

1-1 Correspondence between Two Triangles
(U.B)

(1-1) Correspondences can be established between $\triangle A B C$ and $\triangle D E F$ is explained below:
In $\triangle A B C \longleftrightarrow \triangle D E F$, it means
(i)
$\angle \mathrm{A} \longleftrightarrow \angle \mathrm{D}$
(ii) $\quad \angle \mathrm{B} \longleftrightarrow \angle \mathrm{E}$
$\angle \mathrm{C} \longleftrightarrow \angle \mathrm{F}$
$\overline{\mathrm{AB}} \longleftrightarrow \overline{\mathrm{DE}}$
$\begin{array}{ll}\text { (v) } & \overline{\mathrm{BC}} \longleftrightarrow \overline{\mathrm{EF}} \\ \text { (vi) } & \overline{\mathrm{CA}} \longleftrightarrow \overline{\mathrm{FD}}\end{array}$
$\begin{array}{ll}\text { (v) } & \overline{\mathrm{BC}} \longleftrightarrow \overline{\mathrm{EF}} \\ \text { (vi) } & \overline{\mathrm{CA}} \longleftrightarrow \overline{\mathrm{FD}}\end{array}$
(iii)
(iv)
($\angle \mathrm{A}$ corresponds to $\angle \mathrm{D}$)
($\angle \mathrm{B}$ corresponds to $\angle \mathrm{E}$)
($\angle \mathrm{C}$ corresponds to $\angle \mathrm{F}$)
($\overline{\mathrm{AB}}$ corresponds to $\overline{\mathrm{DE}}$)
$(\overline{\mathrm{BC}}$ corresponds to $\overline{\mathrm{EF}}$)
($\overline{\mathrm{CA}}$ corresponds to $\overline{\mathrm{FD}}$)

Congruency of Triangles

Two triangles are said to be congruent written symbolically as \cong if there exists a correspondence between them such that all the corresponding sides and angles are congruent.

For example:

(GRW 2013, FSD 2015, SWL 2017, RWP 2016, BWP 2016, MTN 2014, 16, D.G.K 2013)
Consider:

In $\triangle A B C \longleftrightarrow \triangle D E F$
If $\left\{\begin{array}{l}\overline{A B} \cong \overline{D E} \\ \overline{B C} \cong \overline{E F} \\ \overline{A C} \cong \overline{D F}\end{array} \quad\right.$ and $\quad\left\{\begin{array}{l}\angle A \cong \angle D \\ \angle B \\ \angle C\end{array} \quad \angle E \quad \angle F ~\right.$
Then, $\triangle A B C \cong \triangle D E F$

Note

(i)

These triangles are congruent w.r.t the above mentioned choice of the $(1-1)$ correspondence
(ii) $\triangle A B C \cong \triangle A B C$
(iii) $\triangle A B C \cong \triangle D E F \Leftrightarrow \triangle D E F \cong \triangle A B C$
(iv) If $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \cong \triangle P Q R$ then $\triangle D E F \cong \triangle P Q R$

S.A.S Postulate

(LHR 2016, GRW 2017, FSD 2017, MTN 2017, RWP 2016)
(U.B)

In any correspondence of two triangles, if two sides and their included angle of one triangle are congruent to the corresponding two sides and their included angle of the other then the triangles are congruent.

In $\triangle A B C \longleftrightarrow \triangle D E F$, shown in the following figure,

$$
\text { If }\left\{\begin{array}{l}
\overline{A B} \cong \overline{D E} \\
\angle A \cong \angle D \\
\overline{A C} \cong \overline{D F}
\end{array}\right.
$$

Then, $\triangle A B C \cong \triangle D E F$

Theorem 10.1.1

In any correspondence of two triangles, if one side and any two angles of one triangle are congruent to the corresponding side and angles of the other then the

Given

In $\triangle \mathrm{ABC} \leftrightarrow \triangle \mathrm{DEF}$
$\angle \mathrm{B} \cong \angle \mathrm{E}, \overline{\mathrm{BC}} \cong \overline{\mathrm{EF}}, \angle \mathrm{C} \cong \angle \mathrm{F}$

To prove
$\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Construction
Suppose $\overline{\mathrm{AB}} \neq \overline{\mathrm{DE}}$. Take a point M on $\overline{\mathrm{DE}}$ such that $\overline{\mathrm{AB}} \cong \overline{\mathrm{ME}}$. Join M to F
Proof

Statements
In $\triangle \mathrm{ABC} \leftrightarrow \Delta \mathrm{MEF}$
$\overline{\mathrm{AB}} \cong \overline{\mathrm{ME}}$ \qquad
$\overline{\mathrm{BC}} \cong \overline{\mathrm{EF}}$ \qquad (ii)
$\angle \mathrm{B} \cong \angle \mathrm{E}$ \qquad (iii)
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{MEF}$
So, $\quad \angle \mathrm{C} \cong \angle \mathrm{MFE}$
But $\angle \mathrm{C} \cong \angle \mathrm{DFE}$
$\therefore \quad \angle \mathrm{DFE} \cong \angle \mathrm{MFE}$
This is possible only if D and M are the same points and $\overline{\mathrm{ME}} \cong \overline{\mathrm{DE}}$

