Use of Geometrical Figures

The knowledge of construction of triangles, rectangles, squares etc. is very useful in everyday life. Especially in the occupations of wood-working, graphic art and metal trade etc. Intermixing of geometrical figures is used to create artistic look. The geometrical constructions are usually made with the help of a pair of compasses, set squares divider and a straight edge.

PRACTICAL

EOMETRY - TRIANGLES

Note

If the given line segments are too big or too small, a suitable scale may be taken for constructing the figure.

Elements of a Triangle

A triangle has six elements, three sides and three angles.

Cases of Triangles

There are six cases of triangles:

When,

- (i) Three sides are given.
- Two sides and including angle is given. (ii)
- (iii) Two sides and non-including angle is given.
- (iv) Two angles and including side is given.
- Two angles and including side is given. **(v)**
- Three angles are given. (**vi**)

Note

- In case (i), (ii), (iv), (v) unique triangle is formed. (i)
- (ii) In case (iii) (ambiguous case) two triangles are possible.
- In case (v) infinite number of triangles is possible. (iii)

Construction of Triangles

- To construct a triangle, having given two sides and the included angle. **(a)** Given
 - Two sides, say
 - $m\overline{AB} = 4.6cm$ and $m\overline{AC} = 4cm$ and the included angle, $\angle A = 60^{\circ}$

 $(\mathbf{K}.\mathbf{B} + \mathbf{U}.\mathbf{B})$

LCO

 $(\mathbf{K}.\mathbf{B} + \mathbf{A}.\mathbf{B})$

(K.B + U.B)

0

 $(\mathbf{K}.\mathbf{B} + \mathbf{A}.\mathbf{B})$

 $(\mathbf{K}.\mathbf{B} + \mathbf{A}.\mathbf{B})$

 $(\mathbf{K}.\mathbf{B} + \mathbf{U}.\mathbf{B})$

Required

To construct the $\triangle ABC$ using given information of sides and the included construction

Steps of Construction

(i)

angle $\angle 60^{\circ}$.

Draw a line segment $m\overline{AB} = 4.6cm$

- (ii) At the end A of \overline{AB} make $m \angle BAC = 60^\circ$
- (iii) Cut of $m\overline{AC} = 4cm$ from the terminal side of $\angle 60^\circ$
- (iv) Join \overline{BC}
- (v) Then ABC is required triangle.

(b) To construct a triangle, having given one side and two of the angles. (A.B)

Given:

The side $m\overline{AB} = 5cm$ say and two of the angle say, $m\angle A = 60^\circ$ and $m\angle B = 60^\circ$.

Required:

Note

To construct a $\triangle ABC$.

Steps of Construction

- (i) Draw the line segment $m\overline{AB} = 5cm$
- (ii) At the end point A of \overline{AB} make $\angle BAC = \angle 60^\circ$
- (iii) At the end point B of \overline{BA} make $m \angle ABC = \angle 60^\circ$
- (iv) The terminal sides of these two angles meet at *C*.
- (v) The *ABC* in the required Δ .

$(\mathbf{A}.\mathbf{B} + \mathbf{U}.\mathbf{B})$

When two angles of a triangle are given, the third angle can be found from the fact that the sum of three angles of triangle is 180° . Thus two angles being know, all the three are known, and we can take any two of these three angles as the base angles with given side as base.

(**K.B**)

(**K.B**)

Ambiguous Case

A case of triangle in which non-including angle is acute and facing the shorter side. In this case, numbers of triangles are not conformed. There may be no triangle.

(c) To construct a triangle having given two of its sides and the angel opposite to one of them.

Given

Two sides a, c and $m \angle A = \alpha$ opposite to one of them, say a.

Required

To construct a triangle.

Construction

- (i) Draw a line segment *AD* of any length
- (ii) At A make $m \angle DAB = m \angle A = \alpha$
- (iii) Cut off AB = C
- (iv) With centre B and radius equal to a, draw an arc.
- Three Cases Arise

Case I:

When the arc with radius a cuts \overline{AD} in two distant point c and c' as in Figures (a) joint \overline{BC} and \overline{BC}

BC and BC

Then both the triangles ABC and ABC' have the given parts and are the required triangles.

Case II:

When the arc with radius a only touches \overline{AD} at C, as figure (b).

