

1.1 PROBLEM SOLVING STEPS

LONG QUESTIONS

Q. 1 What is meant by 'defining a problem'? Write dova dieserent trategien tralefine a problem.
Ans:

(K.B+U.B)

Defini里品:

A well-if ne a problem is the one that does not contain ambiguities. All the conditions are clearly sperfied and thas a clear goal. It is easy to understand and solve."
Exulanation:
Qien Q problem statement, first we need to see whether the problem is defined well or not.
If the problem is not defined well than we can use one of the following strategies to define the problem:

- Gain Background knowledge
- Use Guesses
- Draw a Picture

Gain Background Knowledge:

We try to know the situation and circumstances in which the problem is happening. In this way, we can identify the given state. It also helps to know what a good solution will look like. How we shall be able to measure the solution.

Use Guesses:

We try to guess the unknown information through appropriate guesses. These guesses may be bases upon our past experiences.

Draw a Picture:

If the problem is not well-defined, we can draw a picture and fill the undefined information.
Q. 2 Define problem analysis. Explain your answer along with an example. (Ex. Q-2) (K.B+A.B) Ans:

PROBLEM ANALYSIS

Definition:

Problem analysis is the process to figure out 5 W's (what, who, when, where, and why) from a problem statement. Problem analysis helps to understand a given problem. These are the basic elements which lead towards the solution of a given problem.

Understanding a Problem:

It is important to understand the problem before jumping inturne so ution of the nochem. For example, a riddle or a puzzle cam be an wereai only fter clear under tandiag.
A clear understanding of a problewmakes it as ie to solve and hys to save money, time and respurces.

Examole:

Considr he iplowng problen statment:
"Suppose your cla.s tes cher assigns you a task to prepare a list of students in your school whose nemes-start with letter ' A '. The list is required in order to prepare an alphabetical drectory of all school students and there is only one week to complete the task."
We can analyses this problem by identifying 5Ws in the problem statement as given below:

- What: List of students' names starting with letter 'A'.
- Who: Students.
- Why: To prepare the directory of students.
- When: Within a week.
- Where: School.

Metaphorical Representation:
The following figure shows the etarhrical epreser nation of problem where the red light presents a problem, the yellow light represents its analysis and the green light present. he solution. It hows hat problem analysis makes us closer to a solution.

Fig: From problem to solution
Q. 3 Write down different strategies for planning a solution. How can we select best strategy for a solution?
(K.B+U.B)

Ans:

PLANNING A SOLUTION

After analyzing a problem, we formulate a plan that may lead us towards the solution of a problem.

Strategies:

This phase includes finding the right strategy for problem solving. Some of the strategies are:

- Divide and Conquer
- Guess, Check and Improve
- Act it Out
- Prototype (Draw)

Divide and Conquer:

This strategy divides a complex problem into smaller problems.

Guess, Check and Improve:

The designer guesses a solution to a problem and then checks the correctness of the solution. If the solution is not according to expectations, then he/she refines the solution The refinement is an iterative process.

Act it Out:

In this strategy the designer defines the oi tod \quad "tasks. A ten wads ine/she performs the task.

Prototype (1)raw):

This tee pique drava pictorial representation of the solution. It is not the final solution.
However, it ma help dis ger to understand the important components of the solution.
SELECT A BEST STRATEGY
Frae striction of a strategy depends upon the problem. It is quite important that one orategy maybe more suitable to implement a solution than the other one. Very specifically, the selection of the strategy depends upon the nature of a problem.
Q. 4 What is meant by candid solutions? Explain with an example.
(K.B+U.B+A.B)

Ans:
CANDID SOLUTIONS

Candid and Candid Solution:

The word candid refers to something spontaneous and unplanned. The colution whicit you think is a candid solution. It is not necessary that the candid rown theacual solution of a problem.

Example:

If you are asked to find rumber 2 istudents in ybus scho. who :ah play cricket. You can estimite by finding ricked players in vor class and then multiplying it by the total number. f cla ses in you chool. our answer in this way is the candid solution. To find exact number of criket players, you have to opt some other way, like visiting each Tass or gttting data from teachers. One can think of a candid solution anytime. A E.jnda solution can help to save time.

The following figure, there are different ways shown to reach a certain place (which can be reached either by going across the wall or by going sideways) and the one you think can work, is the candid solution. It is not necessary that the candid solution is the actual solution of a problem.

Figure: Multiple solutions of a problem
Q. 5 How can we select the best solution of a problem? Explain.
(K.B+U.B)

Ans:

SELECTING THE BEST SOLUTION

Sometimes we find more than one solution of a problem and select the best one amongst them.

Example:

Assume that names of all the students in your school are available on a website and you are asked to search a particular name. You can solve this search problem by either of the following methods:

- Look at each name on the website one by one until the name is foniti or the $1 ; 10$ over.
- Take printouts and search the required raine.
- Copy names, put them in Excel heet and or the e in alpi abeti al Order. Searching in a sorted list is comprativeiy easi.
- Just-pies Ctrl $+\sqrt{F}$, when the list a a ailabic-in a web browser. You can type the name to sidrchautonaticalpy
There can be cthe spletions well. Now we can identify a solution that has less number of steps or that seems more effective based on some criteria.
Find u(i)?

Definition:

Problem solving is a systematic approach that we can follow to solve a problem systematically.

Problem Solving Steps:

Problem solving steps are as follows:

- Defining a Problem
- Understanding a Problem
- Planning a Solution
- Defining Candid Solutions
- Selecting the Best Solution
Q. 2 What is meant by defining a problem?

Ans:

DEFINING A PROBLEM

Definition:

A well-defined problem is the one that does not contain ambiguities. All the conditions are clearly specified and it has a clear goal. It is easy to understand and solve
Q. 3 Describe some strategies to define a problem.

Ans:

> STRATEGIES TO DENE ARPELVNT

Ide Guesses

- Draw a Picture

Q. 4 Why we draw a picture of a problem?

Ans: DRAW A PICTURE
'Draw a picture' is a strategy to define the problem. If the problem is not yell-dated , J we can draw a picture and fill the undefine 1 information.
Pictorial representation of aproblems abest ard ea y way to dicfine the problem.
$\mathrm{U}_{\text {nit- }} 1$
Q. 5 Solve the following problem.

