

Use of Geometrical Figures
(K.B + A.B)

The knowledge of construction of triangles, rectangles, squares etc. is very useful in everyday life. Especially in the occupations of wood-working, graphic art and metal trade etc. Intermixing of geometrical figures is used to create artistic look. The geometrical constructions are usually made with the help of a pair of compasses, set squares divider and a straight edge.

Note

(K.B + U.B)

If the given line segments are too big or too small, a suitable scale may be taken for constructing the figure.

Elements of a Triangle

A triangle has six elements, three sides and three angles.

Cases of Triangles

(K.B + U.B)

There are six cases of triangles:
When,
(i) Three sides are given.
(ii) Two sides and including angle is given.
(iii) Two sides and non-including angle is given.
(iv) Two angles and including side is given.
(v) Two angles and including side is given.
(vi) Three angles are given.

Note

(K.B + A.B)
(i) In case (i), (ii), (iv), (v) unique triangle is formed.
(ii) In case (iii) (ambiguous case) two triangles are possible.
(iii) In case (v) infinite number of triangles is possible.

Construction of Triangles
(a) To construct a triangle, having given two sides and the included angle.

Given
Two sides, say
$m \overline{A B}=4.6 \mathrm{~cm}$ and $m \overline{A C}=4 \mathrm{~cm}$ and the included angle, $\angle A=60^{\circ}$

Required
To construct the $\triangle A B C$ using given information of sides and the included construction angle $\angle 60^{\circ}$.
Steps of Construction
(i) Draw a line segment $m \overline{A B}=4.6 \mathrm{~cm}$
(ii) At the end A of $\overline{A B}$ make $m \angle B A C=60^{\circ}$
(iii) Cut of $m \overline{A C}=4 \mathrm{~cm}$ from the terminal side of $\angle 60^{\circ}$
(iv) Join $\overline{B C}$
(v) Then $A B C$ is required triangle.
(b) To construct a triangle, having given one side and two of the angles.

Given:

The side $m \overline{A B}=5 \mathrm{~cm}$ say and two of the angle say, $m \angle A=60^{\circ}$ and $m \angle B=60^{\circ}$.

Required:

To construct a $\triangle A B C$.
Steps of Construction
(i) Draw the line segment $m \overline{A B}=5 \mathrm{~cm}$
(ii) At the end point A of $\overline{A B}$ make $\angle B A C=\angle 60^{\circ}$
(iii) At the end point B of $\overline{B A}$ make $m \angle A B C=\angle 60^{\circ}$
(iv) The terminal sides of these two angles meet at C.
(v) The $A B C$ in the required Δ.

When two angles of a triangle are given, the third angle can be found from the fact that the sum of three angles of triangle is 180°. Thus two angles being know, all the three are known, and we can take any two of these three angles as the base angles with given side as base.

Ambiguous Case

A case of triangle in which non-including angle is acute and facing the shorter side. In this case, numbers of triangles are not conformed. There may be no triangle.
(c) To construct a triangle having given two of its sides and the angel opposite to one of them.

Given

Two sides a, c and $m \angle A=\alpha$ opposite to one of them, say a.

Required

To construct a triangle.

Construction

(i) Draw a line segment $A D$ of any length
(ii) At A make $m \angle D A B=m \angle A=\alpha$
(iii) Cut off $A B=C$
(iv) With centre B and radius equal to a, draw an arc.

Three Cases Arise

(K.B)

Case I:

When the arc with radius a cuts $\overline{A D}$ in two distant point c and c^{\prime} as in Figures (a) joint $\overline{B C}$ and $\overline{B C}$
Then both the triangles $A B C$ and $A B C^{\prime}$ have the given parts and are the required triangles.

Case II:

When the arc with radius a only touches $\overline{A D}$ at C, as figure (b). Join $\overline{B C}$ Then $\triangle A B C$ is the required triangle right angled at C

Figure (c)

Case III:

When the arc with radius a neither cuts nor touches $\overline{A D}$ as Figure (c).
There will no triangle in this case

Exercise 17.1

Q. 1 Construct a $\triangle \mathrm{ABC}$ in which
(i) $m \overline{A B}=3.2 \mathrm{~cm} m \overline{B C}=4.2 \mathrm{~cm} m \overline{C A}=5.2 \mathrm{~cm}$

$$
(\mathbf{K} . \mathbf{B}+\mathbf{A} . \mathbf{B})
$$

(LHR 2013, 14, GRW 2013, 14, BWP 2017)

i. Draw a line segment $m \overline{A B}=3.2 \mathrm{~cm}$
ii. Taking A as centre draw an arc of radius 5.2 cm .
iii. Taking B as centre draw an arc of radius 4.2 cm to cut at point C .
iv. Join C to A and C to B .

Thus $\triangle A B C$ is the required triangle.
(ii) $m \overline{A B}=4.2 \mathrm{~cm} m \overline{B C}=3.9 \mathrm{~cm} m \overline{C A}=3.6 \mathrm{~cm}$ $(\mathbf{K} . \mathbf{B}+\mathbf{A} . \mathrm{B})$ (GRW 2013, FSD 2015, 17, MTN 2016, 17,

i. Draw a line segment $m \overline{A B}=4.2 \mathrm{~cm}$
ii. Taking A as centre draw an arc of radius 3.6 cm .
iii. Taking B as centre draw an arc of radius 3.9 cm to cut at point C .
iv. Join C to A and C to B .

