

Work of Pythagoras on Right-Angled Triangles
(U.B + K.B)
(LHR 2016, GRW 2014, 17, BWP 2017, SWL 2015, 16, 17, MTN 2015, D.G.K 2014, 15, 17) Pythagoras, a Greek philosopher and mathematician, discovered the simple but important relationship between the sides of a right-angled triangle. He formulated this relationship in the form of a theorem called Pythagoras' theorem after his name.

Note

(U.B + K.B)

Birth of Pythagoras 580 BC - 572 BC
Death of Pythagoras 500 BC - 490 BC
Theorem 15.1.1
(U.B + K.B)

In a right angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

(i)

(ii) -a

(ii)-b

Given

$\triangle \mathrm{ACB}$ is a right angled triangle in which $\mathrm{m} \angle \mathrm{C}=90^{\circ}$ and $\mathrm{m} \overline{\mathrm{BC}}=\mathrm{a}, \mathrm{m} \overline{\mathrm{AC}}=\mathrm{b}$ and $m \overline{\mathrm{AB}}=\mathrm{c}$

To prove
$\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
Construction
Draw $\overline{\mathrm{CD}}$ perpendicular from C on $\overline{\mathrm{AB}}$
Let $\mathrm{m} \overline{\mathrm{CD}}=\mathrm{h}, \mathrm{m} \overline{\mathrm{AD}}=x$ and $\mathrm{m} \overline{\mathrm{BD}}=\mathrm{y}$. Line segment CD splits $\triangle \mathrm{ABC}$ into two $\Delta \mathrm{s}$ ADC and BDC which are separately shown in the figures (ii) -a and (ii) -b respectively.

Proof

Statements

Reasons

In $\Delta \mathrm{ADC} \leftrightarrow \Delta \mathrm{ACB}$
$\angle \mathrm{A} \cong \angle \mathrm{A}$
$\angle \mathrm{ADC} \cong \angle \mathrm{ACB}$
$\angle C \cong \angle B$
$\therefore \triangle \mathrm{ADC} \sim \triangle \mathrm{ACB}$
$\therefore \frac{x}{\mathrm{~b}}=\frac{\mathrm{b}}{\mathrm{c}}$
or $x=\frac{\mathrm{b}^{2}}{c}$
Again in $\triangle \mathrm{BDC} \leftrightarrow \Delta \mathrm{BCA}$
$\angle \mathrm{B} \cong \angle \mathrm{B}$
$\angle \mathrm{BDC} \cong \angle \mathrm{BCA}$
$\angle \mathrm{C} \cong \angle \mathrm{A}$
$\therefore \triangle \mathrm{BDC}: \quad \triangle \mathrm{BCA}$
$\therefore \frac{\mathrm{y}}{\mathrm{a}}=\frac{\mathrm{a}}{\mathrm{c}}$
or $\mathrm{y}=\frac{\mathrm{a}^{2}}{\mathrm{c}}$ (ii)

But $\mathrm{y}+x=\mathrm{c}$
$\therefore \frac{\mathrm{a}^{2}}{\mathrm{c}}+\frac{\mathrm{b}^{2}}{\mathrm{c}}=\mathrm{c}$
or $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
i.e. $c^{2}=a^{2}+b^{2}$
\qquad

Corollary:

(U.B + K.B)

In a right angle $\triangle A B C$, the right angle at A.
(i) $\quad m \overline{A B}^{2}=m \overline{B C}^{2}-m \overline{C A}^{2}$
(ii) $m \overline{A C}^{2}=m \overline{B C}^{2}-m \overline{A B}^{2}$

Note

(U.B + K.B)

Pythagoras' theorem has many proofs. The one we have given is based on the proportionality of the sides of two similar triangles. For convenience $\triangle s A D C$ and $C D B$ have been shown separately. Otherwise, the theorem is usually proved using figure (i) only.
Theorem 15.1.2 Converse of Pythagoras Theorem 15.1.1
(U.B + K.B)

If the Square of one side of a triangle is equal to the sum of the square of the other two sides, then the triangle is a right angled triangle.

