Right Bisector of a line segment

A line is called a right bisector of a line segment if it is perpendicular to the line segment and passes through its mid-point.

In the above ℓ is called right bisector of line segment $A B$, if $\ell \perp \overline{A B}$ and $m \overline{A C}=m \overline{C B}$.

Bisector of angle

(K.B + A.B)

A ray $\overrightarrow{B P}$ is called the bisector of $m \angle A B C$ if P is a point in the interior of the angle and $m \angle A B P=m \angle P B C$

Or
A ray is called bisector of an angle if it divides the angle into two equal parts.

Theorem 12.1.1

Statement:

Any point on the right bisector of a line segment is equidistant from its end points.

Given

A line $L M$ intersects the line segment AB at the point C Such that
$L M \perp \overline{A B}$ and $\overline{A C} \cong \overline{B C}$. P is a point on $\stackrel{L M}{ }$
To prove
$\overline{P A} \cong \overline{P B}$
Construction

Join P to the points A and B
Proof

Statements

Reasons

In $\triangle A C P \leftrightarrow \triangle B C P$
$\overline{A C} \cong \overline{B C}$
$\angle A C P \cong \angle B C P$
$\overline{P C} \cong \overline{P C}$
$\therefore \triangle A C P \cong \triangle B C P$
Hence $\overline{P A} \cong \overline{P B}$

Given

Given $\overline{P C} \perp \overline{A B}$, so that each \angle at $C=90^{\circ}$

Common
S.A.S Postulate
(Corresponding sides of congruent triangles)

Theorem 12.1.2

Join P to C , the midpoint of $\overline{A B}$
Proof

Statements	Reasons
In $\triangle A C P \leftrightarrow \Delta B C P$ $\begin{aligned} & \overline{P A} \cong \overline{P B} \\ & \overline{P C} \cong \overline{P C} \\ & \overline{A C} \cong \overline{B C} \\ & \therefore \triangle A C P \cong \triangle B C P \\ & \angle A C P \cong \angle B C P \end{aligned}$ But $m \angle A C P+m \angle B C P=180^{\circ}$ \qquad (ii) $\therefore m \angle A C P=m \angle B C P=90^{\circ}$ i.e $\overline{P C} \perp \overline{A B}$ \qquad (iii) Also $\overline{C A} \cong \overline{C B}$ \qquad (iv) $\therefore \overline{P C}$ is a right bisector of $\overline{A B}$	Given Common Construction S.S.S $\cong S . S . S$ Corresponding angles of congruent triangles Supplementary angles From (i) and (ii) $m \angle A C P=90^{\circ}$ (Proved) Construction from (iii) and (iv)

i.e. the point P is on the right bisector of $\overline{A B}$

Exercise 12.1

Q. 1 Prove that the centre of a circle is on the right

bisectors of each of its chords.
 (K.B + U.B)

Given

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the three non-collinear points.

To Prove:

The centre of the circle is on the right bisector of each of its chord.

Construction

Join B to C, A take $\overleftrightarrow{P Q}$ is right bisector of $\overline{A B}$ and $\overleftrightarrow{R S}$ right bisector of BC , they intersect at O .
 Join O to A, B and C.
$\therefore \mathrm{O}$ is the centre of circle.
Proof

Statements	Reasons
$\overline{O B} \cong \overline{O C}$	O lies on the right bisector of $\overline{B C}$
$\begin{equation*} \overline{O A} \cong \overline{O B} \tag{ii} \end{equation*}$ \qquad	O lies on the right bisector of $\overline{A B}$
$\overline{O A}=\overline{O B}=\overline{O C}$	From (i) and (ii)
Hence, O is the only point equidistant from the points A, B, C. $\therefore O$ is center of circle which lies on the right bisector of each of its chord.	

Given

A.B.C are three non collinear points and circle passing through these points.

To prove

Center of the circle passing through vertices A, B and C.
Construction
(i) Join B to A and C.

(ii) Take $\overleftrightarrow{Q T}$ right bisector of $\overline{B C}$ and take also $\overleftrightarrow{P R}$ right bisector of $\overline{A B}$.
$\overrightarrow{P R}$ and $\overrightarrow{Q T}$ intersect at point O . joint O to A, B and C . O is the center of the circle.

