

2.1

REST AND MOTION
 TYPES OF MOTION
 LONGRUSTHPTE

2.1 Q. 1 Define rest and motion and exprin themas reldive quentites.(k.B)

Ans:
DESTHNDOT OT
We see rar ous things arount is. Scrue of them are at rest while others are in motion Rest:
A tody is saic so at rest, if it does not change its position with respect to its slinesumdings."

Surroundings:

Surroundings are the places in its neighbourhood where various objects are present.

Motion:

"A body is said to be in motion, if it changes its position with respect to its surroundings."

Relative Quantities:

The state of rest or motion of a body is relative. For example, a passenger sitting in a moving bus is at rest because he/she is not changing his/her position with respect to the other passengers sitting in the bus. But to an observer outside the bus, the passengers and objects inside the bus are in motion because they are changing their positions.

2.2 Q. 1 Define Translatory motion and its types. (K.B) (LHR 2011, 2012, 2013 GRW 2013, 2015) Ans:

TRANSLATORYMOTION

Introduction:

Everything in this universe is in motion. However differentoojects racve differenty Some objects move along a straightine, some mgve in cuved path, a dd enne move in some other way.

Definition:

"In tratslationat motion, a bodv noves along a line without any rotation. The line may be stra.ght or curvec.."

Iexilples:

Findichy are some examples of translatory motion:

- Motion of a car in straight line
- Motion of electron around the nucleus
- Motion of gas molecules

TYPES OF TRANSLATORY MOTION
There are three types of translatory motion.

- Linear Motion
(LHR 2014)
- Circular Motion
- Random Motion
(LHR 2013, 2014)

LINEAR MOTION

Definition:

"Straight line motion of a body is known as its linear motion."

Examples:

Following are some examples of linear motion:

- The motion of freely falling bodies.
- Motion of a car on a straight and leveled road.
- Motion of aeroplanes flying straight in air.

Definition:

CIRCULAR MOTION
"The motion of an object in acircular atath is known ascirciler motion." Examples:
Some exanplescrarculan notion ale given berow:

- A. itong tied with string when whirled, it will move along a circular path.
- A toy train moving on a circular track.
d)/ Lotion of individual particle of spinning top.
- Earth moving around the sun in solar system
- Motion of moon around the Earth.
- Motion of a bicycle or a car moving along circular road.
- Motion of a rider in Ferris wheel.

1) inition

"The disordered or irregular motion of an object is called random motion."

Examples:

- The motion of insects and birds.
- Brownian motion of gas or liquid molecules along a zig-zag path.
- Motion of dust or smoke particles in air

2.1, 2.2 SHORT QUESTIONS

Q. 1 Define mechanics? Write its branches. (K.B)

Ans:

MECHANICS

Definition:

"The branch of physics in which we study motion of objects its causes and effects is called mechanics"

Branches of Mechanics:

There are two branches of mechanics

- Kinematics
- Dynamics

Kinematics:

"The branch of mechanics (anat deal uition sudy or motion of en deject without discussing the cause of moticn is chind Kinematice."

Dynamics:

(GRW 2015)
Whe branch of mecharics that deals with the study of motion of an object and the cause o its motion is called dynamics."
Q. 2 Write abo diferent types of motion. (K.B)

An: ${ }^{1}$ OUPES OF MOTION
There are three types of motion:

- Translatory Motion
- Rotatory Motion
- Vibratory Motion

Translatory Motion:

"In translational motion, a body moves along a line without any rotation. The liae may be straight or curved."

Examples:

Following are some examples of translatory

- Motion of a car in truight $1 ?$
- Motion of electron arcu/id/the hacieu;
- Nicticn of gas molecules

Types in rantaty Moion
There are th ee ypes of tar siatory motion.

- Lingar 1 stion

Crrcular Motion

- Random Motion

Rotatory Motion:

(LHR 2013)
"The spinning motion of a body around its axis is called its rotatory motion."

Examples:

Following are some examples of rotatory motion:

- Motion of spinning top
- Motion of the Earth around its geographical axis
- Motion of wheel and steering wheel around its axis
- Motion of a ceiling electric fan
- Motion of Ferris wheel

Vibratory Motion:
(LHR 2011, GRW 2015)
"To and fro motion of a body about its mean position is known as vibratory motion."

Examples:

Some examples of vibratory motion are as follows:

- Motion of swing back and forth about its mean position
- Motion of pendulum of wall clock
- Motion of see - saw
- Motion of a body attached with a spring
- Motion of hammer of ringing thectric bell.
- Motion of string of a sita,
- Motionor bapy in acadre noving to and fro

Q. 3 Define Axis of rotation. (K.B)

AXIS OF ROTATION

Definition:

> "An axis is a line along which a bory rotates"

Position:

In case of rotatory motion the wait parserhenigh the bocy winile in case of circulatory motion the a is is present pl-wice the body.
Q. 4 Differestia te letwercircla mot on and rotatory motion. (K.B)
(GRW 2015) Ans:

DIFFERENTIATION
Def irences het $n=e n$ circulatory and rotatory motion are as follows:

Circulatory Motion	Rotatory Motion
Definition	
- The motion of an object in a circular path is known as circular motion.	- The spinning motion of a body about its axis is called rotatory motion.
Position of Axis	
- In circular motion the point about which a body goes around is outside the body.	- In rotatory motion the line around which a body moves about is passing through the body itself.
Examples	
- Motion of earth around the sun. - Motion of individual particles of spinning top - Motion of rider in Ferris Wheel	- Motion of earth about its geographical axis. - Spinning motion of top - Motion of Ferris Wheel

Q. 5 When a body is said to be at rest? (K.B)
(Mini exercise Pg. \# 32)
Ans: Given on Page \# 42
Q. 6 Give an example of a body that is at rest and is in motion at the same time. (K.B)
(Mini exercise Pg. \# 32)
Ans:

REST AND IN MOTION AT SAME TIME

If a person is sitting in a moving car, he will be in the state of rest with respect to the other person sitting in the car and he will be in the state of motion with respect to the person standing on the road side at the same time.
Q. 7 Mention the type of motion in each of the following. (K.B)
(Mini exercise Pg. \# 32)
Ans:
TYPES OF MOTION

Sr. \#	Motion	T Tper
I	A ball moving vertical:y upwar 1	Lip ar motion (Ty anslatory motion)
ii	A child moving cownars slde	livear mution $\overline{\text { T }}$ ranslatory motion)
ii¢	Movemen of player in a sontbali	Kandom motion (Translatory motion)
	The fligit t faluterfly	Random motion (Translatory motion)
V	An athlete running in a circular track	Circular motion (Translatory motion)
vi	The motion of a wheel	Rotatory motion
vii	The motion of a cradle	Vibratory motion

2.1, 2.2 MULTPLE CHOICE QUESTiONS

1. Study of motion of the bodies is known as: (K.B)
(A) Heat
(C) Atomic physics
B) Light
(P)TMechanics
2. Study of motion without di: cussing the cause of mot on is called: K.B)
(A) Kinematics
(B) Dynamics
(C) He at
(D) Motion
3. If a body does not change its position with respect to some observer then it will be in a state of: K. ip
(A) Fe ct
(B) Motion
(d) Uniform motion
(D) Relative motion

If a body changes its position with respect to some observer then it will be in state of: (K.B)
(A) Rest
(B) Motion
(C) Uniform motion
(D) Relative motion
5. Rest and motion are : (K.B)
(A) Absolute states
(B) Constant states
(C) Variable states
(D) Relative states
6. The spinning motion of a body about its axis is known as: (K.B)
(LHR 2015)
(A) Translatory motion
(B) Vibratory motion
(C) Rotatory motion
(D) None of these
7. When a body moves to and fro about a point and repeats its motion again and again about the same point then this motion is known as: (K.B)
(GRW 2014, 2015)
(A) Translatory
(B) Vibratory
(C) Rotatory
(D) None of these
8. The motion of the string of a violin is: (K.B)
(A) Translatory
(B) Vibratory
(C) Rotatory
(D) None of these
9. The spinning motion of individual particles of top is known as. (K.B)
(LHR 2015)
(A) Translatory motion
(B) Vibratory motion
(C) Rotatory motion
(D) Random motion
10. The motion of rider in a Ferris wheel is: (K.B)
(A) Translator motion
(B) Vibratory motion
(C) Rotatory motion
(D) None of these
11. Which of the following is a vector quantity? $(K B$
(A) Speed
(C) Displacement
(B) Lis and

12. By dividing displacement of moving body witt time, we obtain: (U.B)
(A) Spes
(B) Acceleration
(C) Velocity
(D) Deceleration
13. Caus es day and night on the Earth: (K.B+U.B)
(A) (i.
(B) Vibratory motion of the Earth
(C) Rotatory motion of the Earth
(D) Motion of the Sun

2.3 Q. 2 Define Magnitude. (K.B)

Ans:

MAGNITUDE

Definition:

"The magnitude of a quantity means its numeric value with appropriate unit."
Examples:
$2.3 \mathrm{~kg}, 40 \mathrm{~s}, 1.8 \mathrm{~m}$ etc. represent magnitudes of different physical quantities.
2.3 Q. 3 Justify the need of direction for a vector quantity. (K.B)

Ans:

NEED OF DIRECTION

It would be meaningless to describe vectors without direction. For example, distance ta place from reference point is insufficient to ipcate firt place. The direction ot Eat place from reference point is alsp Tecessary to ocate t. Example of Forces:
Consirer a tableas shown it figure belpw:

Two forces $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$ are acting on it. It will make lot of difference if the two forces act in opposite direction such as indicated in figure below:

Certainly the top sithations differ from each other. They differ due to the direction of the fonges acting on the table. Thus the description of a force would be incomplete if drection is not given. Similarly, when we say, we are walking at the rate of $3 \mathrm{kmh}^{-1}$ towards north then we are talking about a vector.
2.3 Q. 4 How a vector is represented? (K.B)

Ans:

REPRESENTATION OF VECTORS

A vector quantity can be represented by two methods

- Symbolic Method
- Graphical Method

SYMBOLIC REPRESENTATION

To differentiate a vector from a scalar quantity we generally use bold letters to represent vector quantities. Such as $\mathbf{F}, \mathbf{a}, \mathbf{d}$ or a bar or arrow over their symbols such as \vec{F}, \vec{a} and \vec{d}.

GRAPHICAL REPRESENTATION
(LHR 2014, GRW 2014)
Graphically, a vector can be represented by a line segment with an arrow head. In figure below, the line $A B$ with arrow head at B represents a vector \mathbf{V}. The length of the line $A B$ gives the magnitude of the vector \mathbf{V} on a selected scale. While the direction of the line from A to B gives the direction of the vector \mathbf{V}.

Figure: Graphical Representation of Vector

2.3 Q.5 Why vector quantities cannot be added and subtracted like scalar quantities? (K.B)

Ans:

ADDITION AND SUBTRACTION OF VECTORS

Scalar quantities can be described completaly by magnitaut onl ard can be addes or subtracted by simple arithmetic rates. Veptcr 4 lahti its in addition the masilude also need direction for their descrintion. so veptor, cannot be added or subtracted by arithmetic rales due to directior.
2.3 Q.6 How urt ectorquantitias importan. to us in our daily life? (K.B+A.B)

Ans: \quad MPQRTANCEOE VCLTOR QUANTITIES
In ozler to locat a place fom a reference point, we will have to describe the distance and direction of that place from reference point. Description of distance along with direction wil-make up a vector quantity. Hence by using vector quantities we can describe the position (or location) of bodies.
2.4 Q. 1 What is Position? (K.B)+(U.B)
(GRW 2015)
Ans:

POSITION

Definition:

"The term position describes the legation of a place or a point with respec io some reference point called origin". Quantity:
Position is a vector quantity. Crarge in position is ealled displacenent.
Example:
For excmple you vant to describe the position of your school from your home. Let the schoo be dpresented bys and home by \mathbf{H}. The position of your school from your homit will be re p resen by a straight line HS in the direction from H to S as shown in figure.