Thus $\triangle A B C$ is the required triangle.
(iii) $m \overline{A B}=4.8 \mathrm{~cm} m \overline{B C}=3.7 \mathrm{~cm} m \angle B=60^{\circ}$
(K.B + U.B)
(LHR 2013, 15, 16, 17, GRW 2013, 17, SWL 2013, SGD 2016)

i. Draw a line segment $m \overline{A B}=4.8 \mathrm{~cm}$.
ii. Taking B as centre draw an angle of 60°.
iii. Taking B as centre draw an arc of radius 3.7 cm -cutting terminal side of 60° at C . Join C to A .
Thus $\triangle A B C$ is the required triangle.
(iv) $m \overline{A B}=3 \mathrm{~cm} \quad m \overline{A C}=3.2 \mathrm{~cm} \quad m \angle A=45^{\circ}$
(U.B + A.B)

i. Draw a line segment $m \overline{A B}=3 \mathrm{~cm}$.
ii. Taking A as centre draw an angle of 45°.
iii. Taking A as centre draw an arc of radius 3.2 cm to cut the terminal side of angle at C .
iv. Join C to B .

Thus $\triangle A B C$ is the required triangle.
(v) $m \overline{B C}=4.2 \mathrm{~cm} m \overline{C A}=3.5 \mathrm{~cm} m \angle C=75^{\circ}$

i. Draw a line segment $m \overline{B C}=4.2 \mathrm{~cm}$.
ii. Taking C as centre draw an angle of 75°.
iii. Taking C as centre draw an arc of radius 3.5 cm .
iv. Cutting the terminal side of angle at A.
v. Join A to B.

Thus $\triangle A B C$ is the required triangle.
(vi) $m \overline{A B}=2.5 \mathrm{~cm} \quad m \angle A=30^{\circ} \quad m \angle B=105^{\circ}$

i. Draw a line segment $m \overline{A B}=2.5 \mathrm{~cm}$.
ii. Taking A as centre draw an angle of 30°.
iii. Taking B as centre draw an angle of 105°.
iv. Terminal sides of these two angles meet at C .

Thus $\triangle A B C$ is the required triangle.
(vii)

$$
m \overline{A B}=3.6 \mathrm{~cm} \quad m \angle A=75^{\circ} \quad m \angle B=45^{\circ}
$$

(U.B + K.B)
i. Draw a line segment $m \overline{A B}=3.6 \mathrm{~cm}$.
i.

Taking A as centre draw an angle of 75°.
iii. Taking B as centre draw an angle of 45°.
iv. Terminal sides of these two angles meet at point C .
Thus $\triangle A B C$ is the required triangle.
Q. 2 Construct a $\triangle X Y Z$ in which
(i) $m \overline{Y Z}=7.6 \mathrm{~cm} m \overline{X Y}=6.1 \mathrm{~cm} m \angle X=90^{\circ}$

$$
(\mathbf{K} . \mathbf{B}+\mathbf{U} . \mathbf{B})
$$

i. Draw a line segment $m \overline{X Y}=6.1 \mathrm{~cm}$.
ii. Taking X as Centre draw an angle of 90°.
iii. Taking Y as Centre draw an arc of radius 7.6 cm to cut terminal sides of angle at Z .
iv. Join Y to Z .

Thus $\triangle X Y Z$ is the required triangle.
(ii) $m \overline{Z X}=6.4 \mathrm{~cm} \quad m \overline{Y Z}=2.4 \mathrm{~cm} m \angle Y=90^{\circ}$
($\mathbf{U} . \mathbf{B}+\mathbf{A . B})$

i. Draw a line segment $m \overline{Y Z}=2.4 \mathrm{~cm}$.
ii. Taking Y as centre draw an angle of 90%.
iii. Taking Z as centre draw an arc of radius 6.4 cm . Which cuts the terminal side of angle at X .
iv. Join X and Z.

Thus $\triangle X Y Z$ is the required triangle.
(iii) $m \overline{X Y}=5.5 \mathrm{~cm} m \overline{Z X}=4.5 \mathrm{~cm} m \angle Z=90^{\circ}$
(U.B + A.B)

i. Draw a line segment 4.5 cm .
ii. Taking Z as centre draw an angle of 90°.
iii. Taking X as centre draw an arc of radius 5.5 cm . Which cut the terminal side angle at Y .
iv. Join Y to X .

Thus $\triangle X Y Z$ is the required triangle.

Q. 3 Construct a right angled Δ

measure of whose hypotenuse is
5 cm and one side is 3.2 cm
(A.B)

Construction:

i. Draw a line segment $m \overline{\mathrm{AB}}=5 \mathrm{~cm}$.
ii. Bisect $\overline{A B}$ at M .
iii. Taking M as centre take a radius $\overline{A M}$ or $\overline{B M}$ and draw a semicircle.
iv. Taking A as centre draw an arc of radius 3.2 cm cutting semicircle at C .
v. Join C to A and C to B.

Thus $\triangle A B C$ is the required right angled triangle.
Q. 4 Construct right angled isosceles triangle whose hypotenuse is
(i) 5.2 cm long
(A.B + U.B)

Construction:

i. Draw a line segment $m \overline{A B}=5.2 \mathrm{~cm}$.
ii. Bisect $\overline{A B}$ at point M.
iii. With M as centre draw a semi circle of radius $\overline{A M}$ or $\overline{B M}$ which intersects the right bisector at C .
iv. Join Ato C and B to. C.
$\triangle \mathrm{ABC}$ is the required right angled isosceles triangle with $m \angle C=90^{\circ}$.
4.8 cm long (A.B + K.B) (FSD 2015)

i. Take a line segment $m \overline{A B}=4.8 \mathrm{~cm}$.
ii. Bisect $\overline{A B}$ at point M .
iii. Taking M as centre draw a semi circle of radius $\overline{A M}$ or $\overline{M B}$ which intersects the right bisector at C .
iv. Join A to C and B to C.