Proof

Q. 3 Three villages P, Q and R are not on the same line. The people of these villages want to make a children park at such a place which is equidistant from these three villages. After fixing the place of Children Park prove that the park is equidistant from the three villages.
(K.B + U.B)

Given
$\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are three villages not on the same straight line.
To Find
The point equidistant from $\mathrm{P}, \mathrm{R}, \mathrm{Q}$.
Construction
(i) Joint Q to P and R .
(ii) Take $\overrightarrow{A B}$ right bisector of $\overline{P Q}$ and $\overrightarrow{C D}$ right
 bisector of $\overrightarrow{Q R} . \overline{\mathrm{AB}}$ and $\stackrel{\rightharpoonup}{C D}$ intersect at O .
(iii) Join 0 to $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ The place of children part at point O .

Proof

Statements	Reasons
$\overline{O Q} \cong \overline{O R}$	O is on the right bisector of $\overline{\mathrm{QR}}$
$\overline{O P} \cong \overline{O Q}$	O is on the right bisector of PQ
$\overline{O P} \cong \overline{O Q} \cong \overline{O R} \quad$ (iii) $\quad \square \square$	From (i) and (ii) \checkmark
$\therefore O$ is equidistant from P, Q and $\mathrm{R}<$	From (iii)
Hence, point O is equidistant from three villages.	

Theorem 12.1.3

(K.B + A.B)

The right bisectors of the sides of a triangle are concurrent.

Given
$\triangle A B C$

To prove

The right bisectors of $\overline{A B}, \overline{B C}$ and $\overline{C A}$ are concurrent.
Construction
Draw the right bisectors of $\overrightarrow{A B}$ and $\overrightarrow{B C}$ which meet each other at the point O . Join O to A, B and C .
Proof

Statements	Reasons
$\overline{O A} \cong \overline{O B} \longrightarrow$ (i)	(Each point on right bisector of a segment is equidistant from its end points)
$\overline{O B} \cong \overline{O C} \longrightarrow \overline{O A} \cong$	As in (i) from (i) and (ii) \therefore Point O is on the right bisector of $\overline{C A} \rightarrow$ (iv) But point O is on the right bisector of $\overline{A B}$ and of
(O is equidistant from A and C) $\overline{B C} \longrightarrow$ (v) Hence the right bisectors of the three sides of triangle are concurrent at O	Construction
\{from (iv) and (v) \}	

(a) The right bisectors of the sides of an acute triangle intersect each other inside the triangle.
(b) The right bisectors of the sides of a right triangle intersect each other on the hypotenuse.
(c) The right bisectors of the sides of an obtuse triangle intersect each other outside the triangle.
Theorem 12.1.4
Any point on the bisector of an angle is equidistant from its arms.

Given

A point P is on $\overrightarrow{O M}$, the bisector of $\angle A O B$

To Prove

 $\overline{P Q} \cong \overline{P R}$ i.e P is equidistant from $\stackrel{\text { un }}{O A}$ and $\frac{\text { um }}{O B}$Construction
Draw $\overline{P R} \perp \stackrel{\text { un }}{O A}$ and $\overline{P Q} \perp \stackrel{\text { unm }}{O B}$ Proof

Statements

In $\triangle P O Q \leftrightarrow \triangle P O R$
$\widehat{O P} \cong \overrightarrow{O P}$
$\angle P Q O \cong \angle P R O$
$\angle P O Q \cong \angle P O R$
$\therefore \triangle P O Q \cong \triangle P O R$
Hence $\overline{P Q} \cong \overline{P R}$

Reasons

Common
Construction
Given
$S . A . A \cong S . A . A$
(Corresponding sides of congruent triangles)

Theorem 12.1.5 (Converse of Theorem 12.1.4)

Any point inside an angle, equidistant from its arms, is on the bisector of it.
Given
Any point P lies inside $\angle A O B$, such that
$\overline{P Q} \cong \overline{P R}$, where $\overline{P Q} \perp \stackrel{\text { unu }}{O B}$ and $\overline{P R} \perp \stackrel{\mathrm{Lu}}{O A}$
To prove
Point P is on the bisector of $\angle A O B$
Construction
Join P to O
Proof