2.4 Q. 2 Define Origin? (K.B)

Ans:

Definition:

"The fixed point that is used as reference point to locate the position of an object or point is called origin." Origin is also termed as reference point and it is denoted by "O
2.4 Q. 3 Differentiate Distance and displacement? (K.B)
(LHR 2017)
Ans:
DIFFERENTIATION
Differences between distance and displacement are as follows

Distance	Displacement
Definition	
- Length of path between two points is called distance between those points.	- The shortest distance between two points which has magnitude and direction is called displacement
Symbol	
- Distance is represented by " \mathbf{S} "	- Displacement is denoted by " $\overline{\mathrm{d}}$ "
Quantity	
- Distance is a scalar quantity. Its S.I unit is metre	- Displacement is a vecter quantity. 10 unit is metre

Consider a body that moyes from roint it point $\overline{3}$ don the cusf d path. Join points A and B by a straight line. The straishe line AE gives the disiance which is the shortest between A and B This shortest distar de has masnitude d and direction from point A to B. This shoitest disten ce d ir a particula direction is called displacement. While any other len erh ot path betveril A and B shows distance.

2.4 Q. 4 Differentiate Speed and Velocity? $($ K.B $)+(U . B)+(A . B)$

Ans:
DIFFERENTIATION
Differences between speed and velocity are as follows:

Speed	
Detinition	
The distance covered by anpobic i 1 The rale of displacement of a body isuniting is called speed	
Symbol	
\bullet Sped is repreent 1 by "\%	- Displacement is denoted by " ${ }_{\mathrm{v}}$ "
Quantity	
1. Speed is a scalar quantity. Its S.I unit i metre per second ($\mathbf{m s}^{-1}$)	- Speed is a scalar quantity. Its S.I unit is metre per second $\left(\mathbf{m s}^{-1}\right)$
Formula	
- Speed $=$ Distance covered/Total time $v=\frac{S}{t}$	$\begin{gathered} \text { - Velocity }=\frac{\text { displacement }}{\text { time taken }} \\ \overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{d}} / \mathrm{t} \end{gathered}$

2.4 Q.5 How to measure speed of different object? (Conceptual base + A.B)

Ans:
If a car travels between two points on a road, its average speed can be calculated like this.

$$
\text { average speed }=\frac{\text { distance moved }}{\text { time taken }}
$$

On most journeys, the speed of a car varies, so the actual speed at any movement is usually different from the average speed. To find an actual speed, You need to discovered how far the car moves in the shortest time you can measure. For Example, If a car moves 0.20 m in 0.01 s :

$$
\text { Speed }=\frac{0.20 \mathrm{~m}}{0.01 \mathrm{~s}}=20 \mathrm{~m} / \mathrm{s}
$$

2.4 Q.6 How the speed of thrust supersonic car record? (Conceptual Base + A.B)

Ans: Thrust supersonic car traveling fastest than sound. For speed records, car are timed over a measured distance (either One km or One mile). The speed is worked eut for the arelage of two runs - down the course and then back again - se that the effect or wind Eanerled out. Thrust SSC achieved a speeiof $1,228 \mathrm{~km} / \mathrm{hanh}$ became the first lanu vehicle to officially break the sound pairier
2.4 Q. 7 How you will define the uniform speed? (K.B+U.B)
(GRW 2013)
Ans:

UNIFORM SPEED

Definition:

"If the speed of a body does not vay and has the same ralus the h time bjab ic said to possess uniform speed."
"A Dody has y.iforn speed if it cevers ecpal" uistances in equal intervals of time however or he interval naybe.

Figure: Graph for Uniform Speed

- In this case distance time graph will be a straight line inclined to time Axis.
2.4 Q. 8 Define variable speed. (K.B+U.B)

Ans:
VARIABLE SPEEED

Definition:

"If a body does not cover equal distances in equal intervals of time, however short the intervals may be, then the speed of the body is said to be variable."

- In this case distance time graph will not be a straight line
2.4 Q. 9 Explain velocity in simple words. (Conceptual Base + A.B)

Ans: Velocity means the speed of something and its direction of travel. For example, a cyclist might have a velocity of $10 \mathrm{~m} / \mathrm{s}$ due east. On paper this velocity can be shown using an arrow:
For motion in a straight line you can $\xrightarrow{10 \mathrm{~m} / \mathrm{s}}$
For motion in a straight line you can use a rer to mhi aterirection. For example:

$$
\begin{aligned}
& +10 \mathrm{~m} / \mathrm{s} \text { (velocity of } 0 \mathrm{~m} / \mathrm{s} 20 \mathrm{th} \text { e ri, hit) } \\
& -100 \mathrm{~g} / \mathrm{s} \text { (velceity of } 10 \mathrm{n} / \mathrm{s} \text { so he left), }
\end{aligned}
$$

2.4 Q.10 What ato yow anotit uniforg velocity? (K.B)
(GRW 2013, 2015) Ans:

UNIFORM VELOCITY

Intr du tion:

15. nin cases the speed and direction of a body does not change. In such a case the body possesses uniform velocity. That is the velocity of a body during any interval of time has the same magnitude and direction.

Definition:

"A body has uniform velocity if it covers equal displacement in equal intervals of tire however short the intervals may be."
2.4 Q.11 Define variable velocity. (K.B)

VARIABLE VIICCTY

Definition:

"If äbody does not cuyer eccual disp acenentir equal intervals of time, however short the in te vals maybe, then the velocitv of the body is said to be variable."
2.4 Q.12 A boty is noving with uniform speed. Will its velocity be uniform? (K.B)

Ans: \quad INÏNOORM/VARIABLE VELOCITY
A cody no ing with uniform speed may have either uniform or variable velocity. If the direction of the body is not changing then its velocity will also be uniform.

- If the direction of the body is changing then its velocity will be variable.

Example 1

A car moving with uniform speed in the straight line will have uniform velocity. If the direction of the body is changing then its velocity will be variable.

Example 2

A car moving with uniform speed in the circular path will have variable velocity because its direction changes at every point on the circle.
2.4 Q.13 Why a body moving along a circle with uniform speed has variable velocity? (K.B) Ans:

VARIABLE VELOCITY ALONG CIRCULAR PATH

A body moving along a circle with uniform speed has variable velocity because its direction is changing at every point on the circular path.
2.4 Q. 14 Does speedometer of a car measure its velocity? (K.B+U.B)

Ans:
SPEED-O-METER
The speedometer of a car measures only magnitude of velocity not the direction. Therefore, we can say that speedometer of the car does not measure its velocity. It measures only speed.
2.4 Q. 15 When does a body possess acceleration? (K.B)

Ans:
ACCELERATION
In many cases the velocity of a body changes due to a change either in its magnitude or direction or both. The change in the velocity of a body causes acceleration in it. If there is no change in the velocity of a body there will be no acceleration in it that is why a body moving with constant velocity does not have acceleration.
2.4 Q. 16 What is meant by the acceleration? (K.B+U.B+A.B)
(LHR 2015, GRW 201?
Ans:

Definition:

"The rate of change of velceity of a bod dris rnotrnas accelera icn.

 Mathematical Form:If a body is moving with in it al velocit: 'va' and ation shled time 'U1ts velocity becomes

Acceleratio, \Rightarrow charge in velocits
A. cecleation $=\frac{\text { final velocity }- \text { initial velocity }}{\text { time }}$

So,

$$
a=\frac{v_{f}-v_{i}}{t}
$$

Unit:
SI unit of acceleration is meter per second per second ($\mathbf{m s}^{\mathbf{- 2}}$). Quantity:
It is a vector quantity.
2.4 Q.17 Define uniform acceleration? (K.B)

Ans:

(LHR 2017)

Let the ine tisaivided into many smaller intervals of time. If the rate of change of rior dion ding all these intervals remains constant then the acceleration a also remains constant. Such a body is said to possess uniform acceleration.

Definition:

"A body has uniform acceleration if it has equal changes in velocity in equal intervals of time however short the interval maybe."

2.4 Q. 18 Define variable acceleration. (K.B)

Ans:
VARIABLE ACCELERATION
If a body does not have equal changes in velocity in equal intervals of time, however small the intervals may be, then the acceleration of the body is said to be uniform.
2.4 Q.19 What is meant by positive acceleration and negative acceleration? (K.B)
(GRW2012, 2015)
Ans:

POSITIVE ACCELERATION

If the velocity of the body is increasing then acceleration will be positive. The direction of positive acceleration is the same in which the body is moving without change in its direction.

Example:

If a car is moving in straight line and the driver presses the accelerator the velocity of the car starts to increase. So the acceleration of the body will be positive.

NEGATIVE ACCELERATION

If the velocity of the body is decreasing then acceleration will be negative. The direction of negative acceleration is opposite to the direction in which the body is moving. Negative acceleration is also called retardation or deceleration.

Example:

If the driver applies brake, the velocity will start to decrease. So acceleration of the body will be negative and direction of acceleration is opposite to the direction of velocity.
2.4 Q.20 Can a body moving with constant velocity have acceleration? (K.B)

Ans:
ZERO ACCELERATION
No, a body moving with constant velocity vil rot are accelelation; its accereration will be zero because acceleration is defind as the rate of change of ve ority. When the body is moving with uniform velocjey/ the change in vencity will be zero and therefore the acceleation will aso be zerp.
2.4 Q.21 Can \& Dody movirg vith certan velucity in the direction of east can have acceleration in the direction of wes: (K.B)
Ans. N DIRECTION OF ACCELERATION
re. a body moving with certain velocity in the direction of east can have acceleration in the direction of west. It is the case when the velocity of the body decreases. When velocity decreases, acceleration is produced in opposite direction to the direction of motion.
2.4 Q. 22 Which is the fastest animal on the Earth? (K.B)

Ans:

FASTEST ANIMAL

The fastest animal on the Earth is Falcon that can fly at the sperd of 200 km
2.4 Q. 23 What is LIDAR GUN? (K.B+A.E) (Do vounsow Pg. \# 36)

Figure 4
Figure: ALIDAR Gun
A LIDAR gun is light detection and ranging speed gun. It uses the time taken by laser pulse to make a series of measurements of a vehicle's distance from the gun. The data is then used to calculate the vehicle's speed. It is being used as motorway speed camera.

2.4 Q. 24 What is terminal velocity? (K.B)

(Do you know Pg. \# 36)
Ans:
TERMINAL VELOCITY

Figure: A Paratrooper Coming Down With Terminal Velocity
The constant velocity of a body falling down with in gratit onat fie is cal e tumirav velocity. When a skydiver falls from oniovering yelicopter, as her sped incleases, the air resistance on her also increases. Eventually, it is ensugh to balance hat weight and she gaino no more speed. She is at her terminal volocity Typ cally, this it bout $60 \mathrm{~m} / \mathrm{s}$, though the actual value depends on air conditions as sce is the size hape and weight of the skydiver.
When the sky diver epens her parachute, the extra area of material increases the air resistance, She Ioses spec d rapidy until the forces are again in balance, at a greatly reduced terminal velocity.
P/ 0.25 Why the car has rarely uniform acceleration but mostly non uniform?
Ans. A car is travelling along a straight road. If it has uniform acceleration, this means that its acceleration is steady (constant). In other words, it is gaining velocity at a steady rate. In practice,
a car's acceleration is rarely steady. For less and less until it is zero. Also the car decelerates slightly during gear changes. If acceleration is not steady then it ins non-uniform.

