	BINARY SYSTHM	Binary System
Topic No.		Page No .
2.1	Introduction to humer y ten - Decimal - IFirary - Hexadecimal	46
	N miner system conversion - Decimal to binary and Binary to Decimal - Decimal to hexadecimal and hexadecimal to decimal - Hexadecimal to binary and binary to hexadecimal	48
2.3	Memory and data storage - Memory - Data representation in computer Memory - Storage Device	54
2.4	Measurement of size of computer Memory	58
2.5	Boolean Algebra - Boolean Proposition - Logical operators (AND, OR,NOT) - Truth table - Law of Boolean Algebra - logical Expression	59
*	Exercise - Choose the Correct Option (MCQs) - Long Questions - Fill in the Blanks - Conversion - Activity	

2.1 INTRODUCTION TO NUMBER SYSTEMS

LONG QUESTIONS

Q. 1 Define number system. Explain its types.

Ans:

Definition:

A numbersystem is the systerberrepetsentatic nefiumeric data.
There are the type of number system:

- Lecimal

P Eirary
Hexadecimal

Decimal:

The number system we use in our daily life is the decimal number system. The decimal number system has base 10 as it uses ten digits $(0-9)$. Each position represents a specific power of base 10 .

Examples:

- $892=8 \times 10^{2}+9 \times 10^{1}+2 \times 10^{0}$
- $1247=1 \times 10^{3}+2 \times 10^{2}+4 \times 10^{1}+7 \times 10^{0}$
- $53=5 \times 10^{1}+3 \times 10^{0}$

Binary:
A computer understands the language of 1 s and 0 s only, called machine language. The number system that only contains 1 s and 0 s is called binary number system.

Explanation:

Binary number system has base 2 as all the numbers in this system consist of only two digits i.e. 0 and 1 . Digital computers use this system to store data. Your name is in the form of alphabets, but for a computer each alphabet has some binary value.

Example:

The binary value of the letter ' A ' is 01000001 and its decimal value is 65 .

Hexadecimal:

Hexadecimal also used in our computer system. Hexadecimal system has total 16 numbers, i.e., $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ where $A=10, B=11, C=12, D$ $=13, \mathrm{E}=14$ and $\mathrm{F}=15$

Examples:

3F2B

Q. 1 Define decimal number system.

Ans:

Definition:

The number system ve use in our cai y lie is the uecimal number system. The decimal number fystein has base 10 as frusestel digits $(0-9)$. Each position represents a specific power of base 10 .
Exe Iples:
$892=8 \times 10^{2}+9 \times 10^{1}+2 \times 10^{0}$

- $1247=1 \times 10^{3}+2 \times 10^{2}+4 \times 10^{1}+7 \times 10^{0}$
- $53=5 \times 10^{1}+3 \times 10^{0}$
Q. 2 What is hexadecimal number system?

Ans:
HEXADECIMAL NUMBER SYSTEM
Hexadecimal also used in our computer system. Hexadecimal syr, em has oral 6 numbers, i.e., $0,1,2,3,4,5,6,7,8,9, A, P, C, D, E, F$ where $A=10, B=1,5=-2, D$ $=13, \mathrm{E}=14$ and $\mathrm{F}=15$

Examples:

 3F2B

1. A number system is the system for representation of:
(A) Number d Data
(B) Alphabetic Data
(C) (lpnanumeric Data
(D) None of these

How many types of number system?
(K.B+U.B)
(A) 2
(B) 3
(C) 4
(D) 5
3. Which type of number system is used in our daily life?
(K.B+U.B)
(A) Decimal
(B) Binary
(C) Hexadecimal
(D) None of these
4. The base of decimal number system is:
(K.B)
(A) 2
(B) 10
(C) 8
(D) 16
5. $\quad 10^{0}=$
(B) 1
(C) 10
(D) 100
6. Computer understand only language.
(K.B)
(A) English
(B) Urdu
(C) Machine
(D) Every type
7. The language that consists of only 1 s and 0 s is called:
(K.B)
(A) English Language
(B) Mathematics
(C) Machine Language
(D) Programming Language
8. The number system that only contains 1 s and 0 s is called:
(K.B)
(A) Decimal
(B) Binary
(C) Hexadecimal
(D) None of these
9. Digital computers use \qquad system to store data.
(K.B+U.B)
(A) Decimal
(B) Binary
(C) Both
(D) None of these
10. The decimal value of letter ' A ' is:
(A) 4
(B) 16
(C) 65
(D) 100
(K.B)
11. The binary value of letter ' A ' is:
(K.B+A.B)
(A) 10001000
(B) 00011100
(C) 01000001
(D) 10010010
12. The base of binary number system is:
(A) 2
(B) 10
(C) 8
13. The base of hexadecimal number system is:
(B) 10
(c)
(D) 16
13. The b numbers.
14. Hexadecimal system has total

(A) 2
(B) 0
(C) 8
15. In hexadecimal number system, $\mathrm{A}=$
(A) 10
(B) 11
(C) 12
(D) 13
(K.B)

Whit lone is not a valid hexadecimal number?
(A) 26
(B) A01
(C) 3F2B
(D) 6G
17. Decimal number system is also called \qquad , or Arabic, number system, in mathematics.
(Do you Know Page \# 34) (K.B)
(A) Roman
(B) Hindu-Arabic
(C) Natural
(D) Both a \& b

2.2 NUMBER SYSTEM CONVERSION

LONG QUESTIONS

Q. 1 How can we convert decimal to binary and binaryto fecima? Expla wh (xanmles.

DECIMLL THB BAR ONVERSION

(U.B+A.B)

To conver a decimal umber ther wive then ber 2 and take quotient and remairde: We continat didiag the quatient by 2 until we get quotient 0 . We write out all the ren ainders ir reverse order-to obtain the value in binary.
Example: Convert (5i) iv 156 in decimal) to binary