Statements

Reasons
In $\triangle P O Q \leftrightarrow \triangle P O R$

Statements	Reasons
In $\triangle P O Q \leftrightarrow \triangle P O R$ $\begin{aligned} & \angle P Q O \cong \angle P R O \\ & \overline{P O} \cong \overline{P O} \\ & \overline{P Q} \cong \overline{P R} \\ & \therefore \triangle \mathrm{POQ} \cong \triangle \mathrm{POR} \end{aligned}$ Hence $\angle \mathrm{POQ} \cong \angle \mathrm{POR}$ i.e, P is on the bisector of $\angle \mathrm{AOB}$	Given (Right angles) Common Given $\mathrm{H} . \mathrm{S} \cong \mathrm{H} . \mathrm{S}$ (Corresponding angles of congruent triangles)

$\overline{P O} \cong \overline{P O}$
$\overline{P Q} \cong \overline{P R}$
$\therefore \triangle \mathrm{POQ} \cong \triangle \mathrm{POR}$
Hence $\angle \mathrm{POQ} \cong \angle \mathrm{POR}$
i.e, P is on the bisector of $\angle \mathrm{AOB}$

Exercise 12.2

Q. 1 In a quadrilateral $\mathrm{ABCD} \overline{A B} \cong \overline{B C}$ and the right bisectors of $\overline{A D}, \overline{C D}$ meet each other at point N. Prove that $\overline{B N}$ is a bisector of $\angle A B C$
(K.B + A.B)

Given
In the quadrilateral ABCD
$\overline{A B} \cong \overline{B C}$
$\overline{N M}$ is right bisector of $\overline{C D}$
$\overline{P N}$ is right bisector of $\overline{A D}$
They meet at N
To prove
$\overline{B N}$ is the bisector of angle ABC
Construction join N to A,B,C,D Proof

Q. 2 The bisectors of $\angle A, \angle B$ and $\angle C$ of a quadrilateral ABCP meet each other at point
O. Prove that the bisector of $\angle P$ will also pass through the point O. (K.B + ABB)

Given
ABCP is quadrilateral. $\overline{\mathrm{AO}}, \overline{\mathrm{BO}}, \overline{\mathrm{CO}}$ are bisectors of $\angle A, \angle B$ and $\angle C$ meet at point O .
To prove
$\overline{\mathrm{PO}}$ is bisector of $\angle P$

Construction:

Join P to O .
Draw $\overline{O Q} \perp \overline{A P}, \overline{O N} \perp \overline{P C}$ and $\overline{O L} \perp \overline{A B}, \overline{O M} \perp \overline{B C}$
Proof:

Q. 3 Prove that the right bisector of congruent sides of an isosceles triangle and its altitude are concurrent.

Given

$\triangle A B C$
$\overline{A B} \cong \overline{A C}$ due to isosceles triangle $\overline{P M}$ is right bisector of $\sqrt{A B}$
$\overline{Q N}$ is right bisector of $\overline{A C}$
$\overrightarrow{P M}$ and $\overrightarrow{Q N}$ intersect each other at point O

To Prove

The altitude of $\triangle A B C$ lies at point O
Join A to O and extend it to cut $\overline{B C}$ at D .

Reasons

Given

Dividing both side by 2
$\overline{A Q} \cong \overline{A P}$
In $\triangle A Q O \leftrightarrow \triangle A P O$
$\angle A P O \cong \angle A Q O$
$\overline{A Q} \cong \overline{A P}$
$\overline{A O} \cong \overline{A O}$
$\triangle A P O \cong \triangle A Q O$
$\angle P A O \cong \angle Q A O$
(i)
$\triangle B A D \leftrightarrow \triangle C A D$
$\overline{A B} \cong \overline{A C}$
$\overline{A D} \cong \overline{A D}$
$\angle B A D \cong \angle C A D$
$\triangle B A D \cong \triangle C A D$
$\angle O D B \cong \angle O D C \rightarrow(i)$
$m \angle O D M+m \angle O D C=180^{\circ} \rightarrow(i i)$
$m \angle O D M \cong m \angle O D C=90^{\circ} \rightarrow($ iii $)$
$\therefore \overline{A D} \perp \overline{B C}$
Point 0 lies on altitude $\overline{A D}$

$$
\overline{P M} \perp \overline{A B}, \overline{Q N} \perp \overline{A C}
$$

Each 90° (Given)
Already Proved
Common
$H . S \cong H . S$
Corresponding angles of congruent triangles

Given
Common
Proved from (i)
$S . A . S \cong S . A . S$
Each angle is 90° (Given)
Supplementary angle
From (i) and (ii)
From (iii)
(K.B + A.B)
Q. 4 Prove that the altitudes of a triangle are concurrent.