Thus ABC is the right angled isosceles triangle with $\angle C=90^{\circ}$.
(iii)
6.2 cm (LHR 2013) (K.B + U.B)

A 6.2 cm

i. Take a line segment $m A B=6.2 \mathrm{~cm}$.
ii. Bisect $\overline{A B}$ at point M .
iii. Taking M as a centre draw a semi circle of radius $\overline{A M}$ or $\overline{B M}$ which intersects the right bisector at C .
iv. Join A to C and B to C .

Thus $\triangle \mathrm{ABC}$ is the right angled isosceles triangle with $\angle C=90^{\circ}$.
(iv)

$5.4 \mathrm{~cm} \quad$ (SWL 2015) (A.B + U.B)

Construction:

i. Take a line segment $m \overline{A B}=5.4 \mathrm{~cm}$.
ii. Bisect $\overline{A B}$ at point M .
iii. Taking M as a centre draw a semi circle of radius $\overline{A M}$ or $\overline{B M}$ which intersects the right bisector at C .
iv. Join A to C and B to C .

Thus $\triangle \mathrm{ABC}$ is the right angled isosceles triangle with $\angle C=90^{\circ}$.
Q. 5 (Ambiguous case) Construct a $\triangle \mathrm{ABC}$ in which (A.B + U.B + K.B)
(i) $m \overline{A C}=4.2 \mathrm{~cm} m \overline{A B}=5.2 \mathrm{~cm} m \angle B=45^{\circ}$

Construction:

i. Draw a line segment $m \overline{A B}=5.2 \mathrm{~cm}$.
ii. At the end point B of
$\overline{B A}$ make $\angle B=45^{\circ}$.
iii. With centre at A and radius 4.2 cm draw an arc which cuts $\overline{B D}$ in two distinet points C and C^{\prime}.
iv. Draw $\overline{A C}$ and $\overline{A C}^{\prime}$.
$\therefore \triangle \mathrm{ABC}$ and $\triangle \mathrm{ABC}$ are required triangles.
(ii)

i. Take a line segment $m \overline{A B}=5 \mathrm{~cm}$.
ii. At the end point A of

$$
\overline{A B} \text { make } m \angle A=30^{\circ}
$$

iii. Taking B as centre draw an arc of radius 2.5 cm which touch as $\overrightarrow{A D}$ at point C .
iv. Join B to C.
$\therefore \triangle \mathrm{ABC}$ is required triangle.
(iii)

Three or more then three lines are said to be concurrent, if they all pass through the same point. The common point is called the point of concurrency of the lines.

In the given figure lines $A B, C D$ and $E F$ are concurrent lines and point P is point of concurrency.

In centre of the Triangle (A.B + K.B)

(LHR 2016, GRW 2016, MTN 2015, SWL 2016, 17, D.G.K 2016, 17)
The internal bisectors of the angles of a triangle meet at a point called the incentre of the triangle.
It is denoted by I.

Circumcentre of the Triangle:

(K.B + U.B)
(LHR 2016, 17, GRW 2015, 16, 17, SWL 2016, FSD 2017, MTN 2017, RWP 2017, SGD 2016, 17, D.G.K 2017)
The point of concurrency of the three perpendicular bisectors of the side of triangle is called the circumcentre of the triangle.
It is denoted by O .

Orthocentre of the Triangle:

$$
(\mathbf{K} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{B})
$$

The point of concurrency of three altitudes of a triangle meet in called its orthocentre.
It is denoted by O .

Centroid of the Triangle:
(LHR 2013, 17, RWP 2016) (A.B)
The point where the three medians of a triangle meet is called the centroid of the triangle.
It is denoted by G.

(i)

Point of concurrency

(LHR 2014, SGD 2015, 16) (A.B + U.B) Three are more than three lines are said to be concumrent if these lines pass through the same point and that point is called the point of concurrency. In the figure, P is the point of concurrency.

(a)

> Draw Angle Bisects of a given Triangle Example:

(i) Construct a $\triangle A B C$ having given $m \overline{A B}=4.6 \mathrm{~cm}, m \overline{B C}=5 \mathrm{~cm}$ and $m \overline{C A}=5.1 \mathrm{~cm}$.
(ii) Draw its angle bisectors and verify that they are concurrent

Given

The sides $m \overline{A B}=4.6 \mathrm{~cm}, m \overline{B C}=5 \mathrm{~cm}$ and $m \overline{C A}=5.1 \mathrm{~cm}$ of a $\triangle A B C$

Required

(i) To construct $\triangle A B C$
(ii) To draw its angle bisectors and verify their concurrency.

Construction:

(i) Take $m \overline{B C}=5 \mathrm{~cm}$
(ii) With B as centre and radius $m \overline{B A}=4.6 \mathrm{~cm}$ draw an arc.
(iii) With C as centre and radius $m \overline{C A}=5.1 \mathrm{~cm}$ draw an arc draw another arc which intersects the first arc at A.
(iv) Join $\overline{B A}$ and $\overline{C A}$ to complete the $\triangle A B C$.
(v) Draw bisectors of $\angle B$ and $\angle C$ meeting each other in the point I.
(vi) Now draw bisector of the third $\angle A$
(vii) We observe that the third angle bisector also passes through point I.
(viii) Hence the angle bisectors of the $\triangle A B C$ are concurrent at I, which lies with in the triangle.
(b) Draw Altitude of a given Triangle and Verify their Concurrency

$$
(\mathbf{A} \cdot \mathbf{B}+U \cdot B+K \cdot B)
$$

Example:
(i) Construct a $\triangle A B C$ in which $m \overline{B C}=5.9 \mathrm{~cm}, m \angle B=56^{\circ} \quad$ and $m \angle C=44^{\circ}$
(ii) Draw the altitudes of the triangle and verify that they are concurrent.