EXAMPLE 2.1

Represent a force of 80 N acting to wards Nprti of $1: \mathrm{st}$ (W.B+4.B
Solution:
STEP \# 1
SPELICHIOUOEDEECIUNS
 verticap represents North-suth direction as shown in figure:

Figure: Specification of Directions

STEP \# 2
SELECTION OF SUITABLE SCALE
Select a suitable scale to represent the given vector. In this case, we may take a scale which represents 20 N by 1 cm line.

STEP \# 3

DRAWING REPRESENTATIVE LINES
Draw a line according to the scale in the direction of the vector. In this case, draw a line OA of length 4 cm along North-East.

STEP \# 4

SHOWING DIRECTION
Put an arrow head at the end of the line. In this case, arrow head is at point A. Thus, the line OA will represent a vector i.e., the force of 80 N acting towards North-East.

Figure: Representation of Vector

EXAMPLE 2.2

A sprinter completes its 100 metre race in 12s. Find its average speed. (C B+A.E. Solution:

Given Data:

Total distance $=\mathrm{S}=100 \mathrm{~m}$
Total time taken $=12$
To Find:
A) eragespeed $\quad V_{a}$

Calculetions:
Averace peed $=$ rotal distance moved $/$ Total time taken
$\mathrm{V}_{\mathrm{av}}=100 \mathrm{~m} / 12 \mathrm{~s}$
$\mathrm{V}_{\mathrm{av}}=8.33 \mathrm{~ms}^{-1}$
Kesult:
Hence, the average speed of the sprinter will be $8.33 \mathrm{~ms}^{-1}$.

EXAMPLE 2.3

A cyclist completes half round of a circular track of radius 3107n in 15 rinutes.

Find its speed and velocity. (U.B+A.B)
Solution:
We can easily deduce give (at 2 'u y d a wing firs ure:

Given Data:

Radius of the circle $=r=318 \mathrm{~m}$
Distance covered by the sprinter $=\mathrm{S}=\pi \mathrm{r}$

$$
=(3.14)(318)=999 \mathrm{~m}
$$

Displacement covered by the sprinter $=d=2 r$

$$
=2(318)=636 \mathrm{~m}
$$

Time taken by the sprinter $=\mathrm{t}=1.5$ minutes

$$
=1.5(60)=90 \mathrm{~s}
$$

To Find:

Speed of the sprinter $=v=$?
Velocity of the sprinter $=\vec{v}=$?

Calculations:

Speed= Distance covered/Total time

$$
\mathrm{v}=\frac{S}{t}
$$

Putting values

$$
\mathrm{v}=999 / 90=11.1 \mathrm{~ms}^{-1}
$$

Now we find velocity
Velocity $=\frac{\text { displacement }}{\text { ti ne taken }}$

Putting al he:

$$
\vec{v}=636190=7.07 \mathrm{~ms}^{-1}
$$

Result:

Hence, the speed and velocity of sprinter will be $11.1 \mathrm{~ms}^{-1}$ and $7.07 \mathrm{~ms}^{-1}$ respectively.

EXAMPLE 2.4

A car starts from rest. It velocity becomes $20 \mathrm{~ms}^{-1}$ in 8 s . Fing its acel raton.

 (U.B+A.B)
Solution:

Given Data:

Initial velocity $-y_{i}=0$
E. inal rocity $=4 \mathrm{f}=20 \mathrm{~ms}$

Tin $==8$
Te End:
Alecieceration $=\mathrm{a}=$?

Calculations:

As $\quad a=\frac{v_{f}-v_{i}}{t}$
Or $\quad \mathrm{a}=\frac{20 \mathrm{~ms}^{-1}-0 \mathrm{~ms}^{-1}}{8 \mathrm{~s}}=2.5 \mathrm{~ms}^{-2}$

Result:

Hence the acceleration of the car will be $2.5 \mathrm{~ms}^{-2}$.

EXAMPLE 2.5

Find the retardation produced when a car moving at a velocity of $30 \mathrm{~ms}^{-1}$ slow down uniformly to $15 \mathrm{~ms}^{-1}$ in 5 s . (U.B+A.B)

Solution:

Given data:

Initial velocity $=v_{i}=30 \mathrm{~ms}^{-1}$
Final velocity $=v_{f}=15 \mathrm{~ms}^{-1}$
Time $=\mathrm{t}=3 \mathrm{~s}$

To Find:

Retardation $=-\mathrm{a}=$?

Calculations:

We know
Acceleration $=\frac{\text { change in velocity }}{\text { time }}$
Acceleration $=\frac{\text { Final velocity }- \text { Init } a l}{\text { al }}$ velocity
nesult:
nesult:
Hence, the retardation in the body will be $3 \mathrm{~ms}^{-2}$.

2.3, 2.4 MULTIPLE CHOICE QUESTIONS

1. Which one of the following is a vector quantity? (K.B)
(A) Displacement
B) Speed
(C) Volume
(PTVErk
2. Total length of a path bewentwooints is knc whas: (K.B)
(A) Velncity
(B) Accelcration
(C) Speed
(D) Distance
3. The shortent distence betvcer two points is known as: (K.B)
(A) Melccity
(B) Displacement
(C) Spec!
(D) Distance

4 GI unit of speed is: (K.B)
(A) ms^{-1}
(B) mh^{-1}
(C) kms^{-1}
(D) All of these
5. Speed is a: (K.B)
(A) Vector quantity
(B) Scalar quantity
(C) Both quantity
(D) none of these
6. If a body covers equal distance in equal intervals of time, however small the intervals may be, then the speed of the body is known as: (K.B)
(A) Uniform
(B) Variable
(C) Non uniform
(D) All of these
7. The rate of displacement with respect to time is known as: (K.B)
(A) Distance
(B) Speed
(C) Velocity
(D) Acceleration
8. If the speed and direction of the moving body does not change with time then its velocity is said to be: (K.B)
(A) Uniform
(B) Variable
(C) Constant
(D) All of these
9. If the speed or direction of the moving body changes with time then its velocity is said to be: (K.B)
(A) Uniform
(B) Variable
(C) Constant
(D) All of these
10. Rate of change of velocity is known as: (K.B)
(A) Distance
(B) Speed
(C) Velocity
(D) Acceleration
11. If the velocity of the body is increasing then its accalration vili be: $K(\mathcal{E})$
(A) Positive
(C) Uniform
(3) Nesat ve
(L) Var) able

If the velocily of the wody is decreasing then th acceleration will be: (K.B)
(A) Positive
(B) Negative
(C) Uniform
(D) Variable
13. If the velocity of bouy is uniform then its acceleration will be: (K.B)
(A) ICSitive
(B) Negative
(C) Zero
(D) Doubled
14. SI unit of acceleration is: (K.B)
(A) ms^{-1}
(B) kmh^{-1}
(C) kms^{-2}
(D) ms^{-2}
15. If velocity of a body changes equally in equal intervals of time then its acceleration will be: (K.B)
(A) Uniform
(B) Variable
(C) Constant
(D) Relatle
16. The velocity and acceleration of brdy moving with uiform peed in a circular path will $\mathrm{bg} \cdot($ K.B)
(A) In the arnecrirection
(D) In the opposite direction
(C) Mu ually perperdicu'ar
(D) Equal
17. FIne circetion of motion of body and acceleration are in same direction then adederation will be: (K.B)
(A) Uniform
(B) Positive
(C) Negative
(D) Zero
18. If the direction of motion of body and acceleration are in opposite direction then acceleration will be: (K.B)
(A) Uniform
(B) Positive
(C) Negative
(D) Zero
19. The quantity which can be described by a number, with suitable unit only is called: (K.B)
(A) Vector
(B) Scalar
(C) Speed
(D) Acceleration
20. The quantity which are described by magnitude as well as direction is called: (K.B)
(A) Vector
(B) Scalar
(C) Speed
(D) Acceleration
21. If a car is moving with uniform speed in a circle then its velocity will be: $(K . B+U . B)$
(A) Uniform
(B) Variable
(C) Zero
(D) None of the above
22. Speed of falcon is: (K.B)
(A) $100 \mathrm{kmh}^{-1}$
(B) $200 \mathrm{mh}^{-1}$
(C) $70 \mathrm{kmh}^{-1}$
(D) $200 \mathrm{kmh}^{-1}$
23. Speed of cheetah(K.B)
(A) $100 \mathrm{kmh}^{-1}$
(B) $200 \mathrm{mh}^{-1}$
(C) $70 \mathrm{kmh}^{-1}$
(D) $200 \mathrm{kmah}^{-1}$
24. Velocity of a paratrooper comingdown vit zon tant vercity is a se cal ed: (K.B)
(A) Uniform acceleration
(C) Termina velocity
(B) Var able velleciy
(D) Inst ontaneous velocity
25. By which quanty should wadivide aeceleration in kmh^{-2} to get its value in $\mathrm{ms}^{-\mathbf{2}}$? ($\boldsymbol{U} . \boldsymbol{B}$)
(A) 12900
(B) 1000
(C) 26
(D) $(3600)^{2}$

2.5
 GRAPHICAL ANALYSIS OF MOTION
 LONG QUESTIONS

2.5 Q. 1 What do you know about graph? Write their: is? $\mathcal{K} \cdot B+U . B-A . B$

Ans:

Definition

"rinaphis a pictoritl way of resentig the information about the relation between various Quat thes".

VARIABLES

Detinifon:

"The quantities between which a graph is plotted are called the variables."
TYPES OF VARIABLES

- Dependent Variables:

The quantities whose values depend on other quantities are called dependent variables. While plotting a graph dependent variable is taken along vertical axis.

Example:

While driving a car distance covered depends on time so distance is a dependent variable

- Independent Variable:

The quantity whose value of does not depend on other quantities are called the independent variables. While plotting a graph independent variable is taken along horizontal axis.

Example:

Time is an independent variable.

Uses of Graphs:

Graphs can be used to:

- Analyze motion of objects.
- Show year-wise growth/decline of export, month-wise rainfall, a patient's temperature record or runs per over scored by a team and so on.

2.5 Q. 2 Explain Distance - time Graph. (K.B+U.B+A.B)

Ans:

DISTANCE TIME GRAPH

It is useful to represent the motion of objects using graphs. The 1.rras distare and displacement are used interchangeably when the motion is in atraig thing. Vimilain in the motion is in a straight line ther speed and veinc ty are al o used iv terchonzeably. In a distance-time graph, time 1 . taker._lorg horizor tal axis while ver ical axis shows the distance covered by the objec .

Explaration:

Distancesine srams for difierment bodids are given below:

OB.IECT AT REST

Definition

O. A oody is said to be at rest, if it does not change its position with respect to its surroundings."

In the case the distance moved by the object with time is zero. That is, the object is at rest. Thus, a horizontal line parallel to time axis on a distance-time graph shows that speed of the object is zero.

OBJECT MOVING WITH CONSTANT SPEED

Definition:

"A body has uniform or constant speed if it covers equal distances in equal intervals of time however short the interval may be."

Figure: Distance Time Graph For Uniform Speed

- In this case distance time graph wil be a stragh Ting in fined yo tiod A) Gradient:

On a graph, the lings risep it ha vericill scall djyided by its nise on the horizontal scale is called the gradiont a. $\operatorname{sh} / \mathrm{wn}$ on below

- Consider two points A and B on the graph its slope or gradient gives the speed of the object as:

Speed of the object $=$ Slope or gradient of line $\wedge B$ and \cdot
On distance time graph, the gradient of the line is numerically equal to the speed.

