
(GRW 2013, 15, 17, SWL 2014, 16, FSD 2013, 16, D.G.K 2014, 15, 17, MTN 2014, 15)
(K.B)

Ratio is the comparison of two alike quantities. For any two quantities a and b it is expressed as $a: b=\frac{a}{b}, b \neq 0$, where a and b are called the elements (terms) of ratio. (Elements must be expressed in the same units.)

For example

Ratio between 100 m and 250 m is $100: 250=2: 5$

Proportion

(GRW 2016, SWL 2017, FSD 2014, 16, 17, MTN 2013, 14, 16, 17, SGD 2016, 17) Equality of two ratios is called proportion.
That is if $a: b=c: d$, then a, b, c and d are said to be in proportion.
Where a and d are called extremes and b and c are called means.

Note

(K.B + U.B)

Knowledge of a ratio and proportion is necessary requirement of many occupations like food service occupation, medications in health, preparing maps for land survey and construction works, profit to east ratio etc.

Similar Triangles

(LHR 2013, 15, GRW 2016, 17, SWL 2014, 15, 16, SGD 2013, MTN 2013, 14, BWP 2017, D.G.K 2015, RWP 2016, FSD 2015)
Two triangles are called similar if corresponding angles are congruent. In similar triangles corresponding sides are proportional.
In $\triangle A B C \leftrightarrow \triangle D E F$

then $\triangle A B C$ and $\triangle D E F$ are called similar triangles, which is symbolically written as $\triangle A B C \square \triangle D E F$.

Note

Congruent triangles are also similar. But two similar triangles are not necessarily congruent, as congruence of their corresponding sides is not necessary.

Real Life Example of Similar Shapes

(K.B)

A photographer can develop prints of different sizes from the same negative. In spite of the difference in sizes, these pictures like each other. One photograph is simply an enlargement of another. They are said to be similar in shape.

Theorem 14.1.1

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

Given:

In $\triangle \mathrm{ABC}$, the line ℓ is intersecting the sides $\overline{\mathrm{AC}}$ and $\overline{\mathrm{AB}}$ at points E and D respectively such that $\overline{\mathrm{ED}} \| \overline{\mathrm{CB}}$

To Prove
$m \overline{\mathrm{AD}}: \overline{\mathrm{DB}}=\mathrm{m} \overline{\mathrm{AE}}: \mathrm{m} \overline{\mathrm{EC}}$

Construction:

Join B to E and C to D.From D draw $\overline{D M} \perp \overline{\mathrm{AC}}$
 and from E draw $\overline{\mathrm{EL}} \perp \overline{\mathrm{AB}}$
Proof

Corollaries:

From the above theorem we also have
(i) $\frac{m \overline{B D}}{m \overline{A B}}=\frac{m \overline{C E}}{m \overline{A C}}$ and $\frac{m \overline{A D}}{m \overline{A B}}=\frac{m \overline{A E}}{m \overline{A C}}$
(ii)
(a) if $\frac{m \overline{A D}}{m \overline{A B}}=\frac{m \overline{A E}}{m \overline{A C}}$, then $\overline{D E} \| \overline{B C}$
(b) if $\frac{m \overline{A B}}{m \overline{D B}}=\frac{m \overline{A C}}{m \overline{E C}}$, then $\overline{D E} \| \overline{B C}$
(i) Two point determine a line and three non-collinear points determine a plane.
(ii) A line segment has exactly one midpoint.
(iii) If two intersection lines form equal adjacent angle, the lines are perpendicular.

Theorem: 14.1.2 Converse of Theorem 14.1.1

If a line segment intersects the two sides of a triangle in the same ratio, then it is parallel to the third side.
Given
In $\triangle \mathrm{ABC}, \overline{\mathrm{ED}}$ intersect $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ such that $m \overline{A D}: \overline{D B}=m \overline{A E}: m \overline{E C}$
To Prove
$\overline{E D} \| \overline{C B}$
Construction
If $\overline{\mathrm{ED}} \| \overline{\mathrm{CB}}$ then draw $\overline{\mathrm{BF}} \| \overline{\mathrm{DE}}$ to meet $\overline{\mathrm{AC}}$
produced at F .

