentration	"The proportion of a solute in a solution is called concentration".
(\%m/m)	"It is the number of grams of solute in $\mathbf{1 0 0}$ grams of solution."
(\%m/v)	"It is the number of grams of solute dissolved in $100 \mathrm{~cm}^{3}$ of the solution".
(\% v / m)	"It is the volume in $\mathrm{cm}^{\mathbf{3}}$ of a solute dissolved in 100 g of the solution".
(\%v/v)	"It is the volume in cm^{3} of a solute dissolved per $100 \mathrm{~cm}^{3}$ of the solution".
Molarity	"Number of moles of solute dissolved in one $\mathbf{d m}^{\mathbf{3}}$ of solution is called molarity".
Solubility	"The number of grams of the solute dissolved in 100 g of solvent to prepare a saturated solution at a particular temperature".
Colloidal Solution (colloid)	"These are solutions in which the solute particles are larger than those present in the true solutions but not large enough to be seen by naked eye."
Suspension	"A heterogeneous mixture of undisolved al tices in a given medium that sctutles do vn aftur sone tin e s calle i uspomiun."
True Solution	"A honcgeneod mixture of two no e enan two components is called tut solation.
Unsaturated outici	"A sol tion which contairs lesser amount of solute than that wl ich is requirde to saturate it at a given temperature, is called [nsat mated solution".
a	"The process of decreasing concentration of solution by adding more solvent in it is called dilution of solution".
Per	"Percentage unit of concentration refers to the percentage of solute present in a solution".
Tyndall Effect	"The particles of colloids are big enough to scatter the beam of light. It is called Tyndall effect."

SELF TEST

Time: 35 Minutes

Q. 1 Four possible answers $(A),(B),(C)$ and (D) to each question are givn, (1)arlo correct answer.

1. The examnte of solid solu e in gas so ent is:
(A) Butter
(B) Sugar in water
(C) Smoke n ar
(D) Opals

2 The ynes of sslutions on the basis of their physical states are:
3. 10 gram of sugar is dissolved in 90 g of water to make a 100 g solution. This solution is:
(A) $10 \% \mathrm{~m} / \mathrm{m}$
(B) $10 \% \mathrm{~m} / \mathrm{v}$
(C) $10 \% \mathrm{v} / \mathrm{m}$
(D) $10 \% \mathrm{v} / \mathrm{v}$
4. Which one of the following solution has less water?
(A) 0.25 M
(B) 0.5 M
(C) 1.0 M
(D) 2.0 M
5. Solubility of which salt increases on heating?
(A) $\mathrm{Li}_{2} \mathrm{SO}_{4}$
(B) $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(C) NaCl
(D) KCl
6. Which one of the following shows Tyndall effect?
(A) Solution
(B) Colloid
(C) Suspension
(D) True solution

Q. 2 Give short answers to the following questions.

(i) Define solution. Give an example.
(ii) Differentiate between saturated and unsaturated solution.
(iii) Define molarity. What is its formula?
(iv) Describe the general principle of sfitibility "like cis olves ike"
(v) Why is iodine soluble in C Fl androt in aler?
Q. 3 Answer \mathbf{e} ollowing questions in detail.
(i) Write dovir fipla chatrateristics ofcotioid.
(ii) Defiie splybilify. Lxprain effect of temperature on solubility of a substance.

Parents or guardians can conduct this test in their supervision in order to check the skill of students.

