

Condition for Triangle
(U.B + A.B)
(i) The sum of the lengths of any two sides of a triangle is greater than the length of the third side

$$
\begin{aligned}
& m \overline{A B}+m \overline{B C}>m \overline{A C} \\
& m \overline{B C}+m \overline{C A}>m \overline{A B} \\
& m \overline{A B}+m \overline{C A}>m \overline{B C}
\end{aligned}
$$


(ii) The difference of the lengths of any two sides of a triangle is smaller then the length of the third side.
$m \overline{A B}-m \overline{B C}<m \overline{A C}$
$m \overline{B C}-m \overline{C A}<m \overline{A B}$
$m \overline{A B}-m \overline{C A}<m \overline{B C}$


## Collinear Points

(U.B + A.B)
$m \overline{A B}+m \overline{B C}=m \overline{A C}$, where $B$ lies between $A$ and $C$.

## Shortest Distance between a Line and a Point outside it

(U.B + A.B)

From a point outside a line the perpendicular is the shortest distance from the point to the line.
Greater Angle of a Triangle
( $\mathbf{U} . \mathbf{B}+\mathbf{A . B})$
If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it.

## Longer Side of a Triangle

(U.B + A.B)

If two angles of a triangle are unequal in measure the side opposite to the greaterangle is longer than the side opposite to the smaller angle.

## Note

If two sides of a triangle are equal, then the angles apposite to them are also equal and vice-versa.

## Theorem 13.1.1

( $\mathbf{U} . \mathbf{B}+\mathbf{A . B})$
If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it.
Given:
In $\triangle \mathrm{ABC}, \mathrm{m} \overline{\mathrm{AC}}>\mathrm{m} \overline{\mathrm{AB}}$
To prove
$\mathrm{m} \angle \mathrm{ABC}>\mathrm{m} \angle \mathrm{ACB}$


## Construction

On $\overline{\mathrm{AC}}$ take a point D such that
$\overline{\mathrm{AD}} \cong \overline{\mathrm{AB}}$. Join B to D so that $\triangle \mathrm{ADB}$ is an isosceles triangle. Label $\angle 1$ and $\angle 2$ as shown in the given figure.
Proof

| Statements | Reasons |
| :---: | :---: |
| $\begin{align*} & \text { In } \triangle A B D \\ & \operatorname{m} \angle 1=m \angle 2 \ldots \tag{i} \end{align*}$ | Angles opposite to congruent sides (construction) |
| In $\triangle \mathrm{BCD}, \mathrm{m} \angle \mathrm{ACB}<\mathrm{m} \angle 2$ i.e. $\mathrm{m} \angle 2>\mathrm{m} \angle \mathrm{ACB}$ $\qquad$ (ii) | (An exterior angle of a triangle is greater than a non adjacent interior angle.) |
| $\therefore \mathrm{m} \angle 1>\mathrm{m} \angle \mathrm{ACB}$ | By (i) and (ii) |
| $\begin{aligned} & \text { But } \mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle 1+\mathrm{m} \angle \mathrm{DBC} \\ & \therefore \mathrm{~m} \angle \mathrm{ABC}>\mathrm{m} \angle 1 \end{aligned}$ | Postulate of addition of angles |
| $\therefore \mathrm{m} \angle \mathrm{ABC}>\mathrm{m} \angle 1>\mathrm{m} \angle \mathrm{ACB}$ <br> Hence $\mathrm{m} \angle \mathrm{ABC}>\mathrm{m} \angle \mathrm{ACB}$ | By (iii) and (iv) <br> (Transitive property of inequality of real number) |

## Example \# 1

Prove that in a scalene triangle, the angle opposite to the largest side is of measure greater than $60^{\circ}$. (i.e., two-third of a right-angle)
Given
In $\triangle A B C, m \overline{A C}>m \overline{A B}, m \overline{A C}>m \overline{B C}$.
To prove
$\mathrm{m} \angle \mathrm{B}>60^{\circ}$


Proof

## Reasons

In $\triangle A B C$

$$
m \angle B>m \angle C
$$

$$
m \angle B>m \angle A
$$

$$
m \overline{A C}>m \overline{B C}(\text { given })
$$

But $m \angle A+m \angle B+m \angle C=180^{\circ}$
$\therefore m \angle B+m \angle B+m \angle B>180^{\circ}$

