

в

Construction

On \overline{AC} take a point D such that

 $\overline{AD} \cong \overline{AB}$. Join B to D so that $\triangle ADB$ is an isosceles triangle. Label $\angle 1$ and $\angle 2$ as shown in the given figure.

Proof

l
n

Example # 1

 $(\mathbf{K}.\mathbf{B} + \mathbf{A}.\mathbf{B})$

Prove that in a scalene triangle, the angle opposite to the largest side is of measure greater than 60° . (i.e., two-third of a right-angle) A

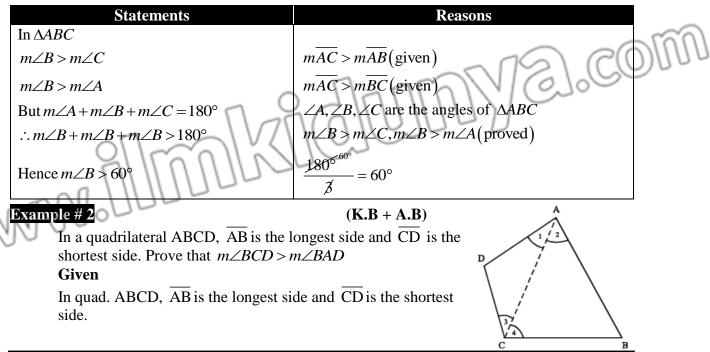
Given

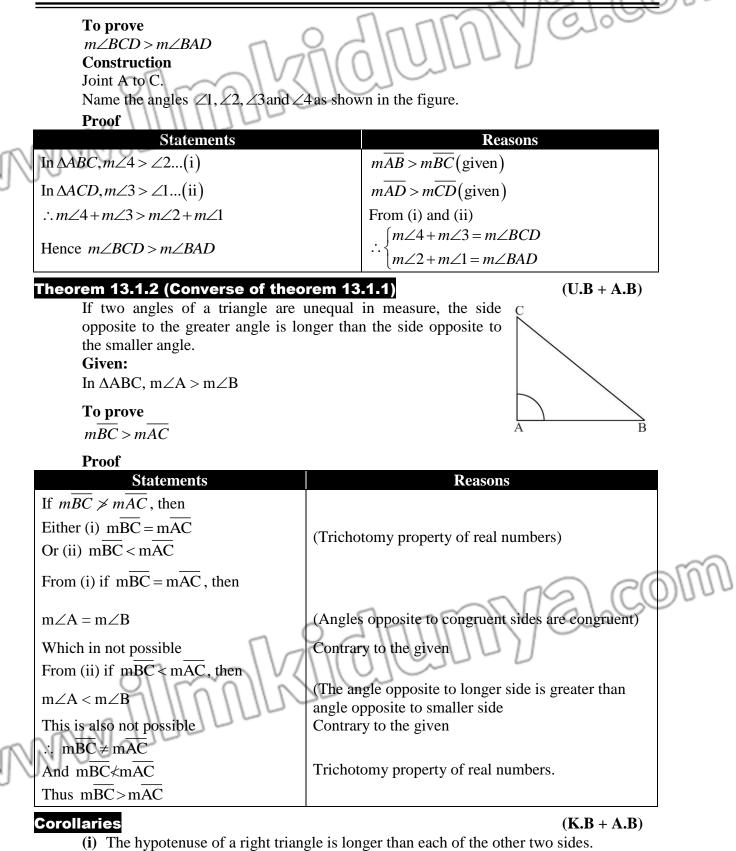
In $\triangle ABC, m\overline{AC} > m\overline{AB}, m\overline{AC} > m\overline{BC}$.

