

MATHEMATICS-9

MATHEMATICS-9

Unit - 14

Ratio and Proportion

min

/

	Exercise 14.1	
Q.1	$In \Delta ABC $ (FSD 2017, MTN 2013, D.G.K 2017)	\sim D (A.B)
	$DE \square BC$	А
i)	If $\overline{AD} = 1.5$ cm $\overline{BD} = 3$ cm	\wedge
~ 15	\overline{AE} = 1.3cm, then find \overline{CE}	1.5cm/ \1.3cm
INI,	AD AE	
90	$\overline{\overline{BD}}^{=}\overline{\overline{EC}}$	
	By substituting the values of $\overline{AD}, \overline{BD}$ and \overline{AE}	$D \longrightarrow E$
	So	3cm
	1.5 - 1.3	
	3 EC	
	$\overline{\text{EC}}(1.5) = 1.3 \times 3$	B C
	$\overline{\text{FC}} = \frac{1.3 \times 3}{1.3 \times 3}$	
	1.5	
	$\overline{\text{EC}} = \frac{3.9}{1.5}$	
	EC = 2.6 cm	
(ii)	If AD = 2.4cm AE = 3.2cm (A.B)	
	EC=4.8cm find AB	A
	$\frac{AD}{AD} = \frac{AE}{AE}$	
	\underline{AB} AC	2.4cm / 1.3cm
	$\underline{AC} = AE + EC$	
	$\frac{AC}{AC} = 3.2 + 4.8$	
	AC = 8cm	
	$\therefore \frac{AD}{AD} = \frac{AE}{AD}$	L 15 (C(0)UU
	$\begin{array}{c} AB AC \\ 24 32 \end{array}$	XV (0) 0 4.0CHL
	$\frac{2.7}{AB} = \frac{5.2}{8}$	
	$24 \times 8 = (32)\overline{AB}$	$\sim \sim $
	19.2	
	$\overline{3.2} = AB$	
~ 15	$\overline{AB} = 6 \text{cm}$	
<u> (N</u>)	\overline{AD} 3 \overline{a} to \overline{a} \overline{a}	
(iii)	If $= -$, $AC = 4.8cm$ find AE (SWL 2017, BWP 2016, MT) BD 5	N 2015) (A.B)
	$\overline{AC} = \overline{AE} + \overline{EC}$	
	$\overline{AC} = \overline{EC} + \overline{AE}$	
	$\overline{AE} = 4.8 - \overline{EC}$	
	By theorem 14.1, we have	

Unit - 14

$$\frac{AD}{BD} = \frac{AE}{BC}$$

$$\frac{AD}{BD} = \frac{AC}{BC}$$

$$\frac{AD}{BD} = \frac{AC}{BC}$$

$$\frac{AD}{BD} = \frac{AC}{BC}$$

$$\frac{AD}{BD} = \frac{AC}{BC}$$

$$\frac{AD}{BC} = 5(4.8 - BC)$$

$$3(EC) = 24 - 5(EC)$$

$$3(EC) = 24$$

$$(EC) = \frac{24^3}{8}$$

$$\frac{EC}{BC} = \frac{3c}{8}$$

$$\frac{EC}{8} = \frac{3c}{8}$$

$$\frac{EC}{8} = \frac{3c}{8}$$

$$\frac{BC}{8} = \frac{3c}{8}$$
(n) EXAMPLE = 3.2cmDE = 2cmBC = 5cm Find AB, DB, AC, CE. (A.B)
Solution:
Since TABCCTADE
$$\frac{AD}{AB} = \frac{AC}{8C} = \frac{DC}{8}$$

$$(1 + 1) E = 24cmAE = 3.2cmDE = 2cmBC = 5cm Find AB, DB, AC, CE. (A.B)$$
Solution:
Since TABCCTADE
$$\frac{AD}{AB} = \frac{AC}{8C} = \frac{DC}{8}$$