Hence $m \angle B>60^{\circ}$

$$
m \overline{A C}>m \overline{A B} \text { (given })
$$

$$
\angle A, \angle B, \angle C \text { are the angles of } \triangle A B C
$$

$$
m \angle B>m \angle C, m \angle B>m \angle A(\text { proved })
$$

$$
\frac{180^{600^{\circ}}}{\not p}=60^{\circ}
$$

## Example \# 2

(K.B + A.B)

In a quadrilateral $\mathrm{ABCD}, \overline{\mathrm{AB}}$ is the longest side and $\overline{\mathrm{CD}}$ is the shortest side. Prove that $m \angle B C D>m \angle B A D$

## Given

In quad. $\mathrm{ABCD}, \overline{\mathrm{AB}}$ is the longest side and $\overline{\mathrm{CD}}$ is the shortest side.


To prove
$m \angle B C D>m \angle B A D$
Construction
Joint Ato C.
Name the angles $\angle 1, \angle 2, \angle 3$ and $\angle 4$ as shown in the figure.
Proof

## Statements

In $\triangle A B C, m \angle 4>\angle 2 \ldots$ (i)
In $\triangle A C D, m \angle 3>\angle 1 \ldots$ (ii)
$\therefore m \angle 4+m \angle 3>m \angle 2+m \angle 1$
Hence $m \angle B C D>m \angle B A D$

## Reasons

$m \overline{A B}>m \overline{B C}$ (given)
$m \overline{A D}>m \overline{C D}$ (given)
From (i) and (ii)
$\therefore\left\{\begin{array}{l}m \angle 4+m \angle 3=m \angle B C D \\ m \angle 2+m \angle 1=m \angle B A D\end{array}\right.$

## Theorem 13.1.2 (Converse of theorem 13.1.1)

If two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.

## Given:

In $\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{A}>\mathrm{m} \angle \mathrm{B}$
To prove

$$
m \overline{B C}>m \overline{A C}
$$



Proof


## Corollaries

(i) The hypotenuse of a right triangle is longer than each of the other two sides.
(ii) In an obtuse angled triangle, the side opposite to the obtuse angle is longer than each of the other two sides.

## Example

ABC is an isosceles triangle with base $\overrightarrow{B C}$. On $\overrightarrow{B C}$ a point $D$ is taken away from $C . A$ line segment through $D$ cuts $\overline{A C}$ at $L$ and $\overline{A B}$ at $M$.
prove that $m \overline{\mathrm{AL}}>m \overline{\mathrm{AM}}$.

## Given

In $\triangle A B C, \overline{A B} \cong \overline{A C}$
$D$ is a point on $\overrightarrow{B C}$ away from $C$
A line segment through D cuts $\overline{A C}$ at L and $\overline{\mathrm{AB}}$ at M .
To Prove

$m \overline{\mathrm{AL}}>m \overline{\mathrm{AM}}$
Proof

| Statements | Reasons |
| :--- | :--- |
| In $\triangle A B C$ | $\overline{\mathrm{AB}} \tilde{=} \overline{\mathrm{AC}}$ (given) |
| $\angle \mathrm{B} \tilde{=} \angle 2 \ldots(\mathrm{i})$ |  |
| In $\triangle M B D$ | $(\angle 1$ is an ext. $\angle$ and $\angle B$ is its internal opposite $\angle)$ |
| $m \angle 1>m \angle B \ldots($ ii $)$ | From (i) and (ii) |
| $\therefore m \angle 1>m \angle 2 \ldots($ iii $)$ | $(\angle 2$ is an ext. $\angle$ and $\angle 3$ is its internal opposite $\angle)$ |
| In $\triangle L C D$ | From (iii) and (iv) |
| $m \angle 2>m \angle 3$ | Vertical angles |
| $\therefore m \angle 1>m \angle 3 \ldots($ v) | From (v) and (vi) |
| But $m \angle 3 \cong m \angle 4 \ldots($ vi) | In $\triangle A L M, m \angle 1>m \angle 4($ proved $)$ |
| $\therefore m \angle 1>m \angle 4$ |  |
| Hence $m \overline{A L}>m \overline{A M}$ |  |