To prove

 $m \angle B > 60^\circ$

Proof

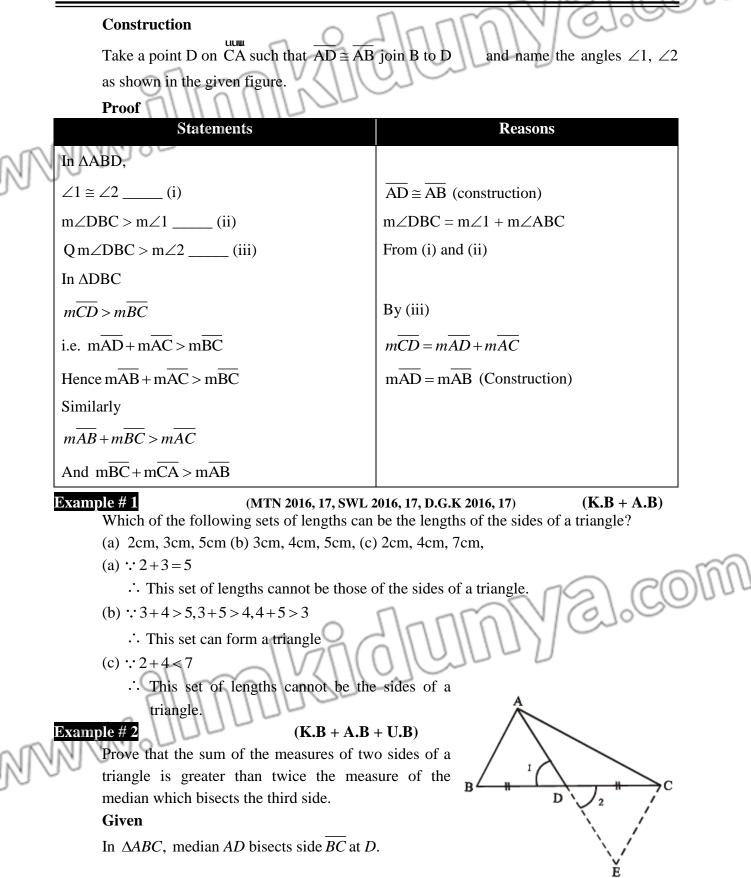




U

3

(ii) In an obtuse angled triangle, the side opposite to the obtuse angle is longer than each						
	of the other two sides.					
Example (K.B + A.B)						
211101	ABC is an isosceles triangle with base BC . On \overline{BC} a point D is taken away from C. A					
	D cuts AC at L and AB at M .					
prove that $mAL > mAM$.						
	Given					
In $\triangle ABC, AB \cong AC$	M					
D is a point on \overline{BC} away	y from C					
	D cuts \overline{AC} at L and \overline{AB} at M.					
To Prove	B C D					
mAL>mAM						
Proof						
$\frac{\text{Statements}}{\text{In } \Delta ABC}$	Reasons					
$\angle B = \angle 2(i)$	$\overline{AB} = \overline{AC}$ (given)					
In ΔMBD	AB-AC (given)					
$m \angle 1 > m \angle B(ii)$	$(\angle 1 \text{ is an ext.} \angle \text{ and } \angle B \text{ is its internal opposite } \angle)$					
$\therefore m \angle 1 > m \angle 2(iii)$	From (i) and (ii)					
In ΔLCD						
$m \angle 2 > m \angle 3$	$(\angle 2 \text{ is an ext.} \angle 2 \text{ and } \angle 3 \text{ is its internal opposite } \angle 2)$					
$\therefore m \angle 1 > m \angle 3(v)$	From (iii) and (iv)					
But $m \angle 3 \cong m \angle 4$ (vi)	Vertical angles					
$\therefore m \angle 1 > m \angle 4$	From (v) and (vi)					
Hence $m\overline{AL} > m\overline{AM}$	In ΔALM , $m \angle 1 > m \angle 4$ (proved)					
	- 15 COULU					
Theorem 13.1.3	(K.B + A.B)					
The sum of the lengths of any two sides of a triangle is						
greater than the length of third side.						
Given $\triangle ABC$						
To prove						
(i) $m\overline{AB} + m\overline{AC} > m\overline{BC}$						
(ii) $mAB + mBC > mAC$						
(iii) $m\overline{BC} + m\overline{AC} > m\overline{AB}$ B C						



To prove

 $m\overline{AC} + \overline{AC} > 2m\overline{AD}$.