Proof

Statements	Reasons		
In $\triangle A B F$ $\overline{D E} \\| \overline{B F}$ $\begin{equation*} \therefore \frac{m \overline{A D}}{m \overline{D B}}=\frac{m \overline{A E}}{m \overline{E F}} . \tag{i} \end{equation*}$ $\begin{equation*} \text { But } \frac{m \overline{A D}}{m \overline{D B}}=\frac{m \overline{A E}}{m \overline{E C}} . \tag{ii} \end{equation*}$ $\therefore \frac{m \overline{A E}}{m \overline{E F}}=\frac{m \overline{A E}}{m \overline{E C}}$ or $m \overline{E F}=m \overline{E C}$, This is possible only if point F is coincident with C. \therefore Our supposition is wrong Hence $\overline{E D} \\| \overline{C B}$	Construction (A line parallel to one side of a triangle divides the other two sides properfionally Theorem 14.1.1) Given From (i) and (ii) (Property of real numbers)		

Exercise 14.1

Q. 1 In $\triangle A B C$
(FSD 2017, MTN 2013, D.G.K 2017)
(A.B)

$\overline{D E} \square \overline{B C}$

(i) If $\overline{\mathrm{AD}}=1.5 \mathrm{~cm} \quad \overline{\mathrm{BD}}=3 \mathrm{~cm}$
$\overline{\mathrm{AE}}=1.3 \mathrm{~cm}$, then find $\overline{\mathrm{CE}}$
$\frac{\frac{\mathrm{AB}}{\overline{\mathrm{BD}}}}{\overline{\mathrm{AE}}} \overline{\overline{\mathrm{EC}}}$
By substituting the values of $\overline{\mathrm{AD}}, \overline{\mathrm{BD}}$ and $\overline{\mathrm{AE}}$
So
$\frac{1.5}{3}=\frac{1.3}{\mathrm{EC}}$
$\overline{\mathrm{EC}}(1.5)=1.3 \times 3$

$\overline{\mathrm{EC}}=\frac{1.3 \times 3}{1.5}$
$\overline{\mathrm{EC}}=\frac{3.9}{1.5}$
$\overline{\mathrm{EC}}=2.6 \mathrm{~cm}$
(ii) If $\mathrm{AD}=\mathbf{2 . 4} \mathbf{c m} \quad \overline{\mathrm{AE}}=3.2 \mathrm{~cm}$
(A.B)
$\overline{\mathrm{EC}}=4.8 \mathrm{~cm}$ find AB
$\frac{A D}{A B}=\frac{A E}{A C}$
$\overline{A C}=A E+E C$
$\overline{A C}=3.2+4.8$
$\overline{A C}=8 \mathrm{~cm}$
$\therefore \frac{\overline{\mathrm{AD}}}{\overline{\mathrm{AB}}}=\frac{\overline{\mathrm{AE}}}{\overline{\mathrm{AC}}}$
$\frac{2.4}{\mathrm{AB}}=\frac{3.2}{8}$
$2.4 \times 8=(3.2) \overline{\mathrm{AB}}$
$\frac{19.2}{3.2}=A B$
$\overrightarrow{A B}=6 \mathrm{~cm}$
(iii) If $\frac{\overline{A D}}{\overline{B D}}=\frac{3}{5}, \overline{A C}=4.8 \mathrm{~cm}$ find $\overline{\mathrm{AE}} \quad$ (SWL 2017, BWP 2016, MTN 2015)
$\overline{A C}=\overline{A E}+\overline{E C}$
$\overline{A C}=\overline{E C}+\overline{A E}$
$\overline{A E}=4.8-\overline{E C}$
By theorem 14.1, we have

Solution:
Since $\square A B C \square \square A D E$
$\frac{\overline{\mathrm{AD}}}{\overline{\mathrm{AB}}}=\frac{\overline{\mathrm{AE}}}{\overline{\mathrm{AC}}}=\frac{\overline{\mathrm{DE}}}{\overline{\mathrm{BC}}}$
(in similar triangles corresponding sides are proportional)
$\frac{2.4}{\mathrm{AB}}=\frac{3.2}{\mathrm{AC}}=\frac{2}{5}$
$\frac{2.4}{\mathrm{AB}}=\frac{2}{5} \quad$ and $\quad \frac{3.2}{\mathrm{AC}}=\frac{2}{5}$
$(2.4) 5=2(\mathrm{AB})$
$16.0=2(\mathrm{AC})$
$\frac{12.0}{2}=\mathrm{AB}$
$\frac{2}{\mathrm{AB}}=6 \mathrm{~cm}$ $\frac{16^{8}}{2}=A C$
$\frac{A C}{A C}=8 \mathrm{~cm}$