## Theorem 13.1.3

The sum of the lengths of any two sides of a triangle is greater than the length of third side.
Given $\triangle A B C$
To prove
(i) $m \overline{A B}+m \overline{A C}>m \overline{B C}$
(ii) $m \overline{A B}+m \overline{B C}>m \overline{A C}$
(iii) $m \overline{B C}+m \overline{A C}>m \overline{A B}$


## Construction

Take a point D on CA such that $\overline{\mathrm{AD}} \cong \widehat{\mathrm{AB}}$ join B to D and name the angles $\angle 1, \angle 2$ as shown in the given figure.

Proof

In $\triangle \mathrm{ABD}$,
$\angle 1 \cong \angle 2$ $\qquad$ (i)
$\mathrm{m} \angle \mathrm{DBC}>\mathrm{m} \angle 1$ $\qquad$ (ii)
$\mathrm{Q} m \angle \mathrm{DBC}>\mathrm{m} \angle 2$ $\qquad$ (iii)

In $\triangle \mathrm{DBC}$
$m \overline{C D}>m \overline{B C}$
i.e. $m \overline{A D}+m \overline{A C}>m \overline{B C}$

Hence $m \overline{A B}+m \overline{A C}>m \overline{B C}$
Similarly
$m \overline{A B}+m \overline{B C}>m \overline{A C}$
And $m \overline{B C}+m \overline{C A}>m \overline{A B}$

## Reasons

$\overline{\mathrm{AD}} \cong \overline{\mathrm{AB}}$ (construction)
$\mathrm{m} \angle \mathrm{DBC}=\mathrm{m} \angle 1+\mathrm{m} \angle \mathrm{ABC}$
From (i) and (ii)

By (iii)
$m \overline{C D}=m \overline{A D}+m \overline{A C}$
$\mathrm{m} \overline{\mathrm{AD}}=\mathrm{m} \overline{\mathrm{AB}}$ (Construction)

## Example \# 1

(MTN 2016, 17, SWL 2016, 17, D.G.K 2016, 17)
(K.B + A.B)

Which of the following sets of lengths can be the lengths of the sides of a triangle?
(a) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 5 \mathrm{~cm}$ (b) $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$, (c) $2 \mathrm{~cm}, 4 \mathrm{~cm}, 7 \mathrm{~cm}$,
(a) $\because 2+3=5$
$\therefore$ This set of lengths cannot be those of the sides of a triangle.
(b) $\because 3+4>5,3+5>4,4+5>3$
$\therefore$ This set can form a triangle
(c) $\because 2+4<7$
$\therefore$ This set of lengths cannot be the-sides of a triangle.
Example \# 2
(K.B + A.B + U.B)

Prove that the sum of the measures of two sides of a triangle is greater than twice the measure of the median which bisects the third side.

## Given

In $\triangle A B C$, median $A D$ bisects side $\overline{B C}$ at $D$.


## To prove

$m \overline{A C}+\overline{A C}>2 m \overline{A D}$.
Construction
On $\overrightarrow{\mathrm{AD}}$, Take a point E , such that $\overrightarrow{\mathrm{DE}} \rightleftharpoons \overrightarrow{\mathrm{AD}}$.
Join $C$ to $E$. Name the angles $\angle 1, \angle 2$ as shown in the figure.
Proof


## Exercise 13.1

Q. 1 Two sides of a triangle measure 10 cm and 15 cm which of the following measure is possible for the third side?
(K.B + U.B)
(a) 5 cm
(b) 20 cm
(c) 25 cm
(d) 30 cm

## Solution

Lengths of two sides are 15 and 10 cm .
So, sum of two lengths of triangle $=10+15=25 \mathrm{~m}$
$10+15>20$
$10+20>15$
$15+20>10$
$\therefore 20 \mathrm{~cm}$ is possible for third side
Or
Sum of length of two sides is always greater than the third sides of a triangle.
Given
Q. 2 Point $O$ is interior of $\triangle \mathrm{ABC}$
(K.B + U.B)