So $\quad \overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$ \qquad (iv)

Thus from (ii), (iii) and (iv), we have $\triangle \mathrm{ABC}$ $\cong \triangle \mathrm{DEF}$

Reasons

Construction
Given
Given
S.A.S postulate
(Corresponding angles of congruent triangles)
Given
Both congruent to $\angle \mathrm{C}$
$\overline{\mathrm{AB}} \cong \overline{\mathrm{ME}}$ (construction) and $\overline{\mathrm{ME}} \cong \overline{\mathrm{DE}}$ (proved)
S.A.S postulates

Corollary:

In any correspondence of two triangles, if one side and any two angles of one triangle are congruent to the corresponding side and angles of other, then the triangles are congruent. (S.A.A \cong S.A.A.)

Given:
In $\quad \triangle \mathrm{ABC} \leftrightarrow \triangle \mathrm{DEF}$
$\overline{B C} \cong E \bar{E}$
,$\angle A \cong \angle \mathrm{D}$$\angle \mathrm{B} \cong \angle \mathrm{E}$

To prove
$\Delta \mathrm{ABC} \cong \triangle \mathrm{DEF}$

Statements

Reasons

In $\quad \triangle \mathrm{ABC} \leftrightarrow \triangle \mathrm{DEF}$

$\angle \mathrm{C} \cong \angle \mathrm{F}$
$\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$

Example

If $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DCB}$ are on the opposite sides of common base BC such that $\overline{\mathrm{AL}} \perp \overline{\mathrm{BC}}, \overline{\mathrm{DM}} \perp \overline{\mathrm{BC}}$ and $\overline{\mathrm{AL}} \cong \overline{\mathrm{DM}}$, then $\overline{\mathrm{BC}}$ bisects $\overline{\mathrm{AD}}$.
Given
$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DCB}$ are on the opposite sides of $\overline{\mathrm{BC}}$ such that $\overline{\mathrm{AL}} \perp \overline{\mathrm{BC}}, \overline{\mathrm{DM}} \perp \overline{\mathrm{BC}}, \overline{\mathrm{AL}} \cong \overline{\mathrm{DM}}$, and $\overline{\mathrm{AD}}$ is cut by $\overline{\mathrm{BC}}$ at N .
To prove
$\overline{\mathrm{AN}} \cong \overline{\mathrm{DN}}$
Proof

Statements	Reasons
In $\triangle A L N \leftrightarrow \triangle D M N$	Given
$\overline{A L} \cong \overline{D M}$	Each angle is right angle
$\angle A L N \cong \angle D M N$	Vertical angels
$\angle A N L \cong \angle D N M$	S.A.A \cong S.A.A
$\therefore \square A L N \cong \square D M N$	Corresponding sides of $\cong \Delta \mathrm{s}$.
$\overline{A N} \cong \overline{D N}$	

Exercise 10.1
Q. 1 In the given figure
$\angle 1 \cong \angle 2$ and $\overline{\mathrm{AB}} \cong \overline{\mathrm{CB}}$
Prove that
$\Delta \mathrm{ABD} \cong \triangle \mathrm{CBE}$

Proof

Statements

Reasons

In $\triangle \mathrm{ABD} \leftrightarrow \Delta \mathrm{CBE}$
$\overline{\mathrm{AB}} \cong \overline{\mathrm{CB}}$
$\angle \mathrm{BAD} \simeq \angle \mathrm{BCE}$
$\angle \mathrm{ABD} \cong \angle \mathrm{CBE}$
$\triangle \mathrm{ABD} \cong \triangle \mathrm{CBE}$

Given
Given $\angle 1 \cong \angle 2$
Common
S.A.A \cong S.A.A
Q. 2 From a point on the bisector of an angle, perpendiculars are drawn to the arms of the angle. Prove that these perpendiculars are equal in \qquad measure.
(K.B)

Given
$\overline{\mathrm{BD}}$ is bisector of $\angle \mathrm{ABC}$. P is point on $\overline{\mathrm{BD}}$ and $\overline{\mathrm{PL}}$ and $\overline{\mathrm{PM}}$ are perpendicular to $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CB}}$ respectively.
To prove
$\overline{\mathrm{PL}} \cong \overline{\mathrm{PM}}$
Proof