Given

In a $\quad \triangle \mathrm{ABC}, \quad m \overline{A B}=c, m \overline{B C}=a, m \overline{A C}=b$
Such that $a^{2}+b^{2}=c^{2}$.
To prove
$\triangle \mathrm{ACB}$ is a right angled triangle.

Construction

Draw $\overline{\mathrm{CD}}$ perpendicular to $\overline{\mathrm{BC}}$ Such that
$\overline{\mathrm{CD}} \cong \overline{\mathrm{CA}}$. Join the points B and D.
Proof

Statements	Reasons
$\Delta \mathrm{DCB}$ is a right angled triangle.	Construction
$\therefore(m \overline{B D})^{2}=a^{2}+b^{2}$	Pythagoras theorem
But $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$	Given
$\therefore(\mathrm{m} \overline{\mathrm{BD}})^{2}=\mathrm{c}^{2}$	
or $\mathrm{m} \overline{\mathrm{BD}}=\mathrm{c}$	Taking Square root on both sides
Now in $\triangle \mathrm{DCB} \leftrightarrow \Delta \mathrm{ACB}$	Construction
$\overline{\mathrm{CD}} \cong \overline{\mathrm{CA}}$	Common
$\overline{\mathrm{BC}} \cong \overline{\mathrm{BC}}$	Each side $=\mathrm{c}$
$\overline{\mathrm{DB}} \cong \overline{\mathrm{AB}}$	S.S.S S S.S.S $\therefore \Delta \mathrm{DCB} \cong \triangle \mathrm{ACB}$ $\therefore \angle \mathrm{DCB} \cong \angle \mathrm{ACB}$ Corresponding angles of congruent But $\mathrm{m} \angle \mathrm{DCB}=90^{\circ}$ $\therefore \mathrm{m} \angle \mathrm{ACB}=90^{\circ}$ Hence the $\triangle \mathrm{ACB}$ is a Right angled triangle.

Corollary

$$
(\mathbf{U} . \mathbf{B}+\mathbf{K} . \mathbf{B}+\mathbf{A} . \mathbf{P})
$$

Let c be the longest of the sides a, b and c of a triangle.
If $a^{2}+b^{2}=c^{2}$, then the triangle is right.
If sum of the squares of two sides is equal to third side, then triangle is right angled triangle.
If $a^{2}+b^{2}>c^{2}$, then the triangle is acute.
If sum of the squares of two sides is greater than the third side, the triangle is acute angled triangle.
If $a^{2}+b^{2}<c^{2}$, then the triangle is obtuse.
If sum of the squares of two sides is smaller than the third side, the triangle is obtuse angled triangle.

Exercise 15

Q. 1 Verify that the Δs having the following measures of sides are right-angled.
(A.B)

Solution:
Δs are right angled, if
(U.B)
(Hypotenuse) ${ }^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
(i) (LHR 2016, GRW 2013, FSD 2015, 17, MTN