Show that

$$
\mathrm{m} \overline{O A}+\mathrm{m} \overline{\mathrm{OB}}+\mathrm{m} \overline{\mathrm{OC}}>\frac{1}{2}(\mathrm{~m} \overline{\mathrm{AB}}+\mathrm{m} \overline{\mathrm{BC}}+\mathrm{m} \overline{\mathrm{CA}})
$$

Given
Point $O$ is interior of $\triangle A B C$
To prove:

$$
m \overline{O A}+m \overline{O B}+m \overline{O C}<\frac{1}{2}(m \overline{A B}+m \overline{B C}+m \overline{A C})
$$



## Construction

Join O with A, B and C.
So that we get three triangle $\triangle O A B, \triangle O B C$ and $\triangle O A C$
Proof

## Statements

## Reasons <br> Reasons

In $\triangle \mathrm{OAB}$
$m \overline{O A}+m \overrightarrow{O B} \rightarrow m \overline{A B}$ $\qquad$ (i)

In $\triangle O A C$
$m \overline{O C}+m \overline{O A}>m \overline{A C}$ $\qquad$ (ii)

In $\triangle \mathrm{OBC}$
$m O B+m \overline{O C}>m \overline{B C}$ $\qquad$ (iii)

In any triangle the sum of length of two sides is greater then the third sides.

As in (i)

As in (i)


Largest angle has largest opposite side and smallest angle has smallest opposite side here $\mathrm{m} \angle B$ is largest, so $\overline{A C}$ is largest and $\mathrm{m} \angle C$ is smallest, so $\overline{A B}$ is smallest side.
Q. 4 Prove that in a right-angled triangle, the hypotenuse is longer than each of the other two sides.
(A.B + U.B)

## Solution:

Sum of three angles in a triangle is equal to $180^{\circ}$. So in a right-angled triangle one angle will be equal to $90^{\circ}$ and rest of two angles is acute angle (less than $90^{\circ}$ ).
$\therefore \mathrm{m} \angle \mathrm{y}=90$
And $\mathrm{m} \angle \mathrm{x}+\mathrm{m} \angle \mathrm{z}=90$
So $m \angle \mathrm{x}$ and $\mathrm{m} \angle \mathrm{z}$ are acute angle
$\therefore$ Opposite to $\mathrm{m} \angle \mathrm{y}=90^{\circ}$ is hypotenuse
It is largest side.
Q. 5 In the triangular figure $\overline{\mathrm{AB}}>\overline{\mathrm{AC}} \cdot \overline{\mathrm{BD}}$ and $\overline{\mathrm{CD}}$ are the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively prove that $\overline{\mathrm{BD}}>\overrightarrow{\mathrm{DC}}$
(A.B + U.B)

Given
$\operatorname{In} \triangle \mathrm{ABC}, \quad \overline{\mathrm{AB}}>\overline{\mathrm{AC}}$
$\overrightarrow{B D}$ and $\overline{C D}$ are the bisectors of $\angle B$ and $\angle C$
Toprove
$\overline{\mathrm{BD}}>\overline{\mathrm{CD}}$

## Construction

Label the angles $\angle 1, \angle 2, \angle 3$ and $\angle 4$


Proof

## Statements

## Reasons

In $\triangle A B C$
$\overline{A B}>\overline{A C}$
Given
$\overline{B D}$ is the bisector of $\angle B$
$\frac{1}{2} m \angle A C B>\frac{1}{2} m \angle A B C$
$m \angle A B C$
$m \angle 2<m \angle 4$
$\overline{C D}$ is the bisector of $\angle C$
In $\triangle B C D$
$\overline{B D}>\overline{D C}$