2	156
2	$78-0$
2	$39-0$
2	$19-1$
2	$9-1$
2	$4-1$
2	$2-0$
2	$1-0$
2	$0-1$

$156_{(10)}=010011100_{(2)}$
BINARY TO DECIMAL CONVERSION
The conversion of a number from binary number system to decimal number system is explained below with the help of an example as follow
Example: Convert $(1000001)_{2}$ to decimal
$=1 \times 2^{6}+0 \times 2^{5}+0 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
$=64+0+0+0+0+0+1$
$=65$
$=(65) 10$
The above conversion is done by the following steps.
Step 1. Write down the binary number which is $(1000001)_{2}$ in this example.
Step 2. List the power of two from right to left starting with 0 . In this example, the power of 2 starts from 0 and ends at 6 .
Step 3. Multiply 2's corresponding powers to each binary value. In the above example there are 7 binary values.
Step 4. Compute each value.
Step 5. Add all the values.
Step 6. Write the answer along with its base subscript.
Q. 2 How can we convert decimal to hexadecimal and hexadecimal to decemel? Expiain with examples.
Ans:

DECIMAL TO H \triangle DE YN CDN YERSICN

 hexadecimal we divide the ymber by 6 and take bou quotient and remainder. We contin (1e) vilias the quotjent hy 16 until the quotient becomes 0 .
Exampe:- Con elt (696) , to Neenvecimal

16	69610
16	$4350-10$
16	$271-14$
16	$16-15$
16	$1-0$
16	$0-1$

In a above table: A is representation of 10 , remainder E is representation of 14 , and remainder F is representation of 15 . Remainders are taken from bottom to top to present the hexadecimal number. So, $(69610)_{10}=(10 \mathrm{FEA})_{16}$.

HEXADECIMAL TO DEC MAL CONVERSI N

The method for this conversion issame as conveting toin bin ary to decimal except the base value. Since hexadec mal has pase 16 , the "p'ace alues' corresponds to the powers of 16. To eqnvert to desin al, milt pl. each pace value oy the corresponding power of 16. Start his pocess by writing the po vere of sixteen next to the digits of a hexadecimal number
Exąple: Ponverl (CO21) 16 to decimal
$==165^{3}+5 \times 16^{2}+2 \times 16^{1}+1 \times 16^{0}$
$-12 \times 16^{3}+9 \times 16^{2}+2 \times 16^{1}+1 \times 16^{0}$
$=12 \times 4096+9 \times 256+2 \times 16+1 \times 1$
$=49152+2304+32+1$
= 51489
$=(51489)_{10}$
Q. 3 How can we convert hexadecimal to binary and binary to hexadecimal? Explain with examples.
(U.B+A.B)

Ans:

HEXADECIMAL TO BINARY CONVERSION

To convert a hexadecimal number to binary, simply convert each hexadecimal digit to four digits value. To find the four digits binary value, we use the table as follows:

Hexadecimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100

Examole: Conrat (A23), (A23 in hexadeciarai) to binary
In this rumber, there a-e the de hatecimal digits. Binary of each digit is given as:
i. For A, the pinary vilue is 1010
ii For 2 the unary value is 0010
iii. For 3, the binary value is 0011

By combining all the binary values, we get 101000100011
So, $(\mathrm{A} 23)_{16}=(101000100011)_{2}$

BINARY TO HEXADECIMAL CONVERSION

This conversion is also very easy with the help of table. In the given binary number, N start making groups of four digits from right to left and replace e ery group with a hexadecimal digit.
Example: Convert $(11000001)_{2}$ to hexadecjma?
The four digits binary groups in thob binat rumer ate given belory where each group has four bingry digits. 11000001
i. For 110 , the he valeciral os E
i. For $(0001$ the hexadecimal is 1

Si. $(11 \text { geduci })_{2}=(\mathrm{C} 1)_{16}$
While making groups from right to left, if the left group has less than 4 binary digits then we simply add 0s on the left. For example, 1010011 has groups 1010011 and by adding one 0 on the left it becomes 01010011.

SHORT QUESTIONS

Q. 1 Convert (70C558) ${ }_{16}$ to binary.

Ans:

CONVERSION

To convert a hexadecimal number to binary, simply convert each hexadecimal digit to four digits value. To find the four digits binary value, we use this table:

Hexadecimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	111

In this number, there are thre her. decmatits. B. nar. of each disgit is given as:
i. For 7 the binary value is $\mathrm{C}_{1} 14$
ii. Fore the binaty val ie is 0 ga0
iii. For C, the p nary value s 100
iv. For s, the bilany values 0101
I. Foos, the binary value is 0101
vi. For 8 , the binary value is 1000

By combining all the binary values, we get 011100001100010101011000
So, $(70 \mathrm{C} 558)_{16}=(0111000011000101010111000)_{2}$.

Q. 2 Convert (110101111)2 to hexadecimal.

Ans: CONVERSION
Hexadecimal Binary

Activity 2.2 (A.B)

Exchange your marks in binary form with your friends and convert them in desimal to know about their expectations in the board examination of $9^{\text {th }}$ class. Double check with yourcress fellows that how much your calculations are accurate.

SOLUT ON
My friend gave this binary nu mbes: 1 1/01 10

$$
\begin{aligned}
& 111010 \\
& =1 \times 2+1 \times 2+10 \times 2+0 \times 2^{2}+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
& =120+54+32+5+4+2+0 \\
& =233 \\
& =(238)_{10}
\end{aligned}
$$

According to this activity my expected board marks of class $9^{\text {th }}$ is 238 .

Activity 2.3 (A.B)

According to Table 2-2, write in decimal, binary, and hexadecimal the time of your:

- Arrival at school
- Lunch
- Playing

Decimal	Binary	Hexadecimal	Decimal	Binary	Hexadecimal
0	0	0			
1	1	1	11	1011	B
2	10	2	12	1100	C
3	11	3	13	1101	D
4	100	4	14	1110	E
5	101	5	15	1111	F
6	110	6	16	10000	10
7	111	7	17	10001	11
8	1000	8	18	10010	12
9	1001	9	19	10011	13
10	1010	A	20	10100	14

Table 2-2

Number systems	Decimal	Binary	Hexadecimal
Arrival at school	8:00	1000: 0000	8:00
Lunch	2:10	0019: 1010	2.4
Playing	6: 15	0110 :1711	
		2롤(A)	

SOLUTION

Online converte s hat have used:
hittors://eddes stoolbox.net/number/
b.tps://codebeautify.org/all-number-converter
https://www.rapidtables.com/convert/number/base-converter.html

Activity 2.5 (A.B)

Try to calculate that the binary of C92116 which is 110010010010000100010110

SOLUTION

To convert a hexadecimal number to binaty simply convert each hexadecing digit to four digits value. To find the four rigits binary alue, we use the table as frlows:

In this number, there are three hexadecimal digits. Binary of each digit is given as:

- For C, the binary value is 1100
- For 9, the binary value is 1001
- For 2, the binary value is 0010
- For 1 , the binary values 0001
- For 1 , the binary value is 0001
- For 6 , the binary value is 0110

By combining all the binary values, we get 110010010010000100010110
So, $(\mathrm{C} 92116)_{16}=(110010010010000100010110)_{2}$.