Construction

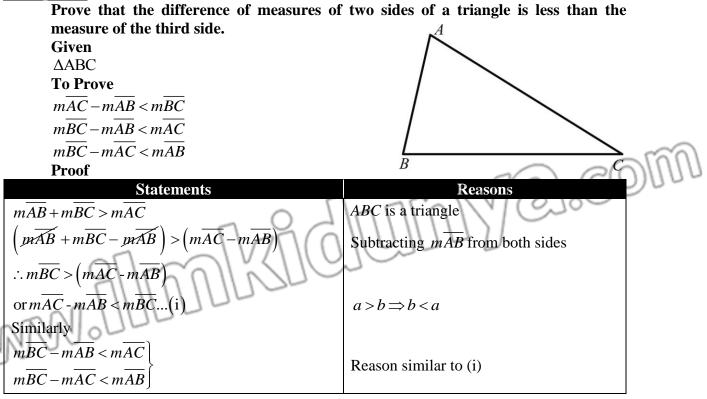
On \overrightarrow{AD} , Take a point E, such that $\overrightarrow{DE} \cong \overrightarrow{AD}$.

Join *C* to *E*. Name the angles $\angle 1, \angle 2$ as shown in the figure.

Proof **Statements** Reasons In $\triangle ABD \leftrightarrow \triangle ECD$ $\overline{BD} \cong \overline{CD}$ Given Vertical angles $\angle 1 \cong \angle 2$ Construction $\overline{AD} \simeq \overline{ED}$ $\Delta ABD \cong \Delta ECD$ S.A.S. Postulate $\overline{AB} \cong \overline{EC}...(i)$ Corresponding sides of $=\Delta s$ $m\overline{AC} + m\overline{EC} > m\overline{AE}...(ii)$ ACE is a triangle $m\overline{AC} + m\overline{AB} > m\overline{AE}...(ii)$ From (i) and (ii) Hence $m\overline{AC} + m\overline{AB} > 2m\overline{AD}$ $m\overline{AE} = 2m\overline{AD}$ (Construction)