Given

Side opposite to greater angle is greater

## Theorem 13.1.4

From a point, out side a line, the perpendicular is the shortest distance from the point to the line.
Given:
A line AB and a point C
(Not lying on $\overleftrightarrow{\mathrm{AB}}$ ) and a point D on $\overleftrightarrow{\mathrm{AB}}$ such that $\overline{\mathrm{CD}} \perp \overleftrightarrow{\mathrm{AB}}$
To prove
$m \overline{C D}$ is the shortest distance from the point $C$ to $\overleftrightarrow{A B}$ Construction
Take a point E on $\overleftrightarrow{\mathrm{AB}}$. Join C and E to form a $\triangle \mathrm{CDE}$
Proof

| Statements | Reasons |
| :--- | :--- |
| In $\triangle \mathrm{CDE}$ |  |
| $\mathrm{m} \angle \mathrm{CDB}>\mathrm{m} \angle \mathrm{CED}$ |  |
| But $\mathrm{m} \angle \mathrm{CDB}=\mathrm{m} \angle \mathrm{CDE}$ |  |
| $\therefore \mathrm{m} \angle \mathrm{CDE} \triangle \mathrm{m} \angle \mathrm{CED}$ |  |
| Or $\mathrm{m} \angle \mathrm{CED} \angle \mathrm{m} \angle \mathrm{CDE}$ |  |
| $\mathrm{Or} \mathrm{m} \stackrel{\mathrm{CD}}{\mathrm{CD}}<\mathrm{mCE}$ |  |
| But E is any point on $\overleftrightarrow{\mathrm{AB}}$ |  |
| Hence $\mathrm{m} \overline{\mathrm{CD}}$ is the shortest distance from |  |
| C to $\overleftrightarrow{\mathrm{AB}}$ |  |

## Note

(i) The distance between a line and a point not on it, is the length of the perpendicular line segment from the point to the line.
(ii) The distance between a line and a point lying on it is zero.

## Exercise 13.2

Q. 1 In the figure $P$ is any point and $A B$ is a line which of the following is the shortest distance between the point $P$ and the line $A B$.
(K.B + U.B)

(a) mPL
(b) $\mathrm{m} \overline{\mathrm{PM}}$
(c) mPN
(d) $\mathrm{m} \overline{\mathrm{PO}}$

As we know that $\overline{P N} \perp \overleftrightarrow{A B}$
So $\overline{\mathrm{PN}}$ is the shortest distance
Q. 2 In the figure, $\mathbf{P}$ is any point lying away from the line $\overline{\mathrm{AB}}$. Then $\mathrm{m} \overline{\mathrm{PL}}$ will be the shortest distance if

(a) $\mathbf{m} \angle P \mathrm{LA}=\mathbf{8 0}{ }^{\circ}$
(b) $\mathbf{m} \angle \mathbf{P L B}=100^{\circ}$
(c) $\mathrm{m} \angle \mathrm{PLA}=90^{\circ}$

Solution:
$\mathrm{m} \angle \mathrm{PLA}=90^{\circ}$
$\overline{\mathrm{PL}} \perp \overleftrightarrow{\mathrm{AS}}$
PL is the shortest distance
So $\angle$ PLA or PLS equal to $90^{\circ}$


# Given <br> $\overline{P L} \perp \overleftrightarrow{A B}$ <br> $m \overline{L N}>m \overline{L M}$ 

To proved: $m \overline{P N}>m \overline{P M}$
Proof

| Statements | Reasons |
| :--- | :--- |
| $\mathrm{In} \triangle \mathrm{PLM}$ |  |
| $\mathrm{m} \angle \mathrm{PLM}=90^{\circ}$ | Exterior angle of a triangle is greater <br> than non adjacent interior angle |
| $\therefore \mathrm{m} \angle \mathrm{PMN}>\mathrm{m} \angle \mathrm{PLM}$ |  |
| $\mathrm{m} \angle \mathrm{PMN}>90^{\circ} \rightarrow(i)$ |  |
| $\mathrm{In} \triangle \mathrm{PLN}$ |  |
| $\mathrm{m} \angle \mathrm{PLN}=90^{\circ}$ | Acute angle of a right angle triangle |
| $\mathrm{m} \angle \mathrm{PNL}<90^{\circ} \rightarrow(i i)$ |  |
| $\mathrm{In} \triangle \mathrm{PMN}$ | From (i) and (ii) |
| $\mathrm{m} \angle \mathrm{PMN}>\mathrm{m} \angle \mathrm{PNL}$ | Longer side opposite to greater angle |
| $\therefore \overline{\mathrm{PN}}>\overline{\mathrm{PM}}$ |  |