MULTPLE CHOICE QUESENTS

1. To convert a decimal number to hinary, we divide the number by
(A) 2
(B) 3
(C) 4
(D) 5 (A)
2.

(A.B)
(B) 1
(C) 10
(D) None of these
(A) 0
(K.B+U.B+A.B)
3. A(v) is equivalete in binary value:
(1) 6
(B) 1
(C) 10
(D) 1010
$1.0=$
(K.B+U.B+A.B)
(A) 0
(B) 1
(C) 10
(D) cannot be calculated

2.3 MEMORY AND DATA STORAGE LONG QUESTIONS

Q. 1 Define memory. Explain its types.

Ans:

Definition:

Computer mory is amy phy cal device capable of storing data.
TYPES CFMENORY
Primari y there are tollowing two types of memory.

- Molatile Mrno y (ci). Volatile Memory

VOLATILE MEMORY (PRIMARY STORAGE)

Definition:

A device which holds data as long as it has power supply connected to it, is called Volatile Memory.

Example:

Its best example is Random Access Memory (RAM), which holds memory only as long as it is connected to power source. As soon as the power supply is disconnected, all the data in RAM is cleared.

NON-VOLATILE MEMORY (SECONDARY STORAGE)

Definition:

A device which can hold data even if it is not connected to any power source, is called Non-Volatile Memory.

Example:

The typical examples for Non-Volatile Memory are hard drives, flash drives and memory cards installed in cell phones. Even if you turn off your PC, the data in your hard drive or flash drive stays intact.
Q. 2 How data represent in computer memory?

Ans: DATA REPRESENTATION IN COMPUTER MEMORY
Digital computers store data in binary form. It means that whether it is a text, picture, movie or some application, it is stored in computer's memory in the form of 0 s and 1 s . All the characters on your keyboard has an associated code in binary. This code is called ASCII code of the character. ASCII stands for American Standard Code for information Interchange. It is a de-facto standard for representation of data insita computers memory.
The following table presents the ASCI thble which shous the code agaiist- Jach character on your keyboard The (odes are gi in decimal form, bit inside computer's memory they are represent dafter cor ver. 10 n to binary forr).

Code	Chraftr	Tospriptin	2chas	Character	Description
32	蚯	- race	80	P	
33	$!$	Ex l amation mark	81	Q	
31	-	- Double quote	82	R	
$35^{\circ}-\cdots$	V_{\ddagger}	Number sign	83	S	
- 36	\$	Dollar sign	84	T	
37	\%	Percent	85	U	
38	\&	Ampersand	86	V	

Chapter-2
Binary System

39		Single quote	87	W	
40	(Left/opening parenthesis	88	X	
41)	Right/opening parenthesis	89	Y	-
42	*	Asterisk	90	-	0,0
43	+	Plus 0	91	-	Leftopening bracket
44		Corma	92) $-1-$	Back slash
45	\bigcirc	Nimus or dast -	- 93]	Right/closing bracket
46	-	- Don -	94	\wedge	Caret/circumflex
47	-	- doward slash	95		underscore
40	10	-	96		
$4)^{-1}$	O_{1}		97	a	
50	2		98	b	
51	3		99	c	
52	4		100	d	
53	5		101	e	
54	6		102	f	
55	7		103	g	
56	8		104	h	
57	9		105	i	
58	:	Colon	106	j	
59	;	Semi-colon	107	k	
60	$<$	Less than	108	1	
61	=	Equal sign	109	m	
62	>	Greater than	110	n	
63	?	Question mark	111	o	
64	@	"at" symbol	112	p	
65	A		113	q	
66	B		114	r	
67	C		115	s	
68	D		116	t	
69	E		117	u	
70	F		118	v	
71	G		119	w	2
72	H		120	\%	
73	I		121-	(1) S^{2}	-
74	J	-	122	-	
75	K	-	123	-	Left/opening brace
76	(L)	2 -	$\underline{124}$		Vertical bar
77	M	- - -	125	\}	Right/closing brace
78	-	- -	126	\sim	Tilde
T 1	$\cdots{ }^{-1}$		127	DEL	Delete

Hxanple:

To store name of our country "Pakistan" in computer's memory. We need to store code of each letter in one byte. As the word "Pakistan" contains 8 letters, so 8 bytes are required for storage. It is demonstrated as follows:

Q. 1 Define memory.

Ans:

Definition:

Computer memory is any physical device capable of storing data.

Types:

Primarily there are following two types of memory:

- Volatile Memory
- Non-Volatile Memory
Q. 2 What is ASCII code?
(K.B)

Ans:

Definition:

All the characters on your keyboard has an associated code in binary. This code is called ASCII code of the character. ASCII stands for American Standard Code for information Interchange. It is a de-facto standard for representation of data inside computer's memory.
Q. 3 Write briefly about storage devices.
(K.B+U.B)

Ans:

STORAGE DEVICES

Any computing hardware that is used for storing, porting and extracting data, is called a storage device. It can hold or store information both temporarily and permanently. It can also be internal or external to a computer. An external storage device is a plug and play device, i.e., we just plug it to some port and start using it without turning off a computer. To attach an internal storage device (Hard disk or RAM) we need to furn computer. Internal storage devices area connected to some fixerinsors.

Examples:

Examples of storage devices are:

- RAM
- Ha (a) isk
- CD
- YSE Fjash lorive etc.

The differences between memory and storage are as follows:

Memory	Definition	Storage

It is a place where an application loads its data during processing.	It is a place where data is stored for long or short term.
Storage Type	
It is a temporary storage device.	Kil a perms nemt storage e ire.
	\%o
It is lesser in size.	
$\square-\square$	ed
It has high acessinspeed.	
--- $-\square-{ }^{-}$	Name
It is ca led rin ary minsry.	It is called secondary memory.
Examples	
R $\mathrm{A} M$ is an example of memory.	Hard disk is an example of storage.