Join \overline{BC}

Then $\triangle ABC$ is the required triangle right angled at C

Case III:

Figure (c)

When the arc with radius a neither cuts nor touches \overline{AD} as Figure (c). There will no triangle in this case

MATHEMATICS-9

Construction:

- Draw a line segment $m\overline{AB}=5$ cm. i.
- ii. Bisect \overline{AB} at M.

(U.B + A.B)

terminal side of angle at X.

Thus ΔXYZ is the required triangle.

 $m\overline{XY} = 5.5cm \ m\overline{ZX} = 4.5cm \ m\angle Z = 90^{\circ}$

Join X and Z.

iv.

(iii)

MATHEMATICS-9

Unit – 17

The side Required $m\overline{BC} = 5.9cm$ and $m \angle B = 56^\circ$, $m \angle C = 44^\circ$

- (i) To construct the $\triangle ABC$
- (ii) To draw its altitudes and verify their concurrency.

Construction:

- (i) Take $m\overline{BC} = 5.9cm$
- (ii) Using protector draw $m \angle CBA = 56^{\circ}$ and $m \angle BCA = 44^{\circ}$ to complete the $\triangle ABC$.

(iii) From the vertex A drop $AP \perp BC$.

- (iv) From the vertex *B* drop $\overline{BQ} \perp \overline{CA}$. these two altitudes meet in the point *O* inside the $\triangle ABC$
- (v) Now from the vertex C drop. $\overline{CR} \perp \overline{AB}$
- (vi) We observe that this third altitude also passes through the point of intersection O of the first two altitude also passes through the point of intersection O of the first two altitudes (vii) Hence the three altitudes of $\triangle ABC$ are concurrent at O.

Exercise 17.2

Construct the following Δ 's ABC. Draw the Bisector of their angle and verify their Concurrency.

 $(\mathbf{A}.\mathbf{B} + \mathbf{U}.\mathbf{B} + \mathbf{K}.\mathbf{B})$

(i)
$$mAB = 4.5cm \ mBC = 3.1cm \ mCA = 5.2cm$$

(A.B)

Steps of Constructions:

0.1

- **i.** Construct triangle ABC with given information.
- ii. Draw \overline{AL} bisector of $\angle A$.
- iii. Draw \overline{BM} bisector of $\angle B$.
- iv. Draw \overline{CN} bisector of $\angle C$.
- **v.** Bisectors of $\angle A, \angle B$ and $\angle C$ intersect each other at point I. Hence, angle bisectors of $\triangle ABC$ are concurrent.

- i. Construct triangle ABC with given information.
- **ii.** Draw \overline{AL} bisector of $\angle A$.
- **iii.** Draw \overline{BM} bisector of $\angle B$.

Steps of Constructions:

- **i.** Construct triangle PQR with given information.
- **ii.** From point P draw $\overline{PS} \perp \overline{QR}$.
- **iii.** From point Q draw $\overline{QT} \perp \overline{PR}$.
- **iv.** From point R draw $\overline{RU} \perp \overline{PQ}$.
- v. Altitudes intersect each other at point

О.

Hence, altitudes of ΔPQR are

concurrent.

- Draw $\overrightarrow{RS} \perp \overrightarrow{CA}$, such that it bisect iv. \overline{AC} .
- Perpendicular v. bisectors \overline{AB} , \overline{BC} and \overline{CA} intersect each other at point O.

Hence, perpendicular bisectors of sides of a Δ are concurrent.

 $mBC = 2.9cm m \angle A = 30^{\circ}$ $m \angle B = 60^{\circ}$ (ii) The sum of three angles in a triangle is 180° then $\angle A + \angle B + \angle C = 180^{\circ}$ $30 + 60 + \angle C = 180^{\circ}$ $90 + \angle C = 180^{\circ}$ $\angle C = 180^{\circ} - 90^{\circ}$

$$\angle C = 100^{\circ}$$
$$\angle C = 90^{\circ}$$

(**A.B**)

iii.

Draw $\overrightarrow{PQ} \perp \overrightarrow{BC}$, such that it bisect \overline{BC} Draw $\overrightarrow{RS} \perp \overrightarrow{CA}$, such that it bisect iv. \overline{AC} . Perpendicular bisectors of v. \overline{AB} , \overline{BC} and \overline{CA} intersect each other at point O. Hence, perpendicular bisectors of sides of a

 Δ are concurrent.