Now
$\overline{\mathrm{DB}}=\overline{\mathrm{AB}} \overline{\mathrm{AD}}$
$\overline{\mathrm{DB}}=6-2.4$
$\overline{\mathrm{BD}}=3.6 \mathrm{~cm}$
And
$\overline{C E}=\overline{A C}-\overline{A E}$
$\overline{C E}=8-3.2$
$\overline{C E}=4.8 \mathrm{~cm}$
(v) If $\overline{\mathrm{AD}}=4 x-3 \overline{\mathrm{AE}}=8 x-7$
$\overline{\mathrm{BD}}=3 x-1$ and $\mathrm{CE}=5 x-3$ Find the value of x
By theorem 14.1, we have
$\frac{\overline{\mathrm{AD}}}{\overline{\mathrm{BD}}}=\frac{\overline{\mathrm{AE}}}{\mathrm{EC}}$
By putting the value of $\overline{\mathrm{AD}}, \overline{\mathrm{AE}}, \overline{\mathrm{BD}}$ and $\overline{\mathrm{CE}}$
$\frac{4 x-3}{3 x-1}=\frac{8 x-7}{5 x-3}$
By cross multiplying
$(4 x-3)(5 x-3)=(8 x-7)(3 x-1)$
$20 x^{2}-12 x-15 x+9=24 x^{2}-8 x-21 x+7$
$20 x^{2}-27 x+9=24 x^{2}-29 x+7$

$0=24 x^{2}-20 x^{2}-29 x+27 x+7-9$
$4 x^{2}-2 x-2=0$
$2\left(2 x^{2}-x-1\right)=0$
$2 x^{2}-2 x+1 x-1=\frac{0}{2}$
$2 x(x-1)+1(x-1)=0$
$(x-1)(2 x+1)=0$
$x-1=0$
$2 x+1=0$
$x=1$
$2 x=-1$
$x=-\frac{1}{2}$
Distance is not taken in negative it is always in positive so the value of $\mathrm{x}=1$.
Q. 2 In $\triangle \mathrm{ABC}$ is an isosceles triangle $\angle \mathrm{A}$ is vertex angle and $\overline{\mathrm{DE}}$ intersects the sides $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ as shown in the figure so that $m \overline{A D}: m \overline{D B}=m \overline{A E}: m \overline{E C}$

Prove that $\triangle \mathrm{ADE}$ is also an isosceles triangle.

Given:

$\triangle A B C$ is an isosceles triangle, $\angle A$ is vertex and $\overline{D E}$ intersects the sides $\overrightarrow{A B}$ and $\overline{A C}$.

$$
\frac{\mathrm{mAD}}{\mathrm{~m} \overline{\mathrm{BD}}}=\frac{\mathrm{m} \overline{\mathrm{AE}}}{\mathrm{~m} \overline{\mathrm{EC}}}
$$

To Prove
$m \overline{\mathrm{AD}}=\mathrm{m} \overline{\mathrm{AE}}$

Proof
$\frac{\overline{\mathrm{AD}}}{\overline{\mathrm{BD}}}=\frac{\overline{\mathrm{AE}}}{\overline{\mathrm{EC}}}$
Or $\frac{\overline{\mathrm{BD}}}{\overline{\mathrm{AD}}}=\frac{\overline{\mathrm{EC}}}{\overline{\mathrm{AE}}}$
$\mathrm{Or} \frac{\sqrt{\mathrm{AD}}+\frac{\overline{\mathrm{BD}}}{\mathrm{AD}}}{=\frac{\overline{\mathrm{AE}}+\overline{\mathrm{EC}}}{\overline{\mathrm{EC}}} \text { (by componendo-dividendo theorem) }}$
As we know
$\overline{\mathrm{AB}}=\overline{\mathrm{AD}}+\overline{\mathrm{BD}}$
$\overline{\mathrm{AC}}=\overline{\mathrm{AE}}+\overline{\mathrm{EC}}$
$\frac{\overline{\mathrm{AB}}}{\overline{\mathrm{AD}}}=\frac{\overline{\mathrm{AC}}}{\overline{\mathrm{AE}}}$
From this
$\frac{\overline{\mathrm{AB}}}{\overline{\mathrm{AD}}}=\frac{\overline{\mathrm{AC}}}{\overline{\mathrm{AE}}}$
$\overline{\mathrm{AD}}=\overline{\mathrm{AE}}$
$\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$
Q. 3 In an equilateral triangle ABC shown in the figure $\mathrm{m} \overline{\mathrm{AE}}: m \overline{\mathrm{AC}}=\mathrm{m} \overline{\mathrm{AD}}: m \overline{\mathrm{AB}}$ find all the three angles of $\triangle \mathrm{ADE}$ and name it also.
(FSD 2017, SWL 2014, RWP 2016, SGD 2017, RWP 2015, D.G.K 2014, 15)
Given
$\triangle \mathrm{ABC}$ is equilateral triangle
To prove
To find the angles of $\triangle \mathrm{ADE}$