SOLUTION

Method 1:

Method 2:

$\pi \sqrt{n}+\pi=30 \rightarrow$ condition 1
$\pi+\boldsymbol{n}+\boldsymbol{\pi}=18 \rightarrow$ condition 2
ก $-5 \delta=2 \rightarrow$ condition 3
s $+\pi \times \mathrm{n}=? \rightarrow$ condition 4
Let pictures
$\pi=x$
กn=y
According to condition 1 According to condition 2
$\delta \delta=\mathrm{z}$
According to condition 3

$$
\begin{array}{r}
x+x+x=30 \\
3 x=30 \\
x=10
\end{array}
$$

According to condition

$$
\begin{aligned}
& \\
& a+x \times \frac{2}{2}=\frac{2}{2}=1 \\
= & 1+10 \times 2 \\
= & 1+20 \\
= & 21
\end{aligned}
$$

$$
\bigcap=b=\frac{y}{2}=\frac{4}{2}=2
$$

Q. 6 What is the importance of understanding a problem?
(K.B)

Ans: UNDERSTANDING A PROBLEM
It is very important to understand the problem before jumping intorne solution of the problem because no one can solve the problem wita indelstindiag it. A chear understanding of a problem make① easier to solve and he ps to saye maiey, time and resources.
Example: A ridde on a prazle can be ansiverea olly nfer clear understanding.
Q. 7 Define promem anglysis.
(K.B)

PROBLEM ANALYSIS

Detiiung:
Droblem analysis is the process to figure out 5 W 's (what, who, when, where, and why) from a problem statement. Problem analysis helps to understand a given problem. These are the basic elements which lead towards the solution of a given problem.
Q. 8 What is meant by planning a solution? Name some strategies for planning a solution.
(K.B)

Ans:
PLANNING A SOLUTION

Definition:

After analyzing a problem, we formulate a plan that may lead us towards the solution of a problem. This phase includes finding the right strategy for problem solving.

STRATEGIES FOR PLANNING A SOLUTION

Some of the strategies for planning a solution are:

- Divide and Conquer
- Guess, Check and Improve
- Act it Out
- Prototype (Draw)
Q. 9 Define divide and conquer.
(K.B)

Ans:

DIVIDE AND CONQUER

Definition:

It is a strategy for planning a solution. In this strategy, divides a complex problem into smaller problems.
Q. 10 What is meant by prototype?
(K.B)

Ans:

PROTOTYPE

Definition:

It is a strategy for planning a solution. This technique draws a pictorial epresentativ of the solution. It is not the final solution. However, it may heln a $\frac{1}{u}$ iesi ε nt r to anders and the important components of the solution.
Q. 11 How can we select best strategy for plamins a olut on:
(K.B+U.B)

Ans:
The seleotion of a stategy depends upon the problem. It is quite important that one strategy maybe mole ritzole o inqlenent solution than the other one. Very specifically, the selection of he stratery denenus upon the nature of a problem.
Q.12 That is candid and candid solutions?

CANDID AND CANDID SOLUTIONS

The word candid refers to something spontaneous and unplanned. There are multiple solutions for a problem. The one you think can work, is the candid solution. It is not necessary that the candid solution is the actual solution of a problem.

MULTIPLE CHOICE QUESTIONS

1. Problem solving is the process of solving \qquad .
(A) Simple Problems
(B) Language provens:
(C) Mathematical Problems
(PiComplex Proberss

(B)
2. Steps of problem solving. (A) 4
(D) 5
3. The first en of moblen-solving enetiod is:
(A) Def nip a rooblem
(B) Understanding a problem
(C, Flanining a solution
(D) Defining candid solutions

The last step of problem-solving method is:
(A) Defining a problem
(B) Understanding a problem
(C) Selecting the best solution
(D) Defining candid solutions
5. Gain Background Knowledge is a strategy of:
(A) Defining a problem
(B) Understanding a problem
(C) Selecting the best solution
(D) Defining candid solutions
6. Use guesses and draw a picture is a strategy of:
(A) Defining a problem
(B) Understanding a problem
(C) Selecting the best solution
(D) Defining candid solutions
7. Albert Einstein said, 'If I were given one hour to save the planet, I would spend
\qquad minutes defining the problem and \qquad minute resolving it'": (K.B)
(A) 30, 30
(B) 40,20
(C) 59,1
(D) 20,40
8. $\quad 5 \mathrm{Ws}$ are the part of which step?
(A) Defining a problem
(B) Understanding a problem
(C) Selecting the best solution
(D) Defining candid solutions
9. Divide and Conquer rule is a part of:
(A) Defining a problem
(B) Planning a solution
(C) Selecting the best solution
(D) Defining candid solutions
10. This strategy divides a complex problem divides into smaller problems: (K.B+U.B)
(A) Divide and Conquer rule
(B) Prototype
(C) Guesses
(D) Candid solutions
11. Prototype means:
(A) Selecting the best solution (B) Dlamirg tsolution
(C) Draw pictorial represen ation of asolution
(1) Detining candids solutions
12. Defines a list of "to-do" task reans:
(K.B)
(A) Pretoiype
(B) Act it out
(C) Divide and Conquer(D) Candid solution
13. The word refers to something spontaneous and unplanned. (K.B+U.B)
(A) Froblern
(B) Best
(C) Select
(D) Candid

14Lark mis statement: "Candid solution is the actual solution of a problem."
(A) Sometimes True
(B) Sometimes False
(C) Both A and B
(D) None of these
15. There can be \qquad solution of a problem.
(K.B)
(A) Only one
(B) Exactly three
(C) Many
(D) Only four

ACTIVITY QUESTIONS

Activity 1.1 (A.B)

Students are put in groups of two or three, and each group is provided two diterent lists of students' names.
One list contains the marks of students and athernatils subiect whe other list is for physics subject. Fach group is supposedto pie pare the foliowing insts.
a) $\operatorname{Top} 5 \%$ students in mather hatics.
b) Top 5 ortadents in physios
c) Striden she vip nore than 90% marks in both subjects.

Idertfysivstor tis problem.

SOLUTION

We can analyse the above problem by identifying 5 Ws in the problem statement as given below:

- What: List of marks of students in two subjects physics and mathematics.
- Who: Students.
- Why: To prepare the marks list in descending order (top marks to bottom marks) and to identify top 5% students of both subject and students having more than 90% marks in both subjects.
- When: Within a class time. (Approx 40 minutes)
- Where: School.

Activity 1.2 (A.B)

Your task is to find average height of your class fellows. Give a candid answer and also the method to find the exact solution.
One method is to use a measuring tape. Mark the height on the tape and then read the exact measurement from the tape. After recording the height of every student, you can calculate the average height of all the students in your classroom.
Or you can even find out the candid height of a student through some object of known height, like a book. Let's say that the height of your textbook is 8 cm . You can mark the height of the book on a wall. Using the book several times, you can make a scale with intervals of 8 cm . Then, by standing next to the wall you can get a candid solution to the student's height.

