

Introduction
(K.B)

In this unit we will state and prove some important theorems related with and of parallelograms and triangles along with corollaries. We shall apply them to solve appropriate problems and to prove some useful results.

Area of a Figure

(K.B)

The region enclosed by the bounding lines of a closed figure is called area of figure.
Unit of Area of Figure:
The area of a closed region is expressed in square units (say, sq. m or m^{2}) i.e., positive real number.

Triangular Region

The interior of a triangle is the part of the plane enclosed by the triangle.
A triangular region is the union of a triangle and its interior i.e., the three line segments forming the Triangle and its interior.
By area of a triangle we mean the area of its triangular region.

Congruent Area Axiom

If two figures are congruent then their areas are also congruent.

For example:

If $\triangle A B C \cong \triangle P Q R$. Then area of (region $\triangle A B C)=$ Area of (region $\triangle P Q R$)

Rectangular Region

(K.B)

The interior of a rectangle is the part of the plane enclosed by the rectangle.
A rectangle region is the union of a rectangle and its interior.
A rectangular region can be divided into two or more than two triangular regions in many ways.

Unit of Rectangular Region

If the length and width of rectangle are a units and b units respectively, then the area of the rectangle is equal to $a \times b$ square units. If a is the side of a square, its area $=a^{2}$ square units.

Between the same parallels

Two parallelograms are said to be between the same parallels, when their bases are in the same straight line and their sides opposite to these bases are also in a straight line; as the parallelograms $A B C D, E F G H$ is the given figure.

Two triangles are said to be between the same parallels, when their bases are in the same straight line and the line joining their vertices is parallel to their bases; as the $\triangle s A B C, D E F$ in the given figure.

A triangle and a parallelogram are said to be between the same parallels, when their bases are in the same straight line, and the side of the parallelogram opposite the base, produced if necessary, passes through the vertex of the triangle as are the $\triangle A B C$ and the parallelogram $D E F G$ in
 the given figure.

Definition

(K.B + U.B)

If one side of a parallelogram is taken as its base, the perpendicular distance between that side and the side parallel to it, is called the Altitude or Height of the parallelogram.

Definition

(K.B + U.B)

If one is a triangle is taken as its base, the perpendicular to that side, form the opposite vertex is called Altitude or Height of the triangle.

Useful result

(K.B + U.B)
"Triangles or parallelogram having the same or equal altitudes can be placed between the same parallels, and conversely".
Side of it, and spouse $\overline{A L}, \overline{D M}$ are the equal altitudes. We have to show $\overline{A D}$ is parallel to $B C E F$
$\overline{A L}$ and $\overline{D M}$ are parallel, they are both perpendicular to $\overline{B F}$. Also $m \overline{A L}=m \overline{D L}$.(given)
$\therefore \overline{A D}$ is parallel to $L M$.
A similar proof may be given in the case of parallelograms.
Useful result
(K.B + U.B)

A diagonals of a parallelogram divides it into two congruent triangles (S.S.S.) and hence of equal area.

Theorem 16.1.1
 (K.B + U.B)

Parallelograms on the same base and between the same parallel lines (or of the same altitude) are equal in area Given
Two parallelograms ABCD and ABEF having the same

base $\overline{\mathrm{AB}}$ between the same parallel lines $\widehat{\mathrm{AB}}$ and $\overline{\mathrm{DE}}$
To prove
Area of parallelogram $A B C D=$ area of parallelogram $A B E F$
Proof