## Review Exercise 13

Q. 1 Which of the following are true and which are false?

$$
(\mathbf{K} . \mathbf{B}+\mathbf{U} . \mathbf{B}+\mathbf{A . B})
$$

(i) The angle opposite to the longer side is greater.
(ii) In a right-angled triangle greater angle is of $\mathbf{6 0}$.
(iii) In an isosceles right-angled triangle, angles other than right angle are each of $45^{\circ}$.
(iv) A triangle having two congruent sides is called equilateral triangle.
(v) A perpendicular from a point to line is shortest distance.
(vi) Perpendicular to line forms an angle of $90^{\circ}$.
(vii) A point out side the line is collinear.
(viii) Sum of two sides' of a triangle is greater than the third.
(ix) The distance between a line and apoint on it is zero.
(x) Triangle can be formed of length $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 5 cm .
Q. 2 What will be angle for shortest distance from an outside point to the line?

The angle for shortest distance from an outside point to the line is $90^{\circ}$ angle.
If $13 \mathrm{~cm}, 12 \mathrm{~cm}$ and 5 cm are the lengths of a triangle, then verify that difference of measures of any two sides of a triangle is less than the third side.
Given:
$\mathrm{a}=13, \mathrm{~b}=5, \mathrm{c}=12 \mathrm{~cm}$


Verification:
$a-b=13-5=8$
$8<\mathrm{c} \quad$ True
$\mathrm{c}-\mathrm{b}=12-5=7$
$7<\mathrm{a}$ True
$a-c=13-12=1$
$1<b$ True
This shows that difference of any two sides of a triangle is less than the measure of the third.
Q. 4 If $10 \mathrm{~cm}, 6 \mathrm{~cm}$ and 8 cm are the length of a triangle, then verify that sum of measures of two sides of a triangle is greater than the third side.
(K.B)

## Given:

$\mathrm{a}=8 \mathrm{~cm}, \mathrm{~b}=10 \mathrm{~cm}, \quad \mathrm{c}=6 \mathrm{~cm}$

## Verification:

$8+10=18 \mathrm{~cm}>6 \mathrm{~cm}$
$a+b>c \quad$ True
$10+6=16 \mathrm{~cm}>8 \mathrm{~cm}$
$\mathrm{b}+\mathrm{c}>\mathrm{a} \quad$ True
$6+8=14 \mathrm{~cm}>10 \mathrm{~cm}$
$\mathrm{c}+\mathrm{a}>\mathrm{b} \quad$ True

$\therefore$ The sum of measures of two sides of a triangle is greater than the third side.
Q. $5 \quad 3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 7 cm are not the length of the triangle. Give reasons.
(LHR 2017, FSD 2017, SWL 2015, SGD 2017, MTN 2013, 15, 17, D.G.K 2015, 16)

## Solution:

Let $\mathrm{a}=\mathbf{3 \mathrm { cm } , \mathrm { b } = \mathbf { 4 c m } , \mathrm { c } = 7 \mathrm { cm } . \mathrm { cm }}$
$3+4=7$
i.e. $\quad a+b \ngtr c$

In a triangle sum of measures of two sides should be greater than the third sides.
Q. 6 If 3 cm and 4 cm are the lengths of two sides of a right angle triangle than what should be the third length of the triangle.
(LHR 2016, 17, GRW 2017, FSD 2015, 17, SWL 2014, SGD 2016, MTN 2014, 15) If sum of the squares of two sides of a triangles is equal to the square of the third side then it is called right angled triangle.
By Pythagoras' theorem $(\overline{\mathrm{AC}})^{2}=(\mathrm{BC})^{2}+(\mathrm{AB})^{2}$
$(\overline{\mathrm{AC}})^{2} \rightleftharpoons(4)^{2}+(3)^{2}$
$(\overline{\mathrm{AC}})^{2}=16+9$
$(\mathrm{AC})^{2}=25$
Taking square root on both sides
$\sqrt{(\overline{\mathrm{AC}})^{2}}=\sqrt{25}$

$\overline{\mathrm{AC}}=5 \mathrm{~cm}$
$\therefore$ length of third side of right angled triangle is 5 cm .