Given

The side Required $m \overline{B C}=5.9 \mathrm{~cm}$ and $m \angle B=56^{\circ}, m \angle C=44^{\circ}$
(i) To construct the $\triangle A B C$
(ii) To draw its altitudes and verify their concurrency.

Construction:

(i) Take $m \overline{B C}=5.9 \mathrm{~cm}$
(ii) Using protector draw $m \angle C B A=56^{\circ}$ and $m \angle B C A=44^{\circ}$ to complete the $\triangle A B C$.
(iii) From the vertex A drop $\overline{A P} \perp \overline{B C}$.
(iv) From the vertex B drop $\overline{B Q} \perp \overline{C A}$. these two altitudes meet in the point O inside the $\triangle A B C$
(v) Now from the vertex C drop. $\overline{C R} \perp \widehat{A B}$
(vi) We observe that this third altitude also passes through the point of intersection O of the first two altitude also passes through the point of intersection O of the first two altitudes (vii) Hence the three altitudes of $\triangle A B C$ are concurrent at O.

Exercise 17.2

Q. 1 Construct the following Δ 's ABC. Draw the Bisector of their angle and verify their Concurrency.
(A.B + U.B + K.B)
(i) $m A B=4.5 \mathrm{~cm} \quad m \overline{B C}=3.1 \mathrm{~cm} m \overline{C A}=5.2 \mathrm{~cm}$
(A.B)

Steps of Constructions:
i. Construct triangle ABC with given information.
ii. Draw $\overline{A L}$ bisector of $\angle A$.
iii. Draw $\overline{B M}$ bisector of $\angle B$.
iv. Draw $\overline{C N}$ bisector of $\angle C$.
v. Bisectors of $\angle A, \angle B$ and $\angle C$ intersect each other at point I.
Hence, angle bisectors of $\triangle A B C$ are concurrent.
(ii) $m A B=4.2 \mathrm{~cm} \quad m \overline{B C}=6 c m \quad m \overline{C A}=5.2 \mathrm{~cm}$

Steps of Constructions

i. Construct triangle ABC with given information.
ii. Draw $\overline{A L}$ bisector of $\angle A$.
iii. Draw $\overline{B M}$ bisector of $\angle B$.
iv. Draw $\overline{C N}$ bisector of $\angle C$.
v. Bisectors of $\angle A, \angle B$ and intersect each other at point I. Hence, angle bisectors of $\triangle A B C$ are concurrent.
(iii)

$$
\begin{equation*}
m A B=3.6 \mathrm{~cm} m \overrightarrow{B C}=4.2 \mathrm{~cm} m \angle B=75^{\circ} \tag{U.B}
\end{equation*}
$$

Steps of Constructions:

i. Construct triangle ABC with given information.
ii. Draw $\overline{A L}$ bisector of $\angle A$.
iii. Draw $\overline{B M}$ bisector of $\angle B$.
iv. Draw $\overline{C N}$ bisector of $\angle C$.
v. Bisectors of $\angle A, \angle B$ and
$\angle C$ intersect each other at point I . . Hence, angle bisectors of $\triangle A B C$ are concurrent.

Note

Angle bisectors of all types of triangle intersect each other inside the triangle.

Q. 2 Construct the following triangles

PQR. Draw their altitudes and show that they are concurrent.
(i) $m \overparen{P Q}=6 \mathrm{~cm}, m \overparen{Q R}=4.5 \mathrm{~cm}$ and $m \overrightarrow{P R}=5.5 \mathrm{~cm}$
(A.B)

Steps of Constructions:

i. Construct triangle PQR with given information.
ii. From point P draw $\overline{P T} \perp \overline{Q R}$.
iii. From point Q draw $\overline{Q S} \perp \overline{P R}$.
iv. From point R draw $\overline{R U} \perp \overline{P Q}$.
v. Altitudes intersect each other at point 0 . Hence, altitudes of $\triangle P Q R$ are concurrent.
(ii) $m \overline{P Q}=4.5 \mathrm{~cm} m \overline{Q R}=3.9 \mathrm{~cm} m \angle R=45^{\circ}$

Required:

i. To construct $\triangle P Q R$.
ii. To draw altitudes and verify their concurrency.

Steps of Constructions:

i. Construct triangle PQR with given information.
ii. From point P draw $\overline{P S} \perp \overline{Q R}$.
iii. From point Q draw $\overline{Q T} \perp \overline{P R}$.
iv. From point R draw $\overline{R U} \perp \overline{P Q}$.
v. Altitudes intersect each other at point
O.

Hence, altitudes of $\triangle P Q R$ are concurrent.
(iii)
$m \overline{R P}=3.6 \mathrm{~cm} \quad m \angle Q=30^{\circ} \quad m \angle P=105^{\circ}$
(U.B)

Sum of three angles in a triangle is
180° so,
$\angle P+\angle Q+\angle R=180^{\circ}$
$105+30+\angle R=180^{\circ}$
$135+\angle R=180^{\circ}$
$\angle R=180^{\circ}-135^{\circ}$
$\angle R=45^{\circ}$
So

Steps of Constructions:
i. Construct triangle PQR with given information.
ii. From point P draw $\overrightarrow{P S} \perp \overrightarrow{Q R}$.
iii. From point Q draw $\overline{Q T} \perp \overline{P R}$.
iv. From point R draw $\overline{R U} \perp \overline{P Q}$.
v. Altitudes intersect each other at point 0 .