Statements

Reasons

Area of (parallelogram ABCD) $=$
Area of (Quad. ABED) + Area of (\triangle CBE) ... (1)
Area of (parallelogram ABEF)
$=$ Area of (Quad. ABED) + Area of (\triangle DAF) \ldots. (2)
In $\Delta \mathrm{s}$ CBE and DAF
$\mathrm{m} \overline{\mathrm{CB}}=\mathrm{m} \overline{D A}$
$m \overline{\mathrm{BE}}=m \overline{\mathrm{AF}}$
$\mathrm{m} \angle \mathrm{CBE}=\mathrm{m} \angle \mathrm{DAF}$
$\Delta \mathrm{CBE} \cong \triangle \mathrm{DAF}$
Area of $(\triangle \mathrm{CBE})=$ area of $(\triangle \mathrm{DAF}) \ldots$ (3)
Hence area of (Parallelogram ABCD) $=$ area of (parallelogram ABEF)
[Area addition axiom]
[Area addition axiom]
[opposite sides of a Parallelogram]
[opposite sides of a Parallelogram]
$[\because \overline{B C}\|\overline{A D}, \overline{B E}\| \overline{A F}]$
$[$ S.A.S Cong.axiom]
[Cong. Area axiom]
From (1), (2) and (3)

Corollaries:

(K.B + U.B)
(i) Triangle on equal bases and between the same parallels are equal in area. The same parallels are equal in area.
(ii) Triangle in the same straight line, area equal in area.

Proof:

Let $A B C D$ be a parallelogram $\overline{A L}$ is an altitude corresponding to side $\overline{A B}$
(i) Since parallelogram $A B C D$ and rectangle $A L M B$ are on the same base $\overline{A B}$ and between the same parallels,
\therefore by above theorem it follows that
Area of (parallelogram $A B C D$) $\quad \cap=$ Area of (rectangle $A L M B$)
(ii) But area of rectangle $A L M B$) = $A B \times A L$

Hence area of (parallelogram ABCD) $=A B \times A L$

Theorem 16.1.2

(K.B + U.B + A.B)

Parallelograms on equal bases and having the same (or equal) altitude area equal in area.
Given:
Parallelogram $\mathrm{ABCD}, \mathrm{EFGH}$ are on equal base $\overline{\mathrm{BC}}, \overline{\mathrm{FG}}$ having equal altitudes

To prove

Area of (Parallelogram ABCD) $=$ area of (parallelogram EFGH)

Construction:

Place the parallelogram ABCD and EFGH So that their equal bases $\overline{\mathrm{BC}}, \widehat{\mathrm{FG}}$ are in the straight line BCFG. Join $\overline{B E}$ and $\overline{C H}$
Proof

Statements
The give $11^{\mathrm{mg}} \mathrm{ABCD}$ and EFGH are between the same parallels
Hence ADEH is a straight line $\|$ to $\overline{B C}$
$\therefore \mathrm{m} \overline{B C}=\mathrm{m} \overline{F G}=\mathrm{m} \overline{E H}$
Now $\mathrm{m} \overline{B C}=\mathrm{m} \overline{E H}$ and they are $\|$
$\therefore \overline{B E}$ and $\overline{C H}$ are both equal and $\|$
Hence EBCH is a Parallelogram

Now $\left\|^{\mathrm{gm}} \mathrm{ABCD}=\right\|^{\mathrm{gm}}$ EBCH -(i)
But $\left\|^{\mathrm{gm}} \mathrm{EBCH}=\right\| \|^{\mathrm{gm}} \mathrm{EFGH}-$ (ii)
Hence area $\|^{\mathrm{gm}}(\mathrm{ABCD})=$ Area $\|^{\mathrm{gm}}(\mathrm{EFGH})$

Reasons

Their altitudes are equal (given)

Given
EFGH is a parallelogram

A quadrilateral with two opposite side congruent and parallel is a parallelogram
Being on the same base $\overline{B C}$ and between the same parallels
Being on the same base $\overline{E H}$ and between the same parallels

From (i) and (ii)

Exercise 16.1

Q. 1 Show that the line segment joining the mid point of opposite sides of a purallogram divides it into two equal parallelograms. Given
ABCD is a parallelogram. L is the midpoint of $\overline{A B}$ and M is the midpoint of $\overline{D C}$
To prove
Area of parallelogram ALMD $=$ are of parallelogram LBCM.
Proof

Statements

$\overline{\mathrm{AB}} \quad \overline{\mathrm{DC}}$
$\overline{\mathrm{AL}} \cong \overline{\mathrm{LB}} \ldots$..(i)
The parallelograms ALMD and LBCM are on equal bases and between the same parallel lines $\overline{\mathrm{AB}}$ and $\overline{\mathrm{DC}}$
Hence area of parallelogram ALMD= area of parallelogram LBCM.