Solution:

$\frac{m \overline{A E}}{m \overline{A C}}=\frac{m \overline{A D}}{m \overline{A B}}$
All angles are equal. Each angle of equilateral triangle is equal to 60°.
$\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{C}$
$\mathrm{m} \overline{\mathrm{BC}} \| \mathrm{m} \overline{\mathrm{DE}}$

$\mathrm{m} \angle \mathrm{ADE}=\mathrm{m} \angle \mathrm{ABC}=60^{\circ}$ (corresponding angles of $/ /$ lines)
$\mathrm{m} \angle \mathrm{AED}=\mathrm{m} \angle \mathrm{ACB}=60^{\circ}$ (corresponding angles of $/ /$ lines)
$\mathrm{m} \angle \mathrm{A}=60^{\circ}$ (given)
$\triangle \mathrm{ADE}$ is an equilateral triangle.
Q. 4 Prove that line segment drawn through the midpoint of one side of a triangle and parallel to another side bisect the third side
(A.B + K.B)

Given
$\overline{\mathrm{AD}}=\overline{\mathrm{BD}}$
$\overline{\mathrm{DE}} \| \overline{\mathrm{BC}}$

To Prove
$\overline{\mathrm{AE}}=\overline{\mathrm{EC}}$
In $\triangle \mathrm{ABC}$
$\overline{\mathrm{DE}} \| \overline{\mathrm{BC}}$
In theorem it is already discussed that
$\frac{\overline{\mathrm{AD}}}{\overline{\mathrm{BD}}}=\frac{\overline{\mathrm{AE}}}{\overline{\mathrm{EC}}}$
As we know $\overline{\mathrm{AD}}=\overline{\mathrm{BD}}$ or $\overline{\mathrm{BD}}=\overline{\mathrm{AD}}$
$\frac{\overline{\mathrm{AD}}}{\overline{\mathrm{AD}}}=\frac{\overline{\mathrm{AE}}}{\overline{\mathrm{EC}}}$
$1=\frac{\overline{\mathrm{AE}}}{\overline{\mathrm{EC}}}$
$\overline{\mathrm{EC}}=\overline{\mathrm{AE}}$
Q. 5 Prove that the line segment joining the midpoint of any two sides of a triangle is parallel to the third side
(MTN 2017)
(A.B + K.B) Given
$\Delta \mathrm{ABC}$ the midpoint of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are L and M respectively

To Prove

$\overline{\mathrm{LM}} \| \overline{\mathrm{BC}}$ and $\mathrm{mLM}=\frac{1}{2} \overline{\mathrm{BC}}$

Construction

Join M to L and produce $\overline{\mathrm{ML}}$ to N such that $\overline{\mathrm{ML}} \cong \overline{\mathrm{LN}}$
Join N to B and in the figure name the angles
 $\angle 1, \angle 2$, and $\angle 3$
Proof

Statements
\triangle BLN $\leftrightarrow \Delta$ ALM $\overline{\mathrm{BL}} \cong \mathrm{AL}$
$\therefore \triangle B L N \cong \triangle A L M$
$\therefore \angle \mathrm{A}=\angle 3$
And $\overline{\mathrm{NB}} \cong \overline{\mathrm{AM}}$
$\overline{\mathrm{NB}} \| \widehat{\mathrm{AM}}$
$\overline{\mathrm{ML}}=\overline{\mathrm{AM}}$
$\overline{\mathrm{NB}} \cong \overline{\mathrm{ML}}$
$\overline{\mathrm{BC}} \overline{\mathrm{MN}}$ is parallelogram
$\therefore \overline{\mathrm{BC}} \| \overline{\mathrm{LM}}$ or $\overline{\mathrm{BC}} \| \overline{\mathrm{NL}}$
$\overline{\mathrm{BC}} \cong \overline{\mathrm{NM}}$

Reasons
Given
Vertical angles
Construction
Corresponding angles of congruent triangles (Given)

Corresponding sides of congruent triangles

Given
(Opposite side of parallelogram BCMN)
$\mathrm{mLM}=\frac{1}{2} \mathrm{~m} \overline{\mathrm{NM}}$
Hence $\mathrm{mLM}=\frac{1}{2} \mathrm{~m} \overline{\mathrm{BC}}$
Theorem 14.1.3
(K.B)