Hence, altitudes of $\triangle P Q R$ are concurrent.

Note

Altitudes of acute angled triangle intersect each other inside the triangle.

- Altitudes of obtuse angled triangle intersect each other outside the triangle.
- Altitudes of right angled triangle intersect each other at vertex of right angle.
Q. 3 Contract the following triangles ABC draw the perpendicular bisector of three sides and verify their concurrency. Do they meet inside the triangle?
(i) $\overline{A B}=5.3 \mathrm{~cm} \quad m \angle A=45^{\circ} \quad m \angle B=30^{\circ}$

i. Construct triangle ABC with given information.
ii. Draw $\overleftrightarrow{L M} \perp \overrightarrow{A B}$, such that it bisect $\overline{A B}$.
iii. Draw $\overleftrightarrow{P Q} \perp \overline{B C}$, such that it bisect $\overline{B C}$.
iv. Draw $\overleftrightarrow{R S} \perp \overline{C A}$, such that it bisect $\overline{A C}$.
v. Perpendicular bisectors $\overline{A B}, \overline{B C}$ and $\overline{C A}$ intersect each other at point O .
Hence, perpendicular bisectors of sides of a Δ are concurrent.
(ii) $m \overline{B C}=2.9 \mathrm{~cm} m \angle A=30^{\circ} \quad m \angle B=60^{\circ}$

The sum of three angles in a triangle is 180° then
$\angle A+\angle B+\angle C=180^{\circ}$
$30+60+\angle C=180^{\circ}$
$90+\angle C=180^{\circ}$
$\angle C=180^{\circ}-90^{\circ}$
$\angle C=90^{\circ}$
(A.B)
 nstructions:

Steps of Constructions:

i. Construct triangle ABC with given information.
ii. Draw $\overleftrightarrow{L M} \perp \overrightarrow{A B}$, such that it bisect $\overline{A B}$.
iii. Draw $\overleftrightarrow{P Q} \perp \overrightarrow{B C}$, such that it bisect $\overline{B C}$.
iv. Draw $\overrightarrow{R S} \perp \overline{C A}$, such that it bisect $\overline{A C}$.
v. Perpendicular bisectors of $\overline{A B}, \overline{B C}$ and $\overline{C A}$ intersect each other at point O .

Hence, perpendicular bisectors of sides of a Δ are concurrent.
(iii) $m \overline{A B}=2.4 \mathrm{~cm} m \overline{A C}=3.2 \mathrm{~cm} m \angle A=120^{\circ}$
(K.B)

Steps of Constructions:

i. Construct triangle $A B C$ with given information.
Draw $\overrightarrow{L M} \perp \overline{A B}$, such that it bisect $\overline{A B}$.
iii. Draw $\overleftrightarrow{P Q} \perp \overline{B C}$, such that it bisect $\overline{B C}$.
iv. Draw $\overleftrightarrow{R S} \perp \overline{C A}$, such that it bisect $\overline{A C}$.
v. Perpendicular bisectors of $\overline{A B}, \overline{B C}$ and $\overline{C A}$ intersect each other at point O .

Hence, perpendicular bisectors of sides of a Δ are concurrent.

Note

(K.B)

- Right bisectors of acute angled triangle intersect each other inside the triangle.
Right bisectors of obtuse angled triangle intersect each other outside the triangle.
- Right bisectors of right angled triangle intersect each other mid of hypotenuse the triangle.
Q. 4 Construct the following $\Delta s X Y Z$. Draw their three medians and show that they are concurrent.
(i) $m \overline{Y Z}=4.1 \mathrm{~cm} \quad m \angle Y=60^{\circ} \quad m \angle X=75^{\circ}$
(A.B)

Sum of three angles in a triangle is 180° then
$m \angle X+m \angle Y+m \angle Z=180^{\circ}$
$75+60+m \angle Z=180^{\circ}$
$135+m \angle Z=180^{\circ}$
$m \angle Z=180^{\circ}-135^{\circ}$

Steps of Constructions:
i. Construct triangle XYZ with given information.
ii. Find midpoints A, B and C of YZ , ZX and XY respectively.

iii. Join A to X, B to Y and C to Z.

Thus, required medians are formed.
-They intersect each other at point G. Hence, medians a Δ are concurrent.
(ii) $\quad m \overline{X Y}=4.5 \mathrm{~cm} m \bar{Z}=3.4 \mathrm{~cm} m \overline{Z X}=5.6 \mathrm{~cm}$
(K.B)

Steps of Constructions:

i. Construct triangle XYZ with given information.
ii. Find midpoints A, B and C of YZ , ZX and XY respectively.
iii. Join A to X, B to Y and C to Z .
iv. Thus, required medians are formed.

They intersect each other at point G.
Hence, medians a Δ are concurrent.
(iii) $m \overline{Z X}=4,3 \mathrm{~cm} m \angle X=75^{\circ}$ and $m \angle Y=45^{\circ}$ Sum of three angles in a triangle is 180° then
$m \angle X+m \angle Y+m \angle Z=180^{\circ}$
$75+45+m \angle Z=180^{\circ}$
$120^{\circ}+m \angle Z=180^{\circ}$
$m \angle Z=180^{\circ}-120^{\circ}$
$m \angle Z=60^{\circ}$

Steps of Constructions:
i. Construct triangle XYZ with given information.
ii. Find midpoints A, B and C of YZ, ZX and XY respectively.
iii. Join A to X, B to Y and C to Z .
iv. Thus, required medians are formed. They intersect each other at point G. Hence, medians a Δ are concurrent.

Note

(K.B)

Medians of all types of triangle intersect each other inside the triangle.