Reasons
Opposite sides of parallelogram ABCD.
L is midpoint of $\overline{A B}$
From equation (i)

They have equal areas
Q. 2 In a parallelogram $A B C D, m \overline{A B}=10 \mathrm{~cm}$ the altitudes Corresponding to Sides $A B$ and $A D$ are respectively 7 cm and 8 cm Find $\overline{A D}$
(K.B + A.B)
$\overline{A B}=10 \mathrm{~cm}$
$\overline{D H}=7 \mathrm{~cm}$
$\overline{M B}=8 \mathrm{~cm}$
$\overline{\mathrm{AD}}=$?
Formula
Area of parallelogram $=$ base x altitude
$\overline{\mathrm{AB}} \times \overline{\mathrm{DH}}=\overline{\mathrm{AD}} \times \overline{\mathrm{IB}}$

$10 \times 7=\overline{A D} \times 8$
$\frac{70^{35}}{\not 8^{4}}=\overline{A D}$
$\frac{35}{4}=\overline{A D}$
$\overline{A D}=\frac{35}{4}$
Or
$\overline{A D}=8.75 \mathrm{~cm}$
Q. 3 If two parallelograms of equal areas have the same or equal bases, their altitude are equal
(K.B + A.B)

In parallelogram opposite side and opponents angles are Congruent.

Given

Parallelogram ABCD and parallelegram MNOP
OD is altitude of parallelogram ABCD
PQ is altitude of parallelogram MNOP
Area of ABCD $\|^{\mathrm{gm}} \cong$ Area of MNOP $\|^{\mathrm{gm}}$
To prove
$\mathrm{m} \overline{O D} \cong \mathrm{~m} \overline{P Q}$

Proof

Theorem 16.1.3

Triangle on the same base and of the same (i.e...equal) altitudes are equal in area

Given

Δ 's $\mathrm{ABC}, \mathrm{DBC}$ on the same base $\overline{B C}$ and having equal altitudes
To prove
Area of $(\triangle \mathrm{ABC})=$ area of $(\triangle \mathrm{DBC})$
Construction:
Draw $\overline{B M} \square$ to $\overline{C A}, \overline{C N} \square$ to $\overline{B D}$ meeting $\overline{A D}$ produced in M.N.
Proof

Statements

$\Delta \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are between the same $\|^{s}$ Hence MADN is parallel to $\overline{B C}$
\therefore Area $\|^{\mathrm{gm}}(\mathrm{BCAM})=$ Area $\|^{\mathrm{gm}}$ (BCND)
But $\triangle \mathrm{ABC}=\frac{1}{2} \|^{\mathrm{gm}}(\mathrm{BCAM})-----$ (ii And $\triangle \mathrm{DBC}=\frac{1}{2} \| \mathrm{gm}$ (BCND)-----(iii) Hence area $(\triangle A B C)=$ Area $(\triangle D B C)$

These $\|^{\mathrm{gm}}$ are on the same base $\overline{B C}$ and between the same

Each diagonal of a $\|^{\mathrm{gm}}$
Bisects it into two congruent triangles From (i) (ii) and (iii)

Reasons
Their altitudes are equal

$$
(\mathbf{K} . \mathbf{B}+\mathbf{U} . \mathbf{B}+\mathbf{A} . \mathbf{B})
$$

Theorem 16.1.4

Triangles on equal bases and of equal altitudes are equal
in area.