SOLUTION

Method 1: (Candid Answer)

We can find out the candid height of a student through some object of fimpu ncight, ike abok. Let's say that the height of textbook is 8 cm . Yo. 1 an man he height of the bob cal a wall. Using the book several times, you can nabe a celale wi h in ervals of 8 cm . Thini, by standing next to the wall we can get a cand d olytigit o thegtu len's he ght.
Suppose there are 30 students in ciass. We use a book or seate to mark on the wall and then make three to foun students stand a rainst the wall ara measure their height. The measurement of heights of these $\mathrm{t}^{\prime} \mathrm{ud}$ hts are $54^{\prime \prime} .5^{\prime \prime} 3^{\prime \prime}, 5^{\prime} 5^{\prime \prime}$ and $5^{\prime} 6^{\prime \prime}$. According to these measurements we assume that?verage of all buvs im the class is $5^{\prime} 5^{\prime \prime}$. This is a candid solution.
Carciansintion: $55^{\circ \prime}$

y -thod 2.(Exact Solution)

To 1 ind out the exact solution, we use a measuring tape.
Suppose there are only three students in a class. Mark the height on the tape and then read the exact measurement from the tape.

After recording the height of ver thent wate the average height of all the students ir classroom hy the followihg tormula.

So, the e act solution: $5^{\prime \prime \prime} 6^{\prime \prime}$
Wois: we can calculate exact height of 30 students by applying the same technique.

1.2 FLOWCHARTS

LONG QUESTIONS

Q. 1 Define flowchart. Write the importance of flowchart in problem solving.
(K.B+U.B)

Ans:
FLOWCHARTS

Definition:

A flowchart is a graphical presentation of the steps to solve a problem.

IMPORTANCE OF FLOWCHARTS IN PROBLEM SOLVING

The importance of flowchart are as follows:

- Flowcharts are helpful to know about the steps used to solve a problem.
- We use symbols for each step, and these symbols are connected with the help of arrows to show the flow of processing.
- In problem solving, flowcharts can be used to plan a solution.
- If a flowchart is already there, we can quickly understand the way a problem is solved.
- It is more effective to visualize a solution graphically than a text.
- A graphical representation also makes it effective to verify whether a solution is correct or not.
- It is also a good way to communicate the solution of a problem to other people.
Q. 2 How do you determine requirement for a flowchart.
(Ex Q.5) (U.B)
Ans:
REQUIREMENTS FOR A FLOWCHART
In a flowchart we use input, output, decision making and processing-
- Inputs: Input means taking data from the user. It is.mportant to longe; have inany and what type of inputs are reqained.
- Processing: A flowclar also antaing p.ocessing stcp. The rrocessing steps are used for performing calculatipls a ad storing tỉe resulds of caleulations. These may inciuc it creasimg/dec casing a valle, auding/multiplying/dividing two values etc.
- Decasion Ma/ing To determise whether a statement is true or false, and taking appiopriate teps accurdingly, is called decision making.
C uth uts. Cutputs are used to display information and usually this information exhibits the Processed results.

Figure: Flow from input to output

Q. 3 Write a note on flowchart symbols.
(K.B+U \mathbf{D})

Ans:

FLOWCHART SYMBOLS

Flowcharts explain a process clearly through symbols matex. They be pepiei sitapes to represent different types of actions or stel s ir a proce. Some widely used symbol in flow merts anc at follo vs

Decision	It shows a conditional operation that determines which one of the two paths to take. The operation is commonly a yes/no question or a true/false test.

Q. 4 Draw a flowchart to display the larger one out of the three given unequal numbers.

Ans:

Following flowchart shows another solution to find a maximum value among three number a, b and c.

Q. 5 Draw a flowchart to assign grade to a subject based on total marks and obtained marks.

Ans:

FLOWCHART

WNOW。

Q. 6 Draw a flowchart to determine name of a week day from a given number where weekdays are assumed from Monday to Sunday and their respective.
(A.B)

Ans:

FLOWCHART

$\mathrm{U}_{\text {nit- }} 1$
Problem Solving
numbers trom 1 to $/$
Problem Solving
numbers Trom 1 (or
START
$\mathrm{U}_{\text {nit- }} 1$
Q. 7 Draw a flowchart to input 5 value one by one and determine if the given value is odd or even.

Ans: \quad FLOWCI RT
Q. 8 Draw a flowchart to find a sequence of odd numbers starting from a given number till
Q. 8 some limit.
(A.B)

Ans:
FLOWCHART

SHORT QUESTIONS
Q. 1 Define flowchart.

Ans:

FLOWCHART

Definition:

A flowchart is a graphical presentation of the steps to solve a problem.
Q. 2 What is the importance of flowchart?

Ans: IMPORTANCE OF FLOWCHART
The importance of flowchart are as follows:

- Flowcharts are helpful to know about the steps used to solve a problem.
- In problem solving, flowcharts can be used to plan a solution.
Q. 3 What is meant by input/output?

INPUT/OUTPUT

Input/Output:

It indicates the input of data from user or displaying results to riser.
Q. 4 What is meant by processing in flow whart?
 Ans:

A flowchart also contains processing the The prucessils steps aee used for performing calcula(10)1s and stoing the results of calctlautsos. These may include increasing / decreasing a value, addine ' n ultiply ing dividing two values etc.
Symbol:
The ollc wrig ymool is used for processing.

Q. $5 \quad$ What is the purpose of \rightarrow symbol?

DECISION MAKING
The purpose of \triangle symbol to determine whether a statement is true or false, and
taking appropriate steps accordingly. it is called decision making symbol.
It shows a conditional operation that determines which one of the two paths to take. The operation is commonly a yes/no question or a true/false test.
Q. 6 Draw a flowchart to convert Celsius to Fain renheit temperature Ans:

Q. 7 Draw a flowchart to find acceleration of a moving object with given mass and force applied.
(A.B)

Ans:

FLOWCHART

Q. 8 Draw a flowchart to find tine volume of a cube. Ans:

Q. 9 Draw a flowchart to find plain the interest on an amount.

Ans:

Q. 10 Draw a flowchart to find the sum, product and average of five given numbers. (A.B) Ans:

Q. 11 Draw a flowchart to find the area of a parallelogram.
(A.B)

Ans:

FLOWCHART

MULTiPLE CHOICE QUESTIONS

1. Pictorial representation of the steps to solve a problem is:
(K.B)
(A) Algorithm
(B) Flowchart
(C) Map
(D) design document
2. Flowcharts are designed with the help of:
(A) Symbols
(B) Picture

3. Symbol of flowchart i epresen s: 2
(A) Pro ss ing
(1)) Decision having (C) Computation
(D) Calculation
4. A synblared in flow chart for both input and output functions:
(K.B+U.B)
A IJacalielogram
(B) Rectangle
(C) Diamond
(D) Oval

Flow lines is denoted by symbol:
(K.B+U.B)
$(\mathrm{A}) \rightarrow$
(B)

(C)
C) -
(D)

$\mathrm{U}_{\text {nit- }} 1$
6. Symbol of processing is:
(A)