Exercise 17.3

Q. 1
(i) Construction a quadrilateral

ABCD, having
$m \overline{A B}=\overline{A C}=5.3 \mathrm{~cm} \quad m \overline{B C}=m \overline{C D}=3,8 \mathrm{~cm}$ and $m \overline{A D}=2.8 \mathrm{~cm}$.
(A.B + K.B)

Construction:
Draw a line segment $A B=5.3 \mathrm{~cm}$.
Taking B as centre draw an arc of radius $\overline{B C}=3.8 \mathrm{~cm}$.
iii. Taking A as centre draw an arc of radius $\overline{A C}=5.3 \mathrm{~cm}$ to cut at C .
iv. Taking C as centre draw an arc of radius $\overline{C D}=3.8 \mathrm{~cm}$.
v. Taking A as centre draw an arc of radius $\overline{A B}=2.8 \mathrm{~cm}$ to cut at D .
vi. Join B to C, C to D , A to C and A to D . ABCD is the required quadrilateral.
(ii) On the side $\overline{B C}$ construct a Δ equal in area to the quadrilateral ABCD .

Construction:

i. Join A to C.
ii. Through D draw $\overline{D P} \| \overline{C A}$ meeting $\overline{B A}$ produced at P .
iii. Join $\overline{P C}$.
iv. Then PBC is required triangle.
$\triangle s A P C, A D C$ stand on the same
base AC and same parallels AC and PD.
Hence
$\triangle A P C=\triangle A D C$
$\triangle A P C+\triangle A B C=\triangle A D C+\triangle A B C$ or $\triangle P B C=$ quadrilateral ABCD
Q. 2 Construct a Δ equal to the quadrilateral PQRS, having $m \overline{Q R}=7 \mathrm{~cm} \quad m \overline{R S}=6 \mathrm{~cm}$
$m \overline{S P}=2.75 \mathrm{~cm} \quad m \angle Q R S=60^{\circ}$ and $m \angle R S P=90^{\circ}$.
(U.B + K.B)

Construction:

i. Draw a line segment $\overline{Q R}=7 \mathrm{~cm}$.
ii. At point R draw an angle of 60°.
iii. Taking R as center draw an arc of radius of 6 cm to cut at S.
iv. At point S draw an angle 90°.
v. Taking S as centre draw an arc of radius of 5.5 cm , cutting the terminal side of 90° at point B .
vi. Find the mid point of $m \overline{S B}$ at point P .
vii. Join P to Q .
viii. Draw $\overline{P A}$ parallel to $\overline{S Q}$
ix. Join A to S.
x. $\quad \triangle \mathrm{ARS}$ is required triangle equal in area to quadrilateral PQRS .
Q. 3 Construct a Δ equal in area to quadrilateral $\mathbf{A B C D}$ having $m \overline{A B}=6 \mathrm{~cm} \quad m \overline{B C}=4 \mathrm{~cm}$, $\overline{A C}=7.2 \mathrm{~cm} \quad m \angle B A D=105^{\circ}$ and $m \overline{B D}=8 \mathrm{~cm}$.

Construction:

i. Draw a line segment $\overline{A B}=6 \mathrm{~cm}$.
ii. Taking A as centre draw an arc of radius 7.2 cm .
iii. Taking B as centre draw an arc of radius 4 cm to cut at C . Join C to A and C to B .
iv. Taking A as centre make an angle $\angle Q A B=105^{\circ}$.
v. Taking B as centre make an arc of radius 8 cm to cut at D point.
vi. Join D to C to complete the ABCD quadrilateral.
vii. Draw $\overline{D P} \| \overline{C A}$ o meet $\overrightarrow{B A}$ produced at P.
viii. Join C to P .

Thus $\triangle P B C$ is the required triangle.
Q. 4 Construct a right angled triangle equal in area to given square.
(A.B + K.B)

i. Construct a square ABCD with each side 3.8 cm long.
ii. Bisect $\overline{C D}$ at E .
iii. Join B to E and produced it to meet $\overline{A D}$ produced in F .
$\triangle \mathrm{ABF}$ is required triangle equal in area to square $A B C D$.

Exercise 17.4

Q. $1 \quad$ Construct a Δ with sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and construct a rectangle having its area equal to that of the Δ measure its diagonals. Are they equal

Construction:

i. Draw a line segment $\overline{A B}=6 \mathrm{~cm}$.
ii. Taking A as centre draw an arc of radius 5 cm .
iii. Taking B as centre draw an arc of radius 4 cm to cut at C . Join A to C and B to C .
iv. $\quad \mathrm{ABC}$ is the required Δ.
v. Draw a line l through C parallel to $\overline{A B}$.
vi. Draw the \perp bisector of $\overrightarrow{A B}$ in D and eutfing the line at P .
vii. On the line l, cut $\overline{P Q}$ equal to $\overline{D B}$.
viii. Join B to Q.
ix. $\quad \mathrm{PQBD}$ is the required rectangle.
\mathbf{x}. The length of each diagonal measured to be 4.5 cm .
xi. The length of each diagonal is same.
Q. 2 Transform an isosceles Δ into a rectangle. (U.B + A.B)

Construction:

i. Draw a line segment $\overline{B C}$.
ii. With B as centre draw in arc of suitable radius.
iii. With C as centre draw another are of same radius which cuts the first arc at point A.
iv. Join A to B and A to C.
v. $\quad \triangle \mathrm{ABC}$ is the isosceles Δ
with $m \overline{A B}=m \overline{A C}$.
Draw the perpendicular bisector of $\overline{B C}$ passing through point A .
vii. Through A draw a line $l \| \overrightarrow{B C}$.
viii. On l cut $\overline{A D}$ equal to $\overline{E C}$ and the Join C with D.
ix. CDAE is the required rectangle equal in area to $\triangle \mathrm{ABC}$.
Q. 3 Construct a ABC such that $m \overline{A B}=3 \mathrm{~cm}, \quad m \overline{B C}=3.8 \mathrm{~cm}$ and $m \overline{A C}=4.8 \mathrm{~cm}$. Construct a rectangle equal in area to the
$\triangle \mathrm{ABC}$, and measure its sides.
(K.B)