Given

$\triangle \mathrm{ABC}, \mathrm{DEF}$ on equal bases $\overline{B C}, \overline{E F}$ and having altitudes equal

To prove

$\operatorname{Area}(\triangle \mathrm{ABC})=\operatorname{Area}(\triangle \mathrm{DEF})$
Construction:
Place the $\triangle \mathrm{s} A B C$ and DEF so that their equal bases $\overline{B C}$ and $\overline{E F}$ are in the same straight line BCEF and their vertices on the same side of it .Draw $\overline{\mathrm{BX}} \| \overline{\mathrm{CA}}$ and $\overline{\mathrm{FY}} \| \overline{\mathrm{ED}}$ meeting $\overline{\mathrm{AD}}$ produced in X , Y respectively

Proof

Statements

$\triangle \mathrm{ABC}, \triangle \mathrm{DEF}$ are between the same parallels
$\therefore \mathrm{XADY}$ is $\|^{\mathrm{gm}}$ to BCEF
\therefore area $\|^{\mathrm{gm}}($ BCAX $)=\mathrm{A}$ area $\|^{\mathrm{gm}}($ EFYD $)---(\mathrm{i})$
But $\triangle \mathrm{ABC}=\frac{1}{2} \|^{\mathrm{gm}}(\mathrm{BCAX})---(\mathrm{ii})$
And area of $\triangle \mathrm{DEF}=\frac{1}{2}$ area of $\|^{\mathrm{gm}} \quad(\mathrm{EFYD})$ \qquad (iii)
$\therefore \operatorname{area}(\triangle \mathrm{ABC})=\operatorname{area}(\Delta \mathrm{DEF})$ \qquad From (i), (ii) and (iii)

Corollaries:

(K.B + A.B)
(i) Triangles on equal bases and between the same parallels are equal in area.
(ii) Triangles having a common vertex and equal bases in the same straight line, area equal in area.

Exercise 16.2

Q. 1

Show that

Given

$\triangle \mathrm{ABC}, \mathrm{O}$ is the mid point of

Area $\triangle \mathrm{ABO}=$ area $\triangle \mathrm{ACO}$
Construction
Draw $\overline{D E} \square \overline{B C}$
$\overline{C P} \square \overline{O A}$
$\overline{B Q} \square \overline{O A}$

Proof
$\overline{B Q} \square \overline{O A}$
$\overline{O B} \square \overline{A Q}$
$\| \mathrm{gm} \mathrm{BOAQ}$
$\| \mathrm{gm} \mathrm{COAB}$
$\overline{O B} \cong \overline{O C}$
Area of $\|^{\mathrm{gm}} \mathrm{BOAQ}=$ Area of $\|^{\mathrm{gm}} \mathrm{COAP} \quad \ldots$ (i)
Area of $\triangle A B O=\frac{1}{2}$ Area of $\|^{\mathrm{gm}} \mathrm{BOAQ}$
Area of $\triangle \mathrm{ACO}=\frac{1}{2}$ Area of $\|^{\mathrm{gm}} \mathrm{COAP}$
Area of $\triangle \mathrm{ABO}=$ Area of $\triangle \mathrm{ACO}$

Construction
 Construction

Reasons

Base of same
Parallel line of $\overleftrightarrow{D E}$
O is the mid point of $\overline{B C}$

Dividing equation (i) both side by (ii)

So median of a triangle divides it into two triangles of equal area.

Q. 2 Prove that a parallelogram is divided by its diagonals into four triangles of equal area.

Given:
(K.B + U.B)

In parallelogram $\mathrm{ABCD}, \overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ are its diagonals, which meet at I

To prove:

Triangles ABI, BCI CDI and ADI have equal areas.
Proof:
Triangles $A B C$ and $A B D$ have the same base $\overline{A B}$ and are between the same parallel lines $\overline{\mathrm{AB}}$ and $\overline{\mathrm{DC}} \therefore$ they have equal areas.