(B)
\square
(C)

7. ___ is symbol is used to start/end the progran.
(A)

(B)

(K.B)
8. symbol epresent in nowchart:
(K.B)
(A) I rocessing
(B) Input/Output
(C) Connector
(D) branching symbol used to show connection in flowchart:
(K.B)
(A) \qquad
(B)

(C)

(D)

10. The rectangle symbol in flowchart indicates:
(K.B+U.B)
(A) Processing
(B) Condition
(C) Input
(D) Output
11. In a flow chart parallelogram symbol represents:
(K.B+U.B)
(A) Decision making
(B) Input/Output
(C) Remarks
(D) Processing

ACTIVITY QUESTIONS

Activity 1.3 (A.B)

Investigate both the approaches presented to find maximum vatu among three nu nhers-and compare them. Which approach has advantages) owe the other? Write your findings and discuss with your class teacher. \qquad

SOLUTION

Activity 1.4 (A.B)

In the following flowchart, a user is supposed to provide the input value from 1 to 7 , but it is possible that the input value is less than 1 or more than 7 . We need to take chere such alues and display appropriate messages, like "Your valde is less than" or Yeur value is rege tran $7^{\prime \prime}$. Modify the flowchart with respect to roper er or ne se ges
To determine name of a week day fom a gen unler whereweek days are assumed from Monday to sundav ará theirvespective.

SOLUTION

1.3 ALGORITHMS

LONG QUEBTIONS
Q. 1 Define algorithm and argue on its role and mbrtance in problem solving. (Ex Q.3) (K.B) Ans:

Definition:

An algenth mirast of steps solve problem. It is written in a natural language, so it is easily uncerstandable by himans.
Exalpl
F0

- Start.
- Take a kettle.
- Pour water in it.
- Put the kettle on fire.
- Add sugar and milk.
- Wait till it boils.
- Remove the kettle from fire.
- End.

The above set of steps can be called an alcorithin or tea praparation.

ROLE OF A LNOR HYS PROL EM SOLVNS

An algorit'in has vita ro e in pol, sed in ac it provides a step-by-step guide to the problem solver as follors:

- It is a a a plete descriplien of tie solution.
- Ísually a comouter programmer first writes an algorithm and then translates it into the cede of some programming language.
- Sometimes, the designer of the program first makes a flowchart to solve a problem and then encodes the flowchart into an algorithm.
The following figure shows the role of algorithm in problem solving.

Figure: Role of Algorithm
Q. 2 Explain formulation of an algorithm.
(K.B+U.B)

Ans: FORMULATION OF AN ALGORITHM
There are different notations (keywords) to write an algorithm as in table:

Notation	Meaning
Start	It is the starting point of an algorithm. Every algorithm must have one starting (entry) point.
Input	It is used to get input from a user and store it in computer memory with some name.
Set	It is used to give name to data in computer memory. It is also used to update the value of existing data.
If, Else	It is used to check the condition. For example, the condition like if $(a<b)$. A condition is evaluated as true or false. In case the condition is true then the statements related with if part are executed otherwise the statements of else part are executed. Usage: Suppose $a=5$ and $b=7$, if ($a<5$) Set c to 10 else Set c to 20. Writing else part is optional.
Goto	It is used to transfer control to a ceirain step of an alg ritinn. Itis asu lic. required in loops.
Output	It is used to dispray value.
Stop	Iti the termination point of avalgrith.

OR
FurI ose a prodem has multiple algorithms. How would you choose the most efficient me? Eptain with examples.
(Ex Q.4) (K.B+U.B)

EFFICIENCY OF ALGORITHMS

There can be more than one algorithm to solve the same problem. Which one is better, depends upon the efficiency of the available solution algorithms. Efficiency of an algorithm is measured on the basis of two metrics as follows:

1- Number of steps:

An algorithm is considered more efficient if it takes less number of steps to reach the results.

2- Space used in computer memory:

We have observed in algorithms that some data is stored in c ampu te memoy which iv latter used to give results. An algorithr ising fers space in convueer, menory is considered more efficient with respect to $\ldots m p$ y space.

Explanation:

It is quite porible that ve algorith tares space in memory and has more number of steps therea fe ntner algorithm tikes mote memory and has less number of steps. In this case there is a trade-off between number of steps and the consumed memory. The desienner car take decis or according to the requirements.

Exingle 1 .

Leics suppose we have two algorithms to solve a certain problem. One algorithm has N steps whereas the other algorithm has N2 steps. In this case the former algorithm is considered more efficient than the latter one.

Example 2:

We need to compute the following.

$$
1+2+3+4+5+\ldots+99
$$

How can we find its answer?

Solution1:

Different minds can find different solutions to solve this problem. One solution is to start adding numbers from beginning and keep adding till the end.
Solution2:
Other solution is to start making pairs as $(1+99),(2+98),(3+97),(4+96),(5+95) \ldots$ $(49,51)$ where each pair gives answer 100 . We count the number of pairs and multiply that count with 100 and then in the result we add 50 as it is nowhere in any pair.

Solution3:

Another solution is to use formula $\frac{n(n+1)}{2}$ where n is the last term. So, the solution is just to solve $\frac{99(99+1)}{2}$.
This example shows different approaches to solve one problem and if these approaches are used in computer then accordingly there may be different memory usage and number of steps.
Q. 4 Explain the differences between algorithm and flowchart.
(K.B+U.B) Ans:

DIFFERENTIATION

Difference between an algorithm and a flowchart is just like the difference between A story and a movie.

art	
A flowchart is a graphical representation of the process to solve a problem.	In wigolitl ri wites the same steps hum an in lees ar da ble lancuage.
It is easy to draw. It is easy to understar a problen diviag.	It is asy 0 urite.
	De tecimiques to write an algorithm are easy to understand.
It is easy to ident fy er ors if aryy).	The usage of Goto makes it difficult to identify errors.
T. rak a de sooserve flow from one step to ne other.	It is not very easy to show the flow from one step to the other.
Modifying a flowchart is very difficult every time.	Modifying an existing algorithm is easy as compared flowchart.
More time is required to draw a flowchart.	Less time is required to draw an algorithm.

SHORT QUESTIONS

Q. 1 Define algorithm. Also make an algorithm for preparing ter. AR.B $\mathrm{U} \cdot \mathrm{B}+\mathrm{A}$ U Ans:

Definition:

An algorithm is a set of stcps to ssove p roplem. It ss witien in a nstural language, so it is easily yhd rstandabie by humats.
Algoritinfor Ming Tea:
To solve tie preblen of preparing tea, we can follow the following steps:

- Start.
c lane a kettle.
- Pour water in it.
- Put the kettle on fire.
- Add sugar and milk.
- Wait till it boils.
- Remove the kettle from fire.
- End.
Q. 2 Write some advantages of flowchart.