OB.JECT MOVING WITH VARIABLE SPEED

Definition:

"If a body does not cover equal distances in equal intervals of time, however short the intervals may be, then the speed of the body is said to be variable."

- In this case distance time graph will not be a straight line
- The slope of the curve at any point can be found from the slope of the tangent at that point. For example:

$$
\text { Slope of the tangent at } \begin{aligned}
\mathrm{P} & =\frac{\mathrm{RS}}{\mathrm{QS}} \\
& =\frac{30 \mathrm{~m}}{10 \mathrm{~s}}=3 \mathrm{~ms}^{-1}
\end{aligned}
$$

Thus speed of the object at point P is $3 \mathrm{~ms}^{-1}$. The speed is higher at instants where slope is greater and speed is zero at instants where slope is horizontal.
2.5 Q. 2 Explain speed time graph. (K.B+U.B+A.B)

Ans:
SPEED TIME GRAPH
"The graph that shows the relationship between speed of anvolect and time taken byit, io called speed time graph."
In a speed - time graph, time is taken almg x-axis and speed i. take 1 along y-axis.
Explanation:
Speed time graph different itwation a given beiow:

SPEED LIME GRAPM OR CONSTANT SPEED

When speed of ar object is ernstant with time, then the speed - time graph will be a herizontal ine pardiel to time - axis as shown in figure. In other words, a straight line madel tetinc axis represents constant speed of the object.
Q. 3 Wow term distance and displacement are interchangeable in a graph? (C.B)

Ans: displacement is distance in a particular direction. Where there is no change in the direction of motion means motion in a straight line, a displacement time graph looks the same as the distance time graph that is why displacement and distance are interchangeable.

The speed stays the same, so the line stays at the same level.

Definition:

"A body has uniform acceleration if it has equal changes in velocity in equal intervals of time however short the interval maybe."
Let the speed of an object be changing uniformly. In such a case speed is changing at constant rate.
Thus its speed-time graph would be a straight line such as shown in figure below:

As the car gains speed, the line rises $4 \mathrm{~m} / \mathrm{s}$ on the speed scale for every 1 s on the time scale.

A straight line means that the object is moving with uniform acceleration. Slope of the line gives the magnitude of its acceleration.
On a speed-time graph, the gradient of the line is numerically equal to the acceleration. DISTANCE TRAVELLED BY A MOVING OBJECT
The area under a speed - time graph represents the distance travelled by the gbjection motion is uniform then the area can be calculated using apporrite formula for geometrical shapes represented by the graph.

Q. 1 How can ve find dictance fromsped tince graph? (C.B)

Ans:

TOEXNDISTANCE

We can fir d distance fron peed time graph by finding total are under the graph because insped tirne $g \cdot \frac{n \mathrm{n}}{}$ total area under the graph shows total distance covered by the body. Hew tDeterm velocity and speed are interchangeable in graph? (C.B)
velocity is speed in a particular direction. Where there is no change in the direction of motion means motion in a straight line, a Velocity time graph looks the same as the speed time graph that is why velocity and speed are interchangeable.

EXAMPLE 2.6

Below figure shows the distance-time graph of a moving car. (U.R,AB)

FForr the giapll, ind
(6) The distance car has travelled.
(b) The speed during the first five seconds.
(c) Average speed of the car.
(d) Speed during the last 5 seconds.
(Example 2.6)
Solution:
(a) Total distance travelled $=40 \mathrm{~m}$
(b) Distance travelled during first 5 s is 35 m

$$
\begin{aligned}
\therefore \quad \text { Speed } & =\frac{35 \mathrm{~m}}{5 \mathrm{~s}} \\
& =7 \mathrm{~ms}^{-1}
\end{aligned}
$$

(c) Average speed $=\frac{40 \mathrm{~m}}{10 \mathrm{~s}}$

$$
=4 \mathrm{~ms}^{-1}
$$

(d) Distance moved during the last $5 \mathrm{~s}=5 \mathrm{~m}$

$$
\therefore \text { Speed }=\frac{5 \mathrm{~m}}{5 \mathrm{~s}}=1 \mathrm{~ms}^{-1}
$$

Result:

- Car has travelled $\mathbf{4 0} \mathbf{m}$
- Speed during the 15 s is $7 \mathrm{~ms}^{-1}$
- Average speed of the car is $\mathbf{4} \mathrm{ms}^{-1}$
- Speed during last 5 s is $5 \mathrm{~ms}^{-1}$

EXAMPLE 2.7
Find the acceleration from speed-time grah showr igye gion be o w: U.L \uparrow A.B)

Solution:

On the graph in above figure, point A gives speed of the object as $2 \mathrm{~ms}^{-1}$ after 5 s and point B gives speed of the object as $4 \mathrm{~ms}^{-1}$ after 10 s .
As Acceleration $=$ slope of AB
Where slope $=$ change in veriocity / ine interal
$\therefore \quad$ acceleration $=4 \mathrm{~ms} s^{-1}-2 \mathrm{~s}=-5 \mathrm{~s}=$

Result:
In above speed time graph acceleration of the body is $4 \mathrm{~ms}^{-2}$.

EXAMPLE 2.8

Find the acceleration from speed-time graph shown in figure below: ($U . B+A . B$)

Solution:

In above figure the graph shows that the speed of the object is decreasing with time. The speed after 5 s is $4 \mathrm{~ms}-1$ and it becomes $2 \mathrm{~ms}-1$ after 10 s .
As acceleration $=$ slope of $C D$

$$
\begin{aligned}
& =\frac{2 \mathrm{~ms}^{-1}-4 \mathrm{~ms}^{-1}}{10 \mathrm{~s}-5 \mathrm{~s}} \\
& =-\frac{2 \mathrm{~ms}^{-1}}{5 \mathrm{~s}}=-0.4 \mathrm{~ms}^{-2}
\end{aligned}
$$

Result:

Above graph shows that the deceleration of the body is $0.4 \mathrm{~ms}^{-2}$.

EXAMPLE 2.9

A car moves in a straight line. The speed-time graph of its motionis showningure below: $(\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$

From the graph, Find:
(a) Its acceleration during the first 10 seconds.
(b) Its deceleration during the last 2 seconds.
(c) Total distance travelled.
(d) Average speed of the car during its journey.

Solution:

(a) Acceleration during the first 10 seconds,

$$
\begin{gathered}
=\frac{\text { change in velocity }}{\text { time taken }} \\
\text { (b) Acceleration dining the last 2 seconds, }
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{\mathrm{ms}^{-1}-16 \mathrm{~ms}^{-1}}{2 \mathrm{~s}} \\
& =-8 \mathrm{~ms}^{-2}
\end{aligned}
$$

(c) Total distance travelled $=$ area under the graph (trapezium OABC)

$$
\begin{aligned}
& =\frac{1}{2}(\text { sum of parallel sides }) \times \text { height } \\
& =\frac{1}{2}(18 \mathrm{~s}+30 \mathrm{~s}) \times\left(16 \mathrm{~ms}^{-1}\right) \\
& =\frac{1}{2}(48 \mathrm{~s}) \times\left(16 \mathrm{~ms}^{-1}\right) \\
& =384 \mathrm{~m}
\end{aligned}
$$

(d) Average speed $=\frac{\text { Total distance covered }}{\text { Time taken }}$

$$
=\frac{384 \mathrm{~m}}{30 \mathrm{~s}}=12.8 \mathrm{~ms}^{-1}
$$

Result:

Above graph shows that:
(a) The acceleration of the body during the first 10 seconds is $1.6 \mathrm{~ms}^{-2}$
(b) Its deceleration during the last 2 seconds is $\mathbf{- 8} \mathbf{~ m s}^{-2}$
(c) Total distance travelled by the car is $\mathbf{3 8 4 m}$
(d) Average speed of the car during its journey remained as $12.8 \mathbf{~ m s}^{-1}$

2.5 MULTIPLE CHOICE QUESTIONS

1. The slope of straight line in distance time graph gives the magnitune of (K.B
(A) Force
(C) Speed
(B) Displacement

The slope of straight line in speed ame graph gives the nagnitu de of: (K.B)
(A) Force
(B) Displacement
(C) Torque
(D) Acceleration
3. Area user the sped tmegranh shows: (K.B)
(A) Force
(B) Displacement
(C) I ist:nce
(D) Acceleration
indistance time graph time is taken along: (K.B)
(A) X-axis
(B) Can be taken along any axis
(C) Y-axis
(D) Vertical axis

2.6
 EQUATIONS OF MOTION
 LONG QUESTIONS

2.6 Q.1 Derive first equation of motion vising spect timegraph.

OR Prove that $v_{f}=v_{i}+$ at (K. D. U. $B+A \cdot E$)
FL RTELAICNOMCTICN
Consi(er body is reving with init al velocity " v_{i} " in a straight line with uniform accelerition " \mathbf{a} ". It. velocity becomes " $v_{\mathbf{f}}$ " after time " \mathbf{t} ". The motion of the body is desaibed ty sped -tine graph as shown in figure.

Figure: Speed Time Graph For Uniform Acceleration

In this case:

$$
\text { Slope of line } A B=\frac{B C}{A C}
$$

We know that slope of line in speed-time graph gives the magnitude of acceleration.

$$
\begin{gathered}
\therefore \text { Acceleration }=\frac{B C}{A C} \\
a=\frac{B C}{A C}
\end{gathered}
$$

As $\mathrm{AC}=\mathrm{OD}$ and $\mathrm{BC}=\mathrm{BD}-\mathrm{CD}$
So,

$$
\mathrm{a}=\frac{B D-C D}{O D}
$$

As

$$
\mathrm{BD}=\mathrm{v}_{\mathrm{f}}
$$

$$
C D=v_{i}
$$

$$
\mathrm{OD}=\mathrm{t}
$$

Hence
Or
Therefore
This is called ist equation of motion.
Oquleson:
First equation of motion shows the relationship between final velocity " v_{f} ", initial velocity " v_{i} ", acceleration " a " and time taken " t " of a body moving in a straight line with uniform acceleration.

2.6 Q.2 Derive second equation of motion using speed-time graph.

OR Prove that $S=v_{i} t+1 / 2$ at $^{2}(K . B+U . B+A . B)$

SECOND EQUATION OF MOTION

Consider a body is moving with initial velocity " \quad, ir straight l ne will uniform
 described by speed - time graph as hon in figure.

Figure: Speed Time Graph For Uniform Acceleration

In this case:

The total distance " S " travelled by the body is equal to the total area of the under the speed time graph. ie.
Total Distance Covered = Area of the rectangle OACD + Area of the triangle ABC
Area of the rectangle $\mathrm{OACD}=($ width \times length $)$

$$
\begin{align*}
& =O A \times O D \\
& =v_{i} \times t \ldots \ldots . \tag{i}
\end{align*}
$$

Area of the triangle $\mathrm{ABC}=\frac{1}{2}$ (width \times length)

$$
=\frac{1}{2}(\mathrm{BC} \times \mathrm{AC})
$$

$$
=\frac{1}{2}(\mathrm{BC} \times \mathrm{OD})
$$

$$
=\frac{1}{2} \text { at } \times \mathrm{t}
$$

Adding (i) and (ii)
his is called Second equation of motion.
-quelutor:
Second equation of motion shows the relationship between distance covered " S ", initial velocity " v ", time taken " t " and acceleration " a " of a body moving in a straight line with uniform acceleration.
2.6 Q. 3 Derive third equation of motion using speed-time graph.