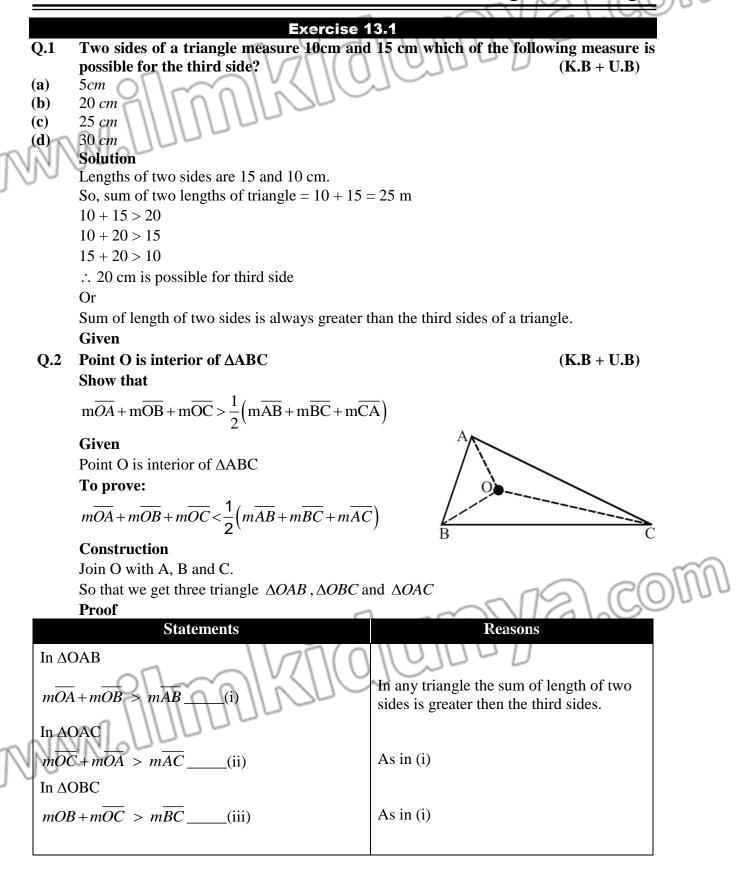
Example # 3

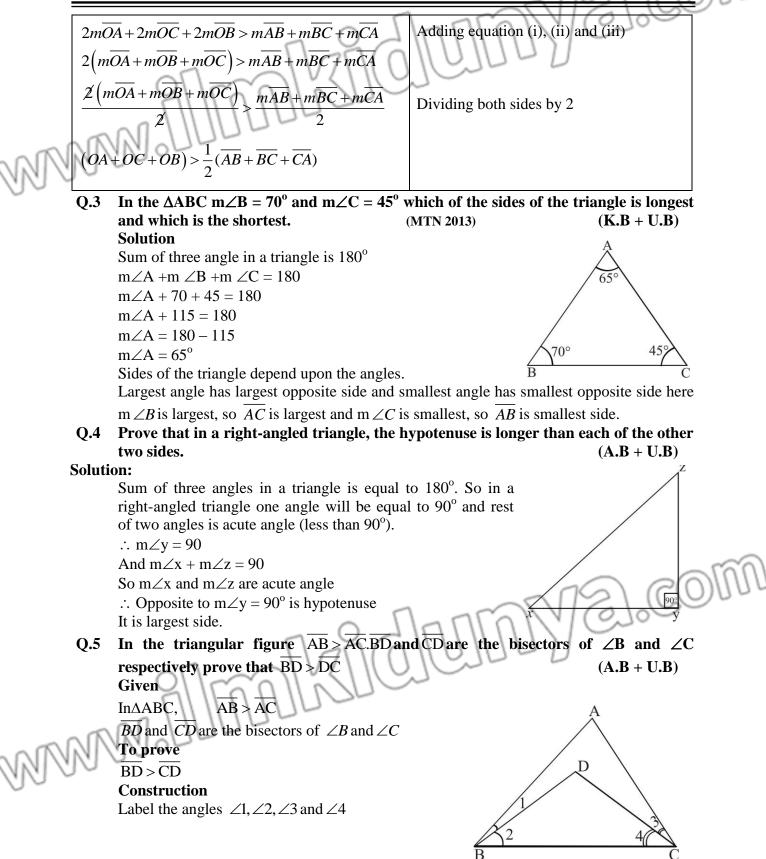
 $(\mathbf{K}.\mathbf{B} + \mathbf{A}.\mathbf{B} + \mathbf{U}.\mathbf{B})$



Unit – 13

Sides and Angles of a Triangle





0

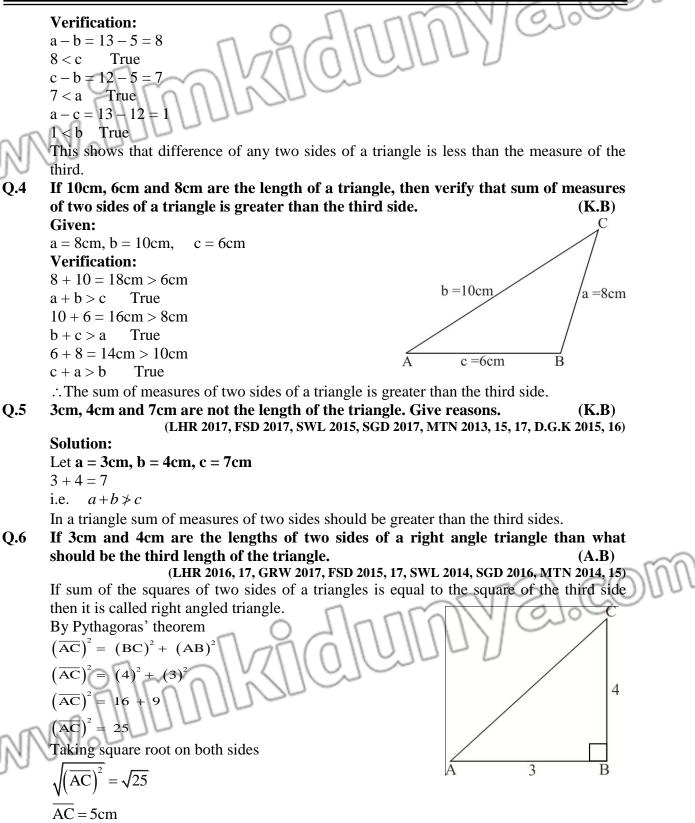
	Proof	Jana Veloge	
2	Statements In $\triangle ABC$ $\overline{AB} > \overline{AC}$ \overline{BD} is the bisector of $\angle B$ $\frac{1}{2}m \angle ACB > \frac{1}{2}m \angle ABC$ (ADC)	Given	
	$m \angle ABC$ $m \angle 2 < m \angle 4$		
	\overline{CD} is the bisector of $\angle C$	Given	
	In∆BCD		
	$\overline{BD} > \overline{DC}$	Side opposite to greater angle is greater	
Theorem 13.1.4 (K.B + U.B) From a point, out side a line, the perpendicular is the shortest distance from t			
	point to the line. Given: A line AB and a point C (Not lying on \overrightarrow{AB})and a point D on \overrightarrow{AB} such that		
$\overrightarrow{CD} \perp \overrightarrow{AB}$ To prove \overrightarrow{mCD} is the shortest distance from the point C to \overrightarrow{AB}			
	Take a point E on \overrightarrow{AB} .Join C and E to Proof		
	Statements	Reasons	
	In $\triangle CDE$ $m \angle CDB > m \angle CED$	(An exterior angle of a triangle is greater than non adjacent interior angle)	
V	But m∠CDB = m∠CDE \therefore m∠CDE > m∠CED	Supplement of right angle	
	Or m∠CED < m∠CDE Or mCD < mCE	$a > b \Longrightarrow b < a$ Side opposite to greater angle is greater.	
	But E is any point on \overrightarrow{AB}		
	Hence $m\overline{CD}$ is the shortest distance from		
	C to \overrightarrow{AB}		