2013, SWL 2014, 15, 17, SGD 2013, 17)
$a=5 \mathrm{~cm} \quad \Rightarrow \mathrm{a}^{2}=25 \mathrm{~cm}^{2}$
$\mathrm{b}=12 \mathrm{~cm} \quad \Rightarrow \mathrm{~b}^{2}=144 \mathrm{~cm}^{2}$
$c=13 \mathrm{~cm} \quad \Rightarrow c^{2}=169 \mathrm{~cm}^{2}$
Larger Size is Hypotenuse, So
$c^{2}=a^{2}+b^{2}$
Putting the values
$169=25+144$
$169=169$
Satisfied
So, given measures form a right angled triangle.
(ii) (GRW 2016, FSD 2017, MTN 2013, 16, SWL 2015, SGD 2017)
$\mathrm{a}=1.5 \mathrm{~cm} \quad \Rightarrow \mathrm{a}^{2}=2.25 \mathrm{~cm}^{2}$
$\mathrm{b}=2 \mathrm{~cm} \quad \Rightarrow \mathrm{~b}^{2}=4 \mathrm{~cm}^{2}$
$c=2.5 \mathrm{~cm} \quad \Rightarrow c^{2}=6.25 \mathrm{~cm}^{2}$
Larger Size is Hypotenuse, So
$c^{2}=a^{2}+b^{2}$
Putting the values
$6.25=2.25+4$
$6.25=6.25$
Satisfied
So, given measures form a right angled triangle.
(iii) (LHR 2013, 14, 15, 16, GRW 2015, FSD 2014, SWL 2017, SGD 2015, RWP 2017)
$\mathrm{a}=9 \mathrm{~cm}$
$\Rightarrow \mathrm{a}^{2}=81 \mathrm{~cm}^{2}$
$\mathrm{b}=12 \mathrm{~cm}$
$\mathrm{c}=15 \mathrm{~cm}$
$\Rightarrow b^{2}=144 \mathrm{~cm}^{2}$
$\Rightarrow \mathrm{c}^{2}=225 \mathrm{~cm}^{2}$
Larger Size is Hypotenuse, So
$c^{2}=a^{2}+b^{2}$
Putting the values
$225 \mathrm{~cm}^{2}=8.1 \mathrm{~cm}+144 \mathrm{~cm}$
$225 \mathrm{~cm}^{2}=225 \mathrm{~cm}^{2}$
Satisfied.
So, given measures form a right angled triangle.

$$
\begin{array}{ll}
a=16 \mathrm{~cm} & a^{2}=256 \mathrm{~cm}^{2} \\
b=30 \mathrm{~cm} & b^{2}=900 \mathrm{~cm}^{2} \\
c=34 \mathrm{~cm} & c^{2}=1156 \mathrm{~cm}^{2}
\end{array}
$$

Larger Size is Hypotenuse, So
$c^{2}=a^{2}+b^{2}$
Putting the values
$1156=256+900$
$1156=1156$
Satisfied
So, given measures form a right angled triangle.
Q. 2 Verify that $a^{2}+b^{2}, a^{2}-b^{2}$ and 2ab are the measures of the sides of a right angled triangle where a and b are any two real numbers ($\mathbf{a}>b$).
(LHR 2017) (U.B + A.B)
Solution:
Let $a=2$ and $b=1$

$$
\begin{aligned}
& a^{2}+b^{2}=(2)^{2}+(1)^{2}=4+1=5 \\
& a^{2}-b^{2}=(2)^{2}-(1)^{2}=4-1=3 \\
& 2 a b=2(2)(1)=4
\end{aligned}
$$

Since $a^{2}+b^{2}$ is the largest side so $a^{2}+b^{2}$ will be hypotenuse.

So
Triangle is right angled, if

$$
\begin{aligned}
& \left(a^{2}+b^{2}\right)^{2}=(2 a b)^{2}+\left(a^{2}-b^{2}\right)^{2} \\
& a^{4}+b^{4}+2 a^{2} b^{2}=4 a^{2} b^{2}+a^{4}+b^{4}-2 a^{2} b^{2} \\
& a^{4}+b^{4}+2 a^{2} b^{2}=a^{4}+b^{4}+2 a^{2} b^{2} \\
& \quad \text { L.H.S }=\text { R.H.S }
\end{aligned}
$$

It is proved that it is a right angled triangle
Q. 3 The three sides of a triangle are of measure $8, x$ and 17 respectively. For what value of x will it become base of right angled triangle?