Given

In $\triangle A B C$
$\widehat{\mathrm{AD}}, \widehat{\mathrm{BE}}, \overline{\mathrm{CF}}$ are its altitiudes
i.e $\overline{\mathrm{AD}} \perp \overline{\mathrm{BC}}, \overline{\mathrm{BE}} \perp \overline{\mathrm{AC}}, \overline{\mathrm{CF}} \perp \overline{\mathrm{AB}}$

To Prove
$\overline{\mathrm{AD}}, \overline{\mathrm{BE}}$ and $\overline{\mathrm{CF}}$ are concurrent

Construction:

Passing through A, B, C take
$\overline{R Q}\|\overline{B C}, \overparen{R P}\| \overline{A C}$ and $\widehat{Q P} \| \overline{A B}$ respectively forming a $\triangle \mathrm{PQR}$
Proof

Statements
$\overline{\mathrm{BC}} \| \widehat{\mathrm{AQ}}$
$\overline{\mathrm{AB}} \| \overline{\mathrm{QC}}$
$\therefore \mathrm{ABCQ}$ is a P^{gm}
Hence $\overline{\mathrm{AQ}} \% \overline{\mathrm{BC}}$
Similarly $\overline{\mathrm{AB}} \neq \overline{\mathrm{QC}}$
Hence point A is midpoint RQ
And $\overline{\mathrm{AD}} \perp \overline{\mathrm{BC}}$
$\overline{\mathrm{BC}} \| \overline{\mathrm{RQ}}$
$\overline{\mathrm{AD}} \| \overline{\mathrm{RQ}}$
Thus $\overline{\mathrm{AD}} \perp$ is right bisector of $\overline{\mathrm{RQ}}$
similarly $\overline{\mathrm{BE}}$ is a right bisector of $\overline{\mathrm{RP}}$ and
$\overline{\mathrm{CF}}$ is right bisector of PQ
$\therefore \perp^{\mathrm{s}} \overline{\mathrm{AD}}, \overline{\mathrm{BE}}, \overline{\mathrm{CF}}$ are right bisector of sides of $\triangle P Q R$
$\therefore \overline{\mathrm{AD}}, \overline{\mathrm{BE}}$ and $\overline{\mathrm{CF}}$ are
Concurrent
Theorem12.1.6

Reasons
Construction

Construction

Given
Opposite sides of parallelogram ABCQ
$(K . B+A . B)$

The bisectors of the angles of a triangle are concurrent Given
$\triangle \mathrm{ABC}$

To Prove

The bisector of $\angle \mathrm{A}, \angle \mathrm{B}$, and $\angle \mathrm{C}$ are concurrent
Construction:
Draw the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ which intersect at point I . From I, draw
$\overline{\mathrm{IF}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ID}} \perp \overline{\mathrm{BC}}$ and $\overline{\mathrm{IE}} \perp \overline{\mathrm{CA}}$

Proof

Statements
$\overline{I D} \cong \overline{I F}$
$\therefore \overline{\mathrm{IE}} \cong \overline{\mathrm{IF}}$
So the point I is on the bisector of $\angle \mathrm{A} \ldots$ (i)
Also the point I is on the bisectors of $\angle \mathrm{ABC}$ and $\angle \mathrm{BCA} \ldots$ (ii) Similarly Thus the bisector of $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ are concurrent at I

Note
(K.B + A.B)

In practical geometry also, by constructing angle bisectors of a triangles, we shall verify that they are concurrent.

Exercise 12.3

Q. 1 Prove that the bisectors of the angles of base of an isosceles triangle intersect each other on its altitude.

Given
An isosceles triangle ABC .
To Prove
Angle bisector of $\angle B$ and $\angle C$ intersect each other at altitude.

Construction

Draw $\overline{A D} \perp \overline{B C}$, also draw angle bisectors of $\angle B$ and $\angle C$ which meet each other at point O . Label the angles $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5, \angle 6, \angle 7, \angle 8$ as shown in the figure.