Note

- (i) The distance between a line and a point not on it, is the length of the perpendicular line segment from the point to the line.
- (ii) The distance between a line and a point lying on it is zero.
- Exercise 13.2 In the figure P is any point and AB is a line which of the following is the shortest 0.1 distance between the point P and the line AB. $(\mathbf{K}.\mathbf{B} + \mathbf{U}.\mathbf{B})$ 60° B M N (a) mPL (b) mPM (c) mPN (d) mPO As we know that $\overline{PN} \perp \overrightarrow{AB}$ So PN is the shortest distance Q.2 In the figure, P is any point lying away from the line AB. Then mPL will be the shortest distance if (K.B + U.B)L (c) $m \angle PLA = 90^{\circ}$ (a) $m \angle P LA = 80^{\circ}$ (b) $m \angle PLB = 100^{\circ}$ Solution: $m \angle PLA = 90^{\circ}$ $\overline{\text{PL}} \perp \overrightarrow{\text{AS}}$ PL is the shortest distance So \angle PLA or PLS equal to 90° In the figure, \overline{PL} is perpendicular to the line AB and $\overline{LN} > m\overline{LM}$. Prove that Q.3 $m\overline{PN} > m\overline{PM}$ (K.B + U.B)A Ŕ L Ν

MATHEMATICS-9

Un	it – 13	Sides and Angles of a Triangle		
	Given $\overline{PL} \perp \overline{AB}$ $mLN > mLM$ To proved: $m\overline{PN} > m\overline{PM}$ Proof	UMYC1.00		
0	Statements	Reasons		
	PLM			
	$PLM = 90^{\circ}$ $\angle PMN > m \angle PLM$	Exterior angle of a triangle is greater than non adjacent interior angle		
m	$\angle PMN > 90^{\circ} \rightarrow (i)$			
In∆F	PLN			
	$PLN = 90^{\circ}$			
	$PNL < 90^{\circ} \rightarrow (ii)$	Acute angle of a right angle triangle		
	PMN PMN > m∠PNL	From (i) and (ii)		
	$\overline{N} > \overline{PM}$	Longer side opposite to greater angle		
	Review Exercise			
0.1				
Q.1	Which of the following are true and which are			
(i) (ii)	The angle opposite to the longer side is greater In a right-angled triangle greater angle is of 6			
(II) (III)	In an isosceles right-angled triangle, angles other th			
(iii)	A triangle having two congruent sides is called			
(IV) (V)	A perpendicular from a point to line is shortes	-		
(v) (vi)	Perpendicular to line forms an angle of 90°.	(True)		
(vii)				
(viii)				
(ix)	The distance between a line and a point on it i			
(x)	Triangle can be formed of length 2cm, 3cm an			
Q.2				
-	The angle for shortest distance from an outside point to the line is 90° angle. Q.3 If 13cm, 12cm and 5cm are the lengths of a triangle,			
Q.3				
then verify that difference of measures of any two sides of a triangle is less than the third side.				
				Given:
	a = 13, b = 5, c = 12 cm			
C 5= b A				
MATHEMATICS-9 348				



 \therefore length of third side of right angled triangle is 5cm.