Solution:
By Pythagoras' theorem

Taking square root on both sides
$\sqrt{x^{2}}=\sqrt{225}$
$x=15$ (as length is always positive)
\therefore base $=15$ units
Q. 4 In an isosceles Δ, the base
$m \overline{\mathrm{BC}}=28 \mathrm{~cm}$ and
$m \overline{\mathrm{AB}}=m \overline{\mathrm{AC}}=50 \mathrm{~cm}$
If $\overline{\mathrm{AD}} \perp \overline{\mathrm{BC}}$, then find
(i) Length of $\overline{\mathrm{AD}}$
(ii) Area of $\triangle \mathrm{ABC}$

Solution:
(i) Length of $\overline{\mathrm{AD}}$
$\overline{\mathrm{AD}} \perp \overline{\mathrm{BC}}$
So $m \overline{B D}=m \overline{C D}$
$\bigcup_{1}^{\frac{1}{2}} \overline{\mathrm{BC}}=\frac{1}{2}(28)$
$\frac{1}{2} \overline{\mathrm{BC}}=14$
So
$\overline{\mathrm{BD}}=\overline{\mathrm{CD}}=14$
$(\overline{\mathrm{AB}})^{2}=(\overline{\mathrm{BD}})^{2}+(\overline{\mathrm{AD}})^{2}$
$2500=(14)^{2}+(\overline{\mathrm{AD}})^{2}$
$2500=196+(\overline{\mathrm{AD}})^{2}$
$2500-196=(\overline{\mathrm{AD}})^{2}$
$(\overline{\mathrm{AD}})^{2}=2304$
Taking square root on both sides
$\sqrt{(\overline{\mathrm{AD}})^{2}}=\sqrt{2304}$
$\overline{\mathrm{AD}}=48 \mathrm{~cm}$
(i) Area of $\triangle \mathrm{ABC}$

Area of $\Delta \mathrm{ABC}=\frac{1}{2}$ (base) $\times($ height $)$

$$
\begin{aligned}
& =\frac{1}{2}(28) \times(48) \\
& =(14) \times(48) \\
& =672 \mathrm{~cm}^{2}
\end{aligned}
$$

Q. 5 In a quadrilateral $A B C D$, the diagonals $\overline{\mathrm{AC}}$ and $\frac{\mathrm{BD}}{}$ are perpendicular to each other.
Prove that:
$(\overline{A B})^{2}+(\overline{C D})^{2}=(\overline{A D})^{2}+(\overline{B C})^{2}$
Proof
$\triangle \mathrm{AOB}$

$(\overline{A B})^{2}=(\overline{O B})^{2}+(\overline{O A})^{2}$
$\triangle B O C$

$\triangle \mathrm{COD}$
$\sqrt{(\overrightarrow{C D})^{2}=\left((\overrightarrow{O D})^{2}+(\overline{O C})^{2}\right.}$

$\triangle D O A$
$(\overline{A D})^{2}=(\overline{O A})^{2}+(\overline{O D})^{2}$ (iv)

By adding (i) and (iii)
$(\overline{A B})^{2}+(\overline{C D})^{2}=(\overline{O B})^{2}+(\overline{O A})^{2}+(\overline{O D})^{2}+(\overline{O C})^{2} \rightarrow(\mathrm{v})$
By adding (ii) and (iv)
$(\overline{A D})^{2}+(\overline{B C})^{2}=(\overline{O B})^{2}+(\overline{O C})^{2}+(\overline{O A})^{2}+(\overline{O D})^{2} \rightarrow(\mathrm{vi})$
By comparing (v) and (vi)

$$
(\overline{A B})^{2}+(\overline{C D})^{2}=(\overline{A D})^{2}+(\overline{B C})^{2}
$$

Hence proved

Q. 6 In the $\triangle \mathrm{ABC}$ as shown in the figure, $\mathrm{m} \angle \mathrm{ACB}=90^{\circ}$ and $\overline{C D} \perp \overline{A B}$. Find the length a, h and b if $m \overline{B D}=5$ units and $m \overline{\mathrm{AD}}=7$ units.
(A.B)

$\triangle \mathrm{ACB}$
$(7+5)^{2}=(b)^{2}+(a)^{2}$
$a^{2}+b^{2}=(12)^{2}$
$a^{2}+b^{2}=144$ \qquad
$\triangle \mathrm{ADC}$
$(b)^{2}=(7)^{2}+(h)^{2}$
$b^{2}-h^{2}=49$ \qquad (ii)
$\Delta \mathrm{CDB}$