Ans:
ADVANTAGES OF A FLOWCHART
Advantages of a flowchart are as follows:

- It is easy to draw.
- It is easy to understand problem solving.
- It is easy to identify errors (if any).
- It makes easy to observe flow from one step to the other.
Q. 3 Write some disadvantages of flowchart.

Ans:
DISADVANTAGES OF A FLOWCHART
Disadvantages of a flowchart are as follows:

- More time is required to draw a flowchart.
- Modifying a flowchart is not very easy every time.
- It is not suitable for very large problems.
Q. 4 Write some advantages of algorithm.

Ans:
ADVANTAGES OF AN ALGORITHM
Some advantages of an algorithm are as follows:

- It is easy to write.
- Techniques to write an algorithen are easy truncersiant.
- To solve a large problem algorizins are helpfit.
Q. 5 Write some disadvantage of al $\%$ ith m.

Ans:
DISALYANTA GES OF PAFALGORITHM
Some disadvanages on al roritimen as follows:

- Modifying an efxisting algorithm is not very easy every time.

Shoving tue flow from one step to the other is not very easy.
Usage of Goto makes it difficult to identify errors.
What is the use of 'set' in writing algorithms?
(K.B+U.B)
$Q .6$
USE OF SET
It is used to give name to data in computer memory. It is also used to update the value of
existing data.
Q. 7 Write an algorithm to find the sum, product and average of five given numbers. (A.B)

Ans:
ALGOR THM
Step 1. Start
Step 2. Input numbers, $n 0, n, n 2, n+n+$
Step 3. Setsum to $n 0+n 1+n 2+n+1 n 4$
Step 4. Set profiuet to (10) $\times 1 \times n 2 \times n .3 \times n 4$
Sten 5. Set dverage tD $\frac{n+n+n 2+n 3+n 4}{5}$
Sep 6(1)utput sum, product, average
Step 7.End
Q. 8 Write an algorithm to find acceleration of a moving object with given mass and the applied force.
Ans:

ALGORITHM

Step 1. Start
Step 2. Input numbers, mass, force
Step 3. Set acceleration to $\frac{\text { force }}{\text { mass }}$
Step 4. Output acceleration
Step 5. End
Q. 9 Write an algorithm to find the volume of a cube.

Ans:
ALGORITHM
Step 1. Start
Step 2. Input number, side
Step 3. Set volume to side \times side \times side.
Step 4. Output volume
Step 5.End
Q. 10 Write an algorithm to find the area of a parallelogram.

ALGORITHM

Step 1. Start
Step 2. Input numbers, base, height
Step 3. Set area to base \times height
Step 4. Output area
Step 5. End
Q. 11 Write an algorithm to display the larger one ont of the ne siven numions. (A.B) Ans:

Step 1. Start
Step 2. Imput numbers. n0, 1
$1, \mathrm{n} 2$
Step 3. Jet arge thro
Sten 4. if $\mathrm{nl}>$ jarge Set laage to nl
Step 5. if n? 之iange Set large to n2
S.en 6. Output large

Step 7.End
Q. 12 Write an algorithm to assign grade to a subject based on the achieved marks. (A.B)

Ans:
ALGORITHM
Step 1. Start
Step 2. Input numbers, obtained_marks, totai_marks
Step 3. Set percentage to $\frac{\text { obtaine }(d) \text { marks }}{\text { otai }-m a-k_{i}} \times 100$
Step 4 iif 1 er centysas 80 Sel grade to A
If A ercentage >7 Seigrade to A
else
Gf percentage >60 Set grade to B
else
if percentage > 50 Set grade to C
else
if percentage > 40 Set grade to D
else
if percentage > 33 Set grade to E
else
Set grade to F.
Step 5. Output grade
Step 6. End
Q. 13 Write an algorithm to find the interest on an amount.

LGORITHM

Step 1. Start
Step 2. Input numbers, amount, rate, years
Step 3. Set plain_interest to $\left(\right.$ amount $\left.\times \frac{\text { rate }}{100}\right) \times$ years
Step 4. Output plain_interest
Step 5. End
Q. 14 Write an algorithm to convert Celsius to Fahrenheit temperature and vice versa.

ALGORITHM

Step 1. Start
Step 2. Input number, Celsius
Step 3. Set fahrenheit to $\frac{\text { celsius } \times 9}{5}+32$
Step 4. Output fahrenheit
Step 5. Input number, fahr niteit
Step 6 Sot Celsias to (fohretrheit-32) -
Step 7. Dutput Celsius
Step 8. Enc
$\mathrm{U}_{\text {nit- }} 1$
Q. 15 Write an algorithm to find even numbers in integers ranging from n 1 to n 2 (where n 2 is greater than n 1).
Ans:

ALGORITHM

Step 1. Start
Step 2. Input numbers, $n 1, n 2$
Step 3. if $(n 1<n 2)$ \{
Step 4. if (m mod 2 equal ())
Step 5. Ser n On' +1
Step 6. go to at ep 3
Sen 7. ind
D. 16 Now can we measure the efficiency of algorithms?

Ans:

EFFICIENCY OF AN ALGORITHM

Efficiency of an algorithm is measured on the basis of two metrics as follows:
1- Number of steps: An algorithm is considered more efficient if it takes less number of steps to reach the results.
2- Space used in computer memory: We have observed in algorithms that some data is stored in computer memory which is latter used to give results. An algorithm using less space in computer memory is considered more efficient with respect to memory space.

MULTIPLE CHOICE QUESTIONS

1. The steps to solve a problem is called:
(A) Algorithm
(B) Flowchart
(C) Map
(D) Design
2. Algorithm is written in which language?
(A) Urdu
(B) Natural
(C) Programming
(D) Binary
(K.B+U.B)
(B) Processing
(C) Output
(D) All of these
(A) Input
3. Algorithm include:
(K.B)
(A) Abu Qasim
(B) Al Beroni
(C) Jabar bin Hayan
(D) Muhammad ibn Musa al-Khwarizmi
4. The starting point of an algorithm is:
(A) Start
(B) Input
(C) Set
(D) Output
(K.B)
5. Which one is used to give name to data in computer memory?
(A) Start
(B) Input
(C) Set
(D) OUtput
6. Which one is required for loops?
\qquad

(A) Start
(B) Gino

(D) Output
7. The termination point of a n algerine is:
(A) Start
(D) (rote
(C) Set
(D) Stop
8. Efficiency ot analgorithin is measured on the basis of:
(A) 1 met hi
B) 2 inetries
(C) 3 metrics
(D) 4 metrics
9. Let'c suppose we have two algorithms to solve a certain problem. One algorithm has If t ens whereas the other algorithm has N 2 steps. In this case which is more officer?
(U.B+A.B)
(A) First algorithm
(B) Second algorithm
(C) Both
(D) None
10. How many squares are on chess board?
$\begin{array}{llll}\text { (A) } 100 & \text { (B) } 80 & \text { (C) } 64 & \text { (Do you know page no. 23) (K.B+U.B) }\end{array}$

ACTIVITY QUESTIONS

Activity 1.6 (A.B)

The Figure shows a simple exanple of puculating average of three numbers, 25, 45 and 65 . Wr ite al algorithm with the fixed yolus: to calculate and display average val 1 s. Note that iir his case no input is regilied from a ser.