$$(1 + 1) E = 2(AB)$$

$$\frac{AD}{AB} = \frac{AC}{8} = \frac{DC}{8}$$

$$(1 + 1) E = 2(AB)$$

$$\frac{AD}{AB} = \frac{AC}{8} = \frac{DC}{8}$$

$$(2 + 3) E = 2(AB)$$

$$\frac{AD}{AB} = \frac{AC}{8} = \frac{DC}{8}$$

$$\frac{AD}{AC} = \frac{AC}{8}$$

$$\frac{AD}{8} = \frac{AC}{8}$$

CE = 8 - 3.2

 \bigcirc

 $\overline{CE} = 4.8cm$ If $\overline{AD} = 4x - 3 \overline{AE} = 8x - 3$ **(v)** BD=3x-1 and CE=5x-3 Find the value of x By theorem 14.1, we have \overline{AD} \overline{AE} BD EC By putting the value of AD, AE, BD and CE 4x - 3 8x - 7 $\frac{1}{3x-1} - \frac{1}{5x-3}$ By cross multiplying (4x - 3) (5x - 3) = (8x - 7) (3x - 1) $20x^2 - 12x - 15x + 9 = 24x^2 - 8x - 21x + 7$ $20x^2 - 27x + 9 = 24x^2 - 29x + 7$ $0 = 24x^2 - 20x^2 - 29x + 27x + 7 - 9$ $4x^2 - 2x - 2 = 0$ $2(2x^2 - x - 1) = 0$ $2x^2 - 2x + 1x - 1 = \frac{0}{2}$ 2x(x-1) + 1(x-1) = 0(x-1)(2x+1) = 0x - 1 = 02x + 1 = 02x = -1*x* = 1 $x = -\frac{1}{2}$

Distance is not taken in negative it is always in positive so the value of x = 1.

2

B

Μ

C

 $\frac{\text{To Prove}}{\overline{AE}} = \overline{EC}$

In $\triangle ABC$ $\overrightarrow{DE} \parallel \overrightarrow{BC}$ In theorem it is already discussed that

BD EC As we know $\overline{AD} = \overline{BD}$ or $\overline{BD} = \overline{AD}$

 $\overline{\overrightarrow{AD}} = \overline{\overrightarrow{AE}}$ $1 = \overline{\overrightarrow{AE}}$ $\overline{\overrightarrow{EC}} = \overline{\overrightarrow{AE}}$ $\overline{\overrightarrow{EC}} = \overline{\overrightarrow{AE}}$

AD AE

Q.5 Prove that the line segment joining the midpoint of any two sides of a triangle is parallel to the third side (MTN 2017) (A.B + K.B) Given

 $\triangle ABC$ the midpoint of \overline{AB} and \overline{AC} are L and M respectively

To Prove

$$\overline{\text{LM}} \parallel \overline{\text{BC}} \text{ and } \text{m}\overline{\text{LM}} = \frac{1}{2}\overline{\text{BC}}$$

Construction

Join M to L and produce \overline{ML} to N such that $\overline{ML} \cong \overline{LN}$

Join N to B and in the figure name the angles $\angle 1$, $\angle 2$, and $\angle 3$

MATHEMATICS-9

ണ

J	Given $\triangle ABC \sim \triangle DEF$ i.e $\angle A \cong \angle D$, $\angle B \cong \angle E$ and $\angle C \cong \angle F$ To Prove $\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$ Construction (I) Suppose that mAB > mDE (II) mAB \leq mDE (II) mAB \leq mDE On AB take a point L such that mAL On AC take a point M such that mAN Join L and M by the line segment LM Proof	=mDE Ā=mDF	
	Statements	Reasons	
	If $\Delta ALM \leftrightarrow \Delta DEF$ $\angle A \cong \angle D$	Given	
	ĀL≅DĒ	Construction	
	$\overline{AM} \cong \overline{DF}$	Construction	
	Thus $\Delta ALM \cong \Delta DEF$	S.A.S Postulate	
	And $\angle L \cong \angle E$, $\angle M \cong \angle F$	(Corresponding angles of congruent triangles)	
	Now $\angle E \cong \angle B$ and $\angle F \cong \angle C$	Given	
	$\therefore \angle L \cong \angle B, \angle M \cong \angle C$	Transitivity of congruence	
	Thus LM BC	Corresponding angles are equal	
	Hence $\frac{m\overline{AL}}{m\overline{AB}} = \frac{m\overline{AM}}{m\overline{AC}}$	A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.	
	Or $\frac{\overline{\text{mDE}}}{\overline{\text{mDE}}} = \frac{\overline{\text{mDF}}}{\overline{\text{mDF}}}$ (i)	$\overline{MAL} = \overline{MDE}$ and $\overline{MAM} = \overline{MDE}$ (Construction)	JUUU
	mAB mAC Similarly by intercepting segments on \overline{BA} and \overline{BC} , we can prove that $\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{EF}}{m\overline{BC}}$ (ii)	GUINWEL.C	5000
J	Thus $\frac{\text{mDE}}{\text{mAB}} = \frac{\text{mDF}}{\text{mAC}} = \frac{\text{mEF}}{\text{mBC}}$ Or $\frac{\text{mAB}}{\text{mDE}} = \frac{\text{mAC}}{\text{mDE}} = \frac{\text{mBC}}{\text{mEE}}$	By (i) and (ii) By taking reciprocals	
	If mAB=mDE		
	Then in $\triangle ABC \leftrightarrow \triangle DEF$		