The internal bisector of an angle of a triangle divides the sides opposite to it in the ratio of the lengths of the sides containing the angle.
Given
In $\triangle \mathrm{ABC}$ internal angle bisector of $\angle \mathrm{A}$ meets $\overline{\mathrm{CB}}$ at the points D .
To prove
$m \overline{\mathrm{BD}}: \mathrm{m} \overline{\mathrm{DC}}=\mathrm{m} \overline{\mathrm{AB}}: \mathrm{m} \overline{\mathrm{AC}}$
Construction
Draw a line segment $\overline{\mathrm{BE}} \| \overline{\mathrm{DA}}$ to meet $\overline{\mathrm{CA}}$ Produced at E

Proof

Statements	Reasons			
$\because \overline{\mathrm{AD}} \\| \overline{\mathrm{EB}}$ and $\overline{\mathrm{EC}}$ intersect them $\mathrm{m} \angle 1=\mathrm{m} \angle 2 \ldots \ldots \ldots \ldots$ (i) Again $\overline{\mathrm{AD}} \\| \overline{\mathrm{EB}}$ and $\overline{\mathrm{AB}}$ intersects them $\begin{equation*} \therefore \mathrm{m} \angle 3=\mathrm{m} \angle 4 . \tag{ii} \end{equation*}$ But $\mathrm{m} \angle 1=\mathrm{m} \angle 3$ $\therefore \mathrm{m} \angle 2=\mathrm{m} \angle 4$ And $\overline{\mathrm{AB}} \cong \overline{\mathrm{AE}}$ or $\overline{\mathrm{AE}} \cong \overline{\mathrm{AB}}$ Now $\overline{\mathrm{AD}} \\| \overline{\mathrm{EB}}$ $\begin{aligned} & \therefore \frac{\mathrm{m} \overline{\mathrm{BD}}}{\mathrm{~m} \overline{\mathrm{DC}}}=\frac{\mathrm{m} \overline{\mathrm{EA}}}{\mathrm{~m} \overline{\mathrm{AC}}} \\ & \text { or } \frac{\mathrm{m} \overline{\mathrm{BD}}}{\mathrm{~m} \overline{\mathrm{DC}}}=\frac{\mathrm{m} \overline{\mathrm{AB}}}{\mathrm{~m} \overline{\mathrm{AC}}} \end{aligned}$ Thus $m \overline{B D}: m \overline{D C}=m \overline{A B}: \overline{\mathrm{AC}}$	Construction Corresponding angles Alternate angles Given From (i) and (ii) In a Δ, the sides opposite to congruent angles are also congruent Construction A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally. $\mathrm{m} \overline{\mathrm{EA}}=\mathrm{mAB}(\text { proved })$			

Theorem 14.1.4

If two triangles are similar, then the measures of their corresponding sides are proportional

Given

$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
i.e $\angle \mathrm{A} \cong \angle \mathrm{D}, \angle \mathrm{B} \cong \angle \mathrm{E}$ and $\angle \mathrm{C} \cong \angle \mathrm{F}$

To Prove
$\frac{\mathrm{m} \overline{\mathrm{AB}}}{\mathrm{m} \overline{\mathrm{DE}}}=\frac{\mathrm{m} \overline{\mathrm{AC}}}{\mathrm{mDF}}=\frac{\mathrm{m} \overline{\mathrm{BC}}}{\mathrm{m} \overline{\mathrm{EF}}}$
Construction
(I) Suppose that $\mathrm{mAB}>m \overline{\mathrm{DE}}$
(II) $m \overline{\mathrm{AB}} \leq m \overline{\mathrm{DE}}$

On $\overline{\mathrm{AB}}$ take a point L such that $m \overline{\mathrm{AL}}=m \overline{\mathrm{DE}}$
On $\overline{\mathrm{AC}}$ take a point M such that $\mathrm{m} \overline{\mathrm{AM}}=\mathrm{m} \overline{\mathrm{DF}}$
Join L and M by the line segment LM
Proof