SOLUTION

Step 1. Start
Step 2. Set a to 25
Step 3. Set b to 45
Step 4. Set c to 65
Step 5. Set average to $\frac{a+b+\boldsymbol{c}}{\mathbf{3}}$
Step 6. Output average
Step 7. End

Activity 1.7 (A.B)

Change the algorithm for finding volume of a Cylinder and Sphere. The formula for the volume of a Sphere is $\frac{4}{3} \times \pi r^{3}$ where r is radius. The formula for the volume of cylinder is $\pi r^{2} h$ where r is radius and h is height.
To find the volume of a cube.
Step 1. Start
Step 2. Input number, side
Step 3. Set volume to side \times side \times side.
Step 4. Output volume
Step 5.End

SOLUTION

Step 1. Start
Step 2. Input radius
Step 3. Set pi(π) to 3.1415
Step 4. Set yolume_sphere to $\frac{4}{3} \times p \times a(\operatorname{ai} u s \times r a d i d-\times r a d i l e s$
Step 5. Du put volame_phere
Step 6. $\mathrm{m}, \mathrm{e} \mathrm{t}$ he eight
Sep 7. Set valame_cylinder to pi\times radius \times radius \times height
S.ep 8. Output volume_cylinder

Step 9.End

Activity 1.8 (A.B)

Change the algorithm for finding the area of a triangle, rhombus, or trapezium.
To find the area of a parallelogram.
Step 1. Start
Step 2. Input numbers, base, heigit
Step 3. Set area to base \times heigh
Step 4 Otput area
Step 5ind

Axe of a Triang:

400 1.0.
Step 2. Input base, height
Step 3. Set area to $\frac{1}{2} \times$ base \times height
Step 4. Output area
Step 5. End
Area of a Rhombus:
Step 1. Start
Step 2. Input d1, d2
Step 3. Set area to $\frac{\mathbf{1}}{\mathbf{2}} \times \boldsymbol{d} \mathbf{1} \times \boldsymbol{d} \mathbf{2}$
Step 4. Output area
Step 5. End
Area of a Trapezium:
Step 1. Start
Step 2. Input a, b, height
Step 3. Set area to $\frac{1}{2} \times(a+b) \times$ height
Step 4. Output area
Step 5.End

Activity 1.9 (A.B)

Compare the algorithm 9 presented in Section 1.3 .4 with the following one and try to find which one is efficient. Note that both are solving the same problem. In order to answer this question, assume two values for $n 1$ and $n 2$ and start count the number of steps used in both algorithms.

SOLUTION

Steps	In the above algorithm (algorithm 1.9)	In the above algorithm (algorithm 9)
Step 1.	Algorithm starts.	Algorithm starts.
Step 2.	It inputs two numbers n1(starting value)	It inputs two numbers n1(starting value)

	and n2(ending value).	and n2(ending value).
Step 3.	If n 1 is odd, it increments 1 into n 1 to convert n 1 into an even number.	It checks if n 1 is less than n 2 or not.
Step 4.	It displays n1 i.e. it displays first even number.	It checkক in n1 is even orn@ If $n i$ is even then di plavini as a first -ven hu ber.
Step 5.	number	It inerements 1 in n 1 . (jump to next number)
Step 6.	It rep eat it elf un til the siding value.	It repeats itself until the ending value.
	(Step 4, -5 ic repeated) to display only eyeonumber.	(Step 3, 4, 5, 6 is repeated) to check if it is even or not and then display even number.
Step 7.	Algorithm ends.	Algorithm ends.

So, Algorithm used in activity 1.9 is more efficient because it is very easy and uses less number of steps.

1.4 TEST DATA

LONG QUESTIONS

Q. 1 Describe the importance of testing.
(K.B+U.B)

Ans: \quad IMPORTANCE OF TESTING
Testing is essential to point out the defects and errors made during finding a solution to some problem. It helps in improving a solution. If one solves a problem and someone else uses that solution for commercial purposes, then the commercial activities depend upon the correctness of that solution.

Example 1:

If we develop a solution for finance management and some bank starts using it then any error in that solution may result in a financial loss. So, testing is important for a solution.

Example 2:

A car is delivered to a customer after testing. Upon launching a new car, it is usually tested with a robot driver who hits the car with a wall. It is used to test whether the air bags and other security systems are functioning or not. Moreover, it also allows the car designers to suggest further security measures to reduce the damage. This test can help to make a car safe. So, testing helps to improve quality.

Q. 2 Explain types of test data.

Ans:

Definition:

TEST DMTA

After solving a problem, ve neer wo te whether the shluticn is oo rect or not, and for testing, we need "Test nata".

TVPES OT TESTDATA

Creatio of prope and sufficientes data is one of the key activities to improve quality of a soluticri. Fiach type ofsolution requires different data.
Types of Ty st Data include:

- T aird test data
- Invalid test data
- Boundary test data values
- Wrong data formats
- Absent data

Valid Test Data:
It is the test data that complies with the input requirements of the algorithm. If on algorithm is supposed to take a numeric value between 1 and 100 as inct then ar (1e between 1 and 100 is a valid test data.

Invalid Test Data:

It is the data that does not comp with - he ipput requiren en ts of the agorithm. It is necessary to make sure that the qlution corrett vorls for invalid values, shows the relevant mes ages notifying the usen that the providealimput values are improper.
Boundary Tesiota vilus:
A solut or s te.te 1 on extrene vatues. For example, to calculate interest we can consider prinsipal an ount aster a very huge amount.
1.ogghat Eormats:
it i. whe to check how the system reacts on entering data in an inappropriate format. For example, giving an alphabet as input when a numeric value is expected.

Absent data:

It is also important to investigate that the solution still works if less number of inputs are given than expected. For example, if a system asks to enter driving license number, then every one cannot provide this information. It is important to see how the system reacts in such situations.

SHORT QUESTIONS

Q. 1 Define test data.

Ans:

Definition:

After solving a problem, we need to test whether the solution is correct or not, and for testing, we need "Test Data".