Statements	Reasons
In $\triangle \mathrm{BLP} \leftrightarrow \Delta \mathrm{BMP}$	
$\overline{\mathrm{BP}} \cong \overline{\mathrm{BP}}$	Common
$\angle \mathrm{BLP} \cong \angle \mathrm{BMP}$	Each is right angle (given)
$\angle \mathrm{LBP} \cong \angle \mathrm{MBP}$	Given $\overline{\mathrm{BD}}$ is bisector of angle B
$\therefore \Delta \mathrm{BLP} \cong \triangle \mathrm{BMP}$	S.A.A \cong S.A.A
So $\overline{\mathrm{PL}} \cong \overline{\mathrm{PM}}$	Corresponding sides of congruent triangles

Q. 3 In a triangle $A B C$, the bisectors of $\angle B$ and $\angle C$ meet in a point I. Prove that I is equidistant from the three sides of $\triangle \mathrm{ABC}$.
Given
In $\triangle \mathrm{ABC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ meet at I and $\overline{\mathrm{IL}}, \overline{\mathrm{IM}}$, and $\overline{\mathrm{IN}}$ are perpendiculars to the three sides of $\triangle \mathrm{ABC}$.
To prove
$\overline{\mathrm{IL}} \tilde{\overline{\mathrm{IM}}} \cong \overline{\mathrm{IN}}$
Proof

Statements

In Δ ILB $\leftrightarrow \Delta \mathrm{IMB}$

$$
\overline{\mathrm{BI}} \cong \overline{\mathrm{BI}}
$$

$\angle \mathrm{IBL} \cong \angle \mathrm{IBM}$
$\angle \mathrm{ILB} \cong \angle \mathrm{IMB}$
$\Delta \mathrm{ILB} \cong \Delta \mathrm{IMB}$

Reasons

Common

Given BI is bisector of $\angle \mathrm{B}$
Given each angle is rights angles
S.A.A \cong S.A.A
$\therefore \overline{\mathrm{IL}} \cong \overline{\mathrm{MM}}$ \qquad (i)

Similarly
$\Delta \mathrm{ILC} \cong \Delta \mathrm{INC}$
So $\quad \overline{\mathrm{IL}} \cong \overline{\mathrm{IN}}$ \qquad (ii)
from (i) and (ii)
$\overline{\mathrm{I}} \cong \overline{\mathrm{M}} \cong \overline{\mathrm{IN}}$
I is equidistant from the three sides of $\triangle \mathrm{ABC}$.
Theorem 10.1.2
If two angles of a triangle are congruent then the sides opposite to them are also congruent.

Given

In $\triangle \mathrm{ABC}, \angle \mathrm{B} \cong \angle \mathrm{C}$
To prove
$\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$

Construction

Draw the bisector of $\angle \mathrm{A}$, meeting $\overline{\mathrm{BC}}$ at point D

Proof

Statements	Reasons
In $\triangle \mathrm{ABD} \leftrightarrow \triangle \mathrm{ACD}$	Common
$\overline{\mathrm{AD}} \cong \overline{\mathrm{AD}}$	Given
$\angle \mathrm{B} \cong \angle \mathrm{C}$	Construction
$\angle \mathrm{BAD} \cong \angle \mathrm{CAD}$	S.A.A \cong S.A.A
$\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$	(Corresponding sides of congruent triangles)
Hence $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$	

Example \# 1

If one angle of a right triangle is of 30°, the hypotenuse is twice as long as the side opposite to the angle.

Given

In $\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{B}=90^{\circ}$ and $m \angle C=30^{\circ}$
To prove
$m \overline{A C}=2 m \overline{A B}$
Construction
At B, construct $\angle C B$ of 30°.
Let $\overline{\mathrm{BD}}$ cut $\overline{\mathrm{AC}}$ at the point D .
Proof

Statements
In $\triangle \mathrm{ABD}, \mathrm{m} \angle \mathrm{A}=60^{\circ}$
$m \angle A B D=m \angle A B C-m \angle C B D=60^{\circ}$
$\therefore \mathrm{m} \angle \mathrm{ADB}=60^{\circ}$

Reasons

$\mathrm{m} \angle \mathrm{ABC}=90^{\circ}, \mathrm{m} \angle C=30^{\circ}$
$\mathrm{m} \angle \mathrm{ABC}=90^{\circ}, \mathrm{m} \angle \mathrm{CBD}=30^{\circ}$
Sum of measures of $\angle \mathrm{s}$ of a Δ is 180°
$\therefore \triangle \mathrm{ABD}$ is equilateral
$\therefore \overline{\mathrm{AB}} \cong \overline{\mathrm{BD}} \cong \overline{\mathrm{AD}}$
In $\triangle \mathrm{BCD}, \overline{\mathrm{BD}} \simeq \overline{\mathrm{CD}}$
Thus m $\overline{A C}$

$$
\left.\begin{array}{l}
=m \overline{\mathrm{AD}}+m \overline{\mathrm{CD}} \\
=m \overline{\mathrm{AB}}+m \overline{\mathrm{AB}} \\
=2(\mathrm{~m} \overline{\mathrm{AB}})
\end{array}\right\}
$$