Proof	
Statements	Reasons
In $\angle r t \triangle B D O \leftrightarrow \triangle C D O \sim$ 为	3
$\overline{B D} \cong \overline{C D}$	Construction
$\angle 7 \approx 48$ OU	Right Angle
$\overline{O D} \cong \overline{O D}$	Common
$\triangle B D O \cong \triangle C D O$	$H . S \cong H-S$
$\overline{O B} \cong \overline{O C} \quad \rightarrow(\mathrm{i})$	Corresponding sides of congruent triangles
Point O is on altitude	From (i)

Prove that the bisectors of two exterior and third interior angle of a triangle are concurrent
(K.B + A.B)

Given

In $\triangle \mathrm{ABC}, \overline{\mathrm{CL}}$ is bisector of interior angle $\mathbb{Z \mathrm { C }}, \overline{\mathrm{AT}}$ and $\overrightarrow{\mathrm{BS}}$ are bisectors of exterior angles $\angle \mathrm{ABQ}$ and $\angle \mathrm{BAP}$ respectively.

To Prove

Bisectors of interion angle $\angle \mathrm{C}, \angle \mathrm{ABQ}$ and $\angle \mathrm{BAP}$ are concurrent.
Construction
Draw $\overline{\mathrm{OM}} \perp \overrightarrow{\mathrm{CQ}}, \overrightarrow{\mathrm{OL}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ON}} \perp \overrightarrow{\mathrm{CP}}$
Proof

Statements

Reasons

$$
\begin{align*}
& \overline{\mathrm{ON}} \cong \overline{\mathrm{OM}} \ldots \text { (i) } \\
& \overline{\mathrm{OL}} \cong \overline{\mathrm{OM}} \ldots(\mathrm{ii)} \\
& \overline{\mathrm{ON}} \cong \overline{\mathrm{OL}} \ldots \ldots . . \text { (iii) } \tag{iii}
\end{align*}
$$

Hence point O lies on the bisector of $\angle \mathrm{C}$

Theorem 12.1.4
Theorem 12.1.4
From (i) and (ii)
From (iii)

Review Exercise 12

Q. 1 Which of the following are true and which are false?
(i) Bisection means to divide into two equal parts
(ii) Right bisection of line seoment means to draw perpendicular which passes through the midpoint of line segment
(True)
(iii) Any point on the right bisector of a line segment is not equidistant from its end points
(iv) Any point equidistant from the end points of a line segment is on the right bisector of it
(v) The right bisectors of the sides of a triangle are not concurrent
(vi) The bisectors of the angles of a triangle are concurrent
(vii) Any point on the bisector of an angle is not equidistant from its arms
(viii) Any point inside an angle equidistant from its arms, is on the bisector of it
Q. 2 If $\stackrel{\mathrm{Sum}}{\mathrm{CD}}$ is right bisector of line segment $\overline{\mathrm{AB}}$, then
(i) $m \overline{O A}=$ \qquad (ii) $\mathrm{m} \overline{\mathrm{AQ}}=$ \qquad
(K.B + U.B)

Solution:

(i) $\mathrm{m} \overline{\mathrm{OA}}=\mathrm{m} \overline{\mathrm{OB}}$
(ii) $\mathrm{mAQ}=m \overline{B Q}$
Q. 3 Define the following

$$
(\mathbf{K} . \mathbf{B}+\mathbf{U} . \mathbf{B})
$$

(i) Right Bisector of a Line Segment
(LHR 2017, GRW 2016, SWL 2014, 16, 17, BWP 2015, 16, SGD 2013, 15, 16, 17, RWP 2013, FSD 2013, D.G.K 2015)

A line l is called a right bisector of a line segment $A B$ if l is perpendicular to the line segment and passes through its midpoint.
(ii) Bisector of an Angle
(GRW 2014, 16, 17, FSD 2013, 16, MTN 2013, 14, 15, SGD 2013, 15)
A ray BP is called the bisector of $\mathrm{m} \angle \mathrm{ABC}$, if P is a point in the interior of the angle and $\mathrm{m} \angle \mathrm{ABP}=\mathrm{m} \angle \mathrm{PBC}$.