$a^{2}=(5)^{2}+(h)^{2}$
$a^{2}-h^{2}=25$ \qquad (iii)

Subtracting ii from iii
$a^{2}-\not h^{2 \prime}=25$
$\frac{ \pm b^{2} \mathrm{~m} \not h^{\not 2}= \pm 49}{a^{2}-b^{2}=-24}$
$a^{2}-b^{2}=-24$
Adding equation (i) and (iv)

$$
\begin{gather*}
a^{2}+b^{2}=144 \tag{iv}\\
\frac{a^{2}-b^{2}}{}=-24 \\
2 a^{2}=120 \\
a^{2}=\frac{120^{60}}{\not 2} \\
a^{2}=60 \\
a^{2}=4 \times 15
\end{gather*}
$$

Taking square root on both sides
$\sqrt{a^{2}}=\sqrt{4 \times 15}$
$a=2 \sqrt{15}$
Putting the value of a in equation (i)
$(2 \sqrt{15})^{2}+b^{2}=144$
$4 \times 15+b^{2}=144$
$60+b^{2}=144$
$b^{2}=144-60$
$b^{2}=84$
$b^{2}=4 \times 21$
Taking square root on both sides
$b^{2}=\sqrt{4 \times 21}$
Putting the value of b in equation (ii)
$(2 \sqrt{21})^{2}-h^{2}=49$
$4 \times 21-49=h^{2}$
$h^{2}=84-49$
$h^{2}=35$
Taking square root on both sides $h=\sqrt{35}$

Result:

$a=2 \sqrt{15}, b=2 \sqrt{21}$ and $h=\sqrt{35}$
(i) Find the value of x in the shown figure.
From $\triangle \mathrm{ADC}$

In right triangle ADC ,

$$
\begin{aligned}
& (\overline{A C})^{2}=(\overline{D C})^{2}+(\overline{A D})^{2} \\
& (13)^{2}=(5)^{2}+(\overline{A D})^{2} \\
& 169=25+(\overline{A D})^{2} \\
& 169-25=(\overline{A D})^{2} \\
& (\overline{A D})^{2}=144
\end{aligned}
$$

Taking square root both side
$\sqrt{(\overline{A D})^{2}}=\sqrt{(144)}$
$\overline{\mathrm{AD}}=12 \mathrm{~cm}$
From $\triangle \mathrm{ADB}$
$(\overline{A B})^{2}=(B D)^{2}+(\overline{A D})^{2}$
$(15)^{2}=x^{2}+(12)^{2}$
$225=x^{2}+144$
$225-144=x^{2}$ $x^{2}=81$
Taking square on both sides
$\sqrt{x^{2}}=\sqrt{81}$
$x=9 \mathrm{~cm}$
Q. 7 A plane is at a height of $\mathbf{3 0 0 m}$ and is 500 m away from the airport as shown in the figure How much distance will it travel to land at the airport?
(A.B)
$\triangle \mathrm{ABC}$ is right angle triangle
$(\overline{\mathrm{AB}})^{2}=(\overline{\mathrm{BC}})^{2}+(\overline{\mathrm{AC}})^{2}$
$(\overline{\mathrm{AB}})^{2}=(500)^{2}+(300)^{2}$

$(\overline{A B})^{2}=250000+90000$
$(\overline{A B})^{2}=340000$
$(\overline{A B})^{2}=10000 \times 34$
Taking square root on both sides
$\sqrt{(\overline{A B})^{2}}=\sqrt{10000 \times 34}$
$m \overline{A B}=100 \sqrt{34} m$
Q. 8 A ladder 17m long rests against a vertical wall. The foot of the ladder is $\mathbf{8 m}$ away from the base of the wall. How high up the wall will the ladder reach? (SWL 2014) (A.B)
By Pythagoras theorem