 $m\overline{AB} = 2.4cm \ m\overline{AC} = 3.2cm \ m\angle A = 120^{\circ}$ (iii) (**K.B**)

- **Steps of Constructions:**
- Construct triangle ABC with given i. information.

Draw $\overrightarrow{LM} \perp \overrightarrow{AB}$, such that it bisect \overline{AB} .

- Draw $\overrightarrow{PQ} \perp \overrightarrow{BC}$, such that it bisect iii. \overline{BC} .
- Draw $\overline{RS} \perp \overline{CA}$, such that it bisect iv. \overline{AC} .

Perpendicular bisectors of v. \overline{AB} , \overline{BC} and \overline{CA} intersect each other at point O.

ii.

(**K.B**)

ZX and XY respectively.

Taking A as centre draw an arc of radius AB = 2.8cm to cut at D. Join B to C, C to D, A to C and A to D. ABCD is the required quadrilateral. On the side *BC* construct a Δ equal in area to the quadrilateral ABCD. $(\mathbf{K}.\mathbf{B} + \mathbf{U}.\mathbf{B})$ 8cm 3.8cm 2.8cm 5.3cm B A

Construction:

Join A to C.

Through D draw $\overline{DP} \| \overline{CA}$ meeting

BA produced at P.

- Join PC.
- Then PBC is required triangle. $\Delta s APC, ADC$ stand on the same base AC and same parallels AC and

 $\Delta APC + \Delta ABC = \Delta ADC + \Delta ABC$ or ΔPBC =quadrilateral ABCD

Construct a Δ equal to the PQRS, quadrilateral having mQR = 7cm mRS = 6cm $m\overline{SP} = 2.75cm$ $m\angle ORS = 60^{\circ}$ and $m \angle RSP = 90^{\circ}$. $(\mathbf{U}.\mathbf{B} + \mathbf{K}.\mathbf{B})$

MATHEMATICS-9

- i. Draw a line segment $\overline{QR} = 7cm$.
- **ii.** At point R draw an angle of 60° .
- iii. Taking R as center draw an arc of radius of 6cm to cut at S.
- iv. At point S draw an angle 90°.
- v. Taking S as centre draw an arc of radius of 5.5cm, cutting the terminal side of 90° at point B.
- vi. Find the mid point of $m\overline{SB}$ at point P.
- vii. Join P to Q.
- **viii.** Draw \overline{PA} parallel to \overline{SQ}
- ix. Join A to S.
- **x.** \triangle ARS is required triangle equal in area to quadrilateral PQRS.
- Q.3 Construct a Δ equal in area to quadrilateral ABCD having $\overline{mAB} = 6cm$ $\overline{mBC} = 4cm$,

$$\overline{AC} = 7.2cm$$
 $m \angle BAD = 105$
and $m\overline{BD} = 8cm$.

i. Draw a line segment $\overline{AB} = 6cm$.

Construction:

Taking A as centre draw an arc of radius 7.2cm.

Taking B as centre draw an arc of radius 4*cm* to cut at C. Join C to A and C to B.

- iv. Taking A as centre make an angle $\angle QAB = 105^{\circ}$.
- v. Taking B as centre make an arc of radius 8cm to cut at D point.
- vi. Join D to C to complete the ABCD quadrilateral.
- **vii.** Draw $\overline{DP} \parallel \overline{CA}$ o meet \overline{BA} produced at P.
- viii. Join C to P.
- Thus $\triangle PBC$ is the required triangle.
- Q.4 Construct a right angled triangle equal in area to given square.

 $(\mathbf{A}.\mathbf{B} + \mathbf{K}.\mathbf{B})$

- Construction:
- Let measurement of each side of square is 3.8cm.

Construct a square ABCD with each side 3.8cm long.

- **ii.** Bisect \overline{CD} at E.
- iii. Join B to E and produced it to meet \overline{AD} produced in F.

 ΔABF is required triangle equal in area to square ABCD.

i.