OR Prove that $2 \mathrm{aS}=\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}_{\mathrm{i}}^{2}(K . B+U . B+A . B)$
Ans: \quad THIRD EQUATION OF MOTION
Consider a body is moving with initial velocity " v_{i} " in a straight line with unifym acceleration "a". Its velocity becomes "v" after me "T". The modien Uf the body is described by speed - time graph as show/ilin figure.

Figure: Speed Time Graph for Uniform Acceleration

In this case:

The total distance " S " travelled by the body is equal to the total area of trapezium OABD under the graph.
Area of trapezium $\mathrm{OABD}=\frac{1}{2}[$ sum of parallel sides $]\left[\begin{array}{l}\text { Perpendicular distance } \\ \text { between parallel sides }\end{array}\right]$

$$
\mathrm{S}=\frac{1}{2}(\mathrm{BD}+\mathrm{OA})(\mathrm{OD})
$$

$$
\text { Or } \quad 2 \mathrm{~S}=(\mathrm{BD}+\mathrm{OA})(\mathrm{OD})
$$

Multiplying both sides by $\frac{B C}{O D}$, we get

$$
\begin{aligned}
& \qquad 2\left(\frac{\mathrm{BC}}{\mathrm{OD}}\right) \mathrm{S}=(\mathrm{BD}+\mathrm{OA})(\mathrm{OD})\left(\frac{\mathrm{BC}}{\mathrm{OD}}\right) \\
& \qquad 2\left(\frac{\mathrm{BC}}{\mathrm{OD}}\right) \mathrm{S}=(\mathrm{BD}+\mathrm{OA})(\mathrm{BC}) \\
& \text { As }(\mathrm{BC}=\mathrm{BD}-\mathrm{CD}) \\
& \operatorname{As}\left(\frac{B C}{O D}=\mathrm{a}\right) \\
& 2 \mathrm{aS}=(\mathrm{BD}+\mathrm{OA})(\mathrm{BD}-\mathrm{CD})
\end{aligned}
$$

As
$\mathrm{BD}=\mathrm{v}_{\mathrm{f}}$
$\mathrm{OA}=\mathrm{v}_{\mathrm{i}}$
$B D=v_{f}$
$C D=v_{i}$

Puttingtin values in the in he above equation, ve have
RaS $=\mathrm{v}+\mathrm{v}_{2}(\mathrm{D}-\mathrm{y})$
This is cal ced Fhird equation of motion.
Dout luion:
Third equation of motion shows the relationship between distance covered " S ", initial velocity " v_{i} ", time taken " t " and acceleration " a " of a body moving in a straight line with uniform acceleration.

2.6 SHORT QUESTIONS

Q.1. What are equations of motion? (K.B+U.B+A.B)

Ans:
 EQUATIONS OF MOTION

There are three basic equations of motion of todias noring vith unifcriacgellation.
These equations relate initial velocity vi 1 nal velccity wi, acceld ration a, time \mathbf{t} and distance s covered by mo mitg bddy. Th these eccuations of notion we suppose the motion a body is ang a straight ins. Hence, we consider only the magnitude of displacments. ve ofites, and fccele:ation along straight line. For rectilinear motion equations on motion are as follows:

$$
\begin{aligned}
& v_{f}=v_{i}+a t \\
& S=v_{i} t+\frac{1}{2} a t^{2} \\
& 2 a S=v_{f}^{2}-v_{i}^{2}
\end{aligned}
$$

Q.2. Write formulae to find area rectangle, triangle and trapezium. (U.B+A.B)

Ans:
FORMULAE
Formulae for the areas of different shapes are given below:
Area of the rectangle $=($ width x length $)$
Area of the triangle $\mathrm{ABC}=\frac{1}{2}$ (width x length)
Area of trapezium $\mathrm{OABD}=\frac{1}{2}[$ sum of parallel sides $]\left[\begin{array}{l}\text { Perpendicular distance } \\ \text { between parallel sides }\end{array}\right]$
Q.3. How to convert ms^{-2} to kmh^{-2} ? (U.B+A.B)

Ans: $\quad \underline{\text { ms }}^{-2} \mathbf{T O} \mathbf{~ k m h}^{-2}$
To convert ms^{-2} to kmh^{-2} multiply acceleration in ms^{-2} by $\{(3600 \times 3600) / 1000\}=12960$
to get its value in kmh^{-2}
Q.4. How to convert kmh^{-2} to ms^{-2} ? (U.B+A.B)

Ans: $\quad{\underline{\mathbf{k m h}^{-2}} \mathbf{~ T O ~ m s}}^{-2}$
Divide acceleration in kmh^{-2} by 1296 to get its value in ms^{-2}.
Q.5. How to convert ms^{-1} into kmh^{-1} ? (U.B+A.B)

Ans: $\quad \underline{\underline{m s}}^{-1} \mathrm{TO}^{-1} \mathrm{kmh}^{-1}$

$$
\begin{aligned}
\mathbf{1} \mathbf{~ m s}^{-1} & =\mathbf{0 . 0 0 1 ~ k m} \times 3600 \mathbf{~ h}^{-1} \\
& =\mathbf{3 . 6} \mathbf{~ k m h}^{-1} \\
& \text { Multiply speed in } \mathrm{ms}^{-1} \text { by } 3.6 \text { to get speed in } \mathrm{kmh}^{-1}
\end{aligned}
$$

For example:

$$
\begin{aligned}
20 \mathrm{~ms}^{-1} & =20 \times 3.6 \mathrm{kr}(\mathrm{~m})^{-1} \\
& =72 \mathrm{kr}^{-1}
\end{aligned}
$$

$1 \mathrm{kmh}-1 \frac{1}{90} \times \frac{1}{50}=-\frac{1}{35} \mathrm{mg}$
Fhas multipiy speed in kmh^{-1} by $\frac{10}{36}$ to get speed in ms^{-1} e.g.,

$$
\begin{aligned}
50 \mathbf{k m h}^{-1} & =50 \times \frac{10}{36} \mathrm{~ms}^{-1} \\
& =13.88 \mathrm{~ms}^{-1}
\end{aligned}
$$

EXAMPLE 2.10

A car travelling at $10 \mathrm{~ms}^{-1}$ accelerates uniformly at $2 \mathrm{~ms}^{-2}$. Calculate its velocity offor $5(\mathrm{~s}$. ($\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B}$)

Solution:

Given Data:

Initial velocity $=v_{i}=10 \mathrm{mis}$
Acce eration $=a-2 \mathrm{~m}^{-2}$
Time $=T=5 \mathrm{~s}$
To Fin!:
Fina. viloc ty $\Rightarrow v_{t}=$?
Gaculations
$\sqrt{\text { y }}$ nuw

$$
v_{f}=v_{i}+a t
$$

Putting the values

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{f}}=(10)+(2)(5) \\
& \mathrm{v}_{\mathrm{f}}=10+10 \\
& \mathrm{v}_{\mathrm{f}}=20 \mathrm{~ms}^{-1}
\end{aligned}
$$

Result:

The velocity of the car after 5 s is $20 \mathrm{~ms}^{-1}$.

EXAMPLE 2.11

A train slows down from $80 \mathrm{kmh}^{-1}$ with a uniform retardation of $2 \mathrm{~ms}^{-2}$. How long will it take to attain a speed of $20 \mathrm{kmh}^{-1} ?(U . B+A . B)$
Solution:
Given Data:

$$
\begin{aligned}
& \begin{aligned}
\text { Initial velocity }= & \mathrm{v}_{\mathrm{i}}=80 \mathrm{kmh}^{-1} \\
= & \frac{80 \times 1000 \mathrm{~m}}{60 \times 60 \mathrm{~s}} \\
& =97.7 \mathrm{~ms}^{-1}
\end{aligned} \\
& \begin{aligned}
\text { Final velocity }= & \mathrm{v}_{\mathrm{f}}=20 \mathrm{kmh}^{-1} \\
& =\frac{20 \times 1000 \mathrm{~m}}{60 \times 60 \mathrm{~s}}=5.6 \mathrm{~ms}^{-1}
\end{aligned} \\
& \text { Acceleration }=\mathrm{a}=-2 \mathrm{~ms}^{-2}
\end{aligned}
$$

To Find:

Time taken $=\mathrm{t}=$?
Calculations:
We know
Putting the $v_{f}=v_{i}+a t$

$$
5.6=(722)-(t)
$$

$5.5-22 / 2=-21$
$-16.6=2 t$

$$
y=15.612
$$

peyli.

$$
\tau=8.3 \mathrm{~s}
$$

The train will take 8.3s to attain the required speed

EXAMPLE 2.12

A bicvcle accelerates at $1 \mathrm{~ms}^{-2}$ from an initial velocity of $4 \mathrm{~ms}^{-1}$ Ror $\mathbf{1 0} \mathrm{s}$. Fid tie distance moved by it during this interval of time. (U B $A \cdot A, \mathcal{L}^{\prime}$,

Solution:

Given Data:

Acceleration $=\mathrm{a}=\mathrm{ms}^{-}$
ini ia velocity $==4: \mathrm{ns}^{-1}$
The $=t=10 \mathrm{~s}$
To Find:
I is ance mbleã $=\mathrm{S}=$?
Dacuations.
We inow

$$
S=v_{i} t+1 / 2 a^{2}
$$

Putting values

$$
\begin{aligned}
& S=(4)(10)+1 / 2(1)(10)^{2} \\
& S=40+50 \\
& S=90 \mathrm{~m}
\end{aligned}
$$

Result:
The bicycle will move 90 metres in 10s

GXAMPLE 2.13

A car travels with a velocity of $5 \mathrm{~ms}^{-1}$. It then accelerates uniformly and travels a distance of 50 m . If the velocity reached is $15 \mathrm{~ms}^{-1}$, find the acceleration and the time to travel this distance. (U.B+A.B)

Solution:

Given Data:

Initial Velocity $=\mathrm{v}_{\mathrm{i}}=5 \mathrm{~ms}^{-1}$
Final Velocity $=\mathrm{v}_{\mathrm{f}}=15 \mathrm{~ms}^{-1}$
Distance $=S=50 \mathrm{~m}$

To Find:

Acceleration $=\mathrm{a}=$?
Time to travel the distance $=\mathrm{t}=$?

Calculations:

We use $3^{\text {rd }}$ equation of motion for finding acceleration

$$
\begin{aligned}
& 2 \mathrm{aS}=\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{vi}^{2} \\
& 2 \mathrm{a}(50)=(15)^{2}-(5)^{2} \\
& 100 \mathrm{a}=225-25 \\
& 100 \mathrm{a}=200 \\
& \mathrm{a}=200 / 100 \\
& \mathrm{a}=2 \mathrm{~ms}^{-2}
\end{aligned}
$$

We can find time th thavel hro $\operatorname{rsigh}^{\text {st }}$, cuation of rion
As

$$
v_{f}=v_{i}+a t
$$

Pyiting the vaiues

$$
\begin{aligned}
& 15=(5)+(2) \\
& 15=2 t \\
& t=10 / 2 \\
& t=5 \mathrm{~s}
\end{aligned}
$$

Result:
The acceleration of the car is $\mathbf{2} \mathrm{ms}^{-2}$ and it takes 5 seconds to travel 50 m distance.