Exercise 14.2

- In $\triangle ABC$ as shown in the figure \overrightarrow{CD} bisects $\angle C$ and meets \overrightarrow{AB} at $D.m\overrightarrow{BD}$ is equal to **Q.1** (a) 5 **(b)** 16 **(c)** 10 (d) 18 (A.B + U.B)Solution: By Theorem 14.3, we have mBD mBC mDA mCA 12 BD 10 $6 - \overline{12}$ $\overline{\text{BD}} = \frac{10 \times 6}{12} = \frac{60^{\circ}}{12}$ 10 BD=5
- Q.2 In $\triangle ABC$ shown in the figure \overrightarrow{CD} bisects $\angle C$. If $\overrightarrow{mAC}=3$, $\overrightarrow{CB}=6$ and $\overrightarrow{mAB}=7$ then find \overrightarrow{mAD} and \overrightarrow{DB} (A.B)

Line segment \overline{AB} and \overline{CD} intersect at X

$$\frac{mAX}{m\overline{XB}} = \frac{mCX}{m\overline{XD}}$$

A

D

		Ratio and 110p	ortion
	To Prove ΔCXA and ΔDXB are similar Proof	WAG	. <u></u>
$\frac{\overline{AX}}{\overline{XB}}$ $\angle 1 \cong$	$= \frac{\overline{CX}}{\overline{XD}}$	Reasons Given	
\overline{AC}	BD	Vertical angles	
∠A =	= m∠B		
m∠C	$C = m \angle D$	Alternate angles	
Henc	e proved the triangle are similar		
	Poviow Evoreice 44	•	
0.1	Which of the following are true which are false?	(K.B +	- U.B)
(i)	Congruent triangles are of same size and shape.	((True)
(ii)	Similar triangles are of same shape but different sizes.		(True)
(iii)	Symbol used for congruent is '~'		(False)
(•)			
(IV)	Symbol used for similarity is ' ≅'		(False)
(IV) (V)	Symbol used for similarity is ' ≅' Congruent triangle are similar		(False) (True)
(IV) (V) (Vi)	Symbol used for similarity is ' ≅' Congruent triangle are similar Similar triangles are congruent		(False) (True) (False)
(IV) (V) (Vi) (Vii)	Symbol used for similarity is ' ≅' Congruent triangle are similar Similar triangles are congruent A line segment has only one midpoint		(False) (True) (False) (True)
(IV) (V) (Vi) (Vii) (Viii)	Symbol used for similarity is '≅' Congruent triangle are similar Similar triangles are congruent A line segment has only one midpoint One and only one line can be drawn through two points		(False) (True) (False) (True) (True)
(IV) (V) (Vi) (Vii) (Viii) (ix)	Symbol used for similarity is '≅' Congruent triangle are similar Similar triangles are congruent A line segment has only one midpoint One and only one line can be drawn through two points Proportion is non equality of two ratio	0012	(False) (True) (False) (True) (True) (False)
(IV) (V) (Vi) (Vii) (Viii) (ix) (X)	Symbol used for similarity is '≅' Congruent triangle are similar Similar triangles are congruent A line segment has only one midpoint One and only one line can be drawn through two points Proportion is non equality of two ratio Ratio has no unit	NVZ)	(False) (True) (False) (True) (True) (False) (True)
(IV) (V) (Vi) (Vii) (Viii) (ix) (X) Q.2	Symbol used for similarity is '≅' Congruent triangle are similar Similar triangles are congruent A line segment has only one midpoint One and only one line can be drawn through two points Proportion is non equality of two ratio Ratio has no unit Define the following	NYZ	(False) (True) (False) (True) (True) (False) (True)