 $(\mathbf{A}.\mathbf{B} + \mathbf{U}.\mathbf{B})$

4cm

1.2cm

6cm

equal

Exercise 17.4 Construct a Δ with sides 4cm, 5cm

Q.1 Construct a Δ with sides 4cm, 5cm and 6cm and construct a rectangle having its area equal to that of the Δ measure its diagonals. Are they

 $(\mathbf{A}.\mathbf{B} + \mathbf{K}.\mathbf{B})$

Construction:

- i. Draw a line segment $\overline{AB} = 6cm$.
- Taking A as centre draw an arc of radius 5cm.
- iii. Taking B as centre draw an arc of radius 4cm to cut at C. Join A to C and B to C.
- iv. ABC is the required Δ .
- **v.** Draw a line *l* through C parallel to \overline{AB} .
- vi. Draw the \perp bisector of \overline{AB} in D and cutting the line at P.

On the line l, cut \overline{PQ} equal to \overline{DB} .

viii. Join B to Q.

vii.

- **ix.** PQBD is the required rectangle.
- **x.** The length of each diagonal measured to be 4.5cm.

xi. The length of each diagonal is same. **Q.2** Transform an isosceles Δ into a rectangle. (U.B + A.B)

Construction:

- i. Draw a line segment \overline{BC} .
- ii. With B as centre draw in arc of suitable radius.
- iii. With C as centre draw another are of same radius which cuts the first arc at point A.
- iv. Join A to B and A to C.
- **v.** $\triangle ABC$ is the isosceles \triangle with $m\overline{AB} = m\overline{AC}$.

vi. Draw the perpendicular bisector of

- BC passing through point A.
- **vii.** Through A draw a line $l \| \overrightarrow{BC}$.
- **viii.** On *l* cut \overline{AD} equal to \overline{EC} and the Join C with D.
- ix. CDAE is the required rectangle equal in area to $\triangle ABC$.

- **v.** Bisect \overline{EG} at O.
- vi. With O as centre and radius = \overline{OE} draw a semi-circle.
- vii. At F draw $\overline{FM} \perp \overline{EG}$ meeting the semi-circle at M.
- with MF as a side, complete the required square FMNR.
 0.6 Construct a Δ having base 5 and
 - Construct a Δ having base 5 and other sides equal to 5cm and 6cm construct a square equal in area to given Δ . (K.B + A.B)

Construction:

i. Draw $\overrightarrow{PAQ} \parallel \overrightarrow{BC}$

- ii. Draw perpendicular bisector of \overline{BC} , bisector it at D and meeting \overline{PAQ} at P.
- **iii.** Draw $\overline{CQ} \perp \overline{PQ}$ meeting it in Q.
- iv. Take a line EFG and cut radius $\overline{EF} = \overline{DP}$ and $\overline{FG} = \overline{DC}$.
- **v.** Bisect *EG* at O.
- vi. With O as centre and radius = \overline{OE} draw a semi-circle.
- vii. At F draw $\overline{FM} \perp \overline{EG}$ meeting the semi-circle at M.
- viii. With \overline{MF} as a side, complete the required square FMNR.

Revised Exercise 17

Q.1 Fill in the blanks to make the statements true:

- (i) The side of right angled triangle opposite to 90° is called _____.
- (ii) The line segment joining a vertex of a triangle which is to the mid point of its opposite side is called a .
- (iii) A line drawn from a vertex of a triangle which is ______ to its opposite side is called an altitude of the triangle.
- (iv) The bisectors of the three angles of a triangle are
- (vi) Two or more triangles are said to be similar if they are equiangular and measures of their corresponding sides are _____.
- (vii) The altitudes of a right triangle are concurrent at the ______ of the right angle.

\mathbf{U}_{ni}	it – 17	Practical Geometry — Triangles		
NQ.2	ANSW (Fill in the fill in the	ER KEY he Blank) v Equidistant vi Proportional vii Vertex e correct answer).		
(i)	The triangle having two sides congrue	nt is called		
	(a) Scalene	(b) Right angled		
	(c) Equilateral	(d) Isosceles		
(ii)	A quadrilateral having each angle equ	al to 90° is called		
	(a) Parallelogram	(b) Rectangle		
	(c) Trapezium	(d) Rhombus		
(iii)	The right bisectors of the three sides o	f a triangle are		
	(a) Congruent	(b) Collinear		
	(c) Concurrent	(d) Parallel		
(iv)	The altitudes of an isoscele	es triangle are congruent.		
	(a) Two	(b) Three		
	(c) Four	(d) None of these		
(v)	A point equidistant from the end point	A point equidistant from the end points of a line – segment is on its		
	(a) Bisector	(b) Right - bisector		
	(c) Perpendicular	(d) Median		
(vi)	congruent triangles can be of a triangle. (a) Three	e made by joining the mid-points of the sides (b) Four		
	(c) Five	(d) Two		
(vii)	The diagonals of parallelogram	each other.		
100	(a) Bisect	(b) Trisect		
,	(c) Bisect at right angle	(d) None of these		
(viii)	The medians of a triangle cut each oth	er in the ration		
	(a) 4:1	(b) 3:1		
	(c) 2:1	(d) 1:1		