2.6 MULTIPLE CHOICE QUESTIONS

1. In equations of motion, motion will always be taken: (K.B)
(A) Circular line
(B) Straight live
(C) Elliptical line
(D) : rregular line
2. In equations of motion, fcreleration wimalv ay ibe: (K.B)
(A) Uniform
(E) Varab e
(C) Positive
D) Negative
3. In equation of metion in lia veigit win be taken as: (K.B)
(A) Uniform
(B) Variable
(C) Fositive
(D) Negative
*. If. I eed time graph, sketched for deriving equations of motion "at" is: (K.B)
(1) Jain in speed
(B) Variable
(C) Momentum
(D) Final velocity
4. Equations of motion are: (K.B)
(A) 1
(B) 2
(C) 3
(D) 4
5. $\quad \mathbf{5 0} \mathrm{kmh}^{-1}=(\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{A} \cdot \boldsymbol{B})$
(Useful Information Pg. \# 47)
(A) $13.88 \mathrm{~ms}^{-1}$
(B) $5000 \mathrm{~ms}^{-1}$
(C) $30 \mathrm{~ms}^{-1}$
(D) $500 \mathrm{~ms}^{-1}$
6. $\quad \mathbf{7 2} \mathbf{~ k m h}^{-1}=(\boldsymbol{U} . B+\boldsymbol{A} \cdot \boldsymbol{B})$
(B) $5000 \mathrm{~ms}^{-1}$
(A) $13.88 \mathrm{~ms}^{-1}$
(D) $500 \mathrm{~ms}^{-1}$
7. $\quad 1 \mathrm{~ms}^{-1}=(\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{A} . \boldsymbol{B})$
(B) $200 \mathrm{mh}^{-1}$
(A) $100 \mathrm{kmh}^{-1}$
(D) $36 \mathrm{kmh}^{-1}$
(C) $3.6 \mathrm{kmh}^{-1}$
(Useful Information Pg. \# 47)
(Useful Information Pg. \# 47)
8. To get speed in ms^{-1}, we multiply speed in kmh^{-1} by: (U.B+A.B) (Useful Information Pg. \# 47)
(A) $36 / 10$
(B) 200
(C) $10 / 36$
(D) 36
9. $\quad 54 \mathrm{kmh}^{-1}$ into $\mathrm{ms}^{-1}(\boldsymbol{U} . B+A . B)$
(A) $5 \mathrm{~ms}^{-}$
(B) $15 \mathrm{~ms}^{-1}$
(C) $10 \mathrm{~ms}^{-1}$
(D) $20 \mathrm{~ms}^{-1}$
(LHR 2017)

MOTION OF FREE FALLING BODIES

LONG QUESTIONS

Q.1. What do you know about gravitational acceleration? (K.B+U.B+A.B)
(LHR 2011)
Ans:

GRAVITATIONAL ACCELERATION

Definition:

"The uniform acceleration of free falling bodies unner the action of fioies of gravity is called gravitational acceleration.'
Discovery:
Galileo was the first scientist to notice that al the free ralling oojects have the same accele ation indoendent of their nass.s. He dopped various objects of different masses from the Teanil Etcwer of Pid. He noticed that all of them reach the ground at the same time. Exrlanetion:
If ife negled air resistance, then all the bodies either lighter or heavier will fall down with uniform acceleration. This uniform acceleration of freely falling bodies is known as gravitational acceleration. It is represented by ' g '. Its value is $9.8 \mathrm{~ms}^{-2}$, but for simplicity we shall use the value of " g " as $10 \mathrm{~ms}^{-2}$. For bodies falling vertically downward ' g ' is positive and for bodies moving vertically upward ' g ' is negative.

2.7 SHORT QUESTIONS

Q.1. How can we use equations of motion for bodies, which are fallia; frsely under te gravity? (A.B)
Ans:

FRE EALL NGEOLIES

Equations of motion can be used ior bodies novihg under gravit. In such cases we replace 'a' by ' g ' and S by $\sqrt[h]{ }$ sp equations of motion for bodies talling freely can be writte, as,

$$
\begin{aligned}
& \mathrm{h}=\mathrm{v}_{\mathrm{i}} \mathrm{t}+\frac{1}{2} \mathrm{gt}^{2} \\
& 2 \mathrm{gh}=\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}_{\mathrm{i}}^{2}
\end{aligned}
$$

Q.2. What are the points kept in mind when bodies are moving freely under gravity? (K.B)

Ans:
FOR DOWNWARD MOTION

- Initial velocity ' v ' ' of the freely falling body will be zero
- Gravitational acceleration will be positive

FOR UPWARD MOTION

- Final velocity ' v_{f} ' of the body will be zero.
- Gravitational acceleration will be negative.
Q.3. When a body is thrown vertically unward, it velocity thengest noins rio. Why? (K.B)

Ans:
VE OT Y E T GTESTVOTNT
When aboly i thrown eiticary un vala, it moves against the force of attraction of the Earth. I sipws down g.ant and on reaching the highest point it comes to rest. That is Vhy he ve, dcily \rightarrow a body becomes zero at the highest point.

EXAMPLE 2.14

A stone is dropped from the top of a tower. The stone hits the oround der 5 seconds. Find: (U.B+A.B)
(a) The height of the tower
(b) The velocity with which the stone lits the ground.

Solution:

Given(D) La:
intial velccity $=v_{i}=0$
Grevitational accecration $=\mathrm{g}=10 \mathrm{~ms}^{-2}$
Time- $=5 \mathrm{~s}$
do Tind:
Height of tower $=\mathrm{S}=\mathrm{h}=$?
Final Velocity $=\mathrm{v}_{\mathrm{f}}=$?

Calculations:

We can find height of the tower by using $2^{\text {nd }}$ equation of motion

$$
\mathrm{h}=\mathrm{v}_{\mathrm{i}} \mathrm{t}+1 / 2 \mathrm{gt}^{2}
$$

By putting values

$$
\begin{aligned}
& \mathrm{h}=(0)(5)+1 / 2(10)(5)^{2} \\
& \mathrm{~h}=0+125 \\
& \mathrm{~h}=125 \mathrm{~m}
\end{aligned}
$$

We can find final velocity of the stone by using $3^{\text {rd }}$ equation of motion

$$
2 g h=v_{f}^{2}-v_{i}^{2}
$$

By putting values

$$
\begin{aligned}
& 2(10)(125)=\mathrm{v}_{\mathrm{f}}^{2}-0 \\
& \mathrm{v}_{\mathrm{f}}^{2}=2500
\end{aligned}
$$

Taking square root on both sides

$$
\mathrm{v}_{\mathrm{f}}=50 \mathrm{~ms}^{-1}
$$

Result:

The height of the tower is $\mathbf{1 2 5}$ metres and it will hit the ground with a velocity of $50 \mathrm{~ms}{ }^{1}$.

EXAMPLE 2.15

A boy throws a ball vertically up. It returns to the ground after 5 seconds. Find
(a) The maximum height reached by the ball.
(b) The velocity with which the ball is thown up.

Solution:

Given data:

Gravitational acseleration $=g=-10 \mathrm{~m} s^{-2}$ (As the ball is moving upward)
Time form and doun motion $=t_{0}=5 \mathrm{~s}$
Velucity af ma iupun heigtit $=\mathrm{v}_{\mathrm{f}}=0$

Maximum height reached by the ball $=\mathrm{h}=$?
The velocity with which the ball is thrown up $=v_{i}=$?

Calculations:

For finding initial velocity first we have to find time to reach maximum height that is Half of total time of flight $\left(\mathrm{t}_{0}\right)$

So Time to reach maximum height $=1 / 2 \mathrm{t}_{\mathrm{o}}$

$$
\begin{aligned}
& \mathrm{t}=1 / 2(5) \\
& \mathrm{t}=2.5 \mathrm{~s}
\end{aligned}
$$

Now by using $1^{\text {st }}$ equation of motion we camind initigl rerocit?
We know

By using $3^{\text {rd }}$ equation of motion we can find maximum height reached by the ball We know

$$
2 \mathrm{gh}=\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}_{\mathrm{i}}^{2}
$$

By putting values

$$
\begin{aligned}
& 2(-10) \mathrm{h}=0-(25)^{2} \\
& -20 \mathrm{~h}=-625 \\
& \mathrm{~h}=625 / 20 \\
& \mathrm{~h}=31.25 \mathrm{~m}
\end{aligned}
$$

Result:

The ball was thrown up with a speed of $25 \mathrm{~ms}^{-1}$ and the maximum height to which the ball rises is 31.25 m .
Q.4. Prove that Put the heavy and lighter bodies have same value of gravitational acceleration as they fall freely from certain hight? $(C . B+A . B)$
Ans:
mass of heavy body $=\mathrm{M}$
mass of lighter body $=m$
Fore of gravity on heavy body $=F_{1}=\frac{G M_{e} M}{R^{2}}$
Fore of gravity on lighter body $=F_{2}=\frac{\mathrm{GM}_{\mathrm{e}} m}{\mathrm{R}^{2}}$
Gravitational accelration on heavy body $=\frac{F_{1}}{M}=\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}^{2}}=9.8 \mathrm{~ms}^{-2}$
Gravitational accelration on lighter b $\sigma \mathrm{dy}=\frac{\mathrm{F}_{2}}{\pi}=-\frac{\mathrm{RM}}{\mathrm{R}^{2}}=9.9 . \mathrm{ns}^{-2}$
Hence proved the gravitation: 1 ncteleiadic is sane for bedes of different mass

1. Series of ex periments on free fail of heavy bodies was performed by: (K.B)
(A) ITlewtop
(B) Einstein

(D) Al-Kundi

When a body is falling freely under the gravity then in equations of motion ' a ' is replaced by: (K.B)
(A) m
(B) d
(C) S
(D) g
3. If a body is falling under the gravity then its initial velocity will be: (K.B)
(A) Positive
(B) Negative
(C) Uniform
(D) Zero
4. If a body is falling under the gravity thenils gravitational aceerer tionovil oo. (R.B)
(A) Positive
(C) Increasing
5. If a bon is thom verticaly upwerd then its final velocity will be: (K.B)
(A) Positive
(B) Negative
(C) Tiniform
(D) Zero

If a boy is thrown upward, then its gravitational acceleration will be: (K.B)
(A) Positive
(B) Negative
(C) Increasing
(D) Zero
7. Value of \mathbf{g} depends on: (K.B)s
(A) Mass
(B) Speed
(C) Size
(D) Height

MCQ'S ANSWER KEY (TOPIC WISE)
2.1 INTRODUCTION TO PHYSICS
2.2 TYPES OF MOTION

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
D	A	A	B	D	C	B	B	A	A	C	C
$\mathbf{1 3}$											
C											

TEXT BOOK EXERCISE
 MULTIPLE CHOICE QUESTIONS

2.1 Encircle the correct answer from the given choices. (n.b)
i. A body has translatory motion it move a m a:
(GRW 2017)
(a) straight line
(c) line without rotation
(t) cilcle.
(d) curved path
(LHR 2015)
ii. The motion of a bogy arcend an a is is calicu: (K.B)
(a) circilar motior
(b) rotatory motion
(c) vibrato y motion
(d) random motion
iii. $\sqrt{1}$ hich of the torowing is a vector quantity? (K.B)
(a) syeed
(b) distance
(c) displacement
(d) power
iv. If an object is moving with constant speed then its distance-time graph will be a straight line. (U.B)
(a) along time-axis
(b) along distance-axis
(c) parallel to time-axis
(d) inclined to time-axis
v. A straight line parallel to time-axis on a distance-time graph tells that the object is: (K.B+U.B)
(a) moving with constant speed
(b) at rest
(c) moving with variable speed
(d) in motion
vi. The speed-time graph of a car is shown in the figure, which of the following statement is true? (U.B)
(a) car has an acceleration of $1.5 \mathrm{~ms}^{-2}$
(c) distance travelled by the car is 75 m
Which of the following graphs is repre
(b) car has constant speed of $7.5 \mathrm{~ms}^{-1}$
(d) average speed of the car is $15 \mathrm{~ms}^{-1}$

vii. Which of the following graphs is representing uniform acceleration? (U.B) (LHR 2015)
(a)