Or area of $\triangle A B C=$ area of $\triangle A B D$
Or area of $\Delta \mathrm{ABI}+$ area of $\Delta \mathrm{BCI}=$ area of $\Delta \mathrm{ABI}+$ area of $\Delta \mathrm{ADI}$
\Rightarrow Area of $\Delta \mathrm{BCI}=$ area of $\Delta \mathrm{ADI} \ldots$ (i)
Similarly area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{BCD}$
\Rightarrow Area of $\Delta \mathrm{ABI}+$ area of $\Delta \mathrm{BCI}=$ area of $\Delta \mathrm{BCI}+$ area of $\Delta \mathrm{CDI}$
\Rightarrow Area of $\Delta \mathrm{ABI}=$ area of $\Delta \mathrm{CDI}$.) (ii)
As diagonals of a parallelogram bisect each other I is the midpoint of $\overline{\mathrm{AC}}$ so $\overline{\mathrm{BI}}$ is a median of $\triangle A B C$
\therefore Area of $\triangle A B I=$ area of $\triangle B C L .$. (iii)
$\triangle C D I \cong \triangle A O I$
$\overrightarrow{B I} \cong \overline{D I}$
Area of $\triangle \mathrm{ABI}=$ area of $\Delta \mathrm{BCI}=$ area of $\Delta \mathrm{CDI}=$ area of $\Delta \mathrm{ADI}$
Q. 3 Divide a triangle into six equal triangular parts
(K.B + U.B)

Given
$\triangle \mathrm{ABC}$
To prove
To divide $\Delta \mathrm{ABC}$ into six equal part triangular parts

Construction

Take $\overrightarrow{\mathrm{BP}}$ any ray making an acute angle with $\overrightarrow{\mathrm{BC}}$ draw six arcs of the same radius on $\overrightarrow{\mathrm{BP}}$ i.e $m \overline{B d}=m d e=m e f=m f g=m g h=m h c$

Join c to C and paralle? line segments as
$\overline{c C}\|\overrightarrow{h H}\| \overrightarrow{g G}\|\overrightarrow{f F}\| \overrightarrow{e E} \| \overrightarrow{d o}$
Join Ato O,E,F,G,H
Proof
Base $\overline{B C}$ of $\triangle \mathrm{ABC}$ has been divided to six equal parts.

We get six triangles having equal base and same altitude
Their area is equal
Hence $\quad \Delta \mathrm{BOA}=\Delta \mathrm{OEA}=\Delta \mathrm{EFA}=\Delta \mathrm{FGA}=\Delta \mathrm{GHA}=\Delta \mathrm{HCA}$

Review Exercise 16

Q. 1 Which of the following are true and which are false?
(K.B + U.B + A.B)
(i) Area of a figure means region enclosed by bounding lines of closed figures. (True)
(ii) Similar figures have same area.
(iii) Congruent figures have same area.
(iv) A diagonal of a parallelogram divides it into two non-congruent triangles. (False)
(v) Altitude of a triangle means perpendicular from vertex to the opposite side (base). (True)
(vi) Area of a parallelogram is equal to the product of base and height.
Q. 2 Find the area of the following.

Given

Length of rectangle $=\ell=3 \mathrm{~cm}$
Width of rectangle $=\mathrm{w}=6 \mathrm{~cm}$
Required:
Area of rectangle $=$?
Solution:
Area of rectangle $=$ length \times width

$$
=3 \mathrm{~cm} \times 6 \mathrm{~cm}
$$

\Rightarrow Area of rectangle $=18 \mathrm{~cm}^{2}$
(ii)

Given
Length of square $=\ell=4 \mathrm{~cm}$ Required:
Area of square $=$?
Solution:
Area of square $=\ell \times l$
$=\ell^{2}$
$=(4 \mathrm{~cm})^{2}$
\Rightarrow Area of square $=16 \mathrm{~cm}^{2}$
(GRW 2016, FSD 2017, MTN 2013, BWP 2017, SGD 2015)