N,

- (ix) One angle on the base of an isosceles triangle is 30°. What is the measure of its vertical angle _____.
 (a) 30°
 (b) 60°
 (c) 90°
 (d) 120°

 (x) If the three altitudes of a triangle are congruent then, the triangle will be _____.

 (a) Isosceles
 (b) Equilateral
 - (c) Right angled

(d) Acute angled

(**b**) Equilateral

(xi) If two medians of a triangle are congruent then the triangle will be _____.

- (a) Isosceles
- (c) Right angled

(**d**) Acute angled

ANSWER KEY (M(CO'S)							
i	d	vii	a				
ii	b	viii	c				
iii	С	ix	d				
iv	a	Х	a				
v	b	xi	a				
vi	b						

×	Unit	: - 17	Practical Geometry — Triangles	7		
CUT HERE		SELF TE	STIMIN CJOBE			
I	Time:	40 min Π_{α}	Marks: 25			
I.	Q.1	Mark the Correct multiple choice question.	(7×1=7)			
I.	1	The side of a right angled triangle opposite	to 90° is called:			
I.		(A) Base (A)	B) Perpendicular			
	ATA)	(C) Altitude (1	D) Hypotenuse			
NN	2	The line segment joining a vertex of a trian	gle to the mid-point of its opposite side is			
yy v) _	called a				
		(A) Angle (A)	B) Altitude			
I		(C) Median	D) Perpendicular bisector			
I	3	The medians of a triangle cut each other in	the ratio			
I		(A) 4:1 (4)	B) 3 : 1			
I.		(C) 2:1 (1)	D) 1 : 1			
I.	4	If two altitudes of a triangle are congruent	then the triangle will be			
I		(A) Isosceles (A)	B) Equilateral			
I		(C) Right angled (A	D) Acute angled			
I.	5	The bisectors of the three angles of a triang	le are			
I		(A) Congruent (A)	B) Equal			
I	_	(C) Concurrent (D) Parallel			
I.	6	One angle on the base of an isosceles triangle i	s 30°. What is measure of its vertical angle			
1		$(A) 30^{\circ}$ ((B) 60°			
I	_	$(C) 90^{\circ}$ (1)	D) 120°			
I.	7	congruent triangles can be ma	ade by joining the mid-points of the sides			
1		of a an equilateral triangle				
I		(A) Inree (A)	B) Four			
1		(C) Five	b) 1 wo	\		
1	Q.2	Give Short Answers to following Questions.	(5×2=10)	7		
I	(i) Construct a $\triangle ABC$ in which $mAB = 3.6 \ cm$, $m \angle A = 75^{\circ}$, $m \angle B = 45^{\circ}$					
1	(ii)	 (ii) Construct a right-angled ∆ measure of whose hypotenuse is 5 cm and one side is 3.2 cm. (iii) Define orthocenter of a triangle. 				
1	(iii)					
1	(\mathbf{IV})	Transform an isosceles triangle to a rectangle	1Cuu - D			
I.	(\mathbf{v})	Transform an isosceles triangle to a rectangle.				
I.	Q.3	Answer the following Questions in detail.	(4+4=8)			
1	(a)	Construct the triangle XYZ. Draw their media	ns and show that they are concurrent, when			
2 M	NN	$mYZ = 3.6 \text{ cm}, \text{ m}\angle Y = 75^{\circ}, \text{ m}\angle X = 45^{\circ}.$				
1012	(b)	Construct a triangle equal in area to the quadri	lateral PQRS, having			
00		$mOR = 7cm, mRS = 6cm, mSP = 2.75cm, m\angle$	$QRS = 60^\circ, \text{ m} \angle RSP = 90^\circ.$			
I	Note	<u> </u>	~ '			
I.		Parents or murdians can conduct this tast in	their supervision in order to check the skill			
I		of students.				