 (iv) (v) (vi) (vii) (viii) (ix) (x) Q.2 (i) 	Symbol used for similarity is '≅' Congruent triangle are similar Similar triangles are congruent A line segment has only one midpoint One and only one line can be drawn through two points Proportion is non equality of two ratio Ratio has no unit Define the following Ratio	NYZ	(False) (True) (False) (True) (False) (True) (K.B)
 (iv) (v) (vi) (vii) (viii) (ix) (x) Q.2 (i) Ans: 	Symbol used for similarity is '≅' Congruent triangle are similar Similar triangles are congruent A line segment has only one midpoint One and only one line can be drawn through two points Proportion is non equality of two ratio Ratio has no unit Define the following Ratio see definition	NYZ	(False) (True) (False) (True) (False) (True) (K.B)
 (IV) (V) (Vi) (Vii) (Viii) (ix) (x) Q.2 (i) Ans: (ii) 	Symbol used for similarity is '≅' Congruent triangle are similar Similar triangles are congruent A line segment has only one midpoint One and only one line can be drawn through two points Proportion is non equality of two ratio Ratio has no unit Define the following Ratio see definition Proportion	NYZ	(False) (True) (False) (True) (False) (True) (K.B) (K.B)
 (iv) (v) (vi) (vii) (viii) (ix) (x) Q.2 (i) Ans: (ii) Ans: 	Symbol used for similarity is '≅' Congruent triangle are similar Similar triangles are congruent A line segment has only one midpoint One and only one line can be drawn through two points Proportion is non equality of two ratio Ratio has no unit Define the following Ratio see definition Froportion See definition	MAS	(False) (True) (False) (True) (False) (True) (K.B) (K.B)

between them such that all the corresponding sides and angles are congruent.

In the show figure let mPA = 8x - 7 mPB = 4x - 3 mAQ = 5x**Q.4** $m\overline{BR} = 3x - 1$ find the value of x if $\overline{AB} \parallel \overline{QR}$ $(\mathbf{A}.\mathbf{B} + \mathbf{U}.\mathbf{B})$ mPA_mBP mAQ mBR 8x – 7 4x - $5x - 3 \quad 3x - 1$ By cross multiplying (8x-7)(3x-1) = (4x-3)(5x-3)В $24x^2 - 8x - 21x + 7 = 20x^2 - 12x - 15x + 9$ $24x^2 - 29x + 7 = 20x^2 - 27x + 9$ $24x^2 - 20x^2 - 29x + 27x + 7 - 9 = 0$ $4x^2 - 2x - 2 = 0$ R $4x^2 - 4x + 2x - 2 = 0$ 4x(x-1)+2(x-1)=0(x-1)(4x+2)=0x - 1 = 0x = 14x + 2 = 04x = -2 $x = \frac{-\not 2^1}{\not A_2}$ $x = \frac{-1}{2}$ Length is always taken as positive not negative so value of x = 1

Q.5 In Δ LMN Shown in figure \overrightarrow{LA} bisects \angle L. If $m\overrightarrow{LN} = 4m m\overrightarrow{LM} = 6cm m\overrightarrow{MN} = 8$ then

find mMA and mAN

$$\frac{mMA}{mAN} = \frac{mLM}{mLN}$$

$$\frac{MA}{mA} = x$$

$$\frac{MA}{AN} = 8-x$$

$$\frac{x}{AN} = \frac{6}{4}$$

$$4x = 6(8-x)$$

$$4x = 48 - 6x$$

$$4x + 6x = 48$$

$$10x = 48$$

$$(A.B + K.B)$$

$$(A.B + K.B)$$