(b)

(c)

(d)

vii. By dividing displacement of moving boay with time, we obtain: (K BO
(a) speed
(b)acele ation
(c) velocity
(c) deceleration
ix. A ball is thrown vertically upord. T1 volity at the higest point is: (K.B)
(a) $-10 \mathrm{~ms} 5^{-2}$
(b) zero
(c) 10 ms
(d) none of these
x. A change in position is called (K.B)
(a) Fpeed
(b) velocity
(c) 1 spliacencert
(d) distance
if itaie is moving at a speed of $36 \mathrm{kmh}^{-1}$. Its speed expressed in ms^{-1} is:(A.B) (GRW 2015)
(a) 10 ms
(b) 20 ms
(c) $25 \mathrm{~ms}^{-1}$
(d) $30 \mathrm{~ms}^{-1}$
xii. A car starts from rest. It acquires a speed of $25 \mathrm{~ms}^{-1}$ after 20 s . the distance moved by the car during this time is: (A.B)
(a) 31.25 m
(b) 250 m
(c) 500 m
(d) 5000 m

ATSUEIMEY

2.2 Explaintransle torymon andgive exmmes of various types of translatory motion.

Ans: See Q. 2 LDing Cuest ou TOPIC 2.2
2.3 Differen tiate lye the the following:
(i) Res and motion
(ii) Circular motion and rotatory motion
(iii) Distance and displacement
(GRW 2014)
(iv) Speed and velocity
(LHR 2013, 2015)
(v) Scalars and vectors
(GRW 2013, LHR 2014, 2015, 2107)
(i) Difference between Rest and Motion
(ii) Circular motion and rotatory motion.
(iii) Difference between Distance and Displacement.
(iv) Difference between Speed and Velocity
(v) Difference between Linear and Random motion.
(vi) Difference between scalar and vector.
2.4 Define the terms speed, velocity, and acceleration.
(GRW 2013, LHR 2015)
2.5 Can a body moving at a constant speed have acceleration?
(LHR 2014)
Ans: CONSTANT SPEED AND ACCELERATION
A body moving with constant speed may or may not have acceleration.

- It will not have acceleration if the body is moving with constant speed in a straight line that will be case of constant velocity.
That body can have acceleration if its direction of motion changes continuously. For example a body moving with constant speed in a circular path has acceleration.
2.6 How do riders in a Ferris wheel possess translatory motion but not circular motion?

Ans:

MOTION OF RIDER

Riders in a Ferris wheel move in a circle without rotation therefore motion of rider in Ferris wheel is translatory not rotatory.
2.7 Sketch a distance - time graph for a body starting from rest. How will you Gatermine the speed of a body from this graph?
2.8 What would be the shape of speed time graph if todymoving vi variohlespeed?

Ans: Long question Q. 2 Topic

(LHR 2013, 2014, 2015)
2.9 Which of following can be obts ined from speed - time graph of a body?
(i) intianspee
(ii) Final Speed
(iii) Distancr coverea: time t
(iv) Acceleration of motion
An. N NTNORMATION FROM SPEED TIME GRAPH

Allthe given quantities can be obtained from speed-time graph.
How can vector quantities be represented graphically?
(LHR 2014, GRW 2014)
Ans: Short question Q. 4 Topic $2.3 \& 2.4$
2.11 Why vector quantities cannot be added and subtracted like scalar quantities?

Ans:
ADDITION AND SUBTRACTION
Scalar quantities can be described completely by magnitude coly andean be aded ar subtracted by simple arithmetical rules. Vec or quantimes in aditior to maghimde also need direction for their descripion. So vectors canno be adder or subtracted by arithmetic rules due to direction
2.12 How are ector quantites impert nt o we in our dally life?

Ans: \quad MFRRANEEDF YECTOR QUANTITIES
In order to iochate place from a reterence point, we will have to describe the distance and rivec ion of the thace irom reference point. Description of distance along with direction whi reak up a vector quantity. Hence by using vector quantities we can describe the position (or location) of bodies.
2.13 Derive equations of motion for uniformly accelerated rectilinear motion.

Ans: See Long Questions TOPIC 2.6
2.14 Sketch a velocity - time graph for the motion of the body. Calculate total distance covered by the body.

DISTANCE FROM VELOCITY TIME GRAPH

Solution:

Given Data:

Velocity time graph for the calculation of total distance is given below?

To Find:

Total distance covered=?

Calculations:

By using the given values we plot a graph shown in figure.

$$
\begin{aligned}
& \text { Velocity }=48 \mathrm{kmh}^{-1} \\
& \text { Velocity }=\frac{48 \times 1000}{1000}
\end{aligned}
$$

Velocity $=13.33 \mathrm{~ms}$ Time taken $=?$ minth

Again time taken $=3$ minutes

$$
\begin{aligned}
& =3(60) \\
& =180 \mathrm{~s}
\end{aligned}
$$

We know that area under speed-time graph represents the distance covered by the object.

\therefore Total distance covered $=$ Area of trapezium OABC

$\mathrm{S}=\frac{1}{2}$ (Sum of parallel sides) (Perpendicular distance between argle, sid
$\mathrm{S}=\frac{1}{2}(600+300)(13.33)$
$\left.\sum^{5}\right)=\frac{1}{2}(900)(12.03)$
Result
Total aistance covered by the body has been found by finding total area unde: speed time graph that is equal to 6000 m

NUMERIGAL PROBLEMS (U,B+A,B)

2.1 A train moves with a uniform velocity of $36 \mathrm{kmh}^{-1}$ for 10 s. Find the distance traveled by it. Solution:

Given Data:

Velocity of train $=V_{a v}=36 \mathrm{kmh}^{-1}=\frac{36 \times 1000}{3600}=10 \mathrm{~ms}^{-1}$
Time taken $=\mathrm{t}=10 \mathrm{~s}$

To Find:

Distance travelled by train $=\mathrm{S}=$?

Calculations:

As we know that

$$
\mathrm{S}=\mathrm{V}_{\mathrm{av}} \mathrm{xt}
$$

By putting the values, we have

$$
\begin{aligned}
& S=10 \times 10 \\
& S=100 \mathrm{~m}
\end{aligned}
$$

Result:

Hence, the distance travelled by train will be 100 m .
2.2 A train starts from rest. It moves through 1 km in 100 s with uniform acceleration. What will be its speed at the end of 100 s?

Solution:

Given Data:

Initial velocity of train $=v \cong 0 \mathrm{~ms}$
Distance covered by tain $5=1 \mathrm{~m}=000 \mathrm{~m}$
Timetaken by tain $=0=200 \mathrm{~s}$

To Find.

Sped dof traipafter on $\mathrm{S}_{\mathrm{S}}=\mathrm{v}_{\mathrm{f}}=$?
Calcilaiou:
Cirst we have to find the acceleration, as we know that

$$
S=v_{i} t+1 / 2 a t^{2}
$$

By putting the values, we have

$$
1000=0 \times 100+1 / 2 \times \text { a } \times(100)^{2}
$$

$$
\begin{array}{ll}
& 1000=1 / 2 \times \mathrm{a} \times 10000 \\
& 1000=\mathrm{a} \times 5000 \\
& \mathrm{a}=\frac{1000}{5000} \\
\text { So, } \quad & \mathrm{a}=0.2 \mathrm{~ms}^{-2}
\end{array}
$$

Now from first equation of intion, we have
by putting the values, ve have

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{f}}=20 \mathrm{~ms}^{-1}
\end{aligned}
$$

Result:

Hence, the speed of train at the end of 100 s , will be $20 \mathrm{~ms}^{-1}$.
2.3 A car has a velocity of $10 \mathrm{~ms}^{-1}$. It accelerates at $0.2 \mathrm{~ms}^{-2}$ for half minute. Find the distance travelled during this time and the final velocity of the car.

Solution:

Given Data:

Velocity of the car $=v_{i}=10 \mathrm{~ms}^{-1}$
Acceleration of the car $=\mathrm{a}=0.2 \mathrm{~ms}^{-2}$
Time taken by car $=\mathrm{t}=0.5 \mathrm{~min} .=0.5 \times 60=30 \mathrm{~s}$

To Find:

(a) Distance traveled by car $=\mathrm{S}=$?
(b) Final velocity of the car $=\mathrm{v}_{\mathrm{f}}=$?

Calculations:

As we know that

$$
S=v_{i} t+1 / 2 a t^{2}
$$

By putting the values, we have

$$
\begin{aligned}
& S=10 \times 30+1 / 2 \times 0.2 \times(30)^{2} \\
& S=300+0.1 \times 900 \\
& S=300+90 \\
& S=390 \mathrm{~m}
\end{aligned}
$$

(b) Now, by using first equation for mot wh have
$v_{f}=v_{i}+a t$
(v) $=10+(0.2)(30)=10+5$

Hence, the distance travelled and final velocity of the car will be 390 m and $16 \mathrm{~ms}^{-1}$ respectively.
2.4 A tennis ball is hit vertically upward with a velocity of $\mathbf{3 0} \mathbf{~ m s}^{\mathbf{- 1}}$. It takes $\mathbf{3} \mathrm{s}$ to reach the highest point. Calculate the maximum height reached by the ball. How long, it will take to return to ground?

Solution:

Given Data:

Initial velocity of the tennic wall $=-30125$
Tince to reach the maxivnum hei hht $=\mathrm{t}=3 \mathrm{~s}$
G.avi ational accel elation $=-\varepsilon=1 n$ nos

Filal relocity of he hall $=v_{\mathrm{f}}=0 \mathrm{~ms}^{-1}$
Fo Eind:
avinum height reached by the ball $=\mathrm{h}=$?
Calculations:
From second equation of motion in vertical motion, we have
$h=v_{i} t+1 / 2 \mathrm{gt}^{2}$
by putting the values, we have
$\mathrm{h}=30 \times 3+1 / 2 \times(-10)(3)^{2}$
$h=90-5 \times 9 \Rightarrow h=90-45 \Rightarrow h=45 \mathrm{~m}$
As the ball moves with uniform acceleration in vertical motion, so time taken by the ball in both directions will be same.
Total time taken to return the ground = Time taken upwards + Time taken downwards
Total time taken to return the ground $=3 \mathrm{~s}+3 \mathrm{~s}$
Total time taken to return the ground $=6 \mathrm{~s}$

Result:

Hence, the maximum height reached by the ball will be 45 m and total time taken to return the ground will be 6 s .
2.5 A car moves with uniform velocity $40 \mathrm{~ms}^{-1}$ for 5 s . it comes to rest in the next 10 s with uniform declaration. Find
i) declaration
ii) total distance traveled by the car

Solution:

Given Data:

For uniform motion:
Uniform velocity $=\mathrm{v}_{\mathrm{av}}=40 \mathrm{~ms}^{-1}$
Time for uniform velocity $=\mathrm{t}=5 \mathrm{~s}$
When brakes are applied
Initial velocity $=v_{i}=40 \mathrm{~ms}^{-1}$
Final Velocity $=\mathrm{v}_{\mathrm{f}}=0$
Time for be in ston $-7=10$

To Find

(ii)

Deceleration $=a=$?
Distance tra eled by the car $=S=$?