MULTIPLE CHOICE QUESTIONS

1. Types of memory are:
(K.B)
(A) 2
(B) 3
(C) 4
(D) 5
2. Volatile memory also called:
(K.B+U.B)
(A) Primary storage
(B) Secondary storage
(C) Memory card
(D) Not a memory
3. RAM is an example of:
(A) Primary storage
(B) Secondary storage
(C) Memory card
(D) Not a memory
4. Hard drive is an example of:
(K.B)
(A) Volatile memory
(B) Non-volatile memory
(C) Both
(D) None of these
5. Digital computer stored data in:
(A) Decimal form
(B) Binary form
(C) Alphabetic form
(D) Both A \& B
6. The ASCII code for ' B ' is:
(K.B+U.B)
(A) 10
(B) 54
(C) 66
(D) 98

ACTIVITY QHESTIONS

Write your complete name and g.ve it pirsen at on binay orm at.

	Code in Decimal	Code in Binary
N [k	75	01001011
$\cdots{ }^{\text {c }}$	105	01101001
'p'	112	01110000
's'	115	01110011

My name is " 01001011011010010111000001110011 "

2.4 MEASUREMENT OF SIZE OF COMPUTER MEMORY

LONG QUESTION

Q. 1 Write a note on measurement of size of computer memory.

Ans: MEASUREMENT OF SIZE OUMPUERMENORY
Bit:
The small st amount git data io be stoned in con punter's memory is a 0 or 1 . It is called a bit.

Byte:

Ac万lec ion of eight bit is called a byte. At least one byte is required to store any piece of in indian in a computer's storage. On both primary and secondary storage devices, data is stored in the form of bytes.
Units of Data:
The following table shows different units of data are given.

Unit	Size
Bit	Smallest unit of data, can hold only one value: 0 or 1
Byte	Group of eight bits, enough space to store single ASCII character
Kilobyte	$1 \mathrm{~KB}=1,024$ bytes
Megabyte	$1 \mathrm{MB}=(1,024) \mathrm{KB}$ or $(1,024)^{2}$ bytes
Gigabyte	$1 \mathrm{~GB}=1,024 \mathrm{MB}$ or $(1,024)^{3}$ bytes
Terabyte	$1 \mathrm{~TB}=1,024 \mathrm{~GB}$ or $(1,024)^{4}$ bytes
Petabyte	$1 \mathrm{~PB}=1,024 \mathrm{~TB}$ or $(1,024)^{5}$ bytes

SHORT QUESTIONS

Q. 1 Define bit and byte.

(K.B) Ans:

DEFINITIONS

Bit:

The smallest amount of data be stored in computer's memory is a 0 or 1 . It is called a bit. Bit is also called a binary digit.

Byte:

A collection of eight bit is called a byte. At least one byte is required to store any piece of information in a computer's storage. On both primary and secondary storage devices, data is stored in the form of bytes.

MULTIPLE CHOICE QUESTING

1. $1 \mathrm{~Kb}=$

(A) 1000 bits

(B) 1024 hits
(C) $1(22 \mathrm{~b}$ byes
(K.B+U.B+A.B)
2. $\mathbf{1 G b}=$ \qquad

(I) 1 MB
(A) 1021 bytes
(B) $(24 \mathrm{~KB}$
(C) 1024 MB
(K.B+U.B+A.B)
3. TB star dst ion:
(K.B)
(B) Tri byte
(C) Tera byte
(A) 7 est Byte
(D) Test Bit
(C) $(1024)^{4}$ Bytes

1 Heasyte =
(K.B+U.B+A.B)
(A) $(1024)^{2}$ Bytes
(B) $(1024)^{3}$ Bytes
(D) $(1024)^{5}$ Bytes
5.
1 Megabyte =
(B) $(1024)^{3}$ Bytes
(C) $(1024)^{4}$ Bytes
(D) $(1024)^{5}$ Bytes
(A) $(1024)^{2}$ Bytes

2.5 BOOLEAN ALGEBRA

6. Define logical operators discuss is typec.
(K.B+U.B)
Q. 1

Ans:

LOCICAI OFERATERS

Definition.

A logic 1 qeeratior is a mble or word used to connect two or more expressions such that the valus of the compound expression produced depends only on that of the original chetsens and on the meaning of the operator.

TYPES OF LOGICAL OPERATORS
There are three types of logical operators:

- AND
- OR
- NOT

AND Operator (•):

If we used "AND" operator to connect two or more propositions, then the compound proposition is true only if all the connected propositions are true. AND operator can also be denoted by a dot "." Symbol. It means that P AND Q may also written as P•Q.

Truth Table for AND operator:

The following truth table for P AND Q is given below. The first two columns are showing all the possible combinations of truth values of proposition P and Q , the third column is showing the resultant truth value of P AND Q .
Assume:
$\mathrm{P}=\mathrm{It}$ is raining
$\mathrm{Q}=$ Today is Sunday
P and $\mathrm{Q}=\mathrm{It}$ is raining and today is Sunday

\mathbf{P}	\mathbf{Q}	\mathbf{P} AND Q
T	T	T
T	F	F
F	T	F
F	F	F

OR Operator (+):

We can also use "OR" operator to connest two or move propostions eg. "T aday is Monday OR I am in School". In crase of OP operotor, the ompound fruosision is true if at least one proposition is trie. In ther words, the conmound proposition is false only if all the propositions are fal.e. CR/oper.torcan dse oe denoted by a plus "+" symbol. It means tinal P OR R may also be rriter as $\mathrm{P}+0$.
Truth ghergroper or:
For the sane propositions Pa, let's see the truth table for the expression P OR Q. P GR $(\mathbb{R})=$ "t is rair ing or it is Sunday". This compound proposition is False if it is not 1akiveped today is not Sunday otherwise it is True.

\mathbf{P}	\mathbf{Q}	\mathbf{P} OR Q
T	T	T
T	F	T
F	T	T

F	F	F

Not Operator:

The logical operator "NOT" is not a connector but it is used to negatt a proposit (n. For example, if $\mathrm{P}=$ "Today is Monday" then ivpt (P) mqans" Today is rotil Mondy" So, with NOT operator a True value becomes fals and vice versa. Not peretor can also be denoted by a " \neg " symbol. It mean* th a NOT (F) 1, ay al o bewritter as $\rightarrow P$.