$(\overline{B C})^{2}=225$
Taking square root on both sides
$\sqrt{(\overline{B C})^{2}}=\sqrt{225}$
$\overline{B C}=15 \mathrm{~m}$
The height of wall $=\overline{B C}=15 \mathrm{~m}$
A student travels to his school by the route as shown in the figure. Find $m \overline{\mathrm{AD}}$, the direct distance from his house to school. (A.B)

H
As we know that in rectangle opposite sides are equal. So

$\overrightarrow{A B}=\overline{C E}=2 \mathrm{~km}$
$\overrightarrow{B C}=\overrightarrow{A E}=6 \mathrm{~km}$
$\overline{D E}=\overline{D C}+\overrightarrow{C E}$
\therefore We get triangle
$\triangle \mathrm{ADE}$ which is right angled triangle
$(\overline{A D})^{2}=(\overline{A E})^{2}+(\overline{E D})^{2}$
$(\overline{A D})^{2}=(6)^{2}+(3+2)^{2}$
$(\overline{A D})^{2}=36+(5)^{2}$
$(\overline{A D})^{2}=36+25$
$(\overline{A D})^{2}=61$
Taking square root on both sides
$\sqrt{(\overline{A D})^{2}}=\sqrt{61}$
$m \overline{A D}=\sqrt{61} \mathrm{~km}$
Therefore, Distance between school and home is $\sqrt{61} \mathrm{~km}$.

Review Exercise 15

Q. 1 Which of the following are true and which are false? (A.B + U.B + K.B)
(i) In a right angled triangle greater angle is of 90°.
(ii) In a right angled triangle right angle is of 60°.
(iii) In a right triangle hypotenuse is a side opposite to right angle.
(iv) If a,b,c are sides of right angled triangle with \mathbf{c} as longer side, then \mathbf{c}
$c^{2}=a^{2}+b^{2}$.
If 3 cm and 4 cm are two sides of a right angled triangle, the hypotenuse is 5 cm .
(vi) If hypotenuse of an isosceles right triangle is $\sqrt{2} \mathrm{~cm}$ then each of other side is of length 2 cm .
Q. 2 Find the unknown value in each of the following figures.
(LHR 2016, 17, SWL 2016, BWP 2016, 17, RWP 2017, D.G.K 2014, 16)
By Pythagoras' theorem
$(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$
$(x)^{2}=(3)^{2}+(4)^{2}$
$x^{2}=9+16$
$x^{2}=25$
Taking square root on both sides
$\sqrt{x^{2}}=\sqrt{25}$
$x=5 \mathrm{~cm}$
(LHR 2017, GRW 2013, 16, SWL 2017, FSD 2015, 17, MTN 2016, D.G.K 2013)
ByPythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$
$(10)^{2}=(x)^{2}+(6)^{2}$
$100=x^{2}+36$
$100-36=x^{2}$
$x^{2}=64$
Taking square root on both sides

$\sqrt{x^{2}}=\sqrt{64}$
$x=8 \mathrm{~cm}$
(iii)
(FSD 2017, RWP 2017, SWL 2015, D.G.K 2016)
By Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$
$(13)^{2}=(5)^{2}+(x)^{2}$
$169=25+x^{2}$
$169-25=x^{2}$
$x^{2}=144$
Taking square root on both sides
$\sqrt{x^{2}}=\sqrt{144}$
$x=12 \mathrm{~cm}$
(iv)

By Pythagoras theorem $(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$ $(\sqrt{2})^{2}=(1)^{2}+(x)^{2}$
$2=1+x^{2}$
2. $-1=x^{2}$
$x^{2}=1$
Taking square root on both sides
$\sqrt{x^{2}}=\sqrt{1}$
$x=1 \mathrm{~cm}$

SELF TEST

Time: 40 min
Marks: 25
Q. 1 Mark the Correct multiple choice question.
(7×1=7)
1 Which of the following is trichotomy property of real number:
(A) $m \overline{\mathrm{AB}}=m \overline{\mathrm{BC}}$
(B) $m \overline{A B}>m \overline{B C}$
(C) $m \overline{A B}<m \overline{B C}$
(D) None of these