Each of its angles is equal to 60°
Sides of equilateral \triangle
$\angle \mathrm{C}=\angle \mathrm{CBD}$ (each of 30°)
$\overline{\mathrm{AD}} \cong \overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}} \cong \overline{\mathrm{BD}} \cong \overline{\mathrm{AB}}$

Example \# 2

(A.B)

If the bisectors of an angle of a triangle bisect the side opposite to it, the triangle is isosceles.
Given
In $\triangle A B C, \overline{A D}$ bisects $\angle A$ and $\overline{B D} \cong \overline{C D}$
To prove
$\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Construction
Produce $\overline{A D}$ to E, and take $\overline{E D} \cong \overline{A D}$
Joint C to E
Proof

Exercise 10.2

Q. 1 Prove that any two medians of an equilateral triangle are equal in measure.
Given
(K.B)

In $\triangle \mathrm{ABC}, \overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$ and M is midpoint of $\overline{\mathrm{BC}}$
To prove
$\overline{\mathrm{AM}}$ bisects $\angle \mathrm{A}$ and $\overline{\mathrm{AM}}$ is perpendicular to $\overline{\mathrm{BC}}$
Proof

Statements	Reasons
$\mathrm{In} \triangle \mathrm{ABM} \leftrightarrow \triangle \mathrm{ACM}$	Given
$\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$	Given M is midpoint of $\overline{\mathrm{BC}}$
$\overline{\mathrm{BM}} \cong \overline{\mathrm{CM}}$	Common
$\overline{\mathrm{AM}} \cong \overline{\mathrm{AM}}$	
$\therefore \triangle \mathrm{ABM} \cong \triangle \mathrm{ACM}$	S.S.S \cong S.S.S
So $\angle \mathrm{BAM} \cong \angle \mathrm{CAM}$	Corresponding angles of congruent triangles
$\mathrm{m} \angle \mathrm{AMB}+\mathrm{m} \angle \mathrm{AMC}=180^{\circ}$	
$\therefore \mathrm{m} \angle \mathrm{AMB}=\mathrm{m} \angle \mathrm{AMC}=90^{\circ}$	
i.e $\overline{\mathrm{AM}}$ is perpendicular to $\overline{B C}$	

Q. 2 Prove that a point which is equidistant from the end points of a line segment, is on the right bisector of line segment
(U.B)

Given
$\overline{\mathrm{AB}}$ is line segment. The point C is such that $\overline{\mathrm{CA}} \cong \overline{\mathrm{CB}}$
To prove
Point C lies on the right bisector of $\overline{\mathrm{AB}}$
Construction
(i) Take P as midpoint of $\overline{\mathrm{AB}}$ i.e. $\overline{\mathrm{AP}} \cong \overline{\mathrm{BP}}$
(ii) Join point C to $\mathrm{A}, \mathrm{P}, \mathrm{B}$

Proof:

$\therefore \angle 1 \cong \angle 2$
$m \angle 1+m \angle 2=180^{\circ}$
Thus $\mathrm{m} \angle 1=\mathrm{m} \angle 2=90^{\circ}$

Hence $\overline{\mathrm{CP}}$ is right bisector of $\overline{\mathrm{AB}}$ and point C lies on $\overline{\mathrm{CB}}$

Theorem 10.1.3
(A.B + U.B)

In a correspondence of two triangles if three sides of one triangle are congruent to the corresponding three sides of the other, then the two triangles are congruent. (S.S.S \cong S.S.S)

Given:

In $\triangle \mathrm{ABC} \leftrightarrow \triangle \mathrm{DEF}$
$\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$ and $\overline{C A} \cong \overline{F D}$

To prove

$\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$

Construction:

Suppose that in $\triangle \mathrm{DEF}$ the side $\overline{\mathrm{EF}}$ is not smaller than any of the remaining two sides. On $\overline{\mathrm{EF}}$ construct a $\triangle \mathrm{MEF}$ in which, $\angle \mathrm{FEM} \cong \angle \mathrm{B}$ and $\overline{\mathrm{ME}} \cong \overline{\mathrm{AB}}$. Join D and M , as shown in the above figures we label some of the angles as $1,2,3$ and 4
Proof:

Statements

Reasons
In $\triangle \mathrm{ABC} \leftrightarrow \Delta \mathrm{MEF}$
$\overline{\mathrm{BC}} \cong \overline{\mathrm{EF}}$
$\angle \mathrm{B}=\angle \mathrm{FEM}$
$\overline{A B} \cong \overline{M E}$
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{MEF}$
and $\overline{\mathrm{CA}} \cong \overline{\mathrm{FM}}$
also $\overline{\mathrm{CA}} \cong \overline{\mathrm{FD}}$ \qquad (ii)
$\therefore \overline{\mathrm{FM}} \cong \overline{\mathrm{FD}}$

Given
Construction
Construction
S.A.S Postulate
(Corresponding sides of congruent triangles)
Given
\{ From (i) and (ii) \}