Example:

If we want to test the algorithm to find the largest among three given numbers $n 0, n 1$ and $n 2$, then we need three values. These values can be positive, negative or zero, e.g., $(n 0=$ $5, n 1=15, n 2=3),(n 0=27, n 1=-6, n 2=35),(n 0=24, n 1=0, n 2=11)$, etc. So, for thinking about testing, we also need to think about test data.
Q. 2 Name the types of test data.
(K.B+U.B)

Ans:

TYPES OF TEST DATA

Creation of proper and sufficient test data is one of the key activities to improve quality of a solution. Each type of solution requires different data.
Types of Test Data include:

- Valid test data
- Invalid test data
- Boundary test data values
- Wrong data formats
- Absent data
Q. 3 Differentiate between valid testanti nininvalid thst data.

TEST DATA

MULTIPLE CHOICE QUESTIONS

1. After solving a problem, we need to test whether the solution is conect or nstria for testing, we need " \qquad ".
(A) Algorithm
(B) Flowchart
2. Types of test data are:
(A) 2
(B) -
C) Testrata a
(D) IMerign $\mathrm{O} \cdot \mathrm{B}+\mathbf{I} \mathrm{B}$
(K.B)
3. A soluâtur is testeñon extreme value is calles:
(A) Vain Test Da
(B) Invalid Test Data
(C) Wreng Da a For nats
(D) Boundary Test Data Values
(K.B)
4. Aifst da ta which complies with input requirements:
(K.B+U.B)
(A) Tud Test Data
(B) Invalid Test Data
(C) Wrong Data Formats
(D) Boundary Test Data Values
5. A test data which does not comply with input requirements:
(K.B+U.B)
(A) Valid Test Data
(B) Invalid Test Data
(C) Wrong Data Formats
(D) Boundary Test Data Values

ACTIVITY QUESTIONS

Activity 1.10 (A.B)

Assume that you are given an automatic attendance system for testing. In this system, a camera observes each student entering in the classroom. The camera is connected to a computer which contains the database of pictures of all the students. The solution compares each student with the pictures in database and mark the attendance is picture is found there. You are asked to provide test data for the system. Write your points in a
 way that can help the solution provider to check and improve quality of the solution. You can think about different dresses in different weathers, identical twins, different haircuts or any other points where one can look different in front of camera.

SOLUTION

The following test data will be provided to system in order to check the periormanes and accuracy of the system:
 with cap or without cap with face Mask or whout are mask glasses or without glasses.

- Mrrep ver, the looks of itudents will be changeu with haircut and without haircut and also or wratrirg school bag or withut school bag.
- Students wiil have do stand in front of camera while smiling or without smiling. Similar scucuents will be standing in different poses in front of camera. I. case of twins, their thumb recognition will be required.

1.5 VERIFICATION AND VALIDATION

LONG QUESTIONS

Q. 1 Describe verification and validation with examples

Ans:

Verification:

Verificationmeans to test if the solutic is actu hlv scleng the same problem for which it was desigred

Exampie:

If you are ask od give a solution for calculating compound interest then verification re: 1 s to kif w that it is giving results for compound interest not for the plain interest.
-abli lation:
$\overline{-}$ alidation means to test whether the solution is correct or not.
For example, if you are asked to give a solution for calculating compound interest then validation means to know whether it is finding the correct compound interest or not. If a solution is verified, then it is validated with the help of test data.

Example 1:

Let's assume that you go to a pizza shop and order a chicken pizza. You state your requirement that it should be less spicy. You also expect that it would taste good. When the pizza arrives, you can observe that it is a chicken pizza. This is called verification. Now, when you eat the pizza, you can check whether it is less spicy or not, it tastes good or not. This is called validation.

Example 2:

Let's assume that you are asked to write an algorithm that takes as input a list of numbers. The algorithm should display the list arranged in ascending order. After writing the algorithm you submit it to your teacher. Your teacher provides a list of numbers to the algorithm. If your algorithm displays a list of numbers then it is verified. Instead if your algorithm displays an answer in yes or no, or displays something else, then it is not verified. If your algorithm is verified, your teacher moves to the next step of validation. He checks whether the list of numbers displayed are actually in ascending order or not. If the list is in ascending order and no element is missing then your solution is also validated.

SHORT QUESTIONS

Q. 1 What is difference between verification and validation.

DIFFERENTIATE

The difference between valid and invalid test data is as follows*

Verification	
Definiton	
ontion means to test if the ly solving the same nroblev for which esignea.	(valiatien me.ns to test wher the solution is correst or not.
Example	
var a ked do sive a solution for athy Compound interest then cation means to know that it is giving	If you are asked to give a solution for calculating compound interest then validation means to know whether it is finding the correct compound
results for compound interest not for the plain interest.	interest or not. If a solution is verified, then it is validated with the help of test data.

MULTIPLE CHOICE QUESTIONS

1. To test if the solution is actually solving 位e same nroiem tor hich it va designed means:
(K.B+U.B)
(A) Design
(B) Verification
(C) Valida ion
(I) Reservation
2. To test wheiher the sorution is cor cec on not mears.
(K.B+U.B)
(A) Design
(P) Verification
(C) Validation
(D) Reservation

1,GILENHETMJEON AND CORRECTION OF ERRORS

LONG QUESTIONS

TRACE TABLE

Definition:

A trace table is a technique used to test algorithms, in order to make sure that no logical errors occur while the algorithm is being processed.

Explanation:

The table usually takes the form of a multi-column, multi-row table; with each column showing names of data, and each row showing values of the data at each step.

Example:

To recruit students for our school volleyball team, we need students having height between 144 cm and 164 cm . To count qualified students, we develop the following algorithm.
Step 1. Start
Step 2. Set count to 0
Step 3. Set all_heights to [$154,140,155,164,144,166,160,143]$
Step 4. For each height in the list all_heights
Step 5. If height >144 and height ≤ 164 then Set count to count +1
Step 6. Output count
Step 7. Stop
We can make a trace table for the above algorithm:
In the following table, the blank means there is no change and -- means that a value is not concerned. In the following table Step 1 has no effect on data. Step 2 is assigning 0 to count and in Step 3, list all_heights is introduced. In Step 4, there is ro cngnge imion count and all-heights but the data 154 is stored in height. It is conp 10 d instep 5 and the value in count is updated if data is in given range. Stps 4 al a 5 are eepaterior each value.

SHORT QUESTIONS

Q. 1 Why we use trace table?

Ans:

TRACE TABLE

A trace table is a technique used to test algorithms, in order to make sure that no logical errors occur while the algorithm is being processed.
Q. 2 Why we use invalid data for testing?

Ans:

INVALID DATA FOR TESTING

Testing an algorithm using invalid data ensures that the algorithm can gracefully handle unexpected data inputs. If an algorithm requires your age in number of days but you give date of birth as input then the algorithm may not work properly. The purpose of testing using invalid test data is to detect such situations. In this case error messages are shown as output. Moreover, this kind of testing helps you to improve the quality of solution.