Calale tions

$$
0
$$

(i)

Ne know

Acceleration $=\frac{\text { change in velocity }}{\text { time }}$
Acceleration $=\frac{\text { final velocity }- \text { initial velocity }}{\text { time }}$

So

$$
\mathrm{a}=\frac{\mathrm{Vf}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}}{\mathrm{t}}
$$

Putting values

$$
a=\frac{0-40}{0}=8 a=-4 r s^{2}
$$

ii) We san find total cistance co red ano stens

Step 1fornifommetion:
As we know that

$$
S=v_{a v} x t
$$

By viting the values, we have

$$
\begin{aligned}
& S=40 \times 5 \\
& S=200 \mathrm{~m}
\end{aligned}
$$

Step 2 for Deceleration:
As we know that

$$
S=v_{i} t+1 / 2 a t^{2}
$$

By putting the values, we have

$$
\begin{aligned}
& S=(40)(10)+1 / 2(-4)(10)^{2} \\
& S=400-200 \\
& S=200 \mathrm{~m}
\end{aligned}
$$

Total distance travelled during the journey $=200 \mathrm{~m}+200 \mathrm{~m}$

$$
=400 \mathrm{~m}
$$

Result:

Hence, the deceleration in the car will be $4 \mathrm{~ms}^{-2}$ and total distance travelled by the car during the journey will be 400 m .
2.6 A train start from rest with an acceleration of $0.5 \mathrm{~ms}^{-2}$. Find its speed in $\mathbf{k m h}^{-1}$, when it has moved through 100 m .

Solution:

Given Data:

Acceleration of the train $=\mathrm{a}=0.5 \mathrm{~ms}^{-2}$
Initial velocity of the train $=v_{i}=0 \mathrm{~ms}^{-1}$
Distance moved by train $=S=100 \mathrm{~m}$

To Find:

Final speed in $\mathrm{kmh}^{-1}=\mathrm{v}_{\mathrm{f}}=$?

Calculations:

From third equation f motion, have by puting he waes, me 1 ave

$$
\begin{aligned}
& \text { P. } 0: 1 \mathrm{x} 100=\mathrm{vf}^{2}-(0)^{2} \\
& 0 \sigma=\mathrm{vf}^{2}
\end{aligned}
$$

b. taking scluate root on both sides, we have

$$
\begin{array}{ll}
& \sqrt{100}=\mathrm{v}_{\mathrm{f}}{ }^{2} \\
\text { So } & \mathrm{v}_{\mathrm{f}}=10 \mathrm{~ms}^{-1}
\end{array}
$$

Speed In $\mathbf{k m h}^{-1}$

$$
\mathrm{v}_{\mathrm{f}}=\frac{10 \times 3600}{1000}=36 \mathrm{kmh}^{-1}
$$

Result:

2.7 A traingrartig from res accelerates uñormly and attains a velocity $48 \mathrm{kmh}^{-1}$ in 2 minutes. it trayels at peed for 5 minutes. Finally, it moves with uniform retardation ind f st opped after 3 minutes. Find the total distance traveled by the train.
golution:

Given Data:

Velocity $=\mathrm{v}=48 \mathrm{kmh}^{-1}$
Velocity $=\mathrm{v}=\frac{48 \times 1000}{3600}=13.33 \mathrm{~ms}^{-1}$
Time taken $=\mathrm{t}=2$ minutes $=2(60)=120 \mathrm{~s}$
Again time taken $=\mathrm{t}=5$ minutes $=5(60)=300 \mathrm{~s}$
Again time taken $=\mathrm{t}=3$ minutes $=3(60)=180 \mathrm{~s}$

To Find:

Total distance covered $=\mathrm{S}=$?

Calculations:

By using the given values we can plot a graph shown in figure:

We know that area under speed-time graph represents the distance covered by the object.
\therefore Total distance covered $=$ Area of trapezium OABC
$\mathrm{S}=\frac{1}{2}$ (Sum of parallel sides) (Perpendicular distanee betwern paralel sides, $\mathrm{S}=\frac{1}{2}(600+300)(13.23)$
$S=5000 \mathrm{n}$
2 est 10
Hence, total distance covered by the brain has been found by finding total area under the graph line in speed time graph and that will be equal to 6000 m .
2.8 A cricket ball is hit vertically upwards and returns to ground 6 s later. Calculate
(i) Maximum height, reached by the ball.
(ii) Initial velocity of the ball.

Solution:

Given Data:

Final velocity of the $\mathrm{ball}=5 \mathrm{r}=1$
Grivitational acce eation $=\mathrm{b}=-12$ ans
T. ne in which ball retun to erout $-\mathrm{t}=6 \mathrm{~s}$

To Find:

Max.mun heint reached by ball $=\mathrm{h}=$?
Grlitial velocity of the ball $=v_{i}=$?
Calculations:
We know that for ball thrown vertically upward in air
Time taken by ball to reach maximum height $=$ Time taken by ball to reach ground from maximum height $\therefore \quad$ time taken by ball to reach maximum height $=\mathrm{t}=3 \mathrm{~s}$
From first equation of motion, we have

$$
v_{f}=v_{i}+g t
$$

By putting the values, we have

$$
\begin{aligned}
& 0=v_{i}+(-10) \times 3 \\
& 0=v_{i}-30 \\
& v_{i}=30 \mathrm{~ms}^{-1}
\end{aligned}
$$

Now from second equation of motion, we have

$$
S=v_{i} t+1 / 2 \mathrm{gt}^{2}
$$

By putting the values, we have

$$
\begin{aligned}
& \mathrm{S}=30 \times 3+1 / 2 \times(-10) \times(3)^{2} \\
& \mathrm{~S}=90-5 \times 9 \\
& \mathrm{~S}=45 \mathrm{~m}
\end{aligned}
$$

Result:

Hence, the maximum height reached by ball will be 45 m and initial velocity of the ball will be $30 \mathrm{~ms}^{-1}$.
2.9 When brakes are applied, the speed of a train decreases from $96 \mathrm{kmh}^{-1}$ to $48 \mathrm{kmh}^{-1}$ in 800 m . How much further will the train move before coming to rest? (Assumiog the retardation to be constant)
Solution:
Given Data :
Initial velocity of tr air $=y_{i}=9,2 \mathrm{kmin}=\frac{96}{3600}=\frac{80}{3} \mathrm{~m}=26.67 \mathrm{~ms}^{-1}$
Find d d or ity of rain $=\mathrm{r}_{\mathrm{f}}=48 \mathrm{kmh}^{-1}=\frac{48 \times 1000}{3600}=\frac{40}{3} \mathrm{~ms}^{-1}=13.33 \mathrm{~ms}^{-1}$
L-is. ancevered by train $=800 \mathrm{~m}$
IG 5 in:
Distance covered by the train before coming to rest $=\mathrm{S}=$?
Calculations:
First we have to find
Retardation of the train $=-\mathrm{a}=$?

From third equation of motion, we have

$$
2 \mathrm{aS}=\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}_{\mathrm{i}}^{2}
$$

By putting the values, we have

$$
\begin{aligned}
& 2 \mathrm{a}(800)=(13.33)^{2}-(26.6)^{2} \\
& 1600 \mathrm{a}=177.69-11 \\
& 1600 \mathrm{a}=-39 \\
& \mathrm{a}=-503.6
\end{aligned}
$$

Again For dver all mot on t 1 tains stops
It itial velocity of train $=v_{i}=48 \mathrm{kmh}^{-1}=\frac{40}{3} \mathrm{~ms}^{-1}=13.33 \mathrm{~ms}^{-1}$
Final velocity of train $=v_{f}=0 \mathrm{~ms}^{-1}$
Retardation of train $=\mathrm{a}=-0.333 \mathrm{~ms}^{-2}$
From third equation of motion, we have

$$
2 \mathrm{aS}=\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}_{\mathrm{i}}^{2}
$$

By putting the values, we have

$$
\begin{aligned}
& 2(-0.333) S=(0)^{2}-(13.33)^{2} \\
& -0.666 \mathrm{~S}=-(177.69) \\
& S=177.69 / 0.66 \\
& S=266.8 \mathrm{~m}
\end{aligned}
$$

Result:

Hence, the distance moved by the train before coming to rest will be 266.8 m.
2.10 In the above problem, find the time taken by the train to stop after the application of the brakes.

Solution:

Given Data:

Initial velocity of train $=v_{i}=96 \mathrm{kmh}^{-1}=\frac{96 \times 1000}{3600}=\frac{80}{3} \mathrm{~ms}^{-1}=26.67 \mathrm{~ms}^{-1}$
Final velocity of train $=\mathrm{v}_{\mathrm{f}}=0 \mathrm{~ms}^{-1}$
Acceleration $=\mathrm{a}=-0.333 \mathrm{~ms}^{-2}$

To Find:

Time taken by the train $=\mathrm{t}=$?

Calculations:

From first equation of motion we hive

$$
\mathrm{v}_{\mathrm{f}}=[\mathrm{v},+2 t]
$$

By prtting the varies, we na e

$$
0=2 e .6 \pi+(2.333) i
$$

$$
-20.6]=-(0.333) t
$$

$$
\tau=26.67 / 0.333
$$

$$
\mathrm{t}=80 \mathrm{~s}
$$

Nesult:
Hence, the time taken by the train to stop after the application of the brakes will be 80 s .

Kinematics

SELF TEST

Time: 40 min .
M: 1 ks . 25
Q. 1 Four possible answers $(A),(B),(C) \&(L)$ to rant qaestion are giren. Rark the correct answer.

1. Motion of individual part cle of spinningtop is:
($6 \times 1=6$)
(A) Ci cular unstion
(D) Rotatory motion
(C) Vibratoy ot on
(D) Random motion
2. Enfmetre er econd is equal to:
(d) $0.0 \mathrm{Kmh}^{-1}$
(B) $\frac{1}{3.6} \mathrm{kmh}^{-1}$
(C) $6.3 \mathrm{kmh}^{-1}$
(D) $\frac{1}{6.3} \mathrm{kmh}^{-1}$
3. A car starts from rest. It acquires a speed of $25 \mathrm{~ms}^{-1}$ after 20 s . The distance moved by the car during this time is:
(A) 31.25 m
(B) 250 m
(C) 500 m
(D) 5000 m
4. A sprinter completes its 100 metre race in 12 s , it's average speed will be:
(A) $100 \mathrm{~ms}^{-1}$
(B) $12 \mathrm{~ms}^{-1}$
(C) $8 \mathrm{~ms}^{-1}$
(D) $8.33 \mathrm{~ms}^{-1}$
5. Motion of a rider in Ferris wheel is:
(A) Translatory motion
(B) Rotatory motion
(C) Random motion
(D) Vibratory motion
6. $\quad \mathbf{0 . 0 0 2 0 7 0}$ has number of significant figures:
(A) 3
(B) 4
(C) 5
(D) 2
Q. 2 Give short answers to following questions.
$(5 \times 2=10)$
i. A truck covers a distance of 360 km in 5 hours. Find its speed in metre per second.
ii. A body is moving with uniform velocity. What will be its acceleration?
iii. Under what conditions the distance and displacement between two points will be equal?
iv. Can a body moving at a constant speed have acceleration?
v. Find the retardation produced, when a can moving at the sperd e 30 nis sipustivnt uniformly to $15 \mathrm{~ms}^{-1}$ in 5 s .
Q. 3 Answer the following quest onsin detai\%
(4+5=9)
a) Defing gavitationatiacdeldation. Write a ngte on the motion of freely falling bodies.
b) A stine is ropper forn thP top ef tower. The stone hits the ground after 5 seconds. Finc:
i) The height of the tower
(ii) The velocity with which the stone hits the ground

Parents or guardians can conduct this test in their supervision in order to check the skill of students.