In \triangle FDM $\angle 2 \cong \angle 4$ \qquad (iii)

Similarly $\angle 1 \cong \angle 3$ \qquad (iv)
$\therefore \mathrm{m} \angle 2+\mathrm{m} \angle 1=\mathrm{m} \angle 4+\mathrm{m} \angle 3$
$\therefore \mathrm{m} \angle \mathrm{EDF}=\mathrm{m} \angle \mathrm{EMF}$
Now in $\triangle \mathrm{DEF} \leftrightarrow \triangle \mathrm{MEF}$
$\overline{\mathrm{FD}} \cong \overline{\mathrm{FM}}$
and $\mathrm{m} \angle \mathrm{EDF} \cong \angle \mathrm{EMF}$
$\overline{\mathrm{DE}} \cong \overline{\mathrm{ME}}$
$\therefore \triangle \mathrm{DEF} \cong \triangle \mathrm{MEF}$
also $\triangle \mathrm{ABC} \cong \triangle \mathrm{MEF}$
Hence $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Corollary
(U.B)

If two isosceles triangles are formed on the same side of their common base, the line through their vertices would be the right bisector of their common base.

Given

$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are formed on the same side of $\overline{B C}$ such that
$\overline{A B} \cong \overline{A C}, \overline{D B} \cong \overline{D C}, \overline{A D}$ meets $\overline{B C}$ at E.

To prove
$\overline{B E} \cong \overline{C E} \cdot \overline{A E} \perp \overline{B C}$
Proof

Statements

In $\triangle \mathrm{ADB} \leftrightarrow \triangle \mathrm{ADC}$

$$
\begin{aligned}
& \overline{\mathrm{AB}} \cong \overline{\mathrm{AC}} \\
& \overline{\mathrm{DB}} \cong \overline{\mathrm{DC}} \\
& \overline{\mathrm{AD}} \cong \overline{\mathrm{AD}}
\end{aligned}
$$

$\therefore \triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$

$\therefore \angle 1=\angle 2$
In $\triangle \mathrm{ABE} \leftrightarrow \triangle \mathrm{ACE}$

$$
\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}
$$

$$
\begin{aligned}
& \angle 1 \cong \angle 2 \\
& \mathrm{AE} \cong \overline{\mathrm{AE}}
\end{aligned}
$$

$$
\triangle \mathrm{ABE} \cong \triangle \mathrm{ACE}
$$

$$
\therefore \overline{\mathrm{BE}} \cong \overline{\mathrm{CE}}
$$

Reasons

Given
Given
Common
S.S.S \cong S.S.S

Corresponding angles of $\cong \Delta s$

Given
Proved
Common
S.A.S postulate

Corresponding sides of $\cong \Delta s$
$\angle 3 \cong \angle 4 \rightarrow(i)$
$\mathrm{m} \angle 3+\mathrm{m} \angle 4=180^{\circ} \rightarrow$ (ii)
$\mathrm{m} \angle 3=\mathrm{m} \angle 4=90^{\circ} \rightarrow$ (iii)
Hence $\overline{\mathrm{AE}} \perp \overline{\mathrm{BC}}$

Corollary:

An equilateral triangle is an equiangular triangle.

Exercise 10.3

Q. 1 In the figure, $\overline{A B} \cong \overline{D C}, \overline{A D} \cong \overline{B C}$ prove that $\angle \mathrm{A} \cong \angle \mathrm{C}, \angle \mathrm{ABC} \cong \angle \mathrm{ADC}$ (A.B + U.S)

Given
In the figure $\overline{A B} \cong \overline{D C}, \overline{A D} \cong \overline{B C}$
To prove
$\angle \mathrm{A} \cong \angle \mathrm{C}$
$\angle \mathrm{ABC} \cong \angle \mathrm{ADC}$
Proof
 Statements

Reasons

In $\triangle \mathrm{ABD} \leftrightarrow \Delta \mathrm{CDB}$

$$
\begin{aligned}
& \overline{\mathrm{AB}} \cong \overline{\mathrm{DC}} \\
& \overline{\mathrm{AD}} \cong \overline{\mathrm{BC}} \\
& \overline{\mathrm{BD}} \cong \overline{\mathrm{BD}} \\
& \Delta \mathrm{ABD} \cong \Delta \mathrm{CDB}
\end{aligned}
$$

\therefore Hence $\angle \mathrm{A} \cong \angle \mathrm{C}$
$\angle 1 \cong \angle 3 \rightarrow(i)$
$\angle 2 \cong \angle 4 \rightarrow$ (ii)
$\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle 3+\mathrm{m} \angle 4$
or $\mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle \mathrm{ADC}$ $\angle \mathrm{ABC} \cong \angle \mathrm{ADC}$
Q. 2 In the figure $\overline{\mathrm{LN}} \cong \overline{\mathrm{MP}}, \overline{\mathrm{MN}} \cong \overline{\mathrm{LP}}$ prove that $\angle \mathrm{N} \cong \angle \mathrm{P}, \angle \mathrm{NME} \cong \angle \mathrm{PLM}$ (A.B $+\mathrm{U} . \mathrm{S}$)