Construction:

i. Draw a line segment $\overline{A B}=3 \mathrm{~cm}$.
ii. Taking B as centre draw an arc of radius $\overline{B C}=3.8 \mathrm{~cm}$.
iii. Taking A as centre draw an arc of radius $\overline{A C}=4.8 \mathrm{~cm}$ to cut at C .
iv. Join C to A and C to B .
v. ABC is the required Δ.
vi. Through C draw a line l parallel $\overrightarrow{A B}$.
vii. Draw the \perp bisector of $\overrightarrow{A B}$ cutting the line l in P .
yiii. On ℓ cut $\overline{P Q} \cong \overline{D A}$.
ix. $\quad \mathrm{PQAD}$ is the required rectangle measure of sides of rectangle PQAD $m \overline{P D}=3.8 \mathrm{~cm} m \overline{A D}=1.5 \mathrm{~cm}$

Exercise 17.5

Q. 1 Construct a rectangle whose adjacent sides are 2.5 cm and 5 cm respectively. Construct a square having area equal to the given rectangle.
(K.B + A.B)

Construction:
i. Make the rectangle ABCD with given lengths of sides.
ii. Produce AD to point E such that $m \overline{D E}=m \overline{D C}$.
iii. Bisect $\overline{A E}$ at O .
iv. With O as centre and $\overline{O A}$ radius draw a semicircle cutting $\overline{C D}$ produced in M.
v. With $\overline{D M}$ as side complete the square $D F L M$.
Q. 2 Construct a square equal in area to a rectangle whose adjacent sides are 4.5 cm and 2.2 cm respectively. Measure the sides of the square and find its area and compare with the area of the rectangle.

Construction:
i. Make the rectangle $A B C D$ with given sides.

Construction:

i. Draw a line segment $\overrightarrow{X Y}$.
ii. Draw a line perpendicular $\overrightarrow{S T}$ at point C .
ii. Produce $A D$ and cut $m \overline{D E}=m D C$.
iii. Bisect $\overline{A E}$ at O .
iv. With O as centre and $\overline{O A}$ radius draw a semicircle cutting $\overline{C D}$ produced in M.
v. With $\overline{D M}$ as side complete the square $D F \angle M$.
vi. Side of the square (average) = 3.15 cm

Area $=3.15 \times 3.15=9.9 \mathrm{~cm}^{2}$
Area of rectangle $=2.2 \times 4.5=9.9 \mathrm{~cm}^{2}$
Area of rectangle $=$ Area of square
Q. 3 In Q2 above verify by measurement that the perimeter of the square is less then that of the rectangle.
(A.B + U.B)

Perimeter of rectangle $=2$
[length + briclth]

$$
\begin{aligned}
& =2[4.5+2.2] \\
& =2[6.7] \\
& =13.4 \mathrm{~cm} \\
\text { Perimeter of square } & =4 \times l \\
& =4 \times 3.2 \\
& =12.8 \mathrm{~cm}
\end{aligned}
$$

Q. 4 Construct a square equal in area to the sum of two squares having sides 3 cm and 4 cm respectively.
(K.B)

iii. Cut of $\overline{C B}=3 \mathrm{~cm}$ and $\overline{C G}=4 \mathrm{~cm}$.
iv. $\overline{C G}$ is the side of square complete the square ACGF.
v. $\quad \overline{C B}$ is the side of square complete the square CBIH.
vi. Join B to A.
vii. $\overline{A B}$ is the side of square so, complete the square ABDE .
viii. $A B D E$ is the required square.

Using Pythagoras theorem to prove.
Q. 5 Construct a Δ having base 3.5 cm and other two sides equal to 3.4 cm and 3.8 cm respectively. Transform it into a square of equal area
(A.B + U.B)

Construction:
i. Draw $\overleftrightarrow{P A Q} \| \overrightarrow{B C}$
ii. Draw perpendicular bisector of $\overline{B C}$, bisector it at D and meeting $\overleftrightarrow{P A Q}$ at P .
iii. \quad Draw $\overline{C Q} \perp \overline{P Q}$ meeting it in Q .
iv. Take a line EFG and cut radius $\overline{E F}=\overline{D P}$ and $\overline{F G}=\overline{D C}$.
v. Bisect $\overline{E G}$ at O .
vi. With O as centre and radius $=\overline{O E}$ draw a semi-circle ,
vii. At F draw $\overline{F M} \perp \overline{E G}$ meeting the semi-circle at M.
viii. With $\overline{M F}$ as a side, complete the required square FMNR.
Q. 6 Construct a Δ having base 5 and other sides equal to 5 cm and 6 cm construct a square equal in area to given Δ.

$$
(\mathbf{K} . \mathbf{B}+\mathbf{A} \cdot \mathbf{B})
$$

Construction:
i. Draw $\overleftrightarrow{P A Q} \| \overrightarrow{B C}$
ii. Draw perpendicular bisector of $\overline{B C}$, bisector it at D and meeting $\overleftrightarrow{P A Q}$ at P.
iii. $\quad \operatorname{Draw} \overline{C Q} \perp \overline{P Q}$ meeting it in Q .
iv. Take a line EFG and cut radius $\overline{E F}=\overline{D P}$ and $\overline{F G}=\overline{D C}$.
v. Bisect $\overline{E G}$ at O .
vi. With O as centre and radius $=\overline{O E}$ draw a semi-circle.
vii. At F draw $\overline{F M} \perp \overline{E G}$ meeting the semi-circle at M.
viii. With $\overline{M F}$ as a side, complete the required square FMNR.