Truth Taile for NOT operator

We can oisp in ake quihtable whers NOT operator is used. Negation (also called NOT) is an operater that reverse the baure of a value, i.e. a value True becomes False and vice vers.

Nrad ritin taole for NOT operator is:

\mathbf{P}	NOT (P)
T	F
F	T

Q. 2 Define Boolean algebra. Describe laws of Boolean algebra.
(K.B+U.B) Ans:

BOOLEAN ALGEBRA

Definition:

Boolean algebra is the algebra of logic. It uses symbol to represent logical statements instead of words. Boolean algebra was formulated by the English Mathematician George Boole in 1847. Boolean algebra returns results in terms of true or false i.e. 1 or 0 respectively.

LAWS OF BOOLEAN ALGEBRA

The laws of Boolean Algebra help us to simplify complex Boolean expressions. Some laws are discussed in the following:

Commutative law:

Commutative Law states that the order of application of two separate propositions is not important. So,
(a) $\mathrm{A} \cdot \mathrm{B}=\mathrm{B} \cdot \mathrm{A}$ (The order in which two variables are AND'ed makes no difference.)
(b) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ (The order in which two variables are OR'ed makes no difference.

Associative Law:

This law is for several variables. According to this law there is no change in results if a grouping of expressions is changed. This law is quite same in case of AND and OR operations.
(a) $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$
(b) $(\mathrm{A} \cdot \mathrm{B}) \cdot \mathrm{C}=\mathrm{A} \cdot(\mathrm{B} \cdot \mathrm{C})$

Distribution Law:

This law is discussed in two ways, ?, "AnD ove OR" and OR over AND".
(a) $\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=(\mathrm{A} \cdot \mathrm{B})+(\mathrm{A} \cdot \mathrm{C}) \quad$ (AND vyer OR)
(b) $A-(B \cdot()=(A+R) \cdot(A+C)$

Identit 1 ew
If a ariable is DF'd witu a False, the result is always equal to that variable. And if a viraole s ed with a True, the result is always equal to that variable.
(6). $1 \therefore$ OR False $=\mathrm{A}$, A variable OR'ed with False is always equal to that variable.
(b) A AND True = A, A variable AND'ed with True is always equal to that variable.

Q. 3 State and prove associative law.

Ans:
ASSOCIATIVE LAW
This law is for several variables. According to this law there is no change in resuls iv a grouping of expressions is changed. This taw is anitesame incase of (1)NPandiok operations.
(a) $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}(\mathrm{B}+\overline{\mathrm{C}})$
(b) $(A \cdot B) \cdot C=A \cdot(B \subset C)$

In orderto veriey the associative law fo en operation, we can observe the Truth Table:

\mathbf{B}	\mathbf{F}	$\mathbf{A} \mathbf{b}$	$\overline{\mathbf{B}}+\mathbf{C}$	$(\mathbf{A}+\mathbf{B})+\mathbf{C}$	$\mathbf{A}+(\mathbf{B}+\mathbf{C})$
F	F	F	F	F	F
F	F	T	F	T	T
F	T	F	T	T	T
F	T	T	T	T	T
T	F	F	T	F	T
T	F	T	T	T	T
T	T	F	T	T	T
T	T	T	T	T	T

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{A} \cdot \mathbf{B}$	$\mathbf{B} \cdot \mathbf{C}$	$\mathbf{(\mathbf { A } \cdot \mathbf { B }) \cdot \mathbf { C }}$	$\mathbf{A} \cdot \mathbf{(B} \cdot \mathbf{C})$
F	F	F	F	F	F	F
F	F	T	F	F	F	F
F	T	F	F	F	F	F
F	T	T	F	T	F	F
T	F	F	F	F	F	F
T	F	T	F	F	F	F
T	T	F	T	F	F	F
T	T	T	T	T	T	T

Q. 4 State and prove distributive law.

(K.B+U.B+A.B)

Ans:

DISTRIBUTIVE LAW

This law is discussed in two ways, i.e., "AND over OR" \& OR over AND".
(a) $\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=(\mathrm{A}$
B) $+(\mathrm{A} \cdot \mathrm{C})$
(AND over OR)
(b) $\mathrm{A}+(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$
(OR over AND)

We can verify the distribution law for (AND over OR) operation by using Table.

A	B	C	B + C	A. B	A. \mathbf{C}	$\mathbf{A} \cdot(\mathrm{B}+\mathrm{C})$	$(\mathbf{A} \cdot \mathbf{B})+(\mathbf{A} \cdot \underline{\text { C }}$)
F	F	F	F	F	F	F	R
F	F	T	T	F	F	F	F F
F	T	F	T	F	F	F	- $\frac{\mathrm{F}}{\mathrm{F}}$
F	T	T	T	F/	F	$\overline{\mathrm{F}}$	$\square-\frac{\mathrm{F}}{\mathrm{F}}$
(T)	1	F	F	F	F	\sim_{F}	F
1	F	T	T	1	$\frac{1}{1}$	T	T
T	T	F	I	T	F	T	T
-	N	1	T	T	T	T	T

A	B	C	B $\cdot \mathbf{C}$	A+B	A + C	A + (B.C)	$(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{A}+\mathbf{C})$
F	F	F	F	F	F	F	F
F	F	T	F	F	T	F	F
F	T	F	F	T	F	F	F
F	T	T	T	T	T	T	- 7
T	F	F	F	Γ	Γ	T -	$\square-\mathrm{T}-$
T	F	T	F	1	7	T	T
	T	F	- F	T	$\leq \frac{1}{T}$	T	T
\cdots	-		T	T	T	T	T

SHORT QUESTIONS

BOOLEAN ALGEBRA

Definition:

Boolean algebra is the algebra of logic. It uses symbol to represent logical statements instead of words. Boolean algebra was formulated by the English Mathematician George Boole in 1847. Boolean algebra returns results in terms of true or false i.e. 1 or 0 respectively.
Q. 2 What is Boolean proposition?

Ans: BOOLEAN PROPOSITION

Definition:

A proposition is a sentence that can either be true of false.

Example:

The following sentences are propositions.

1. "I want to excel in mathematics".
2. "I play chess".

But the following sentences are not propositioning.

1. How are you?
2. Close the door.

We can also assign some letter to a proposition, as show in the following.