Given

In the figure

$$
\overline{\mathrm{LN}} \cong \overline{\mathrm{MP}} \text { and } \overline{\mathrm{LP}} \cong \overline{\mathrm{MN}}
$$

To prove

Given
 Given
 Common

S.S.S \cong S.S.S

Corresponding angles of congruent triangles
Corresponding angles of congruent triangles
Corresponding angles of congruent triangles
Adding (i) and (ii)
Addition of angles postulate
$\angle \mathrm{N} \cong \angle \mathrm{P}$ and $\angle \mathrm{NML} \cong \angle \mathrm{PLM}$
Proof

Statements	Reasons
$\Delta \mathrm{LMN} \leftrightarrow \Delta \mathrm{MLP}$	Given
$\overline{\mathrm{LN}} \cong \overline{\mathrm{MP}}$	Given
$\overline{\mathrm{LP}} \cong \overline{\mathrm{MN}}$	Common
$\overline{\mathrm{LM}} \cong \overline{\mathrm{ML}}$	MATHEMATICS-9

$\triangle \mathrm{LMN} \cong \triangle \mathrm{MLP}$
$\angle \mathrm{N} \cong \angle \mathrm{P}$
$\angle \mathrm{NML} \cong \angle \mathrm{PLM}$
S.S.S \cong S.S.S
Corresponding angles of congruent triangles
Corresponding angles of congruent triangles
Q. 3 Prove that median bisecting the base of an isosceles triangle bisects the vertex angle and it is perpendicular to the base
(A.B + U.S)

Given

$\triangle \mathrm{ABC}$
(i) $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
(ii) Point P is mid point of $\overline{B C}$ i.e. $\overline{B P} \cong \overline{C P} \mathrm{P}$ is joined to A, i.e. $\overline{\mathrm{AP}}$ is median
To prove
$\frac{\angle 1 \cong \angle 2}{A P} \perp \overline{B C}$

Proof

Statements
Reasons
$\Delta \mathrm{ABP} \leftrightarrow \Delta \mathrm{ACP}$
$\overline{A B} \cong \overline{A C}$
$\overline{B P} \cong \overline{C P}$
$\overline{\mathrm{AP}} \cong \overline{\mathrm{AP}}$
$\Delta \mathrm{ABP} \cong \triangle \mathrm{ACP}$
$\angle 1 \cong \angle 2$
$\angle 3 \cong \angle 4$
$\mathrm{m} \angle 3+\mathrm{m} \angle 4=180^{\circ}$
Thus $\mathrm{m} \angle 3=\mathrm{m} \angle 4=90^{\circ}$
$\mathrm{Q} \overline{\mathrm{AP}} \perp \overline{\mathrm{BC}}$

If in the correspondence of the two right angled triangles, the hypotenuse and one side of one triangle are congruent to the hypotenuse and the corresponding side of the other, then the triangles are congruent (H.S \cong H.S).

Given
Given
Common
S.S.S \cong S.S.S

Corresponding angles of congruent triangles
Corresponding angles of congruent triangles
Adjacent supplementary angles
From equation (i) and (ii)

Theorem 10.1.4

Given

$$
\begin{aligned}
& \triangle \mathrm{ABC} \leftrightarrow \triangle \mathrm{DEF} \\
& \angle \mathrm{~B} \cong \angle \mathrm{E} \\
& \overline{C A} \cong \overline{F D}, \overline{A B} \cong \overline{D E}
\end{aligned}
$$

To Prove

$\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$

Construction
Produce $\overline{F E}$ to a point M such that $\overline{E M} \cong \overrightarrow{B C}$ and join the points D and M.
Proof