Given
Height of parallelogram $=4 \mathrm{~cm}$
Base of parallelogram $=8 \mathrm{~cm}$
Required:
Area of parallelogram = ?
(A.B + U.B)

Solution:

Area of parallelogram $=b \times h$

$$
=8 \mathrm{~cm} \times 4 \mathrm{~cm}
$$

\Rightarrow area of parallelogram $=32 \mathrm{~cm}^{2}$
(iv)

Given:
Height of triangle $=h=10 \mathrm{~m}$
Base of triangle $=b=16 \mathrm{~cm}$
Required:
Area of triangle $=$?
Solution:
Area of triangle $=\frac{1}{2} \times b \times h$
(LHR 2017, MTN 2016)

$=\frac{1}{22} \times{ }^{8} 16 \mathrm{~cm} \times 10 \mathrm{~cm}$
$=8 \mathrm{~cm} \times 10 \mathrm{~cm}$
$=80 \mathrm{~cm}^{2}$
Q. 3 Define the following
(i) Area of a figure
(K.B + U.B)
(LHR 2013, 14, GRW 2015, 17, FSD 2013, 14, BWP 2017, SGD 2017, D.G.K 2016)
The region enclosed by the bounding lines of a closed figure is known as area of the figure.

(ii) Triangular Region
(K.B + A.B)
(LHR 2015, FSD 2017, MTN 2015, 17, SWL 2016, SGD 2017, D.G.K 2014, 15) A triangular region is the union of a triangle and its interior i-e three line segments forming the triangle and its interior

(iii) Rectangular Region
(LHR 2016, GRW 2013, 14, MTN 2016,SGD 2013, 15)
A rectangular region is the union of a rectangle and its interior. A rectangular region can be divided into two or more than two triangular regions in many ways.
(iv) Altitude or Height
(K.B + A.B)
(SWL 2015, 17, BWP 2016, SGD 2015, MTN 2015)
If one side of a triangle is taken as its base, the perpendicular distance form one vertex opposite side is called altitude of triangle. $\overline{A D}$ is its altitude.

SELF TEST

Time: 40 min
Marks: 25
Q. 1 Mark the Correct multiple choice question.
($7 \times 1=7$)
1 The area of a closed region is expressed in \qquad units.
(A) Square
(B) Cubic
(C) Degree 1
(D) Degree 4

2 The \qquad of a triangle is the part of the plane enclosed by the triangle.
(A) Exterior
(B) Altitude
(C) Interior
(D) Perpendicular

3 If $\triangle \mathrm{ABC} \equiv \triangle \mathrm{PQR}$ and $\triangle \mathrm{LMN} \equiv \triangle \mathrm{PQR}$ then area of $\triangle \mathrm{ABC}$ is equal to area of:
(A) $\triangle \mathrm{XYZ}$
(B) $\triangle \mathrm{DEF}$
(C) $\triangle \mathrm{LMN}$
(D) None of these

4 If length of rectangle is a units and width is b units, then area of rectangle is
(A) $a+b$
(B) $a-b$
(C) $a \times b$
(D) $a \div b$

5 Parallelogram is divided by its one diagonal into \qquad triangles of equal Area.
(A) Six
(B) Four
(C) Two
(D) Infinite

6 Similar figures have \qquad area.
(A) Equal
(B) Same
(C) Unequal
(D) May be equal or may not be equal

7 \qquad of a triangle means perpendicular distance to base from its opposite vertex.
(A) Hypotenuse
(B) Altitude
(C) Base
(D) Acute angle

Q. 2 Give Short Answers to following Questions.

(i) Define rectangular region.
(ii) What is meant by two triangles between same parallel lines?
(iii) State congruent area Axiom.
(iv) The area of a parallelogram is equal to that of rectangle on the same base and having same altitude.
(v) Find the area of the following figure.

Q. 3 Answer the following Questions in detail.

Parallelogram on equal bases and having the same altitudes are equal in area.
Note:
Parents or guardians can conduct this test in their supervision in order to check the skill of students.