Q. 4 The given triangle ABC is equilateral triangle and $\overline{\mathrm{AD}}$ is bisector of angle A , then find, the values of unknown x^{0}, y^{0} and z^{0}.
(MTN 2013)
(K.B + U.B)

Solution

In equilateral triangle all side are equal to each and each angle of the triangle equal to
60°. i.e. $m \angle A=m \angle B=m \angle C=60^{\circ}$
So
$\mathrm{m} \angle \mathrm{B}=\mathrm{z}^{\circ}=60^{\circ}$
$\mathrm{m} \angle \mathrm{A}=60^{\circ}$
$\mathrm{x}^{\circ}=\mathrm{y}^{\circ}$
($\overline{\mathrm{AD}}$ is the bisector of $\angle \mathrm{A}$)
$x^{\circ}=\frac{1}{2} m \angle A$
$=\frac{1}{2} \times 60^{\circ}$
$x^{\circ}=30^{\circ}$

$y^{\circ}=30^{\circ} \quad\left(\because x^{\circ}=y^{\circ}\right)$
So $x^{0}=y^{0}=30^{\circ}$
Q. 5 In the given congruent triangle LMO and LNO find the unknowns x and m given
$\Delta \mathrm{LMO} \cong \Delta \mathrm{LNO}$
$m \overline{\mathrm{LM}}=m \overline{\mathrm{LN}}$
(Corresponding sides of $\cong \Delta$)
$2 x+6=18$
$2 x=18-6$
$2 x=12$
$x=\frac{\not 22^{6}}{\not 2}$
$x=6$ unit
(A.B + U.B)
$m \overline{\mathrm{MO}}=m \overline{\mathrm{ON}}$
(Corresponding sides of $\cong \Delta$)
$\therefore m=12$ unit
Q. 6 CD is right bisector of the line segment AB (GRW 2015, D.G.K 2014) (K.B + U.B)
(i) If $m \overline{A B}=6 \mathrm{~cm}$ then find the $m \overline{A L}$ and $m \overline{L B}$

Solution

L is the midpoint of $\overline{\mathrm{AB}}$
$\therefore m \overline{A L}=m \overline{L B}$
$m \overline{A L} \subseteq \frac{1}{2} m \overline{A B}=\frac{1}{2} \times 6$
So $\bar{m} \overline{\mathrm{AL}}=3 \mathrm{~cm}$
$m \overline{\mathrm{LB}}=3 \mathrm{~cm} \quad(\therefore m \overline{A L}=m \overline{L B})$

(ii) If $m \overline{B D}=4 \mathrm{~cm}$ then find $m \overline{\mathrm{AD}}$

$$
\begin{aligned}
& m \overline{A D}=m \overline{B D} \quad(\text { Point } \mathrm{D} \text { lies on the right bisector } \mathrm{AB}) \\
& m \overline{A D}=4 \\
& m \overline{A D}=4 \mathrm{~cm}
\end{aligned}
$$

SALF TEST

Time: 40 min
Marks: 25
Q. 1 Mark the Correct multiple choice question.
(7×1=7)

1. Each angle in an equilateral triangle is
-------in measure
(A) 30°
(B) 45°
(C) 60°
(D) 50°
2. If two adjacent angles are supplementary then their uncommon arms are-------
(A) Collinear
(B) Concurrent
(C) Congruent
(D) None of these
3. A Ray has \qquad end point
(A) One
(B) Two
(C) Three
(D) None of these
4. Find unknown angle in triangle LMN.

(A) 30°
(B) 60°
(C) 80°
(D) 90°
5. Each diagonal of a parallelogram bisects it into \qquad congruent triangles.
(A) Four
(B) Six
(C) Two
(D) One
6. The line segment, joining the mid-points of two sides of a triangle is parallel to the third side and is equal to \qquad of its length
(A) Half
(B) Double
(C) $\frac{1}{4}$ th
(D) $\frac{1}{3}$
7. Any point on the bisector of an angle is equidistant from its \qquad
(A) Arms
(B) Vertex
(C) Medians
(D) Any point
Q. 2 Give Short Answers to following Questions.
(i) Find the value of unknown for the given congruent triangles.

(ii) Define congruent triangles.
(iii) State S.A.S postulate.
(iv) One angle of a parallelogram is 130 . Find the measure of its remaining angles.
(v) The given triangle ABC is equilateral triangle and $\overline{A D}$ is bisector of angle A , then find the values of unknowns, x^{o}, y^{o}, y^{o}.

The right bisectors if the sides of a triangle are concurrent.
Q. 3 Answer the following Questions in detail.

Any point equidistant from the end points of a line segment is on the right bisector of it.

NOTE: Parents or guardians can conduct this test in their supervision in order to check the skill of students.