1. $\mathrm{P}=$ "I play chess".
2. $\mathrm{Q}=$ "I want to excel in mathematics".

Now, when we say P, it means that we are referring to proposition "I play chess". And when we say Q , it means that we are referring to proposition "I want to excel in mathematics".

Q. 3 Define truth values.

Ans:

TRUTH VALUES

Definition:

Every proposition takes ong of two valyes true or false, and these values are called the truth values. Truth value is given pr the b sip of truthfurnes or talsity of a proposition. Example:
Assumer = I la naba is the Capital of Yakistan". You can assign the truth value true to this proposition.
love ass im al dter proposition $\mathrm{Q}=$ "The sun rises in the west". The truth value for this podssion is false.
If we have proposition $\mathrm{R}=$ "I have completed my homework", the truth value depends on the person who is assigning it. If a person has completed his homework then he can assign truth value true, otherwise false.
Q. 4 What is meant by compound proposition?

Ans: COMPOUND PROPOSITION
Sometimes was assemble more than one propositions to make onerspositioncald compound proposition.

Example:

If we have the following two proposicions.

- Today is Monday.
- I arnirischool.

Then "Fohy is Monday AND Iameschool" is a compound proposition. Truth value of the compound roocsition depends upon the truth values of the individual's propositions and he logi al encrator used to connect the propositions. In this example "AND" is a lastioloperator.
D. 5 What is the purpose of truth table?
(K.B)

Ans:
TRUTH TABLE
A truth table is used to check whether a proposition is True or False. Usually it is used to check the truth value of a proposition where some logical operator is used.
Q. 6 How can we make truth for complex problem?

Ans: TRUTH TABLE FOR COMPLEX BOOLEAN EXPRESSIONS

We can make truth table for example, if we need to make a truth table of "It is not raining and today is Sunday". It means the proposition NOT(P) AND Q. The truth table for this compound proposition is:

\mathbf{P}	NOT (P)	\mathbf{Q}	NOT (P) AND Q
T	F	T	F
T	F	F	F
F	T	T	T
F	T	F	F

Q. 5 State and prove commutative law.
(K.B+U.B+A.B)

Ans:
COMMUTATIVE LAW
Commutative Law states that the order of application of two separate propositions is not important. So,
(a) $\mathrm{A} \cdot \mathrm{B}=\mathrm{B} \cdot \mathrm{A}$ (The order in which two variables are AND'ed makes no difference.)
(b) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ (The order in which two variables are OR'ed makes no difference.

We can use truth tables to verify this law for AND and OR operations respectively.

(K.B+U.B+A.B)

ASSOCIATIVE LAW

This law is for several variables. According to this law there is no change in results if a grouping of expressions is changed. This law is quite same in case of AND and OR operations.
(a) $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}(\mathrm{B}+\mathrm{C})$
(b) $(\mathrm{A} \cdot \mathrm{B}) \cdot \mathrm{C}=\mathrm{A} \cdot(\mathrm{B} \cdot \mathrm{C})$
Q. 8 Prove the following property.

$$
(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\boldsymbol{C})
$$

Ans: In order to verify the associative an for cperaion we cah obse ve the Truth Table presented in the followint t: ble. Roth colnms $(A+B+C$ and $A+(B+C)$ contains same values in each row. It verifies the as ociative iaw to: OR openanon.

					$(8)+3)$	$\mathbf{A + (B + C)}$
1	1	F	F	F	F	F
F	F	T	F	T	T	T
F	T	F	T	T	T	T
F	T	T	T	T	T	T
T	F	F	T	F	T	T
T	F	T	T	T	T	T
T	T	F	T	T	T	T
T	T	T	T	T	T	T

Q. 9 Prove the following property.
(U.B+A.B)
(A.B). C $=\mathbf{A} \cdot($ B. C)

Ans:

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{A} \cdot \mathbf{B}$	$\mathbf{B} \cdot \mathbf{C}$	$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$	$\mathbf{A} \cdot \mathbf{(B} \cdot \mathbf{C})$
F	F	F	F	F	F	F
F	F	T	F	F	F	F
F	T	F	F	F	F	F
F	T	T	F	T	F	F
T	F	F	F	F	F	F
T	F	T	F	F	F	F
T	T	F	T	F	F	F
T	T	T	T	T	T	T

Q. 10 State distributive law.

Ans:

DISTRIBUTIVE LAW

This law is discussed in two ways, i.e., "AND over OR", "OR over AND".
(a) $\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=(\mathrm{A} \cdot \mathrm{B})+(\mathrm{A} \cdot \mathrm{C})$
(AND over OR)
(b) $\mathrm{A}+(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$
(OR over AND)
Q. 11 Prove distributive law "AND over OR".

Ans:
DISTRIBUTJV LAW
$\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=(\mathrm{A} \cdot \mathrm{B})+(\mathrm{A} \cdot \mathrm{C})$
(Aivi) bvar O?

Q. 12 Prove distributive law "OR over AND".

Ans:
DISTRIBUTIVE LAW

$$
\mathrm{A}+(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C}) \quad(\mathrm{OR} \text { over AND })
$$

Q. 13 State identity law.

Ans:

IDENTITY LAW

If a variable is OR'ed with a False, the result is always equal to that variable. And if a variable is AND'ed with a True, the result is always equal to that variable.
(a) A OR False = A, A variable OR'ed with False is always equal to that variable.
(b) A AND True = A, A variable AND'ed with True is always equal to that variable.
Q. 14 Prove A $+0=A$.
(U.B+A.B)

$\underline{\text { PROVE }}$	
\mathbf{A}	$\mathbf{A + 0}$
0	$0+0=0$
1	$1+0=1$

Q. 15 Prove A - 1 = A.
(U.B+A.B)

Ans:

PROVE

\mathbf{A}	$\mathbf{A} \cdot \mathbf{1}$
0	$0 \cdot 1=0$
1	$1 \cdot 1=1$

Q. 16 What are logical expressions.

LOGICAL EXPRESSIONS

We get a logical expression when some logical operator is applied to the Boolean proposition(s).

Examples:

- P AND Q
- $\neg(\mathrm{P} \mathrm{OR} \mathrm{Q)}$
- P OR Q etc.