2 Which of following set of lengths can be the lengths of the sides of a triangle.
(A) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 5 \mathrm{~cm}$
(B) $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$
(C) $2 \mathrm{~cm}, 4 \mathrm{~cm}, 7 \mathrm{~cm}$
(D) $4 \mathrm{~cm}, 3 \mathrm{~cm}, 7 \mathrm{~cm}$

3 Two sides of a triangle measure 10 cm and 15 cm . which of the following measure is possible for the third side
(A) 5 cm
(B) 20 cm
(C) 25 cm
(D) 30 cm

4 In the figure, P is any point lying away from the line $\mathbf{A B}$. Then $m \overline{\mathrm{PL}}$ will be shortest distance if

(A) $\mathrm{m} \angle \mathrm{PLA}=80^{\circ}$
(B) $\mathrm{m} \angle \mathrm{PLB}=100^{\circ}$
(C) $\mathrm{m} \angle \mathrm{PLA}=90^{\circ}$
(D) $\mathrm{m} \angle \mathrm{PLA}=70^{\circ}$

5 If a line segment intersects the two sides of a triangle in the same ratio then it is
\qquad to the third side
(A) Perpendicular
(B) Parallel
(C) Intersecting
(D) Similar

6 In $\triangle \mathrm{ABC}$ as shown in the figure, $\overline{C D}$ bisects $\angle \mathrm{C}$ and meets $\overline{\mathrm{AB}}$ at $\mathrm{D} . \mathrm{m} \overline{\mathrm{BD}}$ is equal to:
(A) 5
(B) 16
(C) 10
(D) 18
$7 \quad$ If $a^{2}+b^{2}>c^{2}$ then triangle is called
(A) Acute
(B) Obtuse
(C) Scalene
(D) Right

8 In a right angled triangle the greatest angle is of
(A) 60°
(B) 90°
(C) 120°
(D) 180°

9 If hypotenuse of an isosceles right triangles is 12 cm then each of other side is of length
(A) 2
(B) 4
(C) 1
(D) $6 \sqrt{2}$
Q. 2 Give Short Answers to following Questions.
(i) If $13 \mathrm{~cm}, 12 \mathrm{~cm}$, and 5 cm are the lengths of a triangle, then verify that difference of measure of any two sides of a triangle is less then measure of the third side.
(ii) In a triangle $\mathrm{ABC}, \mathrm{m} \angle \mathrm{B}=70^{\circ}$ and $\mathrm{m} \angle \mathrm{C}=45^{\circ}$, which of the sides of the triangle is longest and which is the shortest?
(iii) The three sides of a triangle are of measure $8, x$, and 17 respectively for what value of x will it become base of a right angled triangle?
(iv) In $\triangle \mathrm{ABC}$ shown in the figure, $\overrightarrow{C D}$ bisects $\angle \mathrm{C}$. If $\mathrm{m} \overline{\mathrm{AC}}=3$, $\mathrm{m} \overline{\mathrm{CB}}=6$ and $\mathrm{m} \overline{\mathrm{AB}}=7$, then find $m \overline{\mathrm{AD}}$ and $m \overline{\mathrm{DB}}$

(v) Find the value of x in the shown figure

If $\mathrm{AD}=2.4 \mathrm{~cm}, \overline{\mathrm{AE}}=3.2 \mathrm{~cm}, \overline{\mathrm{DE}}=2 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ find $\overline{\mathrm{AB}}, \overline{\mathrm{DB}}, \overline{\mathrm{AC}}, \overline{\mathrm{CE}}$.

Q. 3 Answer the following Questions.

(a) Define similar triangles.

(b) A ladder 17 m long rests against a vertical wall. The foot of the ladder is 8 m away from the base of the wall. How high up the wall will the ladder reach?

Note:
Parents or guardians can conduct this test in their supervision in order to check the skills of the student.