MULTIPLE CHOICE QUESTIONS

1. The solution is working but not giving required results. This type of error is called:
(K.B+U.B)
(A) Syntax Error
(B) Runtime Error
(C) Logical Error
(D) Random Error
2. A technique used to test algorithms is:
(K.B+U.B)
(A) Design
(B) Trace Table
(C) Validation
(D) Correctness

ACTIVITY QUESTIONS

Activity 1.11 (A.B)

Write all the above discussed algorithms keeping in mind the involid tes data ir par Clas teat en may divide class in few groups and assign nem one or rope algcritm (s, Studf nts are supposed to discuss and rewrite algorithms so that upon, walid ipput, ap prop inte messages are displayed.

Algorithm 1

To find the sum, pioduct and average of five given numbers.

Original

Fiep 1 . Star
Step 2. Laput numbers, $n 0, n 1, n 2, n 3, n 4$
Step 3. Set sum to $n 0+n 1+n 2+n 3+n 4$.
Step 4. Set product to $n 0 \times n 1 \times n 2 \times n 3 \times n 4$

Apply Test Data

Step 1. Start
Step 2. Input numbers, $n 0, n 1, n 2, n 3, n 4$
Step 3. If ($\mathrm{n} 0, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$ are positive integers) goto step 4 else print "Invalid input, Enter only

$\mathrm{Unit-} 1$
Problem Solving

EXERCISE

1.1 Answer the following questions.

1. In a farm there are some cows and birds. If there are total 35 head and 110 ieg. there w

Ans:

SOLUTION

Each cow has 1 head and 4 legs. Each bird has 1 head and 2 legs.
Let $x=$ number of cows and $y=$ number of birds
Then $\mathrm{x}+\mathrm{y}=35$

$$
4 x+2 y=110
$$

Multiply the first equation by -2
$-2 x-2 y=-70$
Add the equations
$-2 x-2 y=-70$

$$
4 x+2 y=110
$$

Then

$$
2 x=40
$$

Then $x=20$
Put this in first equation

$$
\begin{aligned}
20+y & =35 \\
y & =35-20=15
\end{aligned}
$$

So, $x=$ number of cows $=20$ and $y=$ number of birds $=15$
2. Define problem analysis. Explain your answer along with an example. See LQ . 2 (Topic 1.1)
3. Define an algorithm and argue on (TS) ole all dippranch ip roblem sol ing. (K.B+U.B) See LQ. 1 (Topic 1.3)
4. Suppose a problem has multigie algo thins How would you choose the most efficient one? Explair vin examplet.
(U.B+A.B)

See LQ 3 (Topic 1..3)
5. Hoviv you detirr iibe requirements for a flowchart?
(K.B+U.B)

Selr (2) (ropic 1.2)
Explain types of test data.

See LQ. 2 (Topic 1.4)

7. Describe a trace table.

See LQ. (Topic 1.6)
1.2 Choose the correct option.

1. Which solutions are not reached through proper algorithms or work planning?
(i) Prepared solution
(ii) Candid solution
(iii)Strategized solution
(iv)Best solutiont
2. is a graphical representation o° an algor thm
\qquad
(i) Matrix
(iii)Flowchart
(ii) Graph
3. Which symol in the fiew had is iscel teeither ctant or end the flowchart?
(iv)Solution
(i) Te-mnal
(ii) Connector
(iii)Proress
(iv)Decision
4.

(i) $\sqrt{2}$ erilicetion
(ii) Algorithm
(iii) Vaidation
(iv)Flowchart
\qquad error, the solution is working but not giving required results.
(i) Random error
(ii) Logical error
(iii)Syntax error
(iv) Runtime error

ANSWER KEY

1	(ii)	2	(iii)	3	(i)	4	(i)	5

1.3 Fill in the blanks.

1. Before problem solving, we need to first \qquad a problem.
(K.B+U.B)
2. An algorithm produces a defined set of \qquad
3. A flowchart utilizes various \qquad and \qquad to map out the order of steps. (K.B+U.B)
4. In flowcharts symbol \diamond is used to show a \qquad -.
(K.B+U.B)
5. is used to test the solutions.

ANSWERS

1 Analyse 2 Steps 3 Symbols, text 4 Decision making 5 Verification

1.4 Draw the flowcharts for the following problems.

1. Input two numbers $n l$ and $n 2$. Determine whether $n l$ divides $n 2$ or not.

Ans:

$\mathrm{U}_{\text {nit- }} 1$
2. Input a year and determine whether it is a leap year or not.

Ans:

3. Input a number and calculate its factorial.

Ans:

4. Find LCM (Least Common Multiple) of two numbers.

Ans: SOLUTION

Activity 1.12 (A.B)

Design a flowchart to calculate fine amount for Pakistan motorway. Fine is impnsed accordiro to the following coding scheme. Input a code and display the respective out Tl .

Code	Offence	Ren. 14	y
A20	Driving when disqualifie	1000	Upto 6 Months
A21	Obtaining or Applying for at dring licence without disclesms particsiay of er dursement	500-1000	Upto 6 Months
A22	Offencerelating construction ot aricle	500-1000	Upto 6 Months
A23	Offence e at tg to pe nit.	1000-2000	Upto 6 Months
A22	Ofe rloding of goas 15% in excess of permissible limits.	1000-5000	Upto 1 Month
	Ovioaing of passengers 30% in excess of permissible limits	1000-5000	Upto 1 Month

For more codes, visit http://nhmp.gov.pk
Make the flowchart more comprehensive by adding more codes. Make your algorithm on a chart. Display your chart in your school or community for further awareness on traffic related crimes and their penalties.
Respective teachers can request school administration to arrange a traffic awareness campaign for the community. Students can display their charts as part of the campaign.

$\mathrm{U}_{\text {nit- }} 1$

ANSWER KEY

1.1 PROBLEM SOLVING STEPS

D2 M CWOTANTS

	7	3	2	A	3	B	4	A	5
6	D	7	A	8	B	$\mathbf{9}$	C	10	A
11	B								

1.3 ALGORITHM

$\mathbf{1}$	A	2	B	$\mathbf{3}$	D	$\mathbf{4}$	D	$\mathbf{5}$	A
$\mathbf{6}$	B	7	B	$\mathbf{8}$	D	$\mathbf{9}$	B	10	A
11	C								

1.4 TEST DATA
$1 \mathrm{C} 2 \mathrm{C} 3 \mathrm{D} 4 \mathrm{~A}_{5} 5 \mathrm{~B}$
1.5 VERIFICATION AND VALIDATION

1 B 2 C
1.6 IDENTIFICATION AND CORRECTION OF ERRORS

1 C 2 B