Statements	Reasons
```\(\mathrm{m} \angle \mathrm{DEF}+\angle \mathrm{DEM}=180^{\circ}\) \\ Now \(m \angle D E F=90^{\circ}\)``` $\qquad$ ```\[ \begin{equation*} \therefore \mathrm{m} \angle \mathrm{DEM}=90^{\circ} \tag{i} \end{equation*} \] \[ \text { In } \triangle A B C \leftrightarrow \triangle D E M \] \[ \overline{\mathrm{BC}} \cong \overline{\mathrm{EM}} \] \[ \angle \mathrm{ABC} \cong \angle \mathrm{DEM} \] \[ \overline{\mathrm{AB}} \cong \overline{\mathrm{DE}} \] \[ \Delta \mathrm{ABC} \cong \Delta \mathrm{DEM} \] \[ \text { and } \angle \mathrm{C}=\angle \mathrm{M} \] \[ \overline{\mathrm{CA}} \cong \overline{\mathrm{MD}} \] \[ \text { But } \overline{\mathrm{CA}} \cong \overline{\mathrm{FD}} \] \[ \overline{\mathrm{MD}} \cong \overline{\mathrm{FD}} \] In DMF \[ \angle \mathrm{F} \cong \angle \mathrm{M} \] \[ \mathrm{But} \angle \mathrm{C} \cong \angle \mathrm{M} \] \[ \angle \mathrm{C} \cong \angle \mathrm{~F} \] \[ \angle \mathrm{ABC} \cong \angle \mathrm{DEF} \] \[ \overline{\mathrm{AB}} \cong \overline{\mathrm{DE}} \] \\ Hence \(\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}\)```	Supplementary angles   Given   \{ from (i) and (ii) \}   Construction   (Each angle equal to $90^{\circ}$ )   Given   S.A.S postulate   Corresponding angles of congruent triangles   Corresponding sides of congruent triangles   Given   Each is congruent to $\overline{\mathrm{CA}}$   $\overline{\mathrm{MD}} \cong \overline{\mathrm{FD}}($ proved $)$   (Proved)   Each is congruent to $\angle \mathrm{M}$   Given   Given   (Proved)   (S.A.A $\cong$ S.A.A)

## Example



If perpendiculars from two vertices of a triangle to the opposite sides are congruent, then the triangle is isosceles. Given
In $\triangle A B C, \overline{B D} \perp \overline{A C}, \overline{C E} \perp \widehat{A B}$
Such that $\overline{B D} \cong \overline{C E}$
To prove
$\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Proof

## Statements

## Reasons

In $\triangle \mathrm{BCD} \leftrightarrow \Delta \mathrm{CBE}$
$\angle \mathrm{BDC} \cong \angle \mathrm{BEC}$

$$
\begin{aligned}
& \overline{\mathrm{BC}} \cong \overline{\mathrm{BC}} \\
& \overline{\mathrm{BD}} \cong \overline{\mathrm{CE}}
\end{aligned}
$$

$\overline{\mathrm{BD}} \perp \overline{\mathrm{AC}}, \overline{\mathrm{CE}} \perp \overline{\mathrm{AB}}$ (given)
$\Rightarrow$ each angle $=90^{\circ}$
Common hypotenuse
Given


## Exercise 10.4

Q. 1 In $\triangle \mathrm{PAB}$ of figure $\overline{P Q} \perp \overline{A B}$ and $\overline{P A} \cong \overline{P B}$ prove that $\overline{A Q} \cong \overline{B Q}$ and $\angle \mathrm{APQ} \cong \angle \mathrm{BPQ}$

## Given:

(A.B + U.B)

In $\triangle \mathrm{PAB}$

$$
\overline{P Q} \perp \overline{A B} \text { and } \overline{P A} \cong \overline{P B}
$$

To prove
$\overline{A Q} \cong \overline{B Q}$ and $\angle A P Q \cong \angle B P Q$
Proof


	Statements
	In $\triangle \mathrm{APQ} \leftrightarrow \triangle \mathrm{BPQ}$
$\overline{\mathrm{PA}} \cong \overline{\mathrm{PB}}$	
$\angle \mathrm{AQP} \cong \angle \mathrm{BQP}$	
$\overline{\mathrm{PQ}} \cong \overline{\mathrm{PQ}}$	
$\therefore \Delta \mathrm{APQ} \cong \triangle \mathrm{BPQ}$	
$\mathrm{So} \overline{\mathrm{AQ}} \cong \overline{\mathrm{BQ}}$	
and $\angle \mathrm{APQ} \cong \angle \mathrm{BPQ}$	

## Reasons

Given
Given $\overline{P Q} \perp \overline{A B}$
Common
$\mathrm{H} . \mathrm{S} \cong \mathrm{H} . \mathrm{S}$
Corresponding sides of congruent triangles
Corresponding angles of congruent triangles
Q. 2 In the figure $\mathrm{m} \angle \mathrm{C}=\mathrm{m} \angle \mathrm{D}=90^{\circ}$ and $\overline{\mathrm{BC}} \cong \overline{\mathrm{AD}}$ prove that $\overline{\mathrm{AC}} \cong \overline{\mathrm{BD}}$ and $\angle \mathrm{BAC} \cong \angle \mathrm{ABD}$

Given
(A.B + U.B)

In the figure given $\mathrm{m} \angle \mathrm{C}=\mathrm{m} \angle \mathrm{D}=90^{\circ}$