Revised Exercise 17

Q. 1 Fill in the blanks to make the statements true:
(i) The side of right angled triangle opposite to 90° is called \qquad .
(ii) The line segment joining a vertex of a triangle which is to the mid point of its opposite side is called a \qquad .
(iii) A line drawn from a vertex of a triangle which is \qquad to its opposite side is called an altitude of the triangle.
(iv) The bisectors of the three angles of a triangle are \qquad .
(v) The point of concurrency of right bisectors of the three sides of the triangle is \qquad from its vertices.
(vi) Two or more triangles are said to be similar if they are equiangular and measures of their corresponding sides are \qquad .
(vii) The altitudes of a right triangle are concurrent at the \qquad of the right angle.

ANSWER KEY

(Fill in the Blank)

$\checkmark \int$| i | Hypotenuse | v | Equidistant |
| :---: | :--- | :--- | :--- |
| ii | Median | vi | Proportional |
| iii | Perpendicular | vii | Vertex |
| Iv | Concurrent | | |

Q. 2 Multiple Choice Questions. (Choose the correct answer).
(i) The triangle having two sides congruent is called
(a) Scalene
(b) Right angled
(c) Equilateral
(d) Isosceles
(ii) A quadrilateral having each angle equal to 90° is called
(a) Parallelogram
(b) Rectangle
(c) Trapezium
(d) Rhombus
(iii) The right bisectors of the three sides of a triangle are
(a) Congruent
(b) Collinear
(c) Concurrent
(d) Parallel
(iv) The \qquad altitudes of an isosceles triangle are congruent.
(a) Two
(b) Three
(c) Four
(d) None of these
(v) A point equidistant from the end points of a line - segment is on its \qquad .
(a) Bisector
(b) Right - bisector
(c) Perpendicular
(d) Median
\qquad congruent triangles can be made by joining the mid-points of the sides of a triangle.
(a) Three
(b) Four
(c) Five
(d) Two
(vii) The diagonals of parallelogram \qquad each other.
(a) Bisect
(b) Trisect
(c) Bisect at right angle
(d) None of these
(viii) The medians of a triangle cut each other in the ration \qquad .
(a) $4: 1$
(b) $3: 1$
(c) $2: 1$
(d) $1: 1$
(ix) One angle on the base of an isosceles triangle is 30°. What is the measure of its vertical angle \qquad .
(a) 30°
(b) 60°
(c) 90°
(d) 120°
(x) If the three altitudes of a triangle are congruent then, the triangle will be \qquad .
(a) Isosceles
(b) Equilateral
(c) Right angled
(d) Acute angled
(xi) If two medians of a triangle are congruent then the triangle will be \qquad .
(a) Isosceles
(b) Equilateral
(c) Right angled
(d) Acute angled

ANSWER KEY				
(MCQ'S) i d vii a ii b viii c iii c ix iv a x v b xi vi b				

SELF TEST

Time: 40 min
Marks: 25

Q. 1 Mark the Correct multiple choice question.

(7×1=7)
1 The side of a right angled triangle opposite to 90° is called:
(A) Base
(B) Perpendicular
(C) Altitude
(D) Hypotenuse

2 The line segment joining a vertex of a triangle to the mid-point of its opposite side is called a \qquad
(A) Angle
(B) Altitude
(C) Median
(D) Perpendicular bisector

3 The medians of a triangle cut each other in the ratio
(A) $4: 1$
(B) $3: 1$
(C) $2: 1$
(D) $1: 1$

4 If two altitudes of a triangle are congruent then the triangle will be
(A) Isosceles
(B) Equilateral
(C) Right angled
(D) Acute angled

5 The bisectors of the three angles of a triangle are \qquad
(A) Congruent
(B) Equal
(C) Concurrent
(D) Parallel

6 One angle on the base of an isosceles triangle is 30°. What is measure of its vertical angle
(A) 30°
(B) 60°
(C) 90°
(D) 120°

7 congruent triangles can be made by joining the mid-points of the sides of a an equilateral triangle
(A) Three
(B) Four
(C) Five
(D) Two
Q. 2 Give Short Answers to following Questions.
(i) Construct a $\triangle \mathrm{ABC}$ in which $m A B=3.6 \mathrm{~cm}, m \angle A=75^{\circ}, m \angle B=45^{\circ}$
(ii) Construct a right-angled Δ measure of whose hypotenuse is 5 cm and one side is 3.2 cm .
(iii) Define orthocenter of a triangle.
(iv) Write the names of any four polygons.
(v) Transform an isosceles triangle to a rectangle,
Q. 3 Answer the follo wing Questions in detail.
(a) Construct the triangle XYZ. Draw their medians and show that they are concurrent, when $m Y Z \ominus 3.6 \mathrm{~cm}, \mathrm{~m} \angle Y=75^{\circ}, \mathrm{m} \angle X=45^{\circ}$.
(b) Construct a triangle equal in area to the quadrilateral PQRS, having

$$
m Q R=7 \mathrm{~cm}, m R S=6 \mathrm{~cm}, m S P=2.75 \mathrm{~cm}, m \angle Q R S=60^{\circ}, \mathrm{m} \angle R S P=90^{\circ} .
$$

Note:
Parents or guardians can conduct this test in their supervision in order to check the skill of students.