MuIntectianosinons

1. Whicl one are onlean value?
(A) True, Flalse
(B) Hardware, Software
(C) M Iemory, Sthrage
(D) Input, Output
(K.B)

Ans:
4. Which one is not a proposition?
(U.B)
(A) I will get A+ grade in board exam.
(B) I want to excel in mathematics.
(C) Is its hot outside?
(D) I play chess.
5. Every proposition takes one of two values tave or false, and the se val urecaled. R. B)
(A) Boolean algebra
(B) Proposi 10 I
(qistorase
(D) Tren values
6. Assume $P=$ "Islamabad is the car: "at of Pinist an". What is the tru"h value? (U.B+A.B)
(A) True
(D) fal:of
(D) None of these
7. Assume $)=$ The cun nises il the west". Therruth value for this proposition is? (U.B+A.B)
(A) True
(B) False
(C) Both
(D) None of these
8. Sonil tin es vas ass nutie more than one propositions to make one proposition called: (K.B)
A A Beollan atgebra
(B) Proposition
((V) Compound proposition
(D) Truth values
Y. Combine the following two propositions with AND operator:

1. Today is Monday
 2. I am in school

(A) Today is Monday OR I am in school.
(B) Today is Monday AND I am in school.
(C) Today is NOT Monday OR I am NOT in school.
(D) Today is NOT Monday AND I am NOT in school.
10. The symbol of AND operator is:
(K.B)
(A) +
(B)
(C) \neg
(D) \times
11. The symbol of $O R$ operator is:
(A) +
(B)
(C) \neg
(D) \times
12. The symbol of NOT operator is:
(A) +
(B)
(C) \neg
(D) \times
13. If we use "AND" operator to connect two or more propositions, then the compound
proposition is true only if all the connected propositions are \qquad .
(U.B)
(A) True
(B) False
(C) Both
(D) None of these
14. If we used "AND" operator to connect two or more propositions, the value of first
proposition is true and other is false then the result is:
(A) True
(B) False
(C) Both
(D) None of these
15. If we used "OR" operator to connect two or more propositions, then the compound proposition is false only if all the connected propositions are \qquad .
(U.B)
(A) True
(B) False
(C) Both
(D) None of these
16. If we used "OR" operator to connect two or more propositions, the value fifirst proposition is true and other is false then the result is:
21. If $\mathbf{P}=$ True then $\neg \mathbf{P}=$
(A) True
(B) False
(C) Both
(D) None of these
(A.B)
22. The formula of making all possible combination of proposition:
(D) Nom of (4. 3$)$
(A) n^{2}
(B) 2^{n}
(C) n^{n}

(U.B)
23. If $\mathbf{n}=\mathbf{2}$ propositions then total \mathbf{p} ssibilitias a e :
(A) 2
(B) 1
(C) 1
(D) 8
24. If
$P=$ It is rainig.
$Q=$ To la is Sundty.
$P_{1} 1 \mathrm{Q}=1$ it aining and today is Sunday.
Nicer ©hat is exactly the statement if P and Q is FALSE
(A) It is raining on Sunday.
(B) It is raining but not on Sunday.
(C) It is not raining but today is Sunday.
(D) It is neither raining nor Sunday".
25. If $\mathbf{P}=\mathbf{T}$ and $\mathbf{Q}=F$, then what is result of $\operatorname{NOT}(\mathbf{P})$ AND \mathbf{Q} ?
(U.B+A.B)
(A) T
(B) F
(C) Both
(D) None of these
26. According to commutative law: $\mathbf{A}+\mathbf{B}=$
(A) B • A
(B) $\mathrm{B}+\mathrm{A}$
(C) $\neg \mathrm{A}+\mathrm{B}$
(D) None of these
27. The distributive law:
(B) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
(A) $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})$
(C) $\mathrm{A}+(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$
(D) None of these
28. $\quad \mathrm{A}+0=$
(A) 1
(B) 0
(C) A
(D) $\neg \mathrm{A}$
29. $P=$
(A) $\neg \mathrm{P}$
(B) $\neg \neg \mathrm{P}$
(C) $\neg \neg \neg \mathrm{P}$
(D) All of these
30. If $\mathbf{P}=\mathbf{I t}$ is sunny today. $\neg \mathbf{P}=\mathbf{I t}$ is not sunny today.

Then what is result of $\quad \neg \neg \mathbf{P}$
(K.B+U.B)
(A) It is sunny today.
(B) It is not sunny today.
(C) It is sunny not today.
(D) None of these
:
(K.B+U.B)
(K.B+U.B)

ACTIVITY QUESTIONS

Activity 2.7 (A.B)

Draw the truth table to verify $\mathrm{A}+(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$

SOLUTION

This is called distributive law "OR over AND".
$\mathrm{A}+(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$

A	B	C	B \cdot C				$(\mathrm{A}+\mathrm{B}) \cdot \mathrm{A}+\mathrm{C})$	
F	F	F	F	17	1	F	F	
(F)	F	T	F	F	T	F	F	
F	T	F	F	T	F	F	F	
I	1	1	$\int T$	T	T	T	T	
O	F	F	F	T	T	T	T	
T	F	T	F	T	T	T	T	
T	T	F	F	T	T	T	T	
T	T	T	T	T	T	T	T	

EXERCISE

1.1 Multiple Choice Questions:

1. Expression $(\mathbf{A}+\mathrm{B}) \cdot(\mathbf{A}+\mathrm{C})$ is equal to \qquad .
(i) $\mathrm{A}+(\mathrm{B} \cdot \mathrm{C})$ (iii) $\mathrm{A} \cdot(\mathrm{B} \cdot \mathrm{C})$
(ii) $\mathrm{A} \cdot \mathrm{B}+\mathrm{C}$
(v) $A+(E+C)$
(K. $\mathrm{B}+\mathrm{C}$ ․
2. The order of application forspraterns is not imborant in \qquad . (U.B)
(i) Asseciative Law
(ii) Commutative Law
(iii)Distrio tion Lav
(iv)Identity Law
3. "Is it cula cutsid" is \qquad .
(i) Loolean $\operatorname{Prppopition}$
(ii) Categorical proposition
(ii) Moral prepusition
(iv)None of above
bunber " 17 " is equal to \qquad in binary system.
(i) 10000
(ii) 10110
(iii) 10001
(iv) 10100
4. 1 Petabyte is equal to \qquad .
(K.B+U.B)
(i) $(1,024)^{4}$ bytes
(ii) $(1,024)^{6}$ bytes
(iii) $(1,024)^{3}$ bytes
(iv) $(1,024)^{\prime}$ bytes
5. Hexadecimal system has total \qquad numbers.
(K.B+U.B)
(i) 17
(ii) 16
(iii) 18
(iv) 15

ANSWERS

| 1 | (i) | 2 | (ii) | 3 | (i) | 4 | (iii) | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (iii)

1.2 Answer the following questions.

1. Convert (69610) ${ }_{10}$ to Hexadecimal.

Ans:

CONVERSION

16	69610	
16	$4350-10$	
16	271	-14
16	16	-15
16	1	-0
16	0	-1

A is representation of 10 , remainder E is representation of 14 , and remainder F is representation of 15 . Remainders are taken from bottom to top to present the hexadecimal number. So, $(69610)_{10}=(10 \mathrm{FEA})_{16}$.
2. Differentiate between volatile and non-volatile memory.