$\overline{\mathrm{BC}} \cong \overline{\mathrm{AD}}$
To Prove
$\overline{\mathrm{AC}} \cong \overline{\mathrm{BD}}$

Proof

In $\triangle \mathrm{ABD} \leftrightarrow \Delta \mathrm{BAC}$
$\overline{\mathrm{AD}} \cong \overline{\mathrm{BC}}$
$\angle \mathrm{D} \cong \angle \mathrm{C}$
$\overline{\mathrm{AB}} \cong \overline{\mathrm{BA}}$
Thus $\quad \triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$

Given
Each is equal to $90^{\circ}$
Common
$\mathrm{H}-\mathrm{S} \cong \mathrm{H}-\mathrm{S}$

$\therefore \overline{\mathrm{AC}} \cong \overline{\mathrm{BD}}$	Corresponding sides of congruent triangles
$\therefore \angle \mathrm{BAC} \cong \angle \mathrm{ABD}$	Corresponding angles of congruent triangles

Q. 3 In the figure, $\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{D}=90^{\circ}$ and $\overline{\mathrm{AD}} \cong \overline{\mathrm{BC}}$ prove that ABCD is a rectangle

$$
(\mathbf{A} . \mathbf{B}+\mathbf{U} . \mathrm{B})
$$

## Given

In the figure
$m \angle B=\mathrm{m} \angle D=90^{\circ}$ and $\overline{A D} \cong \overline{B C}$
To prove
$A B C D$ is a rectangle
Construction
Join $A$ to $C$


Proof

Statements	Reasons
In $\triangle \mathrm{ABC} \leftrightarrow \triangle \mathrm{CDA}$	Given each angle $=90^{\circ}$
$\angle \mathrm{B} \cong \angle \mathrm{D}$	Common
$\overline{\mathrm{AC}} \cong \overline{\mathrm{CA}}$	Given
$\overline{\mathrm{BC}} \cong \overline{\mathrm{DA}}$	H-S $\cong \mathrm{H}-\mathrm{S}$
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$	Corresponding sides of congruent triangles
$\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$	Corresponding angles of congruent triangles
and $\angle \mathrm{ACB} \cong \angle \mathrm{CAD}$	
Hence ABCD is a rectangle	

## Review Exercise 10

Q. 1 Which of the following statements are true and which are false?
(K.B + U.B)
(i) A ray has two end points.
(ii) In a triangle there can be only one right angle.
(iii) Three points are said to be collinear if they lie on same line.
(iv) Two parallel lines intersect at a point.
(v) Two lines can intersect only at one point.
(vi) A triangle of congruent sides has non-congruent angles.
Q. 2 If $\triangle \mathrm{ABC} \cong \Delta \mathrm{LMN}$, then

(i) $\mathrm{m} \angle \mathrm{M} \cong \mathrm{m} \angle \mathrm{B}=30^{\circ}$
(ii) $\mathrm{m} \angle \mathrm{N} \cong \underline{\mathrm{m}} \angle \mathrm{C}=60^{\circ}$
(iii) $\mathrm{m} \angle \mathrm{A} \cong \underline{\mathrm{m}} \angle \mathrm{L}=90^{\circ}$
Q. 3 If $\Delta \mathrm{ABC} \cong \Delta \angle \mathrm{LMN}$ then find the value of $x$.
(A.B + K.B)

$\mathrm{m} \angle \mathrm{N}=\mathrm{m} \angle \mathrm{C}=60^{\circ}$
$\mathrm{m} \angle \mathrm{N}=x=60^{\circ}$
Sum of three angles in a triangle is $180^{\circ}$
So $\quad x+80^{\circ}+40^{\circ}=180^{\circ}$
$x+120^{\circ}=180^{\circ}$
$x=180^{\circ}-120^{\circ}$
$x=60^{\circ}$
Q. 4 Find the value of unknowns for the given congruent triangles.
(A.B + K.B)

It is an isosceles triangle

$$
\sqrt{\text { and }} \begin{aligned}
m \overline{A B} & =m \overline{A C} \\
m \angle B & =m \angle C
\end{aligned}
$$

when we draw a perpendicular from point $A$ to $B C$, it bisects
So $\quad m \overline{B D} \cong m \overline{D C}$
$5 \mathrm{~m}-3=2 \mathrm{~m}+6$
$5 m-2 m=6+3$


$$
\begin{aligned}
3 \mathrm{~m} & =9 \\
\mathrm{~m} & =\frac{9}{3}
\end{aligned}
$$

Opposite angles are congruent
$\sqrt[\sim]{\sim}$

$$
\begin{gathered}
m \angle B=m \angle C \\
55=5 x+5 \\
55-5=5 x
\end{gathered}
$$

$$
\frac{50}{5}=x
$$

$$
x=10
$$

Q. 5 If $\triangle \mathrm{PQR}=\triangle \mathrm{ABC}$, then find the unknowns
(A.B + K.B)


By definition of congruent triangles
$\overline{\mathrm{RP}}=\overline{\mathrm{AC}} \quad$ and $\quad \overline{A B}=\overline{Q P} \quad$ and $\quad \overline{\mathrm{BC}}=\overline{\mathrm{QR}}$
$5=y-1$
$5+1=y$

$$
3 \mathrm{~cm}=x \quad \mathrm{z}=4 \mathrm{~cm}
$$

$y=6 \mathrm{~cm}$