Statements

Reasons

In $\Delta \mathrm{ALM} \leftrightarrow \Delta \mathrm{DEF}$
$\angle \mathrm{A} \cong \angle \mathrm{D}$
$\overline{\mathrm{AL}} \cong \overline{\mathrm{DE}}$
$\overline{\mathrm{AM}} \cong \overline{\mathrm{DF}}$
Thus $\triangle \mathrm{ALM} \cong \triangle \mathrm{DEF}$
And $\angle \mathrm{L} \cong \angle \mathrm{E}, \angle \mathrm{M} \cong \angle \mathrm{F}$
Now $\angle \mathrm{E} \cong \angle \mathrm{B}$ and $\angle \mathrm{F} \cong \angle \mathrm{C}$
$\therefore \angle \mathrm{L} \cong \angle \mathrm{B}, \angle \mathrm{M} \cong \angle \mathrm{C}$
Thus $\overline{\mathrm{LM}} \| \overline{\mathrm{BC}}$
Hence $\frac{m \overline{A L}}{m \overline{A B}}=\frac{m \overline{A M}}{m \overline{A C}}$
Or $\frac{m \overline{D E}}{m \overline{A B}}=\frac{m \overline{D F}}{m \overline{A C}}$
Similarly by intercepting segments on $\overline{\mathrm{BA}}$ and $\overline{\mathrm{BC}}$, we can prove that $\frac{m \overline{D E}}{m \overline{A B}}=\frac{m \overline{E F}}{m \overline{B C}}$
Thus $\frac{m \overline{D E}}{m \overline{A B}}=\frac{m \overline{D F}}{m \overline{A C}}=\frac{m \overline{E F}}{m \overline{B C}}$
$\mathrm{Or} \frac{\mathrm{m} \overline{\mathrm{AB}}}{\mathrm{m} \overline{\mathrm{DE}}}=\frac{\mathrm{m} \overline{\mathrm{AC}}}{\mathrm{m} \overline{\mathrm{DF}}}=\frac{\mathrm{m} \overline{\mathrm{BC}}}{\mathrm{mEF}}$
If $m \overline{A B}=m \overline{D E}$
Then in $\triangle \mathrm{ABC} \leftrightarrow \Delta \mathrm{DEF}$

Given
Construction
Construction
S.A.S Postulate
(Corresponding angles of congruent triangles)
Given
Transitivity of congruence
Corresponding angles are equal
A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.
$\mathrm{m} \overline{\mathrm{AL}}=\mathrm{m} \overline{\mathrm{DE}}$ and $\mathrm{m} \overline{\mathrm{AM}}=\mathrm{m} \overline{\mathrm{DF}}$ (Construction)

By (i) and (ii)

By taking reciprocals
(II) If $\mathrm{m} \overline{\mathrm{AB}}<\mathrm{m} \overline{\mathrm{DE}}$, it can similarly be proved by taking intercepts on the sides of $\triangle \mathrm{DEF}$
$\angle \mathrm{A} \cong \angle \mathrm{D}$
$\angle \mathrm{B} \cong \angle \mathrm{E}$
And $\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$
So $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Thus $\frac{\mathrm{m} \overline{\mathrm{AB}}}{\mathrm{m} \overline{\mathrm{DE}}}=\frac{\mathrm{m} \overline{\mathrm{AC}}}{\mathrm{m} \overline{\mathrm{DF}}}=\frac{\mathrm{m} \overline{\mathrm{BC}}}{\mathrm{m} \overline{\mathrm{EF}}}=1$
A.S.A \cong A.S.A
$\overline{\mathrm{AC}} \cong \overline{\mathrm{DF}}, \quad \overline{\mathrm{BC}} \cong \overline{\mathrm{EF}}$

Hence the result is true for all the cases.

Exercise 14.2

Q. 1 In $\triangle \mathrm{ABC}$ as shown in the figure $\overline{\mathrm{CD}}$ bisects $\angle \mathrm{C}$ and meets $\overline{\mathrm{AB}}$ at $\mathrm{D} \cdot \mathrm{m} \overline{\mathrm{BD}}$ is equal to
(a) 5
(b) 16
(c) 10
(d) 18 (A.B + U.B)

Solution:

By Theorem 14.3, we have
$\frac{\mathrm{m} \overline{\mathrm{BD}}}{\mathrm{m} \overline{\mathrm{DA}}}=\frac{\mathrm{m} \overline{\mathrm{BC}}}{\mathrm{m} \overline{\mathrm{CA}}}$
$\frac{\overline{\mathrm{BD}}}{6}=\frac{10}{12}$
$\overline{\mathrm{BD}}=\frac{10 \times 6}{12}=\frac{60^{5}}{12}$

$\overline{\mathrm{BD}}=5$
Q. 2 In $\triangle \mathrm{ABC}$ shown in the figure $\overline{\mathrm{CD}}$ bisects $\angle \mathrm{C}$. If $\mathrm{m} \overline{\mathrm{AC}}=3, \overline{\mathrm{CB}}=6$ and $\mathrm{m} \overline{\mathrm{AB}}=7$ then
find $m \overline{A D}$ and $\overline{D B}$