Ans:
DIFFEREN LTATE
The difference between volatile ar(d don-valat ile ine nory is as ioliow;

A device which hote data a ling as it ha device which can hold data even if it is not power suppl. connected o it, is called connected to any power source, is called NonVolatile N_{1} mory Volatile Memory.

Example

Ifs pestenample is Random Access Memory (RAM), which holds memory only as long as it is connected to power source. As soon as the power supply is disconnected, all the data in RAM is cleared.

The typical examples for Non-Volatile Memory are hard drives, flash drives and memory cards installed in cell phones. Even if you turn off your PC, the data in your hard drive or flash drive stays intact.

Storage Type

It is a temporary storage device.
It is a permanent storage device

Speed

It has high accessing speed.
Iras low aressing peen. Anther wane
It is called primary memory.
It is all sect nd memory.
3. Store twe word "Phone" in ccmpucer memorytarting from address 7003 where each leser netds one byt to fore in he memory.
Ans:
STORE IN COMPUTER MEMORY
ASCI table of chacters is given below:

$[102 d i n g ~ C i t r a c t e r ~$	Description	Code	Character	Description

First of vi. ve onyert an harncter f "Phore" into ASCII code and then convert into binary.

	Ehatater	13Sode	Binary
	$1{ }^{2}$	80	1010000
	h	104	1101000
	o	111	1101111
	n	110	1101110
	e	101	1100101

Memory representation of word "Phone" starting from address 7003 is as follows:

4. Differentiate between temporary and permanentstage.

Ans: The difference between terlpor Dire nc eemancit storasd io as tollows:

| | Example |
| :--- | :--- | :--- |

5. Write the truth table for X AND Y where
 $X=I t$ is sunny
 $Y=$ Today is Monday

Ans:
TRUTH TABLE FOR AND OPERATOR
The truth table for X AND Y is given below. The first two columns are showing all the possible combinations of truth values of proposition X and Y , the third column is showing the resultant truth value of X AND Y.
$\mathrm{X}=\mathrm{It}$ is sunny
$\mathrm{Y}=$ Today is Monday
X AND $\mathrm{Y}=\mathrm{It}$ is sunny and Today is Monday
If both X and Y are True then the X and Y is also True, it means "It is sunny on Monday". This situation is shown on Row 1 of the following table.
Suppose it is sunny but not on Sunday. Then X is True and Y is False doe to which AND Y is also False (row 2 of the following table).
In row 3 of the following table, X is False $\bar{m} d Y$ is true tinen vane of x Arib) (is) Faise. In the last row both X and Y are -abe, wich ma sit he thor rining nor Sunday". So, the proposition "It is suny ard to dy is M didy" is al e (row 4 of Table).

X	Y	X
T	ND	
T	F	F
F	T	F
F	F	F

13 rill in the Blanks

1. Temporary memory is \qquad and permanent memory is \qquad -.
(K.B+U.B)
2. Data to a processor is provided through \qquad .
(K.B+U.B)
3. At least \qquad byte is required to store any piece of information in a computer's memory.
4. \qquad is used to assemble more than one propositions into one or nocsition
5.

In primary is used to assemble more than one propositions
6. According to
 law there is change ir ir $=$ ul s if priority of exp
$(K . E+0 . \mathrm{B})$ changed.
(K.B+U.B)

114 Dertorm the following conversations.

1. (ABCD) ${ }_{16}$ to binary.
(A.B)

Ans:

CONVERSION

In this number, there are four hexadecimal digits. Binary of each digit is given as:
i. For A, the binary value is 1010
ii. For B, the binary value is 1011
iii. For C, the binary value is 1100
iv. For D, the binary value is 1101

By combining all the binary values, we get 1010101111001101
So, $(A B C D)_{16}=(1010101111001101)_{2}$

2. (0010100100 五 $\left.1010 s_{2}\right)_{2}$ to hexadecinal.

Ans:
CONVERSION
The five-digit pina groups in this binary number are given below where each group has fove bian digits.
While making groups from right to left, if the left group has less than 4 binary digits then we simply add 0 s on the left. For example, 0010110010001101001 has 5 groups and by adding one 0 on the left it becomes 00010110010001101001.
i. For 0001 , the hexadecimal is 1
ii. For 0110 , the hexadecimal is 6
iii. For 0100 , the hexadecimal is 4
iv. For 0110, the hexadecimal is 6
v. For 1001, the hexadecimal is 9

So, $(0010110010001101001)_{2}=(1,6469)_{16}$

Chapter-2
Binary System

Convert "Molana Muhammad Ali Johar" into ASCII code and then convert into binary.

ANSWERS

2. 1 INTRODUCTIQ TC MFWBERGVSTEME

24ㄴNUMBER SYSTEM CONVERSION

1	A	2	C	3	D	4	A

2.3 MEMORY AND DATA STORAGE

| 1 | A | 2 | A | 3 | A | 4 | B | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | B

2.4 MEASUREMENT OF SIZE OF COMPUTER MEMORY

1	C	2	C	3	C	4	D

2.5 BOOLEAN ALGEBRA

1	A	2	C	3	A	4	C	5	D
$\mathbf{6}$	A	7	B	8	C	9	B	10	B
11	A	12	C	13	A	14	B	15	B
16	A	17	B	18	D	19	B	20	B
21	B	22	B	23	B	24	D	25	B
26	B	27	C	28	C	29	B	30	A