Solution:

Let $\overline{A D}=x$
Then, $\overline{B D}=7-x$
By theorem 14.3, we have
$\frac{\mathrm{m} \overline{\mathrm{AD}}}{\mathrm{mBD}}=\frac{\mathrm{m} \overline{\mathrm{AC}}}{\mathrm{m} \overline{\mathrm{CB}}}$

$\frac{x}{7-x}=\frac{1}{2}$
$2 x=7-x$

$2 x+x=7$
$3 \mathrm{x}=7$
$\mathrm{x}=\frac{7}{3} \quad$ or $\quad \overline{\mathrm{AD}}=\frac{7}{3}$
$\overline{\mathrm{AB}}=\overline{\mathrm{AD}}+\overline{\mathrm{BD}}$

$$
\begin{aligned}
& 7=\frac{7}{3}+\overline{\mathrm{BD}} \\
& 7-\frac{7}{3}=\overline{\mathrm{BD}} \\
& \frac{21-7}{3}=\frac{\mathrm{BD}}{\frac{3 D}{B D}}=\frac{94}{3}
\end{aligned}
$$

Q. 3 Show that in any corresponding of two triangles if two angles of one triangle are congruent to the corresponding angles of the other, then the triangle are similar

Given

$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
$\angle \mathrm{B} \cong \angle \mathrm{E}$
$\angle \mathrm{C} \cong \angle \mathrm{F}$
To Prove
$\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Proof

Statements
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180$
$\angle \mathrm{~A} \cong \angle \mathrm{D}$
$\angle \mathrm{B}=\angle \mathrm{E}$
$\angle \mathrm{C}=\angle \mathrm{F}$
Hence $\triangle \mathrm{ABC}$

Q. 4 If line segment $\overline{A B}$ and $\frac{C D}{}$ are intersecting at point X and $\frac{m \overline{A X}}{m \overline{X B}}=\frac{m \overline{C X}}{m \overline{X D}}$ then show that $\triangle \mathrm{AXC}$ and $\triangle \mathrm{BXD}$ are similar Given
Line segment $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ intersect at X

$$
\frac{m \overline{A X}}{m \overline{X B}}=\frac{m \overline{C X}}{m \overline{X D}}
$$

To Prove
\triangle CXA and $\triangle \mathrm{DXB}$ are simitar
Proof

$\frac{\overline{A X}}{\overline{X B}}=\frac{\overline{C X}}{\overline{X D}}$		
$\angle 1=\angle 2$		
$\overline{\mathrm{AC}} \\| \overline{\mathrm{BD}}$	Reasons	
$\angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}$	Given	
$\mathrm{m} \angle \mathrm{C}=\mathrm{m} \angle \mathrm{D}$	Vertical angles	
Hence proved the triangle are similar		

Review Exercise 14
Q. $1 \quad$ Which of the following are true which are false?
(K.B + U.B)
(i) Congruent triangles are of same size and shape.
(ii) Similar triangles are of same shape but different sizes.
(iii) Symbol used for congruent is ' \sim,
(iv) Symbol used for similarity is ' \cong '
(v) Congruent triangle are similar
(vi) Similar triangles are congruent
(vii) A line segment has only one midpoint
(viii) One and only one line can be drawn through two points
(ix) Proportion is non equality of two ratio
(x) Ratio has no unit
Q. 2 Define the following
(i) Ratio

Ans: see definition
(ii) Proportion

Ans: see definition
(iii) Congruent Triangles

Two triangles are said to be congruent (symbols ${ }^{=}$) if there exists correspondence between them such that all the corresponding sides and angles are congruent.

Ans: see definition
Q. 3 In $\triangle L M N$ shown in the figure $\overline{\mathrm{MN}} \| \overline{\mathrm{PQ}}$
(i) If $\mathrm{mLM}=5 \mathrm{~cm}, \mathrm{mLP}=2.5 \mathrm{~cm}$ $\mathrm{mLQ}=2.3 \mathrm{~cm}$ then find LN
$\frac{\mathrm{m} \overline{\mathrm{LP}}}{\mathrm{mLM}}=\frac{\mathrm{m} \overline{\mathrm{LQ}}}{\mathrm{mLN}}$
$\frac{2.5}{5}=\frac{2.3}{\overline{\mathrm{LN}}}$
(2.5) $\overline{\mathrm{LN}}=5 \times 2.3$
$\overline{\mathrm{LN}}=\frac{11.5}{2.5}$

$\overline{\mathrm{LN}}=4.6 \mathrm{~cm}$
(ii) If $\mathrm{mLM}=6 \mathrm{~cm}, \mathrm{mLQ}=2.5 \mathrm{~cm}$
(A.B + U.B)
$\mathrm{mQN}=5 \mathrm{~cm}$ then find
mLP
$\frac{\mathrm{m} \overline{\mathrm{LP}}}{\mathrm{m} \overline{\mathrm{LM}}}=\frac{\mathrm{mLQ}}{\mathrm{mLN}}$
$\frac{\mathrm{LP}}{6}=\frac{2.5}{\mathrm{LN}}$
$\overline{\mathrm{LN}}=\overline{\mathrm{LQ}}+\overline{\mathrm{QN}}$
$\overline{L N}=2.5+5$
$\overline{\mathrm{LN}}=7.5 \mathrm{~cm}$
$\overline{\mathrm{LP}}=\frac{2.5}{7.5}$
$\mathrm{LP}=\frac{2.5 \times 6}{7.5}$
$\overline{\mathrm{LP}}=\frac{15}{7.5}$
$\overline{\mathrm{LP}}=2 \mathrm{~cm}$
Q. 4 In the show figure let $\mathbf{m P A}=8 \mathrm{x}-7 \mathbf{m P B}=4 \mathrm{x}-3 \mathrm{mAQ}=5 \mathrm{x}-3$
$m \overline{\mathrm{BR}}=3 x-1$ find the value of x if $\overline{\mathrm{AB}} \| \overline{\mathrm{QR}}$
(A.B + U.B)
$\frac{\mathrm{mPA}}{\mathrm{mAQ}}=\frac{\mathrm{mBP}}{\mathrm{mBR}}$
$\frac{8 x-7}{5 x-3}=\frac{4 x-3}{3 x-1}$
By cross multiplying
$(8 x-7)(3 x-1)=(4 x-3)(5 x-3)$
$24 x^{2}-8 x-21 x+7=20 x^{2}-12 x-15 x+9$
$24 x^{2}-29 x+7=20 x^{2}-27 x+9$
$24 x^{2}-20 x^{2}-29 x+27 x+7-9=0$
$4 x^{2}-2 x-2=0$
$4 x^{2}-4 x+2 x-2=0$

$4 x(x-1)+2(x-1)=0$
$(x-1)(4 x+2)=0$
$x-1=0$
$x=1$
$4 x+2=0$
$4 x=-2$
$\mathrm{x}=\frac{-\not Z^{1}}{\not A_{2}}$
$\mathrm{x}=\frac{-1}{2}$
Length is always taken as positive not negative so value of $x=1$
Q. 5 In $\triangle L M N$ Shown in figure $\overrightarrow{\mathrm{LA}}$ bisects $\angle \mathrm{L}$. If $\mathrm{m} \overline{\mathrm{LN}}=4 \mathrm{~mm} \overline{\mathrm{LM}}=6 \mathrm{cmm} \overline{\mathrm{MN}}=8$ then find $m \overline{M A}$ and $m \overline{A N}$
$\frac{\mathrm{m} \overline{\mathrm{MA}}}{\mathrm{m} \overline{\mathrm{AN}}}=\frac{\mathrm{m} \overline{\mathrm{LM}}}{\mathrm{mLN}}$
$\overline{M A}=x$
$\overline{A N}=8-x$
$\frac{x}{8-x}=\frac{6}{4}$
$4 x=6(8-x)$
$4 x=48-6 x$
$4 x+6 x=48$
$10 x=48$
$x=\frac{48}{10}$
$x=4.8 \mathrm{~cm}$
$m \overline{M A}=4.8 \mathrm{~cm}$
$\overrightarrow{M N}=\overrightarrow{M A}+\overrightarrow{A N}$
$8=4.8+\overline{A N}$
$8-4.8=\overline{A N}$
$\overline{A N}=3.2 \mathrm{~cm}$
Q. 6 In Isosceles \triangle PQR Shown in the figure, find the value of x and y

As we know that it is isosceles triangle
(A.B + K.B)

So
$\overline{\mathrm{PQ}}=\overline{\mathrm{RP}}$
$10=x$
Or
$x=10 \mathrm{~cm}$
$\overline{\mathrm{PM}} \perp \overline{\mathrm{QR}}$
So it bisects the side and bisects the angle also
SO $\overline{\mathrm{QM}}=\overline{\mathrm{MR}}$

$6=y$
Or
$y=6 \mathrm{~cm}